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Stemness- and hypoxia-based
prognostic stratification index
reveals G6PD as a regulator of
hypoxia-driven stemness in
hepatocellular carcinoma

Mingwei Gao***', Yuechuan Liu***, Jianhui Wu?®?',
Peiru Zhang??, Jin Liu**, Kun Guo?®?, Binwen Sun??,
Sunbin Ling** and Liming Wang***

Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second
Affiliated Hospital of Dalian Medical University, Dalian, China, ?Engineering Research Center for New
Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated
Hospital of Dalian Medical University, Dalian, China, *Engineering Technology Research Center for
Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China

Background: The positive feedback loop between cancer stemness and the
hypoxic microenvironment is a critical driver of hepatocellular carcinoma (HCC)
progression. Analyzing their interaction in HCC is crucial to characterize immune
microenvironment features, uncover molecular heterogeneity patterns, and
develop targeted interventions.

Methods: The TCGA-LIHC cohort (n=340) were stratified through consensus
clustering of stemness- and hypoxia-related genes (SHRGs) identified by one-
class logistic regression and weighted gene co-expression network analyses.
Subsequently, a stemness- and hypoxia-related prognostic index (SHRPI) was
constructed using random forest, and Cox regression analyses, with its
prognostic significance assessed in two other independent cohorts: our NC-LT
cohort comprising 180 liver transplant (LT) patients with HCC beyond Milan
criteria, and the GSE104580 cohort containing 147 HCC patients treated with
transcatheter arterial chemoembolization (TACE). A prognostic nomogram
incorporating SHRPI was developed, and externally validated in the GSE14520
cohort (n=242). Systematic profiling of immune microenvironment features and
immunotherapy responsiveness in SHRPI subgroups was performed, followed by
pharmacogenomic screening and molecular docking to identify optimal
therapies. After single-cell transcriptomic analysis, functional validation assays
were conducted to confirm the role of G6PD, a key SHRPI component.
Results: SHRGs-based clustering revealed two clusters exhibiting distinct
prognoses, functional annotations, genomic alterations, and immune
microenvironment features. SHRPI served as an independent risk factor for
both overall survival in HCC patients and recurrence-free survival in LT patients
beyond Milan criteria. It demonstrated strong predictive power for TACE
responsiveness. The SHRPI-integrated nomogram achieved robust
performance in external validation. High SHRPI level was associated with a
more immunosuppressive tumor microenvironment and poorer
immunotherapy responsiveness. Pharmacogenomic and molecular docking
analyses identified BI2536 as the most promising therapeutic agent for this
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high-SHRPI subgroup. Further experiments established that GEPD serves as a key
therapeutic target for hypoxia-driven stemness maintenance in HCC by
functioning as a stemness regulator that interacts with HIF-1o to form a
positive feedback loop under hypoxia.

Conclusions: This study provides further insights into stemness-hypoxia
interaction in HCC and delivers a clinically applicable predictive tool for
prognosis. BI2536's synergy potential and the therapeutic value of G6PD
targeting in stemness regulation advance individualized therapeutic strategies

for HCC.

hepatocellular carcinoma, stemness, hypoxia, prognosis, immune microenvironment, G6PD

1 Introduction

Hepatocellular carcinoma (HCC) is a highly aggressive
malignancy characterized by a high recurrence rate and broad
therapeutic resistance, significantly impacting patient prognosis
(1). Studies have shown that the malignant characteristics of HCC
are closely linked to the presence and function of cancer stem cells
(CSCs) (2, 3). CSCs possess self-renewal capacity and differentiation
plasticity, enabling them to evade immune surveillance and play a
pivotal role in tumor initiation, progression, and therapeutic
resistance (4, 5). These cells maintain their stem-like properties
by activating embryonic developmental signaling pathways such as
Wnt/B-catenin and Notch while upregulating drug efflux pumps,
thereby enhancing resistance to conventional therapies (6, 7). As

Abbreviations: HCC, hepatocellular carcinoma; CSCs, cancer stem cells; TME,
tumor microenvironment; HIFs, hypoxia-inducible factors; Tregs, regulatory T
cells; MDSCs, myeloid-derived suppressor cells; SHRPI, stemness- and hypoxia-
related prognostic index; mRNAsi, mRNA expression-based stemness index; OS,
overall survival; DEGs, differentially expressed genes; WGCNA, weighted gene
co-expression network analysis; SHRGs, stemness- and hypoxia-related genes;
CDF, cumulative distribution function; FDR, false discovery rate; CNV, copy
number variation; SNV, single-nucleotide variant; TMB, tumor mutational
burden; HRD, homologous recombination deficiency; TIDE, tumor immune
dysfunction and exclusion; ssGSEA, single-sample gene set enrichment analysis;
TAMs, tumor-associated macrophages; LASSO, least absolute shrinkage and
selection operator; ROC, receiver operating characteristic; AUC, area under the
curve; LT, liver transplant; TACE, transcatheter arterial chemoembolization;
DCA, decision curve analysis; LRG, low-risk group; HRG, high-risk group; TIME,
tumor immune microenvironment; Tfh, helper T cells; CTRP, cancer
therapeutics response portal; PRISM, profiling relative inhibition
simultaneously in mixtures; GDSC, genomics of drug sensitivity in cancer;
OCLR, one-class logistic regression; ICI, immune checkpoint inhibitor; EMT,
epithelial-mesenchymal transition; PPP, pentose phosphate pathway;
CIBERSORT, cell-type identification by estimating relative subsets of RNA
transcripts; HRs, hazard ratios; AUC, area under the dose-response curve; Co-

IP, co-immunoprecipitation.
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reservoirs for tumor relapse, CSCs rely heavily on the hypoxic
tumor microenvironment (TME) for survival and stemness
maintenance (8, 9).

Within solid tumors, low oxygen levels not only promote
angiogenesis and metabolic reprogramming to support tumor
growth but also activate hypoxia-inducible factors (HIFs), which
transcriptionally upregulate stemness-related genes such as Oct4
and Nanog. This process further sustains the stem-like phenotype of
CSCs, contributing to HCC invasiveness and treatment resistance
(10-13). Moreover, hypoxia reprograms the TME into an
immunosuppressive niche, amplifying CSC-driven malignancy.
Intratumoral hypoxia induces the secretion of cytokines such as
TGF-B and IL-6 while promoting the recruitment of regulatory T
cells (Tregs) and myeloid-derived suppressor cells (MDSCs). These
immunosuppressive components cooperatively inhibit cytotoxic T-
cell (CD8" T-cell) activity, protecting CSCs from immune clearance
(14). Additionally, hypoxia-driven upregulation of immune
checkpoints such as PD-L1 and CTLA-4 exacerbates immune
evasion (15, 16). As the tumor progresses, increased oxygen
consumption exacerbates TME hypoxia, forming a self-
reinforcing malignant cycle that enhances tumor aggressiveness
(8, 17). Therefore, identifying, quantifying, and therapeutically
targeting stemness-hypoxia features holds significant clinical value
for optimizing HCC risk stratification and precision therapy.

Despite the recognized role of the stemness-hypoxia axis in
HCC progression, there remains a lack of systematic, rigorous, and
effective prognostic indices that integrate stemness and hypoxia
characteristics for stratifying patients and identifying high-risk
subgroups to guide precision treatment strategies. Furthermore,
current HCC prognostic models are primarily based on either single
molecular features (e.g., stemness indices or hypoxia scores) or
clinicopathological parameters (18-21). The limited dimensionality
of these models restricts their accuracy in predicting patient
outcomes. Therefore, it is imperative to develop a comprehensive
prognostic tool that integrates multi-dimensional molecular
features (incorporating both stemness and hypoxia) with
clinicopathological parameters to improve risk stratification,
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enhance prediction accuracy, and provide a rationale for
personalized treatment strategies for high-risk subgroups.

In this study, we utilized large-scale public multi-omics datasets
and integrated multiple machine learning algorithms and statistical
analysis methods to identify key genes involved in stemness-
hypoxia regulation. We constructed a stemness- and hypoxia-
related prognostic index (SHRPI) to stratify HCC patients into
distinct risk subgroups, and developed a high-performance
prognostic nomogram. Additionally, we screened potential
therapeutic drugs targeting high-risk subgroup through
pharmacogenomic and molecular docking analyses. Capitalizing
on the high-resolution cellular heterogeneity mapping capability of
single-cell transcriptomics (22, 23), we further dissected the cell-
type-specific expression profiles of SHRPI components and
validated the role and potential mechanism of its most critical
gene in maintaining HCC stemness under hypoxia.

2 Materials and methods
2.1 Data collection and preprocessing

The discovery cohort of HCC patients was obtained from TCGA-
LIHC through their data portal (https://portal.gdc.cancer.gov/
projects/TCGA-LIHC), comprising gene expression profiles, copy
number variation (CNV) data, somatic mutation data, and clinical
information. The validation cohort consisted of gene expression
profiles and clinical information from the GSE14520 dataset,
retrieved from GEO database (https://www.ncbinlm.nih.gov/geo/
). After comprehensive screening, this study included 340 patients
from TCGA-LIHC with complete survival information, overall
survival (OS) > 30 days, and accessible stemness indices and
hypoxia scores, as well as 242 patients from GSE14520 fulfilling
the criteria of complete survival data and OS > 30 days. For
transcriptomic data normalization, log2(FPKM + 0.001)
transformation was applied. To mitigate batch effects in
transcriptomic data, we followed the recommended standard
procedures for bulk transcriptomic data analysis in cancer
research, applying the Combat algorithm from the “SVA” R
package for batch effect correction (23). Additionally, we
incorporated 180 liver transplant (LT) patients with HCC beyond
the Milan criteria from our previous study (NC-LT cohort) to
evaluate the impact of the gene signature on recurrence-free
survival (RFS) (24), along with 147 patients from the GSE104580
dataset to assess the correlation between the gene signature and
patient response to transcatheter arterial chemoembolization
(TACE) therapy.

2.2 Computation of stemness indices
The stemness signature was determined using the one-class

logistic regression (OCLR) machine-learning algorithm (25).
Subsequently, correlation coefficients were computed between the
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stemness signature weight values and gene expression levels for
each sample. Finally, the stemness index was derived by scaling the
Spearman correlation coefficients to a range between 0 and 1.

2.3 Differential expression analysis

The TCGA-LIHC samples were categorized into high and low
groups based on either the median value or the optimal cutoff value
determined by maximizing the Youden index using the “survminer”
R package. Differential expression analysis was conducted using the
Wilcoxon rank-sum test (26). Genes meeting the criteria of false
discovery rate (FDR) < 0.05 and |log2(fold change)| > 1 were
considered statistically significant. To enhance the accuracy of the
risk model, a more stringent selection threshold was applied, setting
FDR < 0.01 and |log2(fold change)| > 2.

2.4 Definition of stemness- and hypoxia-
related genes

The hypoxia signature score for TCGA-LIHC patients was
obtained from The cBio Cancer Genomics Portal (http://
cbioportal.org), and hypoxia-related genes were identified using
weighted gene co-expression network analysis (WGCNA) (27). The
overlapping genes between mRNAsi-related differentially expressed
genes (DEGs) and hypoxia-related genes were collectively defined
as stemness- and hypoxia-related genes (SHRGs).

2.5 Unsupervised consensus clustering

The “ConsensusClusterPlus” R package was employed for the
classification of SHRGs through unsupervised consensus clustering.
To enhance classification stability, the clustering process was
conducted 1,000 times with 80% resampling. The optimal k value
(number of clusters) was identified based on the relative variation in
the area under the cumulative distribution function (CDF) curves
and the consensus matrix.

2.6 Functional enrichment analysis

GO, KEGG, and GSEA analyses were conducted using the
“clusterProfiler” R package, while GSVA analysis was performed with
the unsupervised “GSVA” R package. The background gene sets for
both GSEA and GSVA were obtained from the Molecular Signatures
Database (MSigDB) (28), specifically the h.all.v2024.1.Hs.symbols.gmt
gene set. Subsequently, differential analysis of the GSVA results was
conducted using the “limma” R package, considering pathways with
FDR < 0.05 as significantly enriched, with |t| > 2 shown in figures
for visualization.
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2.7 Genetic alterations and immune
infiltration analysis

The CNV and somatic mutation data of TCGA-LIHC patients
were analyzed using the “maftools” R package to examine genetic
alterations across different clusters. The 14 oncogenic pathways were
compared across various clusters using the PROGENy algorithm
(29). To evaluate the tumor immune microenvironment (TIME), the
“Cell-type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT)” tool was employed to quantify the
abundance of tumor-infiltrating immune cells (30).

2.8 Immune checkpoints and
immunotherapy response analysis

To assess immunotherapy response in TCGA-LIHC patients,
expression of 68 immune checkpoint-related genes identified in
previous studies was analyzed (31). Subsequently, tumor immune
dysfunction and exclusion (TIDE) scores, T cell dysfunction scores,
T cell exclusion scores, INFG levels, and MDSC levels were
retrieved from the TIDE portal (http://tide.dfciharvard.edu).
Single-sample gene set enrichment analysis (ssGSEA) was then
applied to compute enrichment scores for 29 immune-related traits
and to explore associations between the index and immune
regulation (32). Furthermore, ssGSEA-derived enrichment scores
for three stem cell related gene sets from MSigDB: “WONG
EMBRYONIC STEM CELL CORE,” “YAMASHITA LIVER
CANCER STEM CELL UP,” and “YAMASHITA LIVER
CANCER STEM CELL DN” were calculated to investigate
associations between the index and stemness.

2.9 Construction of SHRPI

To determine the relationship between SHRGs and patient
survival outcomes, we applied univariate Cox regression, LASSO
regression, and Random Forest models to filter SHRGs. After
excluding attributes with an absolute correlation of 0.8, a total of
419 genes were selected as input variables. Finally, the four most
critical genes were identified and incorporated into a multivariate
Cox regression model to construct a risk prediction model, termed
SHRPI. The formula for this model is as follows:

Risk score = i(Coefﬁcient(i) x Expression (i))
i=0

To evaluate the robustness of SHRPI, patients were initially
stratified into two groups based on the median SHRPI value. The
prognostic significance of SHRPI was assessed using Kaplan-Meier
survival analysis. The predictive accuracy of SHRPI was further
evaluated through receiver operating characteristic (ROC) curve
analysis, with the area under the curve (AUC) calculated using the
“timeROC” R package. To enhance its clinical applicability, TCGA-
LIHC patients were further categorized into high-risk (HRG) and
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low-risk (LRG) groups based on the optimal cutoff value, followed
by comprehensive immune profiling and drug sensitivity analyses.

2.10 Construction of nomogram predictive
model

The SHRPI score, along with tumor stage, age, gender, tumor
grade, vascular invasion status, Child-Pugh grade, hepatic
inflammation status, cirrhosis status, recurrence status, BMI, and
AFP levels, was incorporated into the univariate Cox regression
analysis. The hazard ratios (HRs) for each variable were computed
using the Cox proportional hazards regression model with the
“survival” R package. To determine independent prognostic factors,
a multivariate Cox regression analysis was performed, and a
nomogram was developed based on the findings using the “RMS”
R package. Model stability was assessed through Schoenfeld residuals
and deviance residuals. The nomogram’s predictive performance was
evaluated via ROC analysis, calibration curves, and the C-index,
calculated through 1,000 bootstrap resampling iterations.
Furthermore, decision curve analysis (DCA) was employed to
assess the clinical applicability of the predictive model (33).

2.11 Drug response analysis and molecular
docking analysis

Gene expression data, along with the corresponding half-
maximal inhibitory concentration (IC50) values and area under
the dose-response curve (AUC) for cancer cell lines, were obtained
from the Genomics of Drug Sensitivity in Cancer (GDSC2 v8.5,
released October 2023), the Cancer Therapeutics Response Portal
(CTRP v2.0, released October 2015), and the Profiling Relative
Inhibition Simultaneously in Mixtures (PRISM) Repurposing
dataset (20Q2, released August 2022). AUC values were used as a
measure of drug sensitivity, where higher AUC values indicated
lower treatment sensitivity. The “oncoPredict” R package was
employed to predict drug sensitivity for each sample.

The molecular structures of the compounds were retrieved from
PubChem Compound (https://pubchem.ncbinlm.nih.gov/), and
the 3D coordinates of G6PD (PDB ID: 7UAG, resolution: 3.5A)
were obtained from the PDB (http://www.rcsb.org/). All protein
and molecular files were converted into PDBQT format, with water
molecules removed and polar hydrogen atoms added to improve
docking accuracy. Molecular docking simulations were conducted
using AutoDock Vina 1.2.2, and the resulting protein-ligand
complexes were visualized with PyMol. The binding energies,
which indicate binding stability, were used to assess the
therapeutic potential of each compound (34).

2.12 Single-cell RNA sequencing analysis

Single-cell RNA sequencing data from HCC samples in GEO
dataset GSE149614 were filtered to remove low-quality cells (< 200
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or > 6,000 detected genes, or > 15% mitochondrial content). Gene
expression was log-normalized using Seurat (v5.3.0), followed by
PCA for dimensionality reduction and clustering via the
FindNeighbors and FindClusters functions. Cell clusters were
annotated using the “SingleR” R package. SHRPI was computed
as a weighted sum of z-score-normalized expression of HMMR,
UBE2S, G6PD, and NEIL3. Cells were classified into low- and high-
SHRPI groups based on the median SHRPI score. SHRPI
distribution was visualized on the t-SNE plot, and expression of
each constituent gene across cell clusters was displayed in separate
dot plots.

2.13 Cell culture, lentiviral vector
construction and infection

Human HCC cell lines (HuH-7, PLC/PRF/5, Hep-3B, and Li-7)
and HEK293 were obtained from the Shanghai Institute of Cell
Biology, Chinese Academy of Sciences (Shanghai, China). The
authenticity of all cells’ authenticity was confirmed through short-
tandem repeat (STR) profiling. The cells were cultured in the
appropriate media supplemented with 10% fetal bovine serum
and 1% penicillin-streptomycin (Solarbio) at 37 °C in a 5% CO,
incubator. Hep-3B and PLC/PRE/5 cells were maintained in MEM
medium (Pricella), HEK293 and HuH-7 cells were cultured in high-
glucose DMEM (Pricella), and Li-7 cells were maintained in RPMI
1640 medium (Pricella). All cell lines were regularly confirmed to be
mycoplasma-free by PCR. Detailed information on lentiviral vector
construction and infection is provided in Supplementary File, and
all plasmid sequences are listed in Supplementary Table 3.

2.14 Cell migration assay

Cells (2x10*) were seeded in the upper chamber of a
polycarbonate membrane insert (Corning Incorporated) with 200
UL of FBS-free medium. The lower chamber was filled with 800 puL
of medium containing 20% FBS. After 24-48 hours of incubation,
the cells that had migrated through the membrane were washed,
fixed with 1% paraformaldehyde, and stained with crystal violet.
Photographs were taken of four randomly selected fields, and the
number of migrated cells was counted. The experiment was
performed in triplicate.

2.15 Cell sphere formation assay

Cells (2x10°) were plated onto 6-well Ultra-Low Attachment
plates (Corning Incorporated) and cultured in special medium
consisting of DMEM/F12 (Invitrogen) supplemented with 4 pg/
mL insulin (Sigma-Aldrich), B27 (Invitrogen), 20 ng/mL EGF
(Sigma-Aldrich), and 20 ng/mL basic FGF (Invitrogen). After 10
days of incubation, spheres with diameters greater than 75 pum were
photographed and counted under a microscope.
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2.16 Western blot analysis, co-
immunoprecipitation and quantitative PCR
analysis

Detailed information is provided in Supplementary File.
Specific details regarding the antibodies are presented in
Supplementary Table 4. The sequences of primers are provided in
Supplementary Table 5.

2.17 Hydrodynamic tail vein injection
mouse model

The transgenic HCC mouse model was generated in male wild-
type C57BL/6] mice (6-8 weeks) by hydrodynamic tail vein
injection co-overexpressing activated AKT and c-Met. In brief,
the plasmids m-G6PD pT3-EF1a-MYC or pT3-EFla-MYC
(MCS) (20 pg), pT3-myr-AKT-HA (20 ug), and pT3-EFlo-c-Met
(20 pg), together with pPCMV(CAT)T7-SB100 (2.4 ug), at a ratio of
12.5: 12.5: 12.5: 1.5, were diluted in 2 ml saline (0.9% NaCl), filtered
through a 0.22-um filter, and injected into the lateral tail vein of the
mice within 5-7s (35). 20 days after injection, the mice were
humanely euthanized via intraperitoneal injection of sodium
pentobarbital (150 mg/kg). Liver tumors were subsequently
collected for analysis. Animal experiments were conducted in
strict accordance with relevant guidelines and approved by the
Institutional Animal Care and Use Committee of Zhejiang Center
of Laboratory Animals (IACUC, ZJCLA; approval number: ZJCLA-
TACUC-20011186). This study adhered to the ARRIVE guidelines.

2.18 Statistical analysis

The Student’s t-test or Wilcoxon rank-sum test (Mann-
Whitney U test) was applied to assess continuously distributed
numerical data. Correlation analysis was conducted using either the
Pearson or Spearman correlation test, depending on data
distribution. Survival curves were generated with the Kaplan-
Meier method and compared using the Log-rank test. All
statistical analyses were performed in GraphPad Prism (v9.0) and
R (v4.4.1). A two-tailed P value < 0.05 was considered statistically
significant. Statistical significance was annotated as follows: *P <
0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001; ns = not significant.

3 Results

3.1 Stemness indices and hypoxia scores in
HCC

Using mRNA expression and DNA methylation data from the
TCGA-LIHC cohort, five stemness indices were calculated, with
hypoxia scores obtained from the cBioPortal database. The mRNA
expression-based stemness index (mRNAsi) (P = 0.0031) and the
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Buffa Hypoxia Score (P < 0.0001) showed significant associations
with OS in HCC (Supplementary Figures 1A, D). Patients with
higher mRNAsi exhibited significantly poorer tumor differentiation
(P < 0.0001), increased vascular invasion (P = 0.022), and elevated
AFP levels (P = 0.021) (Supplementary Figures 1B, C). Similarly, a
higher Buffa Hypoxia Score was associated with advanced tumor
stage (P < 0.0001), poorer tumor differentiation (P = 0.006),
increased vascular invasion (P = 0.007), and elevated AFP levels
(P = 0.027) (Supplementary Figures 1E, F). Thus, mRNAsi was
selected to quantify stemness characteristics, while the Buffa
Hypoxia Score was used to evaluate tumor hypoxia levels.

3.2 ldentification of stemness- and
hypoxia-related clusters in HCC

HCC patients were categorized into high- and low-stemness
groups based on the median mRNAsi value, resulting in the
identification of 1,341 DEGs associated with mRNAsi
(Figure 1A). WGCNA revealed 11 non-grey modules, with the
blue module showing the strongest correlation with the Buffa
Hypoxia Score (R*> = 0.47, P = 3.7x107'%%) (Figure 1B).
Integrating mRNAsi-associated DEGs with hypoxia-related genes
identified 75 overlapping genes, classified as SHRGs (Figure 1C,
Supplementary Table 1). Consensus clustering was performed on
the 75 SHRGs, determining optimal classification at k = 2, as
indicated by the CDF curve variations (Figure 1D). HCC patients
were then divided into two clusters (Cluster 1 and Cluster 2).
Patients in Cluster 2 exhibited a significantly shorter median OS
and lower survival probability than those in Cluster 1 (P = 0.0006)
(Figure 1E), as well as higher mRNAsi and hypoxia scores (both P <
0.001) (Figure 1F).

To further characterize the molecular differences between the
two clusters, we conducted a more stringent differential expression
analysis using |log2FC| > 2 and FDR < 0.01 as the selection criteria
(Figure 1G, Supplementary Figure 2A). Functional enrichment
analysis of DEGs through GO and KEGG revealed significant
enrichment in cell cycle regulation and DNA repair pathways
(Figure 1H). GSEA further demonstrated that, compared with
Cluster 1, Cluster 2 exhibited significant activation of E2F targets,
the G2/M checkpoint, and KRAS signaling DN, whereas oxidative
phosphorylation, bile acid metabolism, fatty acid metabolism, and
adipogenesis were suppressed (Figure 1I). GSVA revealed
significant upregulation of proliferation-related pathways,
including E2F targets, G2/M checkpoint, DNA repair, and mTOR
signaling in Cluster 2. In contrast, Cluster 1 was predominantly
enriched in lipid and bile acid metabolism, coagulation, and
inflammatory responses (Figure 1]). Overall, these results indicate
that Cluster 2 is characterized by a hyperproliferative phenotype
with enhanced DNA repair and oncogenic signaling, whereas
Cluster 1 is associated with metabolic reprogramming and an
inflammatory tumor microenvironment.
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3.3 Genomic and TIME characteristics of
the two stemness- and hypoxia-related
clusters

We next examined somatic mutations and CNV in both clusters
to investigate potential mechanisms underlying their distinct
prognoses. Recurrent mutations were detected in several genes,
including TP53, TTN, and CTNNBI, and the two clusters exhibited
distinct single-nucleotide variant (SNV) substitution patterns
(Figures 2A, B, Supplementary Figures 2E, F). Notably, TP53,
LRP1B, RB1, ABCB5, and ZNF469 displayed significantly
different mutation frequencies between the clusters (Figure 2C,
Supplementary Figures 2B, C). Moreover, Cluster 2 exhibited higher
aneuploidy scores, tumor mutational burden (TMB) and
homologous recombination deficiency (HRD) compared with
Cluster 1 (Supplementary Figure 2D). These findings suggest that
tumors with elevated DNA damage may possess enhanced immune
evasion capabilities and reduced responsiveness to immunotherapy
(36). To further validate our classification, we compared our patient
clusters with a previously established molecular classification in
which the “Inflammatory” subtype (C3) was associated with the
best prognosis (37). Most C3 patients were assigned to Cluster 1,
which had a better prognosis, consistent with previous
findings (Figure 2D).

Given the intricate interplay between stemness, hypoxia, and
immune-related pathways, we further explored differences in the
TIME across the two clusters. CIBERSORT analysis revealed that
patients in Cluster 2 exhibited significantly higher levels of
activated memory CD4" T cells, follicular helper T cells, and
Tregs, whereas MO macrophages, resting memory CD4" T cells,
and M2 macrophages were markedly reduced (Figure 2E). Next,
we analyzed the expression of previously reported immune
checkpoint-related genes across the two clusters (38). In Cluster
2, genes known to suppress T-cell immune activity, including
CTLA4 and its ligands as well as PD-1 and its ligands, were
significantly upregulated (Figure 2F). With the growing
prominence of immunotherapy in HCC treatment, we employed
the TIDE model to evaluate patients’ potential response. Given
that higher TIDE scores indicate increased immune evasion and
diminished immunotherapy efficacy, we observed that Cluster 2
had a significantly higher TIDE score than Cluster 1, suggesting
that patients in Cluster 2 may have a lower likelihood of benefiting
from immunotherapy (Supplementary Figure 3A). We employed
ssGSEA to evaluate therapeutic signatures and 29 immune-related
gene signatures, encompassing immune, stromal, and other
cellular processes. First, Cluster 2 exhibited significant
upregulation of gene signatures associated with the cell cycle,
DNA replication, and mismatch repair (Supplementary
Figure 3B). Second, Cluster 2 displayed increased infiltration of
immunosuppressive cells, including tumor-associated
macrophages (TAMs), MDSCs and Tregs, along with enhanced
tumor cell proliferation, leading to heightened immune
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FIGURE 1
Identification of stemness- and hypoxia-related clusters. (A) Identification of mMRNAsi-related DEGs between high- and low-mRNAsi subgroups.
(B) Hypoxia-related genes identified through WGCNA. (C) A total of 75 overlapping genes were identified as SHRGs. (D) Unsupervised consensus
clustering was performed using SHRGs. (E) Kaplan-Meier survival curve for the identified clusters. (F) Differences in mRNAsi (left) and hypoxia scores
(right) between the two clusters. (G) Identification of DEGs between the two clusters. (H-J) KEGG/GO (H), GSEA (1), and GSVA (J) enrichment
analyses of the two clusters. Statistical significance: ***P < 0.001.

significantly higher activity in the Estrogen, Hypoxia, MAPK,
NF-xB, p53, TNFa, and WNT signaling pathways, whereas
Cluster 1 showed relatively higher activity in the VEGF

suppression and elevated pro-tumor immune scores
(Supplementary Figure 3E). Finally, PROGENy analysis was

performed to assess the activity of cancer-related signaling
pathways (29). The results indicated that Cluster 2 exhibited  signaling pathway (Supplementary Figures 3C, D).
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FIGURE 2

Genomic and TIME characteristics of the two stemness- and hypoxia-related clusters. (A, B) Waterfall plots illustrating the twenty most frequently
mutated genes in each cluster. (C) Mutation landscape of the five most significantly different genes based on univariate Cox analysis in the two
clusters. (D) Differences in the composition of previously classified molecular subtypes of HCC between the two clusters. (E) Comparison of immune
cell infiltration proportions between the two clusters. (F) Analysis of expression levels of representative immune checkpoint genes across the two

clusters. Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001; ns = not significant.
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3.4 Construction of the 4-gene SHRPI and
evaluation of its prognostic significance

Cox regression analysis was conducted on the DEGs between
the two clusters to identify prognostic genes. To mitigate
collinearity effects, genes with a Pearson correlation coefficient
greater than 0.80 were excluded, resulting in 221 DEGs
(Supplementary Table 2). LASSO regression analysis was then
applied, yielding five stable prognostic genes (Figures 3A, B). To
further reduce false-positive rates and enhance model accuracy, we
employed a random forest model to select genes with a Mean
Decrease Gini greater than 1 (Figure 3C). Subsequently, four
overlapping key genes were incorporated into a Cox regression
model, with corresponding coefficients used to construct the SHRPI
(Figure 3D): SHRPI = 0.10211669 x HMMR + 0.15981839 x UBE2S
+ 0.20537184 x G6PD + 0.06132584 x NEIL3.

Patients were stratified into low- and high-SHRPI groups based
on the median SHRPI score. Differential expression analysis
revealed that all four key genes were upregulated in the high-
SHRPI group (Figure 3E; Supplementary Figures 4A, B). In the
TCGA-LIHC cohort, patients in the high-SHRPI group exhibited
significantly shorter OS compared to those in the low-SHRPI group
(P < 0.0001) (Figure 3F). Time-dependent ROC curve analysis
demonstrated that SHRPI exhibited robust and stable predictive
performance for survival, with AUC values of 0.82, 0.70, and 0.67
for 1-, 3-, and 5-year OS, respectively (Supplementary Figure 4C).
Univariate and multivariate Cox regression analyses confirmed that
stage, recurrence status, and SHRPI were independent risk factors
for OS in HCC (Figures 3G, H). In the NC-LT cohort, patients in
the high-SHRPI group exhibited significantly shorter RFS
compared to those in the low-SHRPI group (P = 0.0015)
(Figure 3I). Univariate and multivariate Cox regression analyses
confirmed that tumor diameter, AFP levels, and SHRPI were
independent risk factors for RES in HCC after LT (Figures 3], K).
Furthermore, the applicability of SHRPI was validated in the
GSE104580 cohort, where SHRPI was significantly higher in the
TACE non-response group compared to the response group (P <
0.001), with an AUC of 0.713 for predicting TACE response
(Supplementary Figures 4D, E).

3.5 Development and validation of the
SHRPI-based nomogram for OS prediction
in HCC patients

We constructed a nomogram incorporating SHRPI and other
independent prognostic risk factors using the TCGA-LIHC cohort
and externally validated it in the GSE14520 cohort to
comprehensively assess its predictive performance (Figure 4A).
The results demonstrated that the nomogram exhibited excellent
performance in both the training and validation cohorts. After
stratifying patients in both cohorts based on the median nomogram
score, Kaplan-Meier survival analysis revealed that patients in the
high-nomogram score group had significantly shorter OS compared
to those in the low-nomogram score group (Figures 4B, C).
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In the training cohort, the AUC for 1-, 3-, and 5-year OS was
0.81, 0.76, and 0.73, respectively, highlighting the nomogram’s
strong discriminatory power for short- to medium-term survival
prediction (Figure 4D). In the validation cohort, the nomogram
maintained robust predictive performance, with AUC values of
0.77,0.81, and 0.89 for 1-, 3-, and 5-year OS, respectively, indicating
its generalizability across different datasets (Figure 4G). The
calibration curves for both the training and validation cohorts
further confirmed the accuracy of the nomogram in predicting 1-,
3-, and 5-year OS. These curves demonstrated a high degree of
concordance between predicted and observed survival probabilities,
underscoring the nomogram’s reliability in long-term survival
estimation (Figures 4E, H). Additionally, DCA for both cohorts
demonstrated that the nomogram yields net benefits across a broad
range of risk thresholds, further supporting its potential role in
guiding clinical decision-making (Figures 4F, I).

3.6 Comprehensive analysis of SHRPI and
its associations with immune infiltration,
TIME signatures

To further explore the biological and clinical significance of
SHRPI, we calculated patient risk scores using the SHRPI formula
and stratified the TCGA-LIHC cohort into low-risk (LRG) and
high-risk (HRG) groups based on the optimal cutoff value.
Differential expression analysis between the two groups identified
key genes associated with SHRPI. Functional enrichment analyses,
including GO, KEGG, GSEA, and GSVA, revealed that the majority
of enriched pathways were primarily related to cell cycle regulation
and metabolic processes (Supplementary Figures 5A-D). We
performed a stemness assessment on patients in the TCGA-LIHC
cohort using stemness-related gene sets from MSigDB. The Wong
Embryonic Stem Cell Core score showed a significant positive
correlation with the risk score, while the Yamashita Liver Cancer
Stem Cell Dn score exhibited a significant negative correlation
(Supplementary Figure 5E).

To investigate the relationship between the risk score and
immune characteristics, we analyzed the infiltration of 22
immune cell types in TIME. The results indicated a significant
correlation between the risk score and multiple immune cell
subsets, with distinct infiltration patterns observed between LRG
and HRG, consistent with the trends observed in the stemness-
hypoxia-based clusters. Specifically, HRG patients exhibited
increased Tregs, follicular helper T cells (Tfh), and MO
macrophages, while resting memory CD4" T cells and naive B
cells were significantly reduced (Figures 5A, B). Additionally, the
risk score exhibited strong positive correlations with matrix
remodeling, Treg abundance, and tumor proliferation rate,
indicating its potential role in fostering an immunosuppressive
and tumorigenic microenvironment (Figure 5C). The expression
profiles of 68 immune checkpoint genes differed significantly
between LRG and HRG, with many genes including PDCD1 (PD-
1), CTLA4, CD274 (PD-L1), and HAVCR2 (TIM-3) upregulated in
HRG (Figure 5F). Correlation analysis further revealed that the risk

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1669275
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

10.3389/fimmu.2025.1669275

Gao et al.
A B c T D
Cox Coefficient
Lasso Coefficient cenn o s 3
) . B 3
ueezs | 7] = g b o0y
R o 7 s 5 20
I stomr|——e L = o= =
h coRy s Erairo 3 NEIL3 10
i &= < = : o
i NEIL3 |[—® one — 4 s
i = & 2 . Conicnt
w7/ B | 2 8| ® oo
B = : @
g2 A @
ooPo| ——e e = corp
&= m|o
- o oo oo oons st |0 Ba| ¢
Coefficient 25 30 35 40 ° o 2 3 . 000 005 010 015 020
MeanDecreaseAccracy MaarOecreaseGins Coefficient
E F 1
- T ——
) SHRP! low o) SHRPI low
o W Crop s s P
l, e i
RN RO - V- #== -
I o "
use2s | 4 Sos HE
QU -
: S
s pe 0_00013 P=00015 g .o
oo g X
.
g L e 5 O o =0 ] g ™ = § ' = o =
G J
Subgroups HR(95%CI) P-value Subgroups HR(95%Cl) P-value
Stage A 0.98 (0.96~ 1.00 [ ] 01221
n reference ge 98 (0 -00) N
v 274 (1.88 ~4.01) —— <0.0001 Gender
Age
<74 reference Male reference
274 176 (1.14 ~2.71) —— 0.0108 Female 0.69 (0.4 ~1.17) Hi— 0.1692
Gender Tumor number
Male reference
Female 124 (0.86 ~ 1.78) — 0.2463 Single reference
Grade Multiple 1.44 (0.84 ~ 2.47) _— 0.1797
G1/G2 reference )
G364 1.06 (0.73 ~ 1.54) [ 07621 Tumor diameter
Vascular invasion <8cm reference
No reference
Yes 148 (0.96 - 2.27) - 0.073 >8om 221(143~342) —— 0.0004
Child.Pugh grade AFP
AB reference
c 1.83(0.9~3.74) —_—— 0.0962 <100 uglt fSiSence
Hepatic inflammation 100 ~ 400 pg/L 1.99 (1.1 ~ 3.58) _ 0.0221
None reference
67 (1.89 ~ 4. —_ .
Mild/Severe 122(0.74~2) i — 0.4378 > 400 ugll 2.97 (189 ~ 4.66) <0.0001
Cirrhosis Child.Pugh grade
No reference A reference
Yes 0.81(0.45 ~ 1.47) i 0.4968
Recurrence status B 0.94 (0.59 ~ 1.49) =i 0.7855
No reference c 147 (0.7 ~1.97) —— 0.5508
Yes 1.73(1.19~25) —— 0.0039
BMI HBYV inflammation
<25 reference No reference
.56 ~ HE .
,0;,205(AFP) ooz § 002 Yes 1.27(0.66 ~ 2.45) A 0.475
<06 reference Sirolimus
206 251(1.33~4.77) —_—— 0.0048
SHRPI 1.8 (157 ~207) [eal <0.0001 No referance
o ) 3 4 s Yes 0.93(0.62~1.41) 0.7444
H <Hazardratio> SHRPI 1.18 (1.04 ~ 1.35) ] 0.0122
T T T T T |
0 1 2 3 4 5
Subgroups HR(95%Cl) P-value K e aariratios
Stage
n reference
(% 1.73(1.01~2.96) HE— 0.0444 Subgroups HRES%C) Pvalue
Age
Tumor diameter
<74 reference
274 186(096-361)  —lI— 0.0649 <8om reference
Recurrence status >8cm 2.18(1.4~3.38) i 0.0005
No reference AFP
Yes 2.98(1.75~5.08) —— o001 <100 pglL refereice
log10(AFP) 100 ~ 400 pg/L. 2.35(1.28~4.29) | e | 0.0057
<06 reference
>400 g/l 3.19(2.01~5.07) _ <0.0001
206 1.39(0.70~2.75) 03513
SHRPI A - <0.0001 SHRPI 1.25(1.08~1.44) | I|.-| | i i | | 0.002
0 1 2 3 4 5 6
e <Hezand retic>
FIGURE 3
Construction of the 4-gene SHRPI and its prognostic significance. (A) LASSO regression analysis selected 5 variables based on the optimal lambda
value. (B) LASSO coefficient plot for the 5 selected key genes and their coefficients. (C) Screening of candidate genes via random forest models.
(D) Multivariate Cox regression analysis of the 4 selected genes used to construct the SHRPI. (E) Heatmap showing the expression of 4 SHRPI-
related genes in low- and high-SHRPI groups. (F) Kaplan-Meier survival curve for OS, risk score distribution, and survival status of patients in low-
and high-SHRPI groups of the TCGA-LIHC cohort. (G, H) Univariate (G) and multivariate (H) Cox regression analyses of SHRPI and
clinicopathological parameters for OS in the TCGA-LIHC cohort. (I) Kaplan-Meier survival curve for RFS, risk score distribution, and relapse status of
patients in low- and high-SHRPI groups of the NC-LT cohort. (3, K) Univariate (J) and multivariate (K) Cox regression analyses of SHRPI and
clinicopathological parameters for RFS in the NC-LT cohort.

Frontiers in Immunology

10

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1669275
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Gao et al.

10.3389/fimmu.2025.1669275

A B C
Prediction N TCGA-LIHC GSE14520
iction Nomogram
1.00 1.00
Points o 2 “© 60 80 100 Nomo low Nomo |0W
Be Nomo high Nomo high
Recurrence status - =]
Yos
i 075! 075
o 3 3
a a
SHRPI AA 5 3
13 1 2 3 7 3 5 T [ —— ) .-,
s 5
Total points 2} 2
4 4
s s
% © L3 100 E3 0 £
025 0.25
028,
FOSAme <5823) o3 [3 o7 08 054 0ses 098 '
P 0S time < 1095) 0256y P <0.0001 ; P <0.0001
o7 03 3 07 0% o odes  omme H
000 : 000
o111y
P 0S time <365) , o o o3 £3 o7 o o ) 1000 2000 3000 2000 ) 500 7000 1500 2600
Time in days Time in days
D E F
TCGA-LIHC
TCGA-LIHC @ | e A e TCGA-LIHC
2 —’_,_f - 1-year 2
= 3-year 1/
2 r_rr_,_~ 24 —— 5eyear 7 0.4
S
P : model
© = < o |
> ] % o . cphi-385
%‘ S o g pht-1005
% ? = — cpht-1825
3 « 2 = § AI365
S 8 Cl 2 Al1095
A82s
- None
3 - 2
AUC of 1-y survival: 0.87
AUC of 3~y survival: 0.76
(= —— AUC of 5-y survival: 0.73 =
S s
T T T T T T T T T T T T 024
0.0 02 04 06 08 10 00 02 04 06 08 10 v - A T
. .25 X 3 1.
1-Specificity Nomogram-predicted OS (%) Risk Threshold
G H 1
GSE14520 GSE14520 GSE14520
A
3-year Si 044
2 2 4 — B5-year y
?C: l A model
. g e | p7 . con-365
2 2 % 02 cphi-1085
2 3 Z 2 — cont-tazs
2
5 e . @ ioes
I 4 2 o 3
° o . 2 A1095
(o} ¥ AL1825
2 - None
o~ o 00] = = = = S ——————
S ° o
AUC of 1-y survival: 0.77
AUC of 3-y survival: 0.81 .
g - —— AUC of 5-y survival: 0.89 o 7
T T T T T T
T T T T T T
0.2+
0.0 02 0.4 06 08 10 0.0 02 0.4 0.6 08 1.0 - :m - |25 - '50 . |75 - bo
1-Specifiity Nomogram-predicted OS (%) ’ “ Risk Threshold :
FIGURE 4

Development and validation of the SHRPI-based nomogram for OS prediction. (A) Nomogram for predicting OS in HCC patients, integrating SHRPI,
stage, and recurrence status. (B, C) Kaplan-Meier survival curves comparing OS between low- and high- Nomo score groups in the TCGA-LIHC and
GSE14520 cohorts. (D, G) Time-dependent ROC curves illustrating the nomogram'’s predictive accuracy for 1-, 3-, and 5-year OS in these cohorts.
(E, H) Calibration plots comparing predicted and observed OS at 1-, 3-, and 5-year time points across cohorts. (F, I) DCA demonstrating the net
clinical benefit of the nomogram across different risk thresholds for OS prediction in both cohorts.

score was positively associated with most immune checkpoint
genes, suggesting a link to an immunosuppressive tumor
microenvironment and enhanced immune evasion (Figure 5G).
Next, we assessed the potential immunotherapy responses of
patients across different risk groups using TIDE scores. The
results showed that in HRG, the risk score was positively
correlated with T cell exclusion (p = 0.22, P = 0.02553),
suggesting a higher likelihood of immune evasion. Conversely, in
LRG, the risk score exhibited a stronger positive correlation with
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IFNG expression (p = 0.1984, P = 0.002146), indicating a potentially
enhanced anti-tumor immune response despite a higher correlation
with T cell exclusion (p = 0.3204, P < 0.0001) (Supplementary
Figure 5F). Collectively, these findings suggest that HRG is
characterized by a more immunosuppressive tumor
microenvironment, whereas LRG retains relatively higher
immune activity, which may contribute to better immunotherapy
responsiveness. Finally, we analyzed the relationship between the
risk score and oncogenic pathway activity. The results showed that
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the risk score was significantly associated with the activation of
hypoxia, MAPK, NF-kB, p53, TNFa, and WNT signaling, all of
which were upregulated in HRG (Figures 5D, E).

3.7 ldentification of potential therapeutic
agents for HRG

Sensitivity analysis revealed that conventional chemotherapeutic
agents and inhibitors targeting FGFR, EGFR, and VEGFR exhibited
no significant specificity in HRG. (Supplementary Figure 6A-D). To
identify potential therapeutic agents with greater efficacy in HRG, we
leveraged the CTRP, PRISM, and GDSC datasets, which provide
comprehensive gene expression and drug sensitivity profiles across
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hundreds of human cancer cell lines. Following the removal of
duplicates and quality control, 38 candidate compounds were
selected for further evaluation (Figure 6A). Initially, compounds
with lower estimated AUC values in HRG were identified using
predefined thresholds (log2FC < -0.1 for CTRP and GDSC, and
log2FC < -0.05 for PRISM). Subsequently, Spearman correlation
analysis was performed to assess the association between AUC values
and the risk score, with further filtering applied to compounds
exhibiting a negative correlation (R < —0.3 for CTRP and PRISM,
and R < -0.4 for GDSC) (Figures 6B, D, F). Ultimately, we identified
2 compounds from CTRP (docetaxel, BI2536), 5 from GDSC
(vincristine, pevonedistat, docetaxel, BI2536, alisertib), and 7 from
PRISM (gemcitabine, SN38, dabrafenib, bortezomib, AZD7762,
topotecan, BI2536), all of which demonstrated lower estimated
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AUC values in HRG, indicating greater predicted sensitivity to these  least two database screens (Docetaxel and BI2536) were selected for
agents (Figures 6C, E, G). Given that G6PD was the molecule most ~ molecular docking with G6PD. The results demonstrated that BI2536
closely associated with prognosis in Cox regression analysis among  had a higher binding affinity for G6PD (-8.341 kcal/mol) compared
the components of SHRPI (Figure 3D), compounds identified in at ~ to Docetaxel (-8.152 kcal/mol) (Figures 6H, I). These findings
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indicate that BI2536 may regulate G6PD activity by directly targeting
its active site, thereby potentially influencing HCC stemness.

3.8 Analysis and functional validation of
G6PD as a key SHRPI component in HCC

To further explore the cellular heterogeneity and expression
profiles of SHRPI components in HCC, we analyzed single-cell
RNA sequencing data. t-SNE dimensionality reduction and SHRPI
scoring demonstrated that cancer cells exhibited significantly higher
SHRPT levels (Figures 7A, B). Among the SHRPI components,
G6PD, HMMR, and NEIL3 were predominantly expressed in
cancer cells, with G6PD showing the highest expression
proportion (Figures 7C-F). This further underscored the pivotal
role of G6PD in regulating HCC stemness at the single-cell level.
Upon this finding, we further investigated the changes in G6PD
expression under hypoxia and its impact on the stemness
phenotype in HCC cells. We first assessed G6PD expression
across HCC cell lines (HuH-7, PLC/PRF/5, Hep-3B, and Li-7) via
Western blot. Based on strong expression in Hep-3B and moderate
expression in HuH-7, we selected these two cell lines for further
experiments (Figure 8A). Exposure of these cells to hypoxia (1% O,)
significantly upregulated the expression of G6PD (Figure 8B). To
further assess the role of G6PD in regulating the stemness
phenotypes of HCC cells under hypoxia, we conducted
knockdown and overexpression studies. In Hep-3B cells, shRNA1
and shRNA3 achieved effective G6PD knockdown (Figure 8C),
while in HuH-7 cells, effective overexpression was achieved
(Figure 8D). Correlation analysis between G6PD and stemness
markers showed that its expression was relatively strongly
correlated with CD24, CD44, OCT3/4, and HIF-1o. (Figure 8I).
Functional assays indicated that G6PD knockdown significantly
reduced cell migration, sphere formation and the mRNA expression
of stemness markers (CD24, CD44, and OCT3/4) under hypoxia
(Figures 8E, F, ]). Conversely, G6PD overexpression enhanced these
capabilities (Figures 8G, H, K). Mechanistically, we found that
G6PD regulated the protein abundance of HIF-lc.. In HuH-7
cells, G6PD knockdown reduced HIF-l1o. protein abundance,
while overexpression increased HIF-1ot protein abundance under
hypoxia (Figure 8L). Co-IP experiments further confirmed the
interaction between endogenous G6PD and HIF-lo in HuH-7
cells under hypoxia (Figure 8M). Furthermore, in the transgenic
HCC mouse model, compared with the empty vector control group
(MCS), mice in the G6PD overexpression group (G6PD) exhibited
a rapid increase in hepatic tumor burden within a
short period, as evidenced by a significant elevation in liver
weight (P < 0.0001) (Figures 8N, O). In conclusion, our data
indicate that G6PD is a key regulator of the stemness phenotype
in HCC cells under hypoxia by interacting with HIF-lo to
upregulate its protein abundance, thereby promoting the
stemness phenotype.
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4 Discussion

The collaborative crosstalk between cancer stemness and
hypoxia in HCC highlights their critical roles as drivers of tumor
invasion, metastatic dissemination, therapy resistance, and immune
escape mechanisms. To quantify these two biological
characteristics, Malta et al. developed the OCLR algorithm, which
calculates stemness indices (e.g., mRNAsi, mDNAsi) by integrating
multi-omics data spanning genomic, transcriptomic, and epigenetic
features (25). Similarly, hypoxia scores such as the Bufta Hypoxia
Score and Winter Hypoxia Score, derived from gene expression
signatures, reflect molecular adaptations to oxygen deprivation (39).
Although some of these indices independently correlate with
adverse HCC prognosis, current prognostic models often either
treat stemness and hypoxia as isolated biological characteristics,
thereby neglecting their dynamic crosstalk, or dissociate these axes
from clinical parameters, consequently diminishing predictive
accuracy and clinical applicability (18, 19, 21). This notable gap
underscores the necessity to develop integrated indices bridging
these axes (stemness and hypoxia) for refined risk stratification and
prioritized therapeutic targeting, while incorporating clinical
parameters to optimize predictive performance through a holistic
representation of HCC biology.

In this study, we selected the stemness index (mRNAsi) and the
hypoxia score (Buffa hypoxia score), both of which are significantly
associated with the prognosis of HCC patients. Through differential
analysis and WGCNA, we identified SHRGs that comprehensively
represent the interaction between stemness and hypoxia. Consensus
clustering based on SHRGs stratified HCC patients into two distinct
clusters (Cluster 1/2) with divergent genomic alterations, intrinsic
immunogenicity, and survival outcomes. Notably, the enrichment
of oncogenic pathways (e.g., E2F targets, mTOR signaling) and
elevated TMB in Cluster 2 suggested heightened genomic instability
and therapeutic resistance, consistent with observations in other
solid tumors (40, 41). Importantly, Cluster 2 patients displayed
elevated TIDE scores and upregulated immune checkpoint
molecules (PD-L1, CTLA4), which extends the utility of our
stemness-hypoxia signature to predict immunotherapy response,
a dimension that has been underexplored in earlier studies.

Given that previous studies predominantly relied on Cox
regression or heuristic gene screening to construct indices, we
integrated LASSO regression, random forest, and Cox regression
analysis to minimize overfitting risks while prioritizing biologically
relevant key genes. This optimized rigorous strategy constructed the
SHRPI comprising four genes: HMMR, UBE2S, NEIL3, and G6PD.
SHRPI is not only an independent risk factor for OS in HCC
patients but also for RFS in LT patients with HCC beyond the Milan
criteria. Additionally, as stemness-hypoxia features are frequently
associated with TACE treatment in advanced HCC, we observed
that SHRPI demonstrated promising predictive power for TACE
responsiveness (42). Incorporating SHRPI into a nomogram further
enhanced its clinical utility, enabling personalized survival
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FIGURE 7
Single-cell transcriptomic analysis of SHRPI in HCC. (A) t-SNE plot illustrating the clustering of single cells from HCC tissues, annotated by cell type.
(B) t-SNE plot showing the distribution of SHRPI status (high vs. low). (C—F) Average expression levels of G6PD (C), HMMR (D), NEIL3 (E), and UBE2S
(F) across cell types.

probability assessments. This approach contrasts with previous
studies that focused solely on risk stratification based on indices.
The nomogram exhibited robust performance in both TCGA and
GSE14520 cohorts, highlighting its broad applicability.

Analysis of the TIME revealed significant disparities between risk
groups defined by SHRPI. High-risk patients exhibited heightened
infiltration of immunosuppressive cells (e.g., Tregs, MO macrophages)
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and elevated expression of checkpoint molecules (PD-1, CTLA-4,
TIM-3), consistent with the “immune-excluded” phenotype observed
in CSC-enriched tumors (4, 43). SHRPI demonstrated a positive
correlation with TIDE scores, indicating limited efficacy of immune
checkpoint inhibitor (ICI) therapy in high-risk patients, necessitating
exploration of alternative or combinatory therapeutic strategies. To
address this, we screened for subgroup-specific therapeutic agents
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Functional validation of GEPD as a key SHRPI component in HCC. (A) G6PD protein abundances across HCC cell lines (HuH-7, PLC/PRF/5, Li-7 and
Hep-3B). (B) Changes in HIF-1o and G6PD expression in HuH-7 and Hep-3B cells under normoxia (20% O,) or hypoxia(1%0O,) at 6 and 12 hours.
(C) Knockdown efficiency of three G6PD shRNAs in Hep-3B cells. (D) G6PD overexpression efficiency in HuH-7 cells. (E, F, J) Effects of shNC,
shG6PD-1, and shG6PD-3 on Hep-3B stemness under hypoxia, as assessed by cell migration (E), cell sphere formation (F), and gRT-PCR (J) assays.
(G, H, K) Effects of Vector and G6PD overexpression (G6PD) on HuH-7 stemness under hypoxia, as assessed by cell migration (G), cell sphere
formation (H), and gRT-PCR (K) assays. (I) Correlation heatmap of SHRPI components and stemness markers in TCGA-LIHC bulk RNA-seq data.

(L) GEPD and HIF-1a expression in HuH-7 with G6PD knockdown (shG6PD) or control (shNC) (upper panel), and with GEPD overexpression (GEPD)
or Vector (lower panel), under normoxia or hypoxia. (M) Interaction between endogenous G6PD and HIF-1o was tested in HuH-7 under hypoxia for
24 hours, with normal rabbit 1gG as control. (N) Experimental workflow of the transgenic HCC mouse model (by figdraw.com, ID: ARUWT24438).
(O) Representative liver images of MCS and G6PD groups, and comparison of liver weights between the two groups (n = 5). Statistical significance: **P <
0.01, ***P < 0.001, ****P < 0.0001.

using pharmacogenomics and molecular docking analyses. Among models, enhancing tumor suppression and overcoming
these, BI2536 stood out due to its consistent validation across three  chemoresistance by inducing G2/M arrest, activating apoptosis via
independent datasets and strong binding affinity, highlighting its =~ BAX/caspase-3 pathways and pyroptosis via GSDME, and modulating
potential as a candidate drug for high-risk HCC. As a specific  critical signaling cascades (Wnt/B-catenin, MEK/ERK). In the targeted
inhibitor of Polo-like kinase 1 (PLK1), BI2536 synergizes with  therapy domain, BI2536 demonstrates synergistic efficacy against
diverse chemotherapies (e.g., microtubule-targeting agents, ~ROCK, mTOR, STAT3, EGFR, PARP, HDAC, and Bcr-Abl,
alkylators, platinum drugs) across multiple preclinical cancer  overcoming both intrinsic and acquired resistance through dual-
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pathway blockade, restoration of tumor suppressor function (e.g.,
TP53 reactivation), and enhancement of DNA damage responses (44).
Regarding immunotherapy, although clinical evidence for BI2536
combination remains scarce, emerging preclinical insights indicate
that PLKI inhibition broadly potentiates antitumor immunity
through enhanced antigen presentation and T-cell infiltration,
reversal of immunosuppressive TAM polarization (from M2 to M1
phenotype), and upregulation of PD-L1 expression via the PLK1/Rb/
NF-kB axis to sensitize tumors to immune checkpoint blockade (45).
Given that BI2536’s limited single-agent efficacy and dose-limiting
toxicities indicate intrinsic resistance, CRISPR/Cas9 genome-wide
screening to identify resistance genes and delineate BI2536-specific
pathways is essential for optimizing pharmacological properties,
enhancing therapeutic efficacy in rational combination regimens,
and advancing clinical translation (46).

Among the four hub genes, hyaluronan-mediated motility
receptor (HMMR/RHAMM) is highly expressed in lung, breast,
gastric, and liver cancers, correlating with poor prognosis (47).
HMMR critically maintains cancer stemness across tumor types:
sustaining glioblastoma stem cell tumorigenicity (48), enhancing
gastric cancer stemness and 5-fluorouracil resistance via TGF-f/
Smad2 (49), and promoting glycolysis to strengthen stemness and
cisplatin resistance in lung adenocarcinoma (50). Although direct
evidence linking HMMR to hypoxia regulation is limited, hypoxia
may indirectly potentiate HMMR’s oncogenic effects by activating key
stemness-associated pathways, notably TGF-3 signaling and glycolysis,
both established hypoxia-responsive processes (51). Furthermore,
HMMR predicts immunosuppressive microenvironments in HCC,
with its targeting enhancing anti-PD-1 efficacy through CD8" T cell
recruitment (52). Ubiquitin-conjugating enzyme E2S (UBE2S), a
crucial member of the ubiquitin-proteasome system, is overexpressed
in multiple cancers (e.g., lung, bladder, ovarian, liver) and correlates
with poor prognosis and advanced stage. UBE2S promotes cancer
stemness through diverse mechanisms: enhancing p53 ubiquitination
to facilitate proliferation and migration, accelerating cell cycle
progression via p27 ubiquitination, and inducing chemoresistance
through both the PTEN/AKT and Wnt/B-catenin signaling
pathways (53). Notably, UBE2S directly ubiquitinates VHL
independent of canonical E3 ligases, regulating HIF-1ct signaling to
promote glycolysis and HCC proliferation (54). It further drives tumor
growth and reduces sorafenib sensitivity by upregulating HIF-1ow and
activating JAK2/STATS3 signaling (55). These findings suggest that
UBE2S may function as a molecular bridge linking stemness and
hypoxia regulation in HCC. Nei endonuclease VIII-like 3 (NEIL3), a
DNA glycosylase crucial for repairing oxidative DNA damage and
crosslinks, is highly expressed in multiple cancers (e.g., lung, kidney,
liver) and promotes tumor progression. In HCC, NEIL3 not only
repairs telomeric oxidative damage to delay cellular senescence but also
activates the BRAF/MEK/ERK/TWIST pathway to induce core
stemness phenotypes including epithelial-mesenchymal transition,
therapy resistance, and enhanced self-renewal (56). Concurrently, it
remodels metabolic microenvironments via MAZ-mediated aerobic
glycolysis to support stemness maintenance (57), while driving
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malignant expansion of CSCs through the SNHG3/E2F1 axis (58).
Although direct links to hypoxia regulation remain limited, a defined
mechanism shows that NEIL3 enables proper expression of hypoxia-
responsive genes by repairing hypoxia-associated oxidative damage in
promoter G-quadruplex DNA, leading to reduced genomic instability
under hypoxia (59).

Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting
enzyme of the pentose phosphate pathway (PPP), maintains redox
homeostasis through NADPH generation and supports nucleotide
biosynthesis via ribose-5-phosphate production. Clinically significant
overexpression of G6PD has been documented in multiple
malignancies, including lung, renal, breast and liver cancer, and it
correlates with adverse clinical outcomes (60). Hypoxic tumor
microenvironments in HCC induce transcriptional upregulation of
G6PD, which confers survival advantages through oxidative stress
modulation (61). Emerging evidence demonstrates that G6PD
overexpression diminishes regorafenib cytotoxicity in HCC (62),
while METTL3-mediated activation of G6PD-dependent PPP flux
drives oxaliplatin resistance (63). Therefore, the dual regulatory role
of G6PD in maintaining redox equilibrium and facilitating metabolic
reprogramming serves as a critical determinant in preserving cancer
cell stemness under various stress conditions. Integrating multivariate
Cox regression and single-cell transcriptomic analyses based on
SHRPI components identified G6PD as a key prognostic
determinant closely associated with HCC stemness regulation at
the single-cell level. Its specific role in hypoxia-driven stemness
maintenance has yet to be reported. Through systematic
experiments, we demonstrated that hypoxia significantly
upregulates G6PD expression in HCC cells and that G6PD is
essential for maintaining cancer stemness. Mechanistically, we
showed that G6PD stabilizes HIF-1a. protein under hypoxia. Given
established evidence that HIF-low transcriptionally activates G6PD
(61, 64), we propose a self-reinforcing positive feedback loop that
amplifies HCC stemness. Within this regulatory mechanism, G6PD
may enhance HIF-1o stability through dual mechanisms: as a core
metabolic enzyme, it potentially modulates redox homeostasis to
attenuate degradation (65); while exercising non-canonical enzymatic
functions, it may directly suppress HIF-low ubiquitination (66).
Endogenous Co-IP confirmed G6PD-HIF-1o. interaction, thereby
providing mechanistic support for these stabilization pathways. These
findings reveal a novel metabolic-microenvironmental crosstalk
driving stemness; this manifestation of non-canonical molecular
functions bridging metabolism and TME remodeling is similarly
observed in recent biomarker studies of other solid tumors (67).
Collectively, they suggest that targeting the G6PD-HIF-10tloop aligns
with the emerging paradigm of combinatorial strategies against
multiple tumor microenvironment components (68) and provide
both novel insights and a theoretical foundation for therapeutic
strategies aimed at targeting cancer stemness.

Although previous studies incorporated stemness or hypoxia
characteristics for HCC prognostication, our work delivers
substantial advances: algorithmic refinement optimizes SHRPI to
identify a minimal gene set with maximal prognostic power,

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1669275
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Gao et al.

significantly enhancing discriminative performance and model
parsimony; we develop a highly accurate and clinically applicable
nomogram for individualized prognosis; pharmacogenomic and
molecular docking analyses rigorously screened BI2536 as a
promising agent for the high-risk subgroup, providing actionable
insights for therapeutic stratification; integrating computational
and experimental evidence, we first establish G6PD as a key
regulator of hypoxia-induced stemness and propose a G6PD-HIF-
Lo positive feedback loop as a mechanistic model.

Despite these advancements, our study has limitations. First,
given the retrospective nature and potential ethnic composition bias
of TCGA/GEO data, prospective validation of SHRPI in multi-
ethnic cohorts is necessary to assess its applicability, and its
predictive capacity for immunotherapy response requires further
validation in diverse immunotherapy cohorts (69). Second, deeper
molecular investigations are required to elucidate the specific
regulatory mechanisms of G6PD on HIF-lo, alongside
comprehensive spatial single-cell analyses and in vivo lineage
tracing to resolve spatial heterogeneity in G6PD-HIF-1o
interactions within tumor microenvironments. Third, preclinical
assessment of candidate compounds (BI2536) using patient-derived
organoids or xenograft models should systematically evaluate on-
target efficacy versus off-target toxicity profiles to ensure safety of
combinatorial regimens for high-risk populations (70).

5 Conclusions

SHRPI, constructed using a rigorous methodological approach,
effectively distinguishes clinical, molecular, TIME, and therapeutic
response characteristics among HCC patients. The nomogram
integrating SHRPI with key clinical parameters demonstrates high
predictive accuracy and robust applicability. BI2536 showed
promising therapeutic potential for patients classified as high-risk
by SHRPI. Furthermore, the elucidation of the hypoxia-stemness
regulatory mechanism mediated by G6PD, a key SHRPI
component, provides novel insights into therapeutic strategies
targeting HCC stemness.
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