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Chronic inflammation linked to atherosclerosis is closely related to a trained

immunoregulatory network. Traditional studies primarily focus on the pro-

inflammatory memory of monocytes, they frequently neglect important

aspects such as the cell’s plasticity, interactions between different organs, and

the dynamic regulation of the metabolism-vascular axis. This review presents

four novel frameworks, including the trained immunity plasticity spectrum

model. It demonstrates how monocytes maintain a dynamic balance between

pro-inflammatory, tolerogenic, and anti-inflammatory phenotypes, regulated by

mTOR/AMPK signaling and competitive histone modifications. The trained

immunity–metabolism–vascular axis shows that metabolic disorders can

change the way immune memory is formed. They achieve this by modifying

the vascular microenvironment through epigenetic changes, exosomes, and

products of mitochondrial stress. The cross-organ trained immunity

framework reveals how remote epigenetic communication between the bone

marrow, gut, and liver influences the development of monocytes. Finally,

dynamic immune reprogramming integrates CRISPR-based epigenetic editing,

metabolism-focused interventions, and AI-driven multi-omics predictions. This

approach signifies a major transition from simply alleviating symptoms to

accurately reshaping immune memory. This review reinterprets the

immunometabolic mechanisms of atherosclerosis. It also lays the foundation

for personalized therapies enhanced by AI and explores new interdisciplinary

research avenues.
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1 Background

Atherosclerosis is a chronic inflammatory condition marked by

lipid-related issues in blood vessels (1). It arises from inappropriate

responses of the innate immune system (2). Monocytes and

macrophages play key roles in the development and worsening of

plaque in the arteries (3); they cause persistent inflammation by

stimulating oxidized low-density lipoprotein (oxLDL) (4), releasing

cytokines (5), and forming foam cells (6). Even with lipid-lowering

treatments, blood vessel inflammation continues (7), exposing a

crucial gap in our understanding: the factors behind the prolonged

activation of innate immune cells extend beyond traditional

inflammatory processes (8).

The discovery of trained immunity (9, 10), has significantly

changed our understanding of chronic inflammatory diseases. This

term refers to the reprogramming of innate immune cells, allowing

them to exhibit memory-like responses due to alterations in their

epigenetic and metabolic profiles (11). Initially identified in the

context of infections, trained immunity is now recognized as a

factor in atherosclerosis (12), where triggers such as oxLDL and

hyperglycemia lead to lasting proinflammatory changes in

monocytes (13). These changes happen through mechanisms such

as histone modifications, specifically H3K4me3 (14), and metabolic

shifts like increased glycolysis (15). Most current research focuses

on the pro-inflammatory aspects of trained immunity, often

ignoring its flexibility and the wider regulatory networks involved
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(16). Bekkering (17) and colleagues showed that oxLDL can cause

epigenetic changes in monocytes. However, the potential for trained

immunity to also play tolerogenic or reparative roles has not been

fully explored. Furthermore, the interactions between various

organs, including the bone marrow’s role in blood cell production

(18) and the effects of gut microbiota metabolites (19), have not

been sufficiently explored in relation to trained immunity. Although

evidence indicates that systemic metabolic issues may lead to

vascular inflammation (20), this topic is still underexplored.

This review examines the limitations of our current knowledge

by utilizing four interconnected frameworks. The trained immunity

plasticity spectrum redefines trained immunity as a dynamic

balance among pro-inflammatory, tolerogenic, and anti-

inflammatory phenotypes, influenced by mTOR/AMPK signaling

pathways (21) and opposing histone modifications (H3K4me3

versus H3K27me3) (22, 23). The trained immunity–metabolism–

vascular axis shows how metabolic disturbances, like abnormal

cholesterol synthesis and high blood sugar, can epigenetically

influence monocytes (24). These disturbances also alter the

vascular environment through exosomal miRNAs and signals

from mitochondrial stress (25). The cross-organ trained

immunity highlights the role of bone marrow-derived

hematopoietic stem cells, metabolites from gut microbiota, like

short-chain fatty acids (26), and apolipoproteins produced by the

liver in regulating the fate of monocytes (27) (Figure 1). Dynamic

immune reprogramming proposes several strategies. These include
FIGURE 1

Trained Immunity Plasticity Spectrum (TIPS): A Dynamic Equilibrium of Immune Memory. The Cross-Organ Trained Immunity (COTI): highlights the
role of bone marrow-derived hematopoietic stem cells, metabolites from gut microbiota, like short-chain fatty acids, and apolipoproteins produced
by the liver in regulating the fate of monocytes.
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CRISPR-based epigenetic editing (28), therapies that target

metabolism, and integrating computational multi-omics (29).

Together, these approaches aim for precise modulation of

trained immunity.

By integrating mechanistic insights with translational

innovation, this synthesis significantly redefines atherosclerosis as

an “immune-metabolic memory disorder” and encourages the field

to move beyond oversimplified models. Future initiatives should use

interdisciplinary strategies that include spatial multi-omics,

quantum-enabled epigenomic mapping, and global collaborations

to fully explore the therapeutic potential of translational innovation.
2 The trained immunity plasticity
spectrum: from proinflammatory
dominance to dynamic equilibrium

2.1 The proinflammatory paradigm:
foundations of classical trained immunity

The classical understanding of trained immunity focuses on its

role in sustaining pro-inflammatory responses in innate immune cells

(30). Early research indicates that, particularly in the context of

infections or b-glucan exposure (31), monocytes and macrophages

can undergo significant changes in metabolism and epigenetics when

exposed to inflammatory stimuli such as oxidized LDL or

lipopolysaccharides (LPS) (2). This reprogramming causes an

increased production of cytokines, including IL-1b, IL-6, and TNF-

a, during subsequent challenges (32). The “proinflammatory-centric”

model highlights mechanisms such as mTOR-HIF-1a signaling and

trimethylation of histone H3 at lysine 4 (H3K4me3) at the promoters

of proinflammatory genes, including IL-1b and TNF (33, 34). These

mechanisms help stabilize glycolytic metabolism and enhance

inflammatory memory. Although this framework established an

important foundation, it fails to explain why inflammatory markers

stay elevated even after the initial triggers have disappeared. It did not

consider the variability in monocyte responses found in conditions

such as atherosclerosis, where both proinflammatory and anti-

inflammatory subsets exist in plaques (35).
2.2 Redefining immune memory: the TIPS
model and its dynamic equilibrium

The trained immunity plasticity spectrummodel offers a fresh view

of trained immunity, depicting it as a dynamic range that encompasses

pro-inflammatory, tolerogenic, and anti-inflammatory phenotypes.

Proinflammatory trained immunity is triggered by metabolic

stressors like oxLDL or high glucose levels (36). In the Ldlr−/−

model, a Western diet can induce persistent training-induced

immunity (NLRP3-dependent), and inflammatory memory

characteristics remain even after dietary correction (37). Short-term

oxLDL pretreatment induces H3K4me3 enrichment and enhances re-

stimulation responses in human monocytes, resulting in long-term

pro-inflammatory/pro-foam cell memory (38). This state reduces
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glycolysis and boosts oxidative phosphorylation while also adding

repressive histone modifications (H3K27me3) to proinflammatory

enhancer regions (39). In ApoE−/− and AAV-PCSK9 mice fed a

high-fat diet, 4-PBA-trained monocytes exhibited reduced adhesion

and increased CD24 expression, among other pro-differentiation

features, and achieved sustained reprogramming through inhibition

of SYK–mTOR, restoration of peroxisomal homeostasis, and TOLLIP-

PPARg neddylation; Whether administered systemically or

transplanted as trained monocytes, they significantly reduced plaque

burden and increased collagen content, and transmitted anti-

inflammatory memory via CD24 between recipient monocytes,

providing direct evidence for anti-inflammatory trained immunity in

an atherosclerotic context (40). In parallel, the ketone body b-
hydroxybutyrate (b-HB) functions as an endogenous HDAC

inhibitor, elevating histone H3 acetylation (e.g., H3K9/14ac) at

immune-regulatory loci (41, 42). Consistent with this epigenetic shift,

oral 3-hydroxybutyrate in ApoE−/− mice reduced plaque burden and

redirected monocyte–macrophage responses toward a reparative

program, while complementary human ex vivo and murine data

show b-HB suppresses NLRP3-dependent IL-1b/IL-18 production

(43, 44). These states are dynamic and maintain a balance,

influenced by metabolic and epigenetic signals that can change the

fate of monocytes (45).
2.3 Regulatory nodes of plasticity:
metabolic, epigenetic, and
microenvironmental control

Metabolic regulation is essential for cellular function, and the

mTOR/AMPK axis acts as a key metabolic switch (21). Under low

glucose conditions, AMPK activates and phosphorylates the

autophagy-initiating kinase Unc-51-like kinase 1 (ULK1), promoting

autophagosome formation and cellular energy recovery (46). In

contrast, when nutrients are plentiful, mTORC1 inhibits autophagy

by phosphorylating ULK1 (47). The dynamic interplay between AMPK

and mTORC1 facilitates cellular adaptation to metabolic stress (48). In

addition, metabolites such as a-Ketoglutaric acid (a-KG) and acetyl-

CoA play important roles in regulating epigenetics (49). For example,

a-KG activates the TET2 enzyme to promote DNA demethylation and

activate anti-inflammatory genes, such as IL-10 (50). Acetyl-CoA

drives histone acetylation and helps establish a pro-inflammatory

memory within the cell (51). The interaction of epigenetic

modifications causes antagonism. Competing histone modifications,

particularly H3K4me3 and H3K27me3, function as a chromatin

“toggle switch” (52). The MLL/COMPASS complex deposits

H3K4me3 at inflammatory loci, while the PRC2 complex deposits

H3K27me3, silencing these genes in conditions that promote tolerance

(53). Moreover, antagonism of DNMT3Awith TET2 ensures that gene

promoter methylation levels are under dynamic regulation and adapt

to environmental changes (54). The microenvironment also plays a

significant role in shaping monocyte trained immunity, influenced by

various signals such as cytokines (like IFN-g and IL-10), metabolites

(including lactate and succinate), and hypoxic conditions (55). Hypoxia

within plaques stabilizes HIF-1a, which amplifies proinflammatory
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responses associated with trained immunity (56). Microbiota-derived

short-chain fatty acids—notably butyrate—act as endogenous histone

deacetylase inhibitors and dampen trained-immunity induction in

humans; in ApoE−/− mice, SCFAs mitigate atherosclerotic

inflammation via GPR43/HDAC-linked pathways (57–60).Likewise,

an ApoE-/- mouse model treated with orally sodium butyrate (NaB)

demonstrated that butyrate derived from intestinal flora regulates Mys
polarization through the GPR43/HDAC-miRNAs axis. This regulation

leads to a decrease in pro-inflammatory factors such as IL-6 and TNF-

a in arterial plaques, while increasing the anti-inflammatory factor IL-

10, which ultimately reduces plaque area (59).
3 Metabolic reprogramming and
vascular axis: from epigenetic memory
to therapeutic innovation

3.1 Metabolic derangements and
epigenetic rewiring of immune memory

Metabolic disorders such as high cholesterol and high blood

sugar significantly affect immune memory by changing the

epigenetic characteristics of monocytes (61). In cases of

hypercholesterolemia, oxLDL activates the mevalonate pathway,

leading to the production of isoprenoid intermediates, such as

farnesyl pyrophosphate (62, 63). By stabilizing HIF-1a and

enhancing mTORC1 signaling, this process induces a metabolic

shift that increases glycolytic flux (34). This transformation leads to

the production of acetyl-CoA, which is utilized as a substrate by

HATs (64, 65). Consequently, increased histone acetylation at

inflammatory promoters sustains transcriptional memory in

innate cells (66). Similarly, high blood sugar levels activate the

hexosamine biosynthesis pathway (HBP), resulting in increased O-

GlcNAcylation of nuclear factor kB and histones (67). This

modification increases the transcription of inflammatory genes,

even after glucose levels normalize. Epigenetic “scars” can remain

even after metabolic disturbances have resolved. This persistence

locks monocytes into a proinflammatory state, which promotes the

onset and progression of antiphospholipid syndrome (APS) and AS

(68, 69). For example, monocytes from APS display continuous

H3K4 trimethylation at the ARID5B promoter, which plays a role in

apoptosis and pyroptosis (70). This example illustrates epigenetic

‘scars’ in chronic inflammation outside atherosclerosis and is

hypothesis-generating for vascular disease.
3.2 Metabolic-immune dialogue and
vascular microenvironment remodeling

Altered monocytes interact with vascular cells, significantly

influencing the development of atherosclerotic areas. This

influence occurs through the release of extracellular vesicles and

signals associated with mitochondrial dysfunction (71).

Proinflammatory monocytes produce PC-EVs, which activate the

NF-kB pathway in endothelial cell (71–73). This activation
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intersects with the circadian control of adhesion molecules (e.g.,

VCAM-1), thereby promoting leukocyte recruitment (74).

Mitochondrial dysfunction in activated monocytes triggers the

release of mitochondrial DNA fragments and reactive oxygen

species (ROS). These releases, in turn, activate Toll-like receptor 9

(TLR9) and the NLRP3 inflammasome in vascular smooth muscle

cells (VSMCs) (75). This activation causes vascular smooth muscle

cells (VSMCs) to adopt a synthetic phenotype, which is

characterized by the secretion of matrix metalloproteinase-9

(MMP-9) and collagen breakdown, further destabilizing

atherosclerotic plaques (76). Anti-inflammatory metabolites, such

as SCFAs, mitigate these harmful effects (60, 77). For instance,

butyrate directly activates Nrf2 signaling in endothelial cells via

p300-mediated transcriptional activation, enhancing antioxidant

defenses and endothelial function (78). This activation increases

antioxidant defenses and helps stabilize plaque (Figure 2).
3.3 Future frontiers: competitive
metabolite dynamics and spatial multi-
omics

The intricate and unresolved complexities of metabolism-immune

system interactions demand innovative strategies. Competition

between metabolites is critical (79). Ketones (b-HB) and lactate

influence the availability of acetyl-CoA and subsequently affect

epigenetic outcomes by altering histone acetylation patterns (80). In

areas of atherosclerotic plaques with low oxygen, the accumulation of

lactate might reduce the anti-inflammatory effects of b-HB by shifting

acetyl-CoA towards processes that promote inflammation (81).

Advanced spatial multi-omics technologies, such as spatial

transcriptomics and MALDI imaging mass spectrometry, are vital for

understanding how tissue inflammation varies in atherosclerotic

lesions (82). These technologies can identify unique metabolic and

epigenetic signatures in various regions, enabling researchers to

distinguish between pro-inflammatory monocytes in necrotic cores

and reparative cells in fibrous caps (83, 84). We integrate dietary,

genetic, and environmental data with a multi-omics human map to

help uncover the complexities of multidimensional biological systems

(85). This integration aims to develop predictive models that identify

individual metabolic vulnerabilities. By addressing these challenges, we

can formulate strategies to effectively modify tissue inflammation. This

will change the management of atherosclerosis from simply managing

risk factors to actively reshaping immune memory (22, 86).
4 Cross-organ regulation of immune
memory: from bone marrow to
therapeutic integration

4.1 Bone marrow as a hub of epigenetic
inheritance

Tissue immunity is influenced by distant organs, which create a

“training axis” that connects local and systemic immune responses
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(87). Bone marrow is a key center for systemic immune memory,

and HSCs are essential for preserving epigenetic information (88).

When exposed to chronic metabolic or inflammatory challenges,

like high cholesterol levels or persistent cytokine exposure, HSCs

undergo reprogramming that involves changes in DNA

methylation and histone modifications (89). Under chronic

metabolic/inflammatory stress relevant to atherosclerosis, bone-

marrow progenitors and HSCs undergo durable reprogramming:

Western diet in Ldlr−/− mice elicits NLRP3-dependent epigenomic/

transcriptomic remodeling of myeloid progenitors with heightened

innate responses; peripheral ischemia in Apoe−/− mice imposes

epigenetic imprints in HSCs that propagate inflammation and

accelerate atherosclerosis; conversely, enhancing cholesterol efflux

(rHDL/LXR) or exercise restores HSPC quiescence and reduces

inflammatory leukocyte output and plaque inflammation (37, 90–

92). Epigenetic changes passed on to myeloid progenitors lead to

monocytes that are ready for stronger inflammatory responses, even

in the absence of ongoing triggers (93). This phenomenon is known

as trained immunity (94). In studies using mouse models, HSCs

from mice with high cholesterol produce monocytes that exhibit

increased NLRP3 inflammasome activity (95), accelerating plaque

progression in recipient animals. his systemic memory reveals the
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bone marrow’s critical role in sustaining vascular inflammation

over time (96), thereby challenging the traditional view that

atherosclerosis is strictly a localized condition.
4.2 Gut microbiota and SCFAs:
orchestrating immune memory

The gut microbiota plays a crucial role in immune memory by

producing metabolites, especially SCFAs such as butyrate,

propionate, and acetate (97, 98). Butyrate is produced when

bacteria ferment dietary fiber, and this compound plays a crucial

role by inhibiting histone deacetylases (HDACs) in monocytes (99).

Butyrate, a metabolite produced by microbiota, activates lncRNA

lncLy6C, which in turn drives the differentiation of Ly6C(high)

macrophages into Ly6C(int/neg) macrophages, mediated by the

lncLy6C/C/EBPb/Nr4A1 signaling axis (100). In the colonic lumen,

it functions as a chemoprotective inhibitor of histone deacetylases

and as an acetylation substrate for histone acetylases (101).

Furthermore, SCFAs enhance mitochondrial biogenesis by

activating PPARg coactivator 1a (PGC-1a), which counteracts

the glycolytic shift triggered by metabolic stressors such as oxLDL
FIGURE 2

The TIMV axis links metabolism with trained immunity and vascular regulation. Pro-inflammatory PC-EVs activating NF-kB, disrupting VCAM-1
circadian control and amplifying leukocyte recruitment. Butyrate activating endothelial Nrf2 for plaque stabilization. Mitochondrial ROS in monocytes
triggers TLR9/NLRP3 activation in VSMCs, driving MMP-9 secretion and collagen breakdown through macrophage infiltration, destabilization of
atherosclerotic plaques.
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(102). On the other hand, dysbiosis, characterized by a decrease in

SCFA-producing bacteria, can worsen trained immunity (103). This

is particularly evident in models that mimic a Western diet, where

increased gut permeability allows lipopolysaccharides (LPS) to enter

the bloodstream, activating Toll-like receptor 4 (TLR4) and priming

monocytes in a pro-inflammatory manner (104). The gut-vascular

axis may serve as a promising target for adjusting immune memory,

indicating that dietary changes or probiotic treatments could

be helpful.
4.3 Hepatic cholesterol metabolism:
stabilizing immune memory

The liver is essential for regulating the flexibility of monocytes

by managing choles tero l metabol i sm and producing

apolipoproteins (105). A key player in this process is

apolipoprotein E (ApoE), primarily produced by hepatocytes in

the liver (106, 107). ApoE plays a key role in cholesterol removal

from monocytes by interacting with ABCA1 transporters. This

interaction is critical for maintaining mitochondrial health and

ensuring the proper function of SIRT1, a protein involved in cellular

metabolism regulation (108). In their studies of ApoE-deficient

mice, researchers found that cholesterol accumulation disrupts

mitochondrial oxidative phosphorylation (109). This disruption

compels cells to increasingly depend on glycolytic pathways for

energy, stabilizes HIF-1a (a protein that enhances inflammation),

and intensifies proinflammatory signals, ultimately leading to the

destabilization of atherosclerotic plaques (110). Conversely, the

introduction of liver X receptor (LXR) agonists increases the

expression of ApoE (111), which aids in restoring cholesterol

efflux and promotes an anti-inflammatory response via SIRT1-

mediated deacetylation of NF-kB, a crucial regulator of

inflammation (112). Furthermore, the liver affects systemic

immune responses by signaling through bile acids (113). For

example, FXR agonists such as obeticholic acid upregulate SIRT3

in monocytes, thereby enhancing mitochondrial deacetylation and

oxidative metabolism (114). These insights reveal that the liver’s

metabolic functions are crucial for regulating immune memory

stability, thereby linking dietary lipids to vascular inflammation.
4.4 Integrated therapeutic strategies:
targeting cross-organ networks

The interdependence of bone marrow, gut, and liver in shaping

immune memory highlights the need for therapies that can target

multiple organs at once (115). Combination treatment strategies

include the use of PCSK9 inhibitors to lower the activity of the

mevalonate pathway and SCFA-producing probiotics. These

strategies work together to suppress pro-inflammatory T cells and

encourage a more balanced immune response (116). Additionally,

engineered nanoparticles provide a means for precise delivery (117,

118). For instance, bone marrow-targeting particles can deliver

DNMT3A inhibitors to reverse the hypermethylation of CXCL2 in
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hematopoietic stem cells, while nanoparticles targeting the gut can

directly release butyrate to support the colonic microbiota (119).

Techniques for gene editing, such as CRISPR-dCas9 systems that

are delivered with lipid nanoparticles, can create specific epigenetic

changes in various organs (120), and introduce the APOE4 variant

in pluripotent stem cells (121). New tools, including AI platforms

that utilize multi-omics data, can further refine these approaches by

predicting how individual patients may respond to treatments that

affect multiple organs (122). However, challenges remain, including

reducing off-target effects and defining safe parameters for

epigenetic editing. By combining insights from hematology,

microbiology, and hepatology, this comprehensive strategy could

transform atherosclerosis management. It shifts the focus from

isolated risk factors to a holistic understanding of immune

memory engineering.
5 Therapeutic innovation and clinical
translation: targeting trained immunity

5.1 Rewriting immune memory: epigenetic
editing and small molecule therapies

By providing precise control over chromatin states, epigenetic

editing technologies are transforming our ability to modulate

trained immunity (123). One of the key advancements is the use

of CRISPR-dCas9 systems (124, 125), which utilize CRISPR/dCas9-

based epigenetic modifiers to reactivate the endogenous TERT gene

in unstimulated T cells found in peripheral blood mononuclear cells

(PBMCs) by rewiring the epigenetic marks of the TERT promoter

(126). Preclinical studies have demonstrated that BET inhibitors,

like DDO-8926, and HDAC inhibitors, such as entinostat, offer

complementary approaches for managing inflammation (127, 128).

BET inhibitors block BRD4, a protein that activates enhancers at

pro-inflammatory sites (129), In contrast, HDAC inhibitors

increase histone acetylation, which promotes the expression of

anti-inflammatory genes (130). Although there have been

advancements, several challenges persist, such as off-target effects

that unintentionally silence tumor suppressor genes and issues with

delivery efficiency. To address these concerns, we must improve

cell-specific targeting. This is illustrated by the development of

monocyte-targeted nanoparticles and systems that utilize exosomes

for delivery.
5.2 Balancing metabolism and immunity:
repurposing drugs for immune resilience

Metabolic modulators are gaining attention as therapies that

fulfill two important roles: they address lipid and glucose

dysregulation and reprogram immune memory (131, 132).

PCSK9 inhibitors are well-known for lowering LDL cholesterol

levels (133), but they also suppress the mevalonate pathway in

monocytes (134). This suppression decreases the mTOR activation

that requires geranylgeranylation, which helps maintain eTreg cells
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(135). When mTOR inhibitors and SIRT1 activators are combined,

they balance glycolytic and oxidative metabolism, stabilizing T cell

inflammation (136, 137). Researchers have demonstrated in studies

with diabetic mouse models that this combination reduces plaque

buildup by enhancing mitochondrial respiration (138). Similarly,

FXR agonists improve cholesterol efflux and are involved in

regulating lipid metabolism, which helps counter glycolytic

inflammation (139, 140). These approaches underscore the

promising potential of repurposing metabolic drugs for

immunomodulation; however, further refinement is needed to

determine the optimal dosing and timing for these therapies.
5.3 Personalized medicine: harnessing AI to
predict and optimize treatments

The metabolic-vascular axis indicates that hyperglycemia may

increase monocyte inflammatory responses through epigenetic

modifications. However, the metabolic-vascular axis is complex

and dynamic, making it challenging to fully understand its

regulatory network using traditional experimental methods.

Integrating multidimensional data to predict individual

inflammatory phenotypes has become a significant challenge for

clinical translation. AI-driven multi-omics integration technologies

are revolutionizing tissue inflammation treatment by facilitating

personalized predictions and designing targeted interventions

(141). Multi-omics platforms, including single-cell ATAC-seq and

metabolomics, generate extensive datasets that machine learning

models can analyze to identify different immune states (142). For

example, convolutional neural networks (CNNs) trained on

chromatin accessibility profiles can predict enhancer-promoter

interactions that play a role in proinflammatory trained

immunity. This capability aids in selecting suitable CRISPR

targets (143). Additionally, reinforcement learning frameworks

help tailor treatment regimens by learning from patient responses

to previous therapies (144). For example, in silico trials that

simulate the use of PCSK9 inhibitors and SCFAs can help

determine dosing schedules that improve plaque stability and

lower toxicity (145). Convolutional neural networks (CNN) have

been successfully applied to identify immune biomarkers in

atherosclerosis. Han Zhang et al. constructed a deep learning

model of convolutional neural network based on gene-immunity

correlation, which achieved an AUC of 0.933, a sensitivity of 92.3%,

and a specificity of 87.5% in an independent external test for

diagnosing advanced plaque (146). Machine learning models are

essential for integrating genetic, epigenetic, and clinical data to

classify patients into distinct trained immunity subtypes, such as

“hyperinflammatory” or “tolerogenic,” thus allowing for more

targeted therapeutic approaches (147). However, challenges like

ensuring that models are generalizable and addressing the diversity

of data, especially for underrepresented populations, remain

significant obstacles in this field.
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6 Future directions: charting the next
frontier in trained immunity research

Research on trained immunity in atherosclerosis has uncovered

complex interactions between metabolic, epigenetic, and systemic

regulatory networks. However, several critical questions remain that

will influence future studies in this field. A significant area of research

focuses on how immune memory is inherited across generations. High

cholesterol levels or obesity may change germ cells in a way that

increases the risk of inflammatory responses in offspring (148, 149). For

example, studies involving mice have shown that maternal exposure to

oxidized oxLDL causes DNA methylation at anti-inflammatory genes

like IL-10 and TGF-b in oocytes, which leads to offspring monocytes

that exhibit a lasting pro-inflammatory tendency (150, 151). In

addition, factors from fathers, such as alterations in mitochondrial

transfer RNAs in sperm due toWestern diets, might also influence how

immune memory is inherited by future generations (152). To fully

understand these mechanisms, it is essential to conduct longitudinal

studies involving human cohorts, combined with advanced multi-

omics profiling. This approach will differentiate inherited epigenetic

changes from environmental influences and guide interventions that

break the cycle of cardiovascular risk across generations.

It is equally important to define the long-lasting duration of

immune memory (153). Current therapies often neglect the timing

of therapeutic interventions in the context of tissue inflammation. Early

interventions in the early stages of plaque formation can change the

epigenetic landscape. In contrast, plaques that have advanced to later

stages often show persistent pro-inflammatory states (154). Researchers

can identify the best times for intervention by using AI to analyze

longitudinal multi-omics datasets, which combine data on chromatin

accessibility, metabolite flow, and plaque imaging (155). For example,

machine learning models trained on data from atherosclerotic mouse

models and a single blood drop can diagnose and classify the severity of

atherosclerosis. This indicates that biomarkers and vascular factors in

the blood can be detected and are linked to the early stages of

atherosclerosis development (156). Furthermore, targeted delivery

systems like lipid nanoparticles, which are specifically designed to

reach bone marrow and carry CRISPR/Cas9 protein, offer effective

means to reverse maladaptive immune memory while minimizing

systemic toxicity (157). However, to implement these strategies, it is

essential to address the varying immune training conditions found

within plaques. Hypoxic cores, rich in lactate and mitochondrial DNA

fragments, may sustain pro-inflammatory trained immunity by

stabilizing HIF-1 (158), While fibrous caps contain repairing

monocytes that are influenced by AIM2 gradients (159, 160).

Advanced spatial multi-omics technologies, including MIBI and

spatial transcriptomics, will enable the mapping of distinct niches,

which in turn will inform the development of localized therapies (161).

For example, an injectable composite hydrogel (SFD/CS/ZIF-8@QCT)

can target specific areas within plaques. This hydrogel contains

quercetin-modified zeolitic imidazolate framework-8 (ZIF-8@QCT)

and demonstrates excellent functions, including antibacterial
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properties and immunomodulation, which enhance therapeutic

outcomes (162).

AI and quantum computing have great potential to speed up

medical discoveries (163, 164). Using quantum-enabled simulations,

researchers can investigate the complex interactions between

epigenetic and metabolic factors and predict the outcomes of

specific perturbation events. In clinical practice, AI platforms and

single-cell RNA can categorize patients into different T cell immunity

subtypes, such as hyperinflammatory, tolerogenic, or metabolically

resistant, thereby facilitating the development of more personalized

treatment plans (165, 166). To realize this vision, it is crucial to

confront and resolve significant moral and logistical challenges. The

high costs of CRISPR therapies may increase existing health

disparities, emphasizing the importance of global collaboration to

guarantee fair access to these advanced treatments (167). Regulatory

agencies must balance promoting innovation with the need for

caution, particularly regarding inheritable epigenetic modifications.

This balance requires the creation of international guidelines to

ensure safety and informed consent.

Ultimately, advancing this field requires collaboration among

immunologists, computational biologists, ethicists, and clinicians to

turn research on trained immunity from a scientific curiosity into

effective therapies. The future of trained immunity research will

transform atherosclerosis management and shed light on immune

memory’s role in chronic diseases worldwide by emphasizing

teamwork across disciplines, promoting open-data initiatives, and

designing patient-centered research.
7 Conclusion

The discovery of trained immunity has significantly changed our

understanding of atherosclerosis, framing it as a disorder related to

dysregulated immune responses and metabolic memory. The trained

immunity plasticity spectrum model defines trained immunity as a

dynamic balance among pro-inflammatory, tolerogenic, and anti-

inflammatory states, shaped by mTOR/AMPK signaling and histone

modifications. The trained immunity-metabolism-vascular axis

explains how metabolic disturbances can affect monocytes at the

epigenetic level and change vascular environments through exosomal

microRNAs and signals from mitochondrial stress. The cross-organ

trained immunity framework underscores the critical regulation

among the bone marrow, gut, and liver, illustrating that

atherosclerosis is significantly influenced by their inter-organ

communication. Furthermore, dynamic immune reprogramming

strategies hold great promise for resetting harmful immune

memories. These strategies include CRISPR-based epigenetic

editing, therapies aimed at metabolism, and AI-driven precision

approaches. These advancements challenge traditional reductionist

views and lead to new therapies aimed at engineering immune

memory instead of merely managing symptoms. Future initiatives

should aim to apply these findings in clinical practice, use spatial

multi-omics, and promote global equity to ensure that these

innovations benefit diverse populations and ultimately transform

cardiovascular disease prevention and treatment.
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