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Stemness- and hypoxia-based
prognostic stratification index
reveals G6PD as a regulator of
hypoxia-driven stemness in
hepatocellular carcinoma
Mingwei Gao1,2,3†, Yuechuan Liu1,2,3†, Jianhui Wu2,3†,
Peiru Zhang2,3, Jin Liu2,3, Kun Guo2,3, Binwen Sun2,3,
Sunbin Ling2,3* and Liming Wang1,2,3*

1Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second
Affiliated Hospital of Dalian Medical University, Dalian, China, 2Engineering Research Center for New
Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated
Hospital of Dalian Medical University, Dalian, China, 3Engineering Technology Research Center for
Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
Background: The positive feedback loop between cancer stemness and the

hypoxic microenvironment is a critical driver of hepatocellular carcinoma (HCC)

progression. Analyzing their interaction in HCC is crucial to characterize immune

microenvironment features, uncover molecular heterogeneity patterns, and

develop targeted interventions.

Methods: The TCGA-LIHC cohort (n=340) were stratified through consensus

clustering of stemness- and hypoxia-related genes (SHRGs) identified by one-

class logistic regression and weighted gene co-expression network analyses.

Subsequently, a stemness- and hypoxia-related prognostic index (SHRPI) was

constructed using random forest, and Cox regression analyses, with its

prognostic significance assessed in two other independent cohorts: our NC-LT

cohort comprising 180 liver transplant (LT) patients with HCC beyond Milan

criteria, and the GSE104580 cohort containing 147 HCC patients treated with

transcatheter arterial chemoembolization (TACE). A prognostic nomogram

incorporating SHRPI was developed, and externally validated in the GSE14520

cohort (n=242). Systematic profiling of immune microenvironment features and

immunotherapy responsiveness in SHRPI subgroups was performed, followed by

pharmacogenomic screening and molecular docking to identify optimal

therapies. After single-cell transcriptomic analysis, functional validation assays

were conducted to confirm the role of G6PD, a key SHRPI component.

Results: SHRGs-based clustering revealed two clusters exhibiting distinct

prognoses, functional annotations, genomic alterations, and immune

microenvironment features. SHRPI served as an independent risk factor for

both overall survival in HCC patients and recurrence-free survival in LT patients

beyond Milan criteria. It demonstrated strong predictive power for TACE

responsiveness. The SHRPI-integrated nomogram achieved robust

performance in external validation. High SHRPI level was associated with a

more immunosuppress ive tumor microenvi ronment and poorer

immunotherapy responsiveness. Pharmacogenomic and molecular docking

analyses identified BI2536 as the most promising therapeutic agent for this
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high-SHRPI subgroup. Further experiments established that G6PD serves as a key

therapeutic target for hypoxia-driven stemness maintenance in HCC by

functioning as a stemness regulator that interacts with HIF-1a to form a

positive feedback loop under hypoxia.

Conclusions: This study provides further insights into stemness-hypoxia

interaction in HCC and delivers a clinically applicable predictive tool for

prognosis. BI2536’s synergy potential and the therapeutic value of G6PD

targeting in stemness regulation advance individualized therapeutic strategies

for HCC.
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1 Introduction

Hepatocellular carcinoma (HCC) is a highly aggressive

malignancy characterized by a high recurrence rate and broad

therapeutic resistance, significantly impacting patient prognosis

(1). Studies have shown that the malignant characteristics of HCC

are closely linked to the presence and function of cancer stem cells

(CSCs) (2, 3). CSCs possess self-renewal capacity and differentiation

plasticity, enabling them to evade immune surveillance and play a

pivotal role in tumor initiation, progression, and therapeutic

resistance (4, 5). These cells maintain their stem-like properties

by activating embryonic developmental signaling pathways such as

Wnt/b-catenin and Notch while upregulating drug efflux pumps,

thereby enhancing resistance to conventional therapies (6, 7). As
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reservoirs for tumor relapse, CSCs rely heavily on the hypoxic

tumor microenvironment (TME) for survival and stemness

maintenance (8, 9).

Within solid tumors, low oxygen levels not only promote

angiogenesis and metabolic reprogramming to support tumor

growth but also activate hypoxia-inducible factors (HIFs), which

transcriptionally upregulate stemness-related genes such as Oct4

and Nanog. This process further sustains the stem-like phenotype of

CSCs, contributing to HCC invasiveness and treatment resistance

(10–13). Moreover, hypoxia reprograms the TME into an

immunosuppressive niche, amplifying CSC-driven malignancy.

Intratumoral hypoxia induces the secretion of cytokines such as

TGF-b and IL-6 while promoting the recruitment of regulatory T

cells (Tregs) and myeloid-derived suppressor cells (MDSCs). These

immunosuppressive components cooperatively inhibit cytotoxic T-

cell (CD8+ T-cell) activity, protecting CSCs from immune clearance

(14). Additionally, hypoxia-driven upregulation of immune

checkpoints such as PD-L1 and CTLA-4 exacerbates immune

evasion (15, 16). As the tumor progresses, increased oxygen

consumption exacerbates TME hypoxia, forming a self-

reinforcing malignant cycle that enhances tumor aggressiveness

(8, 17). Therefore, identifying, quantifying, and therapeutically

targeting stemness-hypoxia features holds significant clinical value

for optimizing HCC risk stratification and precision therapy.

Despite the recognized role of the stemness-hypoxia axis in

HCC progression, there remains a lack of systematic, rigorous, and

effective prognostic indices that integrate stemness and hypoxia

characteristics for stratifying patients and identifying high-risk

subgroups to guide precision treatment strategies. Furthermore,

current HCC prognostic models are primarily based on either single

molecular features (e.g., stemness indices or hypoxia scores) or

clinicopathological parameters (18–21). The limited dimensionality

of these models restricts their accuracy in predicting patient

outcomes. Therefore, it is imperative to develop a comprehensive

prognostic tool that integrates multi-dimensional molecular

features (incorporating both stemness and hypoxia) with

clinicopathological parameters to improve risk stratification,
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enhance prediction accuracy, and provide a rationale for

personalized treatment strategies for high-risk subgroups.

In this study, we utilized large-scale public multi-omics datasets

and integrated multiple machine learning algorithms and statistical

analysis methods to identify key genes involved in stemness-

hypoxia regulation. We constructed a stemness- and hypoxia-

related prognostic index (SHRPI) to stratify HCC patients into

distinct risk subgroups, and developed a high-performance

prognostic nomogram. Additionally, we screened potential

therapeutic drugs targeting high-risk subgroup through

pharmacogenomic and molecular docking analyses. Capitalizing

on the high-resolution cellular heterogeneity mapping capability of

single-cell transcriptomics (22, 23), we further dissected the cell-

type-specific expression profiles of SHRPI components and

validated the role and potential mechanism of its most critical

gene in maintaining HCC stemness under hypoxia.
2 Materials and methods

2.1 Data collection and preprocessing

The discovery cohort of HCC patients was obtained from TCGA-

LIHC through their data portal (https://portal.gdc.cancer.gov/

projects/TCGA-LIHC), comprising gene expression profiles, copy

number variation (CNV) data, somatic mutation data, and clinical

information. The validation cohort consisted of gene expression

profiles and clinical information from the GSE14520 dataset,

retrieved from GEO database (https://www.ncbi.nlm.nih.gov/geo/

). After comprehensive screening, this study included 340 patients

from TCGA-LIHC with complete survival information, overall

survival (OS) > 30 days, and accessible stemness indices and

hypoxia scores, as well as 242 patients from GSE14520 fulfilling

the criteria of complete survival data and OS > 30 days. For

transcriptomic data normalization, log2(FPKM + 0.001)

transformation was applied. To mitigate batch effects in

transcriptomic data, we followed the recommended standard

procedures for bulk transcriptomic data analysis in cancer

research, applying the Combat algorithm from the “SVA” R

package for batch effect correction (23). Additionally, we

incorporated 180 liver transplant (LT) patients with HCC beyond

the Milan criteria from our previous study (NC-LT cohort) to

evaluate the impact of the gene signature on recurrence-free

survival (RFS) (24), along with 147 patients from the GSE104580

dataset to assess the correlation between the gene signature and

patient response to transcatheter arterial chemoembolization

(TACE) therapy.
2.2 Computation of stemness indices

The stemness signature was determined using the one-class

logistic regression (OCLR) machine-learning algorithm (25).

Subsequently, correlation coefficients were computed between the
Frontiers in Immunology 03
stemness signature weight values and gene expression levels for

each sample. Finally, the stemness index was derived by scaling the

Spearman correlation coefficients to a range between 0 and 1.
2.3 Differential expression analysis

The TCGA-LIHC samples were categorized into high and low

groups based on either the median value or the optimal cutoff value

determined by maximizing the Youden index using the “survminer”

R package. Differential expression analysis was conducted using the

Wilcoxon rank-sum test (26). Genes meeting the criteria of false

discovery rate (FDR) < 0.05 and |log2(fold change)| > 1 were

considered statistically significant. To enhance the accuracy of the

risk model, a more stringent selection threshold was applied, setting

FDR < 0.01 and |log2(fold change)| > 2.
2.4 Definition of stemness- and hypoxia-
related genes

The hypoxia signature score for TCGA-LIHC patients was

obtained from The cBio Cancer Genomics Portal (http://

cbioportal.org), and hypoxia-related genes were identified using

weighted gene co-expression network analysis (WGCNA) (27). The

overlapping genes between mRNAsi-related differentially expressed

genes (DEGs) and hypoxia-related genes were collectively defined

as stemness- and hypoxia-related genes (SHRGs).
2.5 Unsupervised consensus clustering

The “ConsensusClusterPlus” R package was employed for the

classification of SHRGs through unsupervised consensus clustering.

To enhance classification stability, the clustering process was

conducted 1,000 times with 80% resampling. The optimal k value

(number of clusters) was identified based on the relative variation in

the area under the cumulative distribution function (CDF) curves

and the consensus matrix.
2.6 Functional enrichment analysis

GO, KEGG, and GSEA analyses were conducted using the

“clusterProfiler” R package, while GSVA analysis was performed with

the unsupervised “GSVA” R package. The background gene sets for

both GSEA and GSVA were obtained from the Molecular Signatures

Database (MSigDB) (28), specifically the h.all.v2024.1.Hs.symbols.gmt

gene set. Subsequently, differential analysis of the GSVA results was

conducted using the “limma” R package, considering pathways with

FDR < 0.05 as significantly enriched, with |t| > 2 shown in figures

for visualization.
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2.7 Genetic alterations and immune
infiltration analysis

The CNV and somatic mutation data of TCGA-LIHC patients

were analyzed using the “maftools” R package to examine genetic

alterations across different clusters. The 14 oncogenic pathways were

compared across various clusters using the PROGENy algorithm

(29). To evaluate the tumor immune microenvironment (TIME), the

“Cell-type Identification by Estimating Relative Subsets of RNA

Transcripts (CIBERSORT)” tool was employed to quantify the

abundance of tumor-infiltrating immune cells (30).
2.8 Immune checkpoints and
immunotherapy response analysis

To assess immunotherapy response in TCGA-LIHC patients,

expression of 68 immune checkpoint-related genes identified in

previous studies was analyzed (31). Subsequently, tumor immune

dysfunction and exclusion (TIDE) scores, T cell dysfunction scores,

T cell exclusion scores, INFG levels, and MDSC levels were

retrieved from the TIDE portal (http://tide.dfci.harvard.edu).

Single-sample gene set enrichment analysis (ssGSEA) was then

applied to compute enrichment scores for 29 immune-related traits

and to explore associations between the index and immune

regulation (32). Furthermore, ssGSEA-derived enrichment scores

for three stem cell related gene sets from MSigDB: “WONG

EMBRYONIC STEM CELL CORE,” “YAMASHITA LIVER

CANCER STEM CELL UP,” and “YAMASHITA LIVER

CANCER STEM CELL DN” were calculated to investigate

associations between the index and stemness.
2.9 Construction of SHRPI

To determine the relationship between SHRGs and patient

survival outcomes, we applied univariate Cox regression, LASSO

regression, and Random Forest models to filter SHRGs. After

excluding attributes with an absolute correlation of 0.8, a total of

419 genes were selected as input variables. Finally, the four most

critical genes were identified and incorporated into a multivariate

Cox regression model to construct a risk prediction model, termed

SHRPI. The formula for this model is as follows:

Risk score =o
n

i=0
(Coefficient(i) �  Expression (i))

To evaluate the robustness of SHRPI, patients were initially

stratified into two groups based on the median SHRPI value. The

prognostic significance of SHRPI was assessed using Kaplan-Meier

survival analysis. The predictive accuracy of SHRPI was further

evaluated through receiver operating characteristic (ROC) curve

analysis, with the area under the curve (AUC) calculated using the

“timeROC” R package. To enhance its clinical applicability, TCGA-

LIHC patients were further categorized into high-risk (HRG) and
Frontiers in Immunology 04
low-risk (LRG) groups based on the optimal cutoff value, followed

by comprehensive immune profiling and drug sensitivity analyses.
2.10 Construction of nomogram predictive
model

The SHRPI score, along with tumor stage, age, gender, tumor

grade, vascular invasion status, Child-Pugh grade, hepatic

inflammation status, cirrhosis status, recurrence status, BMI, and

AFP levels, was incorporated into the univariate Cox regression

analysis. The hazard ratios (HRs) for each variable were computed

using the Cox proportional hazards regression model with the

“survival” R package. To determine independent prognostic factors,

a multivariate Cox regression analysis was performed, and a

nomogram was developed based on the findings using the “RMS”

R package. Model stability was assessed through Schoenfeld residuals

and deviance residuals. The nomogram’s predictive performance was

evaluated via ROC analysis, calibration curves, and the C-index,

calculated through 1,000 bootstrap resampling iterations.

Furthermore, decision curve analysis (DCA) was employed to

assess the clinical applicability of the predictive model (33).
2.11 Drug response analysis and molecular
docking analysis

Gene expression data, along with the corresponding half-

maximal inhibitory concentration (IC50) values and area under

the dose-response curve (AUC) for cancer cell lines, were obtained

from the Genomics of Drug Sensitivity in Cancer (GDSC2 v8.5,

released October 2023), the Cancer Therapeutics Response Portal

(CTRP v2.0, released October 2015), and the Profiling Relative

Inhibition Simultaneously in Mixtures (PRISM) Repurposing

dataset (20Q2, released August 2022). AUC values were used as a

measure of drug sensitivity, where higher AUC values indicated

lower treatment sensitivity. The “oncoPredict” R package was

employed to predict drug sensitivity for each sample.

The molecular structures of the compounds were retrieved from

PubChem Compound (https://pubchem.ncbi.nlm.nih.gov/), and

the 3D coordinates of G6PD (PDB ID: 7UAG, resolution: 3.5Å)

were obtained from the PDB (http://www.rcsb.org/). All protein

and molecular files were converted into PDBQT format, with water

molecules removed and polar hydrogen atoms added to improve

docking accuracy. Molecular docking simulations were conducted

using AutoDock Vina 1.2.2, and the resulting protein–ligand

complexes were visualized with PyMol. The binding energies,

which indicate binding stability, were used to assess the

therapeutic potential of each compound (34).
2.12 Single‐cell RNA sequencing analysis

Single-cell RNA sequencing data from HCC samples in GEO

dataset GSE149614 were filtered to remove low-quality cells (< 200
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or > 6,000 detected genes, or > 15% mitochondrial content). Gene

expression was log-normalized using Seurat (v5.3.0), followed by

PCA for dimensionality reduction and clustering via the

FindNeighbors and FindClusters functions. Cell clusters were

annotated using the “SingleR” R package. SHRPI was computed

as a weighted sum of z-score-normalized expression of HMMR,

UBE2S, G6PD, and NEIL3. Cells were classified into low- and high-

SHRPI groups based on the median SHRPI score. SHRPI

distribution was visualized on the t-SNE plot, and expression of

each constituent gene across cell clusters was displayed in separate

dot plots.
2.13 Cell culture, lentiviral vector
construction and infection

Human HCC cell lines (HuH-7, PLC/PRF/5, Hep-3B, and Li-7)

and HEK293 were obtained from the Shanghai Institute of Cell

Biology, Chinese Academy of Sciences (Shanghai, China). The

authenticity of all cells’ authenticity was confirmed through short-

tandem repeat (STR) profiling. The cells were cultured in the

appropriate media supplemented with 10% fetal bovine serum

and 1% penicillin-streptomycin (Solarbio) at 37 °C in a 5% CO2

incubator. Hep-3B and PLC/PRF/5 cells were maintained in MEM

medium (Pricella), HEK293 and HuH-7 cells were cultured in high-

glucose DMEM (Pricella), and Li-7 cells were maintained in RPMI

1640 medium (Pricella). All cell lines were regularly confirmed to be

mycoplasma-free by PCR. Detailed information on lentiviral vector

construction and infection is provided in Supplementary File, and

all plasmid sequences are listed in Supplementary Table 3.
2.14 Cell migration assay

Cells (2×104) were seeded in the upper chamber of a

polycarbonate membrane insert (Corning Incorporated) with 200

mL of FBS-free medium. The lower chamber was filled with 800 mL
of medium containing 20% FBS. After 24–48 hours of incubation,

the cells that had migrated through the membrane were washed,

fixed with 1% paraformaldehyde, and stained with crystal violet.

Photographs were taken of four randomly selected fields, and the

number of migrated cells was counted. The experiment was

performed in triplicate.
2.15 Cell sphere formation assay

Cells (2×103) were plated onto 6-well Ultra-Low Attachment

plates (Corning Incorporated) and cultured in special medium

consisting of DMEM/F12 (Invitrogen) supplemented with 4 mg/
mL insulin (Sigma-Aldrich), B27 (Invitrogen), 20 ng/mL EGF

(Sigma-Aldrich), and 20 ng/mL basic FGF (Invitrogen). After 10

days of incubation, spheres with diameters greater than 75 mm were

photographed and counted under a microscope.
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2.16 Western blot analysis, co-
immunoprecipitation and quantitative PCR
analysis

Detailed information is provided in Supplementary File.

Specific details regarding the antibodies are presented in

Supplementary Table 4. The sequences of primers are provided in

Supplementary Table 5.
2.17 Hydrodynamic tail vein injection
mouse model

The transgenic HCC mouse model was generated in male wild-

type C57BL/6J mice (6–8 weeks) by hydrodynamic tail vein

injection co-overexpressing activated AKT and c-Met. In brief,

the plasmids m-G6PD pT3-EF1a-MYC or pT3-EF1a-MYC

(MCS) (20 mg), pT3-myr-AKT-HA (20 mg), and pT3-EF1a-c-Met

(20 mg), together with pCMV(CAT)T7-SB100 (2.4 mg), at a ratio of

12.5: 12.5: 12.5: 1.5, were diluted in 2 ml saline (0.9% NaCl), filtered

through a 0.22-mm filter, and injected into the lateral tail vein of the

mice within 5-7s (35). 20 days after injection, the mice were

humanely euthanized via intraperitoneal injection of sodium

pentobarbital (150 mg/kg). Liver tumors were subsequently

collected for analysis. Animal experiments were conducted in

strict accordance with relevant guidelines and approved by the

Institutional Animal Care and Use Committee of Zhejiang Center

of Laboratory Animals (IACUC, ZJCLA; approval number: ZJCLA-

IACUC-20011186). This study adhered to the ARRIVE guidelines.
2.18 Statistical analysis

The Student’s t-test or Wilcoxon rank-sum test (Mann-

Whitney U test) was applied to assess continuously distributed

numerical data. Correlation analysis was conducted using either the

Pearson or Spearman correlation test, depending on data

distribution. Survival curves were generated with the Kaplan-

Meier method and compared using the Log-rank test. All

statistical analyses were performed in GraphPad Prism (v9.0) and

R (v4.4.1). A two-tailed P value < 0.05 was considered statistically

significant. Statistical significance was annotated as follows: *P <

0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns = not significant.
3 Results

3.1 Stemness indices and hypoxia scores in
HCC

Using mRNA expression and DNA methylation data from the

TCGA-LIHC cohort, five stemness indices were calculated, with

hypoxia scores obtained from the cBioPortal database. The mRNA

expression-based stemness index (mRNAsi) (P = 0.0031) and the
frontiersin.org
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Buffa Hypoxia Score (P < 0.0001) showed significant associations

with OS in HCC (Supplementary Figures 1A, D). Patients with

higher mRNAsi exhibited significantly poorer tumor differentiation

(P < 0.0001), increased vascular invasion (P = 0.022), and elevated

AFP levels (P = 0.021) (Supplementary Figures 1B, C). Similarly, a

higher Buffa Hypoxia Score was associated with advanced tumor

stage (P < 0.0001), poorer tumor differentiation (P = 0.006),

increased vascular invasion (P = 0.007), and elevated AFP levels

(P = 0.027) (Supplementary Figures 1E, F). Thus, mRNAsi was

selected to quantify stemness characteristics, while the Buffa

Hypoxia Score was used to evaluate tumor hypoxia levels.
3.2 Identification of stemness- and
hypoxia-related clusters in HCC

HCC patients were categorized into high- and low-stemness

groups based on the median mRNAsi value, resulting in the

identification of 1,341 DEGs associated with mRNAsi

(Figure 1A). WGCNA revealed 11 non-grey modules, with the

blue module showing the strongest correlation with the Buffa

Hypoxia Score (R² = 0.47, P = 3.7×10−125) (Figure 1B).

Integrating mRNAsi-associated DEGs with hypoxia-related genes

identified 75 overlapping genes, classified as SHRGs (Figure 1C,

Supplementary Table 1). Consensus clustering was performed on

the 75 SHRGs, determining optimal classification at k = 2, as

indicated by the CDF curve variations (Figure 1D). HCC patients

were then divided into two clusters (Cluster 1 and Cluster 2).

Patients in Cluster 2 exhibited a significantly shorter median OS

and lower survival probability than those in Cluster 1 (P = 0.0006)

(Figure 1E), as well as higher mRNAsi and hypoxia scores (both P <

0.001) (Figure 1F).

To further characterize the molecular differences between the

two clusters, we conducted a more stringent differential expression

analysis using |log2FC| > 2 and FDR < 0.01 as the selection criteria

(Figure 1G, Supplementary Figure 2A). Functional enrichment

analysis of DEGs through GO and KEGG revealed significant

enrichment in cell cycle regulation and DNA repair pathways

(Figure 1H). GSEA further demonstrated that, compared with

Cluster 1, Cluster 2 exhibited significant activation of E2F targets,

the G2/M checkpoint, and KRAS signaling DN, whereas oxidative

phosphorylation, bile acid metabolism, fatty acid metabolism, and

adipogenesis were suppressed (Figure 1I). GSVA revealed

significant upregulation of proliferation-related pathways,

including E2F targets, G2/M checkpoint, DNA repair, and mTOR

signaling in Cluster 2. In contrast, Cluster 1 was predominantly

enriched in lipid and bile acid metabolism, coagulation, and

inflammatory responses (Figure 1J). Overall, these results indicate

that Cluster 2 is characterized by a hyperproliferative phenotype

with enhanced DNA repair and oncogenic signaling, whereas

Cluster 1 is associated with metabolic reprogramming and an

inflammatory tumor microenvironment.
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3.3 Genomic and TIME characteristics of
the two stemness- and hypoxia-related
clusters

We next examined somatic mutations and CNV in both clusters

to investigate potential mechanisms underlying their distinct

prognoses. Recurrent mutations were detected in several genes,

including TP53, TTN, and CTNNB1, and the two clusters exhibited

distinct single-nucleotide variant (SNV) substitution patterns

(Figures 2A, B, Supplementary Figures 2E, F). Notably, TP53,

LRP1B, RB1, ABCB5, and ZNF469 displayed significantly

different mutation frequencies between the clusters (Figure 2C,

Supplementary Figures 2B, C). Moreover, Cluster 2 exhibited higher

aneuploidy scores, tumor mutational burden (TMB) and

homologous recombination deficiency (HRD) compared with

Cluster 1 (Supplementary Figure 2D). These findings suggest that

tumors with elevated DNA damage may possess enhanced immune

evasion capabilities and reduced responsiveness to immunotherapy

(36). To further validate our classification, we compared our patient

clusters with a previously established molecular classification in

which the “Inflammatory” subtype (C3) was associated with the

best prognosis (37). Most C3 patients were assigned to Cluster 1,

which had a better prognosis, consistent with previous

findings (Figure 2D).

Given the intricate interplay between stemness, hypoxia, and

immune-related pathways, we further explored differences in the

TIME across the two clusters. CIBERSORT analysis revealed that

patients in Cluster 2 exhibited significantly higher levels of

activated memory CD4+ T cells, follicular helper T cells, and

Tregs, whereas M0 macrophages, resting memory CD4+ T cells,

and M2 macrophages were markedly reduced (Figure 2E). Next,

we analyzed the expression of previously reported immune

checkpoint-related genes across the two clusters (38). In Cluster

2, genes known to suppress T-cell immune activity, including

CTLA4 and its ligands as well as PD-1 and its ligands, were

significantly upregulated (Figure 2F). With the growing

prominence of immunotherapy in HCC treatment, we employed

the TIDE model to evaluate patients’ potential response. Given

that higher TIDE scores indicate increased immune evasion and

diminished immunotherapy efficacy, we observed that Cluster 2

had a significantly higher TIDE score than Cluster 1, suggesting

that patients in Cluster 2 may have a lower likelihood of benefiting

from immunotherapy (Supplementary Figure 3A). We employed

ssGSEA to evaluate therapeutic signatures and 29 immune-related

gene signatures, encompassing immune, stromal, and other

cellular processes. First, Cluster 2 exhibited significant

upregulation of gene signatures associated with the cell cycle,

DNA replication, and mismatch repair (Supplementary

Figure 3B). Second, Cluster 2 displayed increased infiltration of

immunosuppressive cel ls , including tumor-associated

macrophages (TAMs), MDSCs and Tregs, along with enhanced

tumor cell proliferation, leading to heightened immune
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suppress ion and elevated pro-tumor immune scores

(Supplementary Figure 3E). Finally, PROGENy analysis was

performed to assess the activity of cancer-related signaling

pathways (29). The results indicated that Cluster 2 exhibited
Frontiers in Immunology 07
significantly higher activity in the Estrogen, Hypoxia, MAPK,

NF-kB, p53, TNFa, and WNT signaling pathways, whereas

Cluster 1 showed relatively higher activity in the VEGF

signaling pathway (Supplementary Figures 3C, D).
FIGURE 1

Identification of stemness- and hypoxia-related clusters. (A) Identification of mRNAsi-related DEGs between high- and low-mRNAsi subgroups.
(B) Hypoxia-related genes identified through WGCNA. (C) A total of 75 overlapping genes were identified as SHRGs. (D) Unsupervised consensus
clustering was performed using SHRGs. (E) Kaplan-Meier survival curve for the identified clusters. (F) Differences in mRNAsi (left) and hypoxia scores
(right) between the two clusters. (G) Identification of DEGs between the two clusters. (H–J) KEGG/GO (H), GSEA (I), and GSVA (J) enrichment
analyses of the two clusters. Statistical significance: ***P < 0.001.
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FIGURE 2

Genomic and TIME characteristics of the two stemness- and hypoxia-related clusters. (A, B) Waterfall plots illustrating the twenty most frequently
mutated genes in each cluster. (C) Mutation landscape of the five most significantly different genes based on univariate Cox analysis in the two
clusters. (D) Differences in the composition of previously classified molecular subtypes of HCC between the two clusters. (E) Comparison of immune
cell infiltration proportions between the two clusters. (F) Analysis of expression levels of representative immune checkpoint genes across the two
clusters. Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001; ns = not significant.
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3.4 Construction of the 4-gene SHRPI and
evaluation of its prognostic significance

Cox regression analysis was conducted on the DEGs between

the two clusters to identify prognostic genes. To mitigate

collinearity effects, genes with a Pearson correlation coefficient

greater than 0.80 were excluded, resulting in 221 DEGs

(Supplementary Table 2). LASSO regression analysis was then

applied, yielding five stable prognostic genes (Figures 3A, B). To

further reduce false-positive rates and enhance model accuracy, we

employed a random forest model to select genes with a Mean

Decrease Gini greater than 1 (Figure 3C). Subsequently, four

overlapping key genes were incorporated into a Cox regression

model, with corresponding coefficients used to construct the SHRPI

(Figure 3D): SHRPI = 0.10211669 × HMMR + 0.15981839 × UBE2S

+ 0.20537184 × G6PD + 0.06132584 × NEIL3.

Patients were stratified into low- and high-SHRPI groups based

on the median SHRPI score. Differential expression analysis

revealed that all four key genes were upregulated in the high-

SHRPI group (Figure 3E; Supplementary Figures 4A, B). In the

TCGA-LIHC cohort, patients in the high-SHRPI group exhibited

significantly shorter OS compared to those in the low-SHRPI group

(P < 0.0001) (Figure 3F). Time-dependent ROC curve analysis

demonstrated that SHRPI exhibited robust and stable predictive

performance for survival, with AUC values of 0.82, 0.70, and 0.67

for 1-, 3-, and 5-year OS, respectively (Supplementary Figure 4C).

Univariate and multivariate Cox regression analyses confirmed that

stage, recurrence status, and SHRPI were independent risk factors

for OS in HCC (Figures 3G, H). In the NC-LT cohort, patients in

the high-SHRPI group exhibited significantly shorter RFS

compared to those in the low-SHRPI group (P = 0.0015)

(Figure 3I). Univariate and multivariate Cox regression analyses

confirmed that tumor diameter, AFP levels, and SHRPI were

independent risk factors for RFS in HCC after LT (Figures 3J, K).

Furthermore, the applicability of SHRPI was validated in the

GSE104580 cohort, where SHRPI was significantly higher in the

TACE non-response group compared to the response group (P <

0.001), with an AUC of 0.713 for predicting TACE response

(Supplementary Figures 4D, E).
3.5 Development and validation of the
SHRPI-based nomogram for OS prediction
in HCC patients

We constructed a nomogram incorporating SHRPI and other

independent prognostic risk factors using the TCGA-LIHC cohort

and externally validated it in the GSE14520 cohort to

comprehensively assess its predictive performance (Figure 4A).

The results demonstrated that the nomogram exhibited excellent

performance in both the training and validation cohorts. After

stratifying patients in both cohorts based on the median nomogram

score, Kaplan-Meier survival analysis revealed that patients in the

high-nomogram score group had significantly shorter OS compared

to those in the low-nomogram score group (Figures 4B, C).
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In the training cohort, the AUC for 1-, 3-, and 5-year OS was

0.81, 0.76, and 0.73, respectively, highlighting the nomogram’s

strong discriminatory power for short- to medium-term survival

prediction (Figure 4D). In the validation cohort, the nomogram

maintained robust predictive performance, with AUC values of

0.77, 0.81, and 0.89 for 1-, 3-, and 5-year OS, respectively, indicating

its generalizability across different datasets (Figure 4G). The

calibration curves for both the training and validation cohorts

further confirmed the accuracy of the nomogram in predicting 1-,

3-, and 5-year OS. These curves demonstrated a high degree of

concordance between predicted and observed survival probabilities,

underscoring the nomogram’s reliability in long-term survival

estimation (Figures 4E, H). Additionally, DCA for both cohorts

demonstrated that the nomogram yields net benefits across a broad

range of risk thresholds, further supporting its potential role in

guiding clinical decision-making (Figures 4F, I).
3.6 Comprehensive analysis of SHRPI and
its associations with immune infiltration,
TIME signatures

To further explore the biological and clinical significance of

SHRPI, we calculated patient risk scores using the SHRPI formula

and stratified the TCGA-LIHC cohort into low-risk (LRG) and

high-risk (HRG) groups based on the optimal cutoff value.

Differential expression analysis between the two groups identified

key genes associated with SHRPI. Functional enrichment analyses,

including GO, KEGG, GSEA, and GSVA, revealed that the majority

of enriched pathways were primarily related to cell cycle regulation

and metabolic processes (Supplementary Figures 5A–D). We

performed a stemness assessment on patients in the TCGA-LIHC

cohort using stemness-related gene sets from MSigDB. The Wong

Embryonic Stem Cell Core score showed a significant positive

correlation with the risk score, while the Yamashita Liver Cancer

Stem Cell Dn score exhibited a significant negative correlation

(Supplementary Figure 5E).

To investigate the relationship between the risk score and

immune characteristics, we analyzed the infiltration of 22

immune cell types in TIME. The results indicated a significant

correlation between the risk score and multiple immune cell

subsets, with distinct infiltration patterns observed between LRG

and HRG, consistent with the trends observed in the stemness-

hypoxia-based clusters. Specifically, HRG patients exhibited

increased Tregs, follicular helper T cells (Tfh), and M0

macrophages, while resting memory CD4+ T cells and naïve B

cells were significantly reduced (Figures 5A, B). Additionally, the

risk score exhibited strong positive correlations with matrix

remodeling, Treg abundance, and tumor proliferation rate,

indicating its potential role in fostering an immunosuppressive

and tumorigenic microenvironment (Figure 5C). The expression

profiles of 68 immune checkpoint genes differed significantly

between LRG and HRG, with many genes including PDCD1 (PD-

1), CTLA4, CD274 (PD-L1), and HAVCR2 (TIM-3) upregulated in

HRG (Figure 5F). Correlation analysis further revealed that the risk
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FIGURE 3

Construction of the 4-gene SHRPI and its prognostic significance. (A) LASSO regression analysis selected 5 variables based on the optimal lambda
value. (B) LASSO coefficient plot for the 5 selected key genes and their coefficients. (C) Screening of candidate genes via random forest models.
(D) Multivariate Cox regression analysis of the 4 selected genes used to construct the SHRPI. (E) Heatmap showing the expression of 4 SHRPI-
related genes in low- and high-SHRPI groups. (F) Kaplan-Meier survival curve for OS, risk score distribution, and survival status of patients in low-
and high-SHRPI groups of the TCGA-LIHC cohort. (G, H) Univariate (G) and multivariate (H) Cox regression analyses of SHRPI and
clinicopathological parameters for OS in the TCGA-LIHC cohort. (I) Kaplan-Meier survival curve for RFS, risk score distribution, and relapse status of
patients in low- and high-SHRPI groups of the NC-LT cohort. (J, K) Univariate (J) and multivariate (K) Cox regression analyses of SHRPI and
clinicopathological parameters for RFS in the NC-LT cohort.
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score was positively associated with most immune checkpoint

genes, suggesting a link to an immunosuppressive tumor

microenvironment and enhanced immune evasion (Figure 5G).

Next, we assessed the potential immunotherapy responses of

patients across different risk groups using TIDE scores. The

results showed that in HRG, the risk score was positively

correlated with T cell exclusion (r = 0.22, P = 0.02553),

suggesting a higher likelihood of immune evasion. Conversely, in

LRG, the risk score exhibited a stronger positive correlation with
Frontiers in Immunology 11
IFNG expression (r = 0.1984, P = 0.002146), indicating a potentially

enhanced anti-tumor immune response despite a higher correlation

with T cell exclusion (r = 0.3204, P < 0.0001) (Supplementary

Figure 5F). Collectively, these findings suggest that HRG is

charac ter ized by a more immunosuppress ive tumor

microenvironment, whereas LRG retains relatively higher

immune activity, which may contribute to better immunotherapy

responsiveness. Finally, we analyzed the relationship between the

risk score and oncogenic pathway activity. The results showed that
FIGURE 4

Development and validation of the SHRPI-based nomogram for OS prediction. (A) Nomogram for predicting OS in HCC patients, integrating SHRPI,
stage, and recurrence status. (B, C) Kaplan-Meier survival curves comparing OS between low- and high- Nomo score groups in the TCGA-LIHC and
GSE14520 cohorts. (D, G) Time-dependent ROC curves illustrating the nomogram’s predictive accuracy for 1-, 3-, and 5-year OS in these cohorts.
(E, H) Calibration plots comparing predicted and observed OS at 1-, 3-, and 5-year time points across cohorts. (F, I) DCA demonstrating the net
clinical benefit of the nomogram across different risk thresholds for OS prediction in both cohorts.
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the risk score was significantly associated with the activation of

hypoxia, MAPK, NF-kB, p53, TNFa, and WNT signaling, all of

which were upregulated in HRG (Figures 5D, E).
3.7 Identification of potential therapeutic
agents for HRG

Sensitivity analysis revealed that conventional chemotherapeutic

agents and inhibitors targeting FGFR, EGFR, and VEGFR exhibited

no significant specificity in HRG. (Supplementary Figure 6A–D). To

identify potential therapeutic agents with greater efficacy in HRG, we

leveraged the CTRP, PRISM, and GDSC datasets, which provide

comprehensive gene expression and drug sensitivity profiles across
Frontiers in Immunology 12
hundreds of human cancer cell lines. Following the removal of

duplicates and quality control, 38 candidate compounds were

selected for further evaluation (Figure 6A). Initially, compounds

with lower estimated AUC values in HRG were identified using

predefined thresholds (log2FC < −0.1 for CTRP and GDSC, and

log2FC < −0.05 for PRISM). Subsequently, Spearman correlation

analysis was performed to assess the association between AUC values

and the risk score, with further filtering applied to compounds

exhibiting a negative correlation (R < −0.3 for CTRP and PRISM,

and R < −0.4 for GDSC) (Figures 6B, D, F). Ultimately, we identified

2 compounds from CTRP (docetaxel, BI2536), 5 from GDSC

(vincristine, pevonedistat, docetaxel, BI2536, alisertib), and 7 from

PRISM (gemcitabine, SN38, dabrafenib, bortezomib, AZD7762,

topotecan, BI2536), all of which demonstrated lower estimated
FIGURE 5

Associations of SHRPI with immune infiltration and TME signatures. (A, B) Comparison of immune cell infiltration levels between low- and high-risk
groups (A) and correlation analysis of SHRPI with immune cell infiltration based on CIBERSORT (B). (C) Correlation analysis of SHRPI with TME-
related signatures. (D, E) Comparisons of 14 oncogenic pathways between low- and high-risk groups (D), and correlation analysis of SHRPI with
these pathways (E). (F, G) Comparisons of representative immune checkpoint genes expression between low- and high-risk groups (F), and
correlation analysis of SHRPI with these genes (G). Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001; ns = not significant.
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AUC values in HRG, indicating greater predicted sensitivity to these

agents (Figures 6C, E, G). Given that G6PD was the molecule most

closely associated with prognosis in Cox regression analysis among

the components of SHRPI (Figure 3D), compounds identified in at
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least two database screens (Docetaxel and BI2536) were selected for

molecular docking with G6PD. The results demonstrated that BI2536

had a higher binding affinity for G6PD (−8.341 kcal/mol) compared

to Docetaxel (−8.152 kcal/mol) (Figures 6H, I). These findings
FIGURE 6

Screening of potential therapeutic agents for HRG and molecular docking analysis. (A) Overlapping compounds in CTRP, GDSC and PRISM datasets.
(B–G) Spearman correlation between SHRPI and compound sensitivity, and differential drug responses (AUC) between low- and high-risk groups
based on CTRP (B, C), GDSC (D, E), and PRISM (F, G) databases. (H, I) Molecular docking analysis of G6PD protein with two selected compounds:
BI2536 (H) and Docetaxel (I). Statistical significance: ***P < 0.001.
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indicate that BI2536 may regulate G6PD activity by directly targeting

its active site, thereby potentially influencing HCC stemness.
3.8 Analysis and functional validation of
G6PD as a key SHRPI component in HCC

To further explore the cellular heterogeneity and expression

profiles of SHRPI components in HCC, we analyzed single-cell

RNA sequencing data. t-SNE dimensionality reduction and SHRPI

scoring demonstrated that cancer cells exhibited significantly higher

SHRPI levels (Figures 7A, B). Among the SHRPI components,

G6PD, HMMR, and NEIL3 were predominantly expressed in

cancer cells, with G6PD showing the highest expression

proportion (Figures 7C–F). This further underscored the pivotal

role of G6PD in regulating HCC stemness at the single-cell level.

Upon this finding, we further investigated the changes in G6PD

expression under hypoxia and its impact on the stemness

phenotype in HCC cells. We first assessed G6PD expression

across HCC cell lines (HuH-7, PLC/PRF/5, Hep-3B, and Li-7) via

Western blot. Based on strong expression in Hep-3B and moderate

expression in HuH-7, we selected these two cell lines for further

experiments (Figure 8A). Exposure of these cells to hypoxia (1% O2)

significantly upregulated the expression of G6PD (Figure 8B). To

further assess the role of G6PD in regulating the stemness

phenotypes of HCC cells under hypoxia, we conducted

knockdown and overexpression studies. In Hep-3B cells, shRNA1

and shRNA3 achieved effective G6PD knockdown (Figure 8C),

while in HuH-7 cells, effective overexpression was achieved

(Figure 8D). Correlation analysis between G6PD and stemness

markers showed that its expression was relatively strongly

correlated with CD24, CD44, OCT3/4, and HIF-1a (Figure 8I).

Functional assays indicated that G6PD knockdown significantly

reduced cell migration, sphere formation and the mRNA expression

of stemness markers (CD24, CD44, and OCT3/4) under hypoxia

(Figures 8E, F, J). Conversely, G6PD overexpression enhanced these

capabilities (Figures 8G, H, K). Mechanistically, we found that

G6PD regulated the protein abundance of HIF-1a. In HuH-7

cells, G6PD knockdown reduced HIF-1a protein abundance,

while overexpression increased HIF-1a protein abundance under

hypoxia (Figure 8L). Co-IP experiments further confirmed the

interaction between endogenous G6PD and HIF-1a in HuH-7

cells under hypoxia (Figure 8M). Furthermore, in the transgenic

HCC mouse model, compared with the empty vector control group

(MCS), mice in the G6PD overexpression group (G6PD) exhibited

a rapid increase in hepat ic tumor burden within a

short period, as evidenced by a significant elevation in liver

weight (P < 0.0001) (Figures 8N, O). In conclusion, our data

indicate that G6PD is a key regulator of the stemness phenotype

in HCC cells under hypoxia by interacting with HIF-1a to

upregulate its protein abundance, thereby promoting the

stemness phenotype.
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4 Discussion

The collaborative crosstalk between cancer stemness and

hypoxia in HCC highlights their critical roles as drivers of tumor

invasion, metastatic dissemination, therapy resistance, and immune

escape mechanisms. To quantify these two biological

characteristics, Malta et al. developed the OCLR algorithm, which

calculates stemness indices (e.g., mRNAsi, mDNAsi) by integrating

multi-omics data spanning genomic, transcriptomic, and epigenetic

features (25). Similarly, hypoxia scores such as the Buffa Hypoxia

Score and Winter Hypoxia Score, derived from gene expression

signatures, reflect molecular adaptations to oxygen deprivation (39).

Although some of these indices independently correlate with

adverse HCC prognosis, current prognostic models often either

treat stemness and hypoxia as isolated biological characteristics,

thereby neglecting their dynamic crosstalk, or dissociate these axes

from clinical parameters, consequently diminishing predictive

accuracy and clinical applicability (18, 19, 21). This notable gap

underscores the necessity to develop integrated indices bridging

these axes (stemness and hypoxia) for refined risk stratification and

prioritized therapeutic targeting, while incorporating clinical

parameters to optimize predictive performance through a holistic

representation of HCC biology.

In this study, we selected the stemness index (mRNAsi) and the

hypoxia score (Buffa hypoxia score), both of which are significantly

associated with the prognosis of HCC patients. Through differential

analysis and WGCNA, we identified SHRGs that comprehensively

represent the interaction between stemness and hypoxia. Consensus

clustering based on SHRGs stratified HCC patients into two distinct

clusters (Cluster 1/2) with divergent genomic alterations, intrinsic

immunogenicity, and survival outcomes. Notably, the enrichment

of oncogenic pathways (e.g., E2F targets, mTOR signaling) and

elevated TMB in Cluster 2 suggested heightened genomic instability

and therapeutic resistance, consistent with observations in other

solid tumors (40, 41). Importantly, Cluster 2 patients displayed

elevated TIDE scores and upregulated immune checkpoint

molecules (PD-L1, CTLA4), which extends the utility of our

stemness-hypoxia signature to predict immunotherapy response,

a dimension that has been underexplored in earlier studies.

Given that previous studies predominantly relied on Cox

regression or heuristic gene screening to construct indices, we

integrated LASSO regression, random forest, and Cox regression

analysis to minimize overfitting risks while prioritizing biologically

relevant key genes. This optimized rigorous strategy constructed the

SHRPI comprising four genes: HMMR, UBE2S, NEIL3, and G6PD.

SHRPI is not only an independent risk factor for OS in HCC

patients but also for RFS in LT patients with HCC beyond the Milan

criteria. Additionally, as stemness-hypoxia features are frequently

associated with TACE treatment in advanced HCC, we observed

that SHRPI demonstrated promising predictive power for TACE

responsiveness (42). Incorporating SHRPI into a nomogram further

enhanced its clinical utility, enabling personalized survival
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probability assessments. This approach contrasts with previous

studies that focused solely on risk stratification based on indices.

The nomogram exhibited robust performance in both TCGA and

GSE14520 cohorts, highlighting its broad applicability.

Analysis of the TIME revealed significant disparities between risk

groups defined by SHRPI. High-risk patients exhibited heightened

infiltration of immunosuppressive cells (e.g., Tregs, M0 macrophages)
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and elevated expression of checkpoint molecules (PD-1, CTLA-4,

TIM-3), consistent with the “immune-excluded” phenotype observed

in CSC-enriched tumors (4, 43). SHRPI demonstrated a positive

correlation with TIDE scores, indicating limited efficacy of immune

checkpoint inhibitor (ICI) therapy in high-risk patients, necessitating

exploration of alternative or combinatory therapeutic strategies. To

address this, we screened for subgroup-specific therapeutic agents
FIGURE 7

Single‐cell transcriptomic analysis of SHRPI in HCC. (A) t-SNE plot illustrating the clustering of single cells from HCC tissues, annotated by cell type.
(B) t-SNE plot showing the distribution of SHRPI status (high vs. low). (C–F) Average expression levels of G6PD (C), HMMR (D), NEIL3 (E), and UBE2S
(F) across cell types.
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using pharmacogenomics and molecular docking analyses. Among

these, BI2536 stood out due to its consistent validation across three

independent datasets and strong binding affinity, highlighting its

potential as a candidate drug for high-risk HCC. As a specific

inhibitor of Polo-like kinase 1 (PLK1), BI2536 synergizes with

diverse chemotherapies (e.g., microtubule-targeting agents,

alkylators, platinum drugs) across multiple preclinical cancer
Frontiers in Immunology 16
models, enhancing tumor suppression and overcoming

chemoresistance by inducing G2/M arrest, activating apoptosis via

BAX/caspase-3 pathways and pyroptosis via GSDME, andmodulating

critical signaling cascades (Wnt/b-catenin,MEK/ERK). In the targeted

therapy domain, BI2536 demonstrates synergistic efficacy against

ROCK, mTOR, STAT3, EGFR, PARP, HDAC, and Bcr-Abl,

overcoming both intrinsic and acquired resistance through dual-
FIGURE 8

Functional validation of G6PD as a key SHRPI component in HCC. (A) G6PD protein abundances across HCC cell lines (HuH-7, PLC/PRF/5, Li-7 and
Hep-3B). (B) Changes in HIF-1a and G6PD expression in HuH-7 and Hep-3B cells under normoxia (20% O2) or hypoxia(1%O2) at 6 and 12 hours.
(C) Knockdown efficiency of three G6PD shRNAs in Hep-3B cells. (D) G6PD overexpression efficiency in HuH-7 cells. (E, F, J) Effects of shNC,
shG6PD-1, and shG6PD-3 on Hep-3B stemness under hypoxia, as assessed by cell migration (E), cell sphere formation (F), and qRT-PCR (J) assays.
(G, H, K) Effects of Vector and G6PD overexpression (G6PD) on HuH-7 stemness under hypoxia, as assessed by cell migration (G), cell sphere
formation (H), and qRT-PCR (K) assays. (I) Correlation heatmap of SHRPI components and stemness markers in TCGA-LIHC bulk RNA-seq data.
(L) G6PD and HIF-1a expression in HuH-7 with G6PD knockdown (shG6PD) or control (shNC) (upper panel), and with G6PD overexpression (G6PD)
or Vector (lower panel), under normoxia or hypoxia. (M) Interaction between endogenous G6PD and HIF-1a was tested in HuH-7 under hypoxia for
24 hours, with normal rabbit IgG as control. (N) Experimental workflow of the transgenic HCC mouse model (by figdraw.com, ID: ARUWT24438).
(O) Representative liver images of MCS and G6PD groups, and comparison of liver weights between the two groups (n = 5). Statistical significance: **P <
0.01, ***P < 0.001, ****P < 0.0001.
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pathway blockade, restoration of tumor suppressor function (e.g.,

TP53 reactivation), and enhancement of DNA damage responses (44).

Regarding immunotherapy, although clinical evidence for BI2536

combination remains scarce, emerging preclinical insights indicate

that PLK1 inhibition broadly potentiates antitumor immunity

through enhanced antigen presentation and T-cell infiltration,

reversal of immunosuppressive TAM polarization (from M2 to M1

phenotype), and upregulation of PD-L1 expression via the PLK1/Rb/

NF-kB axis to sensitize tumors to immune checkpoint blockade (45).

Given that BI2536’s limited single-agent efficacy and dose-limiting

toxicities indicate intrinsic resistance, CRISPR/Cas9 genome-wide

screening to identify resistance genes and delineate BI2536-specific

pathways is essential for optimizing pharmacological properties,

enhancing therapeutic efficacy in rational combination regimens,

and advancing clinical translation (46).

Among the four hub genes, hyaluronan-mediated motility

receptor (HMMR/RHAMM) is highly expressed in lung, breast,

gastric, and liver cancers, correlating with poor prognosis (47).

HMMR critically maintains cancer stemness across tumor types:

sustaining glioblastoma stem cell tumorigenicity (48), enhancing

gastric cancer stemness and 5-fluorouracil resistance via TGF-b/
Smad2 (49), and promoting glycolysis to strengthen stemness and

cisplatin resistance in lung adenocarcinoma (50). Although direct

evidence linking HMMR to hypoxia regulation is limited, hypoxia

may indirectly potentiate HMMR’s oncogenic effects by activating key

stemness-associated pathways, notably TGF-b signaling and glycolysis,
both established hypoxia-responsive processes (51). Furthermore,

HMMR predicts immunosuppressive microenvironments in HCC,

with its targeting enhancing anti-PD-1 efficacy through CD8+ T cell

recruitment (52). Ubiquitin-conjugating enzyme E2S (UBE2S), a

crucial member of the ubiquitin-proteasome system, is overexpressed

in multiple cancers (e.g., lung, bladder, ovarian, liver) and correlates

with poor prognosis and advanced stage. UBE2S promotes cancer

stemness through diverse mechanisms: enhancing p53 ubiquitination

to facilitate proliferation and migration, accelerating cell cycle

progression via p27 ubiquitination, and inducing chemoresistance

through both the PTEN/AKT and Wnt/b-catenin signaling

pathways (53). Notably, UBE2S directly ubiquitinates VHL

independent of canonical E3 ligases, regulating HIF-1a signaling to

promote glycolysis and HCC proliferation (54). It further drives tumor

growth and reduces sorafenib sensitivity by upregulating HIF-1a and

activating JAK2/STAT3 signaling (55). These findings suggest that

UBE2S may function as a molecular bridge linking stemness and

hypoxia regulation in HCC. Nei endonuclease VIII-like 3 (NEIL3), a

DNA glycosylase crucial for repairing oxidative DNA damage and

crosslinks, is highly expressed in multiple cancers (e.g., lung, kidney,

liver) and promotes tumor progression. In HCC, NEIL3 not only

repairs telomeric oxidative damage to delay cellular senescence but also

activates the BRAF/MEK/ERK/TWIST pathway to induce core

stemness phenotypes including epithelial-mesenchymal transition,

therapy resistance, and enhanced self-renewal (56). Concurrently, it

remodels metabolic microenvironments via MAZ-mediated aerobic

glycolysis to support stemness maintenance (57), while driving
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malignant expansion of CSCs through the SNHG3/E2F1 axis (58).

Although direct links to hypoxia regulation remain limited, a defined

mechanism shows that NEIL3 enables proper expression of hypoxia-

responsive genes by repairing hypoxia-associated oxidative damage in

promoter G-quadruplex DNA, leading to reduced genomic instability

under hypoxia (59).

Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting

enzyme of the pentose phosphate pathway (PPP), maintains redox

homeostasis through NADPH generation and supports nucleotide

biosynthesis via ribose-5-phosphate production. Clinically significant

overexpression of G6PD has been documented in multiple

malignancies, including lung, renal, breast and liver cancer, and it

correlates with adverse clinical outcomes (60). Hypoxic tumor

microenvironments in HCC induce transcriptional upregulation of

G6PD, which confers survival advantages through oxidative stress

modulation (61). Emerging evidence demonstrates that G6PD

overexpression diminishes regorafenib cytotoxicity in HCC (62),

while METTL3-mediated activation of G6PD-dependent PPP flux

drives oxaliplatin resistance (63). Therefore, the dual regulatory role

of G6PD in maintaining redox equilibrium and facilitating metabolic

reprogramming serves as a critical determinant in preserving cancer

cell stemness under various stress conditions. Integrating multivariate

Cox regression and single-cell transcriptomic analyses based on

SHRPI components identified G6PD as a key prognostic

determinant closely associated with HCC stemness regulation at

the single-cell level. Its specific role in hypoxia-driven stemness

maintenance has yet to be reported. Through systematic

experiments, we demonstrated that hypoxia significantly

upregulates G6PD expression in HCC cells and that G6PD is

essential for maintaining cancer stemness. Mechanistically, we

showed that G6PD stabilizes HIF-1a protein under hypoxia. Given

established evidence that HIF-1a transcriptionally activates G6PD

(61, 64), we propose a self-reinforcing positive feedback loop that

amplifies HCC stemness. Within this regulatory mechanism, G6PD

may enhance HIF-1a stability through dual mechanisms: as a core

metabolic enzyme, it potentially modulates redox homeostasis to

attenuate degradation (65); while exercising non-canonical enzymatic

functions, it may directly suppress HIF-1a ubiquitination (66).

Endogenous Co-IP confirmed G6PD-HIF-1a interaction, thereby

providingmechanistic support for these stabilization pathways. These

findings reveal a novel metabolic-microenvironmental crosstalk

driving stemness; this manifestation of non-canonical molecular

functions bridging metabolism and TME remodeling is similarly

observed in recent biomarker studies of other solid tumors (67).

Collectively, they suggest that targeting the G6PD-HIF-1a loop aligns

with the emerging paradigm of combinatorial strategies against

multiple tumor microenvironment components (68) and provide

both novel insights and a theoretical foundation for therapeutic

strategies aimed at targeting cancer stemness.

Although previous studies incorporated stemness or hypoxia

characteristics for HCC prognostication, our work delivers

substantial advances: algorithmic refinement optimizes SHRPI to

identify a minimal gene set with maximal prognostic power,
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significantly enhancing discriminative performance and model

parsimony; we develop a highly accurate and clinically applicable

nomogram for individualized prognosis; pharmacogenomic and

molecular docking analyses rigorously screened BI2536 as a

promising agent for the high-risk subgroup, providing actionable

insights for therapeutic stratification; integrating computational

and experimental evidence, we first establish G6PD as a key

regulator of hypoxia-induced stemness and propose a G6PD-HIF-

1a positive feedback loop as a mechanistic model.

Despite these advancements, our study has limitations. First,

given the retrospective nature and potential ethnic composition bias

of TCGA/GEO data, prospective validation of SHRPI in multi-

ethnic cohorts is necessary to assess its applicability, and its

predictive capacity for immunotherapy response requires further

validation in diverse immunotherapy cohorts (69). Second, deeper

molecular investigations are required to elucidate the specific

regulatory mechanisms of G6PD on HIF-1a , alongside

comprehensive spatial single-cell analyses and in vivo lineage

tracing to resolve spatial heterogeneity in G6PD-HIF-1a
interactions within tumor microenvironments. Third, preclinical

assessment of candidate compounds (BI2536) using patient-derived

organoids or xenograft models should systematically evaluate on-

target efficacy versus off-target toxicity profiles to ensure safety of

combinatorial regimens for high-risk populations (70).
5 Conclusions

SHRPI, constructed using a rigorous methodological approach,

effectively distinguishes clinical, molecular, TIME, and therapeutic

response characteristics among HCC patients. The nomogram

integrating SHRPI with key clinical parameters demonstrates high

predictive accuracy and robust applicability. BI2536 showed

promising therapeutic potential for patients classified as high-risk

by SHRPI. Furthermore, the elucidation of the hypoxia-stemness

regulatory mechanism mediated by G6PD, a key SHRPI

component, provides novel insights into therapeutic strategies

targeting HCC stemness.
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