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Host proteases: key regulators
in viral infection and
therapeutic targeting

Qiongrong Xia*', Xiaohua Liu*' and Huacui Huang'

Department of Medical Laboratory, Xindu District People’s Hospital of Chengdu, Chengdu,
Sichuan, China

Viral infections pose a major threat to global health, causing severe pneumonia,
meningitis, hepatitis, and fatal complications. Viruses are highly dependent on
host cellular factors to complete their life cycle, and host proteases, as one of the
core regulatory hubs, profoundly influence the progression of infection and
pathogenicity. Viruses rely on specific host proteases (e.g., transmembrane
serine proteases [TMPRSS family], furin, cathepsins, and others such as
caspases and metalloproteases) to precisely cleave and activate viral surface
glycoproteins and internal precursor proteins, thereby facilitating efficient
invasion, replication, release, and immune evasion. Meanwhile, host proteases
participate bidirectionally in immune regulation. They can be exploited by viruses
to exacerbate pathological damage (e.g., triggering cytokine storms), yet also act
as key defense components by directly cleaving viral proteins to inhibit infection.
Different viruses have evolved sophisticated strategies to hijack host proteases,
whose activity, specificity, and tissue distribution directly determine the viral
tissue tropism and pathogenic potential. Compared to highly mutable viral
targets, host proteases serve as ideal targets for developing host-directed
antiviral drugs (HADs) due to their genetic stability and conserved mechanisms,
but their toxicity requires careful evaluation because of their physiological roles.
Inhibitor strategies targeting host proteases have demonstrated promising
breakthrough potential in circumventing drug resistance and exerting broad-
spectrum inhibitory activity against diverse viruses. Elucidating the
multidimensional roles of host proteases in infection is crucial for designing
the next-generation of broad-spectrum, anti-drug resistance antiviral strategies.
This review systematically summarizes the regulatory mechanisms of host
proteases at various stages of viral infection and advances in targeted
intervention strategies, providing theoretical support for the development of
resistance-resistant and broad-spectrum antiviral therapeutics.
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1 Introduction

Viral infectious diseases persistently threaten global public
health, with over 200 viruses known to cause human diseases, yet
currently approved antiviral drugs effectively target only
approximately 10 viral pathogens (1). Over the past decade, the
frequency of emerging disease outbreaks has increased. From the
Ebola virus (EBOV) epidemic to the coronavirus disease 2019
(COVID-19) pandemic, these events reveal the severe impact of
viral infections. Chronic infections such as human
immunodeficiency virus (HIV), hepatitis B virus (HBV), and
hepatitis C virus (HCV) have cumulatively affected over 350
million people and claimed more than 40 million lives to date (2,
3). Meanwhile, acute pathogens such as influenza virus (FluV) and
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infect over 1 billion people annually, leading to more than 5 million
severe cases and over 10 million related deaths (4, 5). Current viral
protease-targeting antiviral therapies face two major challenges.
First, the issue of drug resistance targeting viral proteases is
becoming increasingly prominent. The treatment failure rate of
HIV-1 protease inhibitors (e.g., lopinavir) has reached 20% (6, 7),
oseltamivir resistance rates in circulating hemagglutinin 1
neuraminidase 1 (HINI1) strains reached 3.76% (8), and the
Glul66Val (E166V) mutation in SARS-CoV-2 main protease
(MP™, also known as 3CLP™) reduces nirmatrelvir activity by
100-fold, often causing treatment failure (9-11). Second, narrow-
spectrum activity limits efficacy against highly variable viruses with
multiple serotypes, such as dengue virus (DENV) (1). These critical
challenges urgently require innovative antiviral strategies
and targets.

Viruses depend entirely on host cells to accomplish critical life
cycle steps, including invasion, replication, maturation, and release.
During this process, host proteases, as key enzymes responsible for
protein degradation and modification, serve as pivotal regulators at
every infection stage, positioning them as high-potential
breakthrough targets. Their core value is first evidenced by
conserved cleavage mechanisms across viral families. Furin
mediates the cleavage of HIV envelope glycoprotein gpl60 into
gp120/gp41 subunits to initiate membrane fusion (12). It also
hydrolyzes human papillomavirus (HPV) late protein 2 (L2) at
Arg470, enabling viral genome translocation across the nuclear
membrane (13). Such protease-mediated conformational
rearrangements are essential for cross-family viral infections. This
compartmentalization ensures precise activation of viral proteins at
critical subcellular sites. EBOV requires endosomal cathepsins B/L
(CTSB/L) under low-pH conditions to trim glycoprotein 1 (GP1)
subunits and expose the receptor-binding domain (14-17), while
coronaviruses (CoVs) undergo furin-mediated pre-cleavage of spike
(S) proteins in the Golgi compartments to enhance infectivity (18,
19). Compartment-specific proteases (e.g., transmembrane protease
serine 2 (TMPRSS2)) spatiotemporally optimize cleavage (20, 21).
In addition to acting as viral cofactors, host proteases further
influence viral proliferation and transmission by modulating host
cell signaling (22, 23), immune responses (24, 25), and apoptosis
(26, 27). Consequently, targeting host proteases not only blocks the
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viral life cycle but also pioneers innovative therapeutic strategies by
regulating host responses.

Despite the substantial potential of host proteases as antiviral
targets, their intrinsic biological properties pose significant
challenges for targeted interventions. The same protease often
exhibits functional pleiotropy in distinct infection contexts. For
example, furin enhances viral particle maturation in HIV infection
(28, 29), yet generates incompletely cleaved immature particles in
DENV infection, facilitating host cell invasion via non-canonical
pathways and exacerbating severe disease (30). Similarly, TMPRSS2
drives respiratory viral infections through its high expression in the
bronchial epithelium (31), yet in prostate tissue, it is androgen-
regulated and participates in epithelial differentiation and tissue
remodeling. Aberrant TMPRSS2 expression may promote prostatic
hyperplasia or carcinoma (31). These complexities necessitate
intervention strategies with precisely regulated spatiotemporal
specificities. A deeper layer of challenge stems from the essential
physiological functions performed by these proteases themselves.
Taking furin as an example, this critical precursor protein
convertase participates in multiple core physiological processes. It
regulates neuronal activity by processing B-nerve growth factor (3-
NGF) (32); within the skeletal system, it is responsible for the
maturation of the pro-hormone pro-osteocalcin (pro-OCN),
modulating its activation and endocrine function, while also
influencing the secretion of osteoblast-derived metabolic
hormones (33). Similarly, TMPRSS2 plays a pivotal role across
multiple tissues. In the kidneys, it participates in processing the
epithelial sodium channel (ENaC) to regulate sodium reabsorption
(34, 35). In the prostate, it is highly expressed and regulates
prostatic fluid secretion and sperm function (36). And in the
intestine, it maintains intestinal barrier integrity by cleaving the
tight junction protein occluding (34). Collectively, these complex
biological characteristics underscore that antiviral strategies
targeting host proteases must establish a delicate balance between
antiviral efficacy and physiological safety. Any intervention crucially
requires precise avoidance of interference with their normal
physiological functions.

This review focuses on the multifaceted roles of host proteases
in viral infections, systematically outlining their core functions
across four key stages. These stages include viral entry activation,
replication and assembly, release and dissemination, and immune
evasion. It also provides an in-depth assessment of innovative
intervention strategies targeting these proteases. By analyzing the
multiple functions of these proteases, this review aims to pioneer
novel therapeutic approaches to suppress viral transmission and
pathogenicity and provide a new perspective and theoretical basis
for future viral therapeutic research.

2 Classification and function of host
proteases

Host proteases serve as key effector molecules in virus-host
interactions, exerting multifaceted regulatory roles via the viral life
cycle through specific peptide bond hydrolysis. Their primary
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functions include (1) cleavage and activation of viral precursor
proteins (e.g., glycoproteins, polyproteins) to confer infectivity or
replication capacity; (2) modulation of host signaling pathways to
alter cellular states for viral replication or immune evasion; and (3)
remodeling of the extracellular matrix or membrane structures to
create a favorable microenvironment for viral entry, assembly, or
dissemination. Specifically, viruses have evolved a three-pronged
strategy to manipulate this system: (i) targeted exploitation of
tissue- or cell-specifically expressed protease isoforms [e.g.,
TMPRSS2 is highly expressed in the respiratory epithelium (37)];
(ii) induction of aberrant protease expression or activation in the
infection microenvironment[(e.g., furin cleaves influenza virus HAO
(38, 39)]; (iii) evolution of specific cleavage motifs in viral proteins
that are recognized by host proteases [e.g., HIV gp120 contains an
REKR cleavage motif (40)]. Based on catalytic mechanisms, host
proteases are classified into three major classes (serine proteases,
cysteine proteases, and metalloproteases), in addition to aspartic
proteases and threonine proteases. Their functional diversity
originates from evolutionary divergence in active-site residues and
substrate-binding pocket architectures.

2.1 Serine proteases

Serine proteases are characterized by a highly conserved Ser-His-
Asp catalytic triad (41), as exemplified by TMPRSS2 (Figure 1A). The
structural basis for their functional divergence lies in the diverse
stereoconformations of substrate-binding pockets. For instance, the
catalytic groove of TMPRSS2 precisely accommodates the receptor-
binding domain (RBD) of coronavirus spike proteins (e.g, human
coronavirus HKU1 (HCoV-HKU1)), inducing conformational
changes that trigger membrane fusion (42). Conversely, furin
recognizes multibasic cleavage motifs (e.g., Arg-X-X-Arg]) within the
polyproteins of diverse pathogens through its distinctive substrate-
binding cleft, mediating their maturation and infectivity (40). During
viral infections, serine proteases are extensively exploited to activate
both surface glycoproteins (e.g., influenza HA, CoVs S, and HIV
gpl60) and internal precursor polyproteins—serving as critical rate-
limiting steps in viral entry and maturation.

FIGURE 1

10.3389/fimmu.2025.1671173

2.2 Metalloproteases

Metalloproteases are characterized by an active center
coordinated through specific metal ions (e.g., Zn>") coordinated
by surrounding amino acid residues (e.g., histidine, glutamate, or
aspartate) (43), as exemplified by a disintegrin and
metalloproteinase 17 (ADAM17) (Figure 1B). Their functional
diversity arises from the structural plasticity of the metal-binding
and catalytic domains. For example, matrix metalloprotease-2
(MMP-2) and matrix metalloprotease-9 (MMP-9) exemplify this
diversity, utilizing catalytic domains to degrade collagen networks
with high efficiency (44), while ADAMI17 precisely cleaves
transmembrane signaling molecules using its zinc-finger motif
(45). Under physiological conditions, metalloproteases maintain
homeostasis by regulating extracellular matrix remodeling, growth
factor release, and the migration of inflammatory cells. Viruses
disrupt this balance through dual mechanisms: (1) inducing
aberrant overexpression of metalloproteases in the inflammatory
microenvironment, such as HBV infection upregulating MMP-9 to
promote liver fibrosis (46), or (2) hijacking proteolytic functions to
facilitate dissemination routes, as evidenced by HIV exploiting
metalloprotease-mediated degradation of extracellular matrix
components to enhance cell-to-cell spread (47).

2.3 Cysteine proteases

Cysteine proteases feature a cysteine residue at their active site,
functioning through a Cys-His catalytic dyad (48), exemplified by
cathepsin L (CTSL) (Figure 1C). Their activity is tightly regulated by
subcellular localization (e.g., pH, redox status). For instance,
cathepsin B (CTSB) and CTSL activate viral fusion proteins in the
acidic environment of endosomes (15), whereas caspase-3 executes
apoptotic cascades in the cytoplasm (49). These enzymes dominate
critical host processes—including lysosomal antigen processing,
irreversible initiation of programmed cell death, and dynamic
cytoskeletal remodeling—all precisely driven by the redox-sensitive
thiol activity of their cysteine residues. Viruses hijack these
mechanisms through spatiotemporally precise strategies. In the

Three-dimensional structures and catalytic center characteristics of three types of core host proteases. (A). In the TMPRSS2 structure (serine
protease; PDB: 7MEQ), key residues of the catalytic triad—His296 (red), Asp345 (green), and Ser441 (blue)—are positioned at the active site,
demonstrating the conserved catalytic architecture characteristic of serine proteases. (B). The ADAM17 structure (metalloprotease; PDB: 9054)
reveals the catalytic Zn®* ion (green sphere) coordinated by residues Glu406 (magenta), Met435, Ala439, and Leu348 (orange), illustrating the metal
jon-dependent catalytic mechanism. (C). Within the CTSL structure (cysteine protease; PDB: 7W34), the catalytic dyad residues Cys25 (blue) and
His163 (red) localize to the active pocket, underpinning the catalytic functionality of cysteine proteases.
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TABLE 1 Roles of host proteases in the viral life cycle.

Classification Protease Target/Function Viral life cycle stage Inhibitors References
Serine Proteases TMPRSS2 Cleave Fluv HA Invasion Nafamostat, N-0385, Nafamostat (20, 58-62, 68, 172-175)
mesylate
Cleave CoVs S Invasion (20, 21, 82-84)
As the invasion receptor for HKU1 Invasion (101-103)
Activate EBOV GP Invasion (106)
Furin Cleave Fluv HA Assembly Dec-RVKR-cmk, Cypermethrin, MI- (55, 83, 137, 186, 187, 189)
1851, luteolin
Cleave CoVs S Invasion (18, 19)
Cleave HIV gp160 Invasion (12)
Cleave the EBOV GP precursor Invasion (16)
Cleave HPV L2 Invasion (118)
Cleave CHIKV E2-E1 Invasion (126)
Cleave CCHV PreGn Assembly (135, 136)
Cleave RSV F Assembly (137)
Cleave DENV prM Assembly (30)
Cleave BDV GP Release (143)
Cleave PRV gB Intercellular transmission (144, 145)
HAT Cleave Fluv HA Invasion Compound 15 (59, 60, 63, 68, 178)
(TMPRSS11D)
Weakly activates the cell fusion of Invasion 91)
CoVs
TMPRSS4 Cleave Fluv HA Invasion - (64, 65, 68)
TMPRSS11A Cleave Fluv HA Invasion - (66)
Matriptase Cleave Fluv HA Invasion - (65, 67-70)
TMPRSS13 Cleave Fluv HA Invasion N-0430 (71, 194)
(MSPL)
Cleave CoVs S Invasion 91, 92)
hepsin Cleave Fluv HA Invasion - (71)
trypsin Cleave HAstV-8 ORF2 Assembly - (134)
prostasin Cleave Fluv HA Invasion - (71)
plasmin Cleave Fluv HA Invasion Basic phenylalanine analogs (73, 74, 179)

(Continued)
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TABLE 1 Continued

Classification Protease Target/Function Viral life cycle stage Inhibitors References
KLK5/12 Cleave Fluv HA Invasion - (75-77)
Tryptase Clara Recognizes the Gln-X-Arg motif to Invasion - (79, 80)
activate viruses
TL2 Recognizes the Gln-X-Arg motif to Invasion - (79, 80)
activate viruses
Cleave HIV gp120 Assembly (79)
DESC1 Weakly activates the cell fusion of Invasion - 91)
CoVs
Thrombin Activate HIV gp120 Invasion - (104)
Cleave HEV ORF1 Replication (129)
FXa Cleave CoVs S Invasion - (89)
Blocks the binding of CoVs spike to Invasion (88)
ACE2 (under thrombotic pathological
conditions).
ACOT2 Cleave DENV NS2B-NS3P™ Replication - (128)
Cysteine Protease CTSL Cleave CoVs S Invasion E64d, Z-FY-CHO, K11777, (20, 83, 85-87, 127, 180,
Adamantane 181)
Activate EBOV GP Invasion (15, 16, 106)
Cleave RV 63 Uncoating (121)
Cleave HEV ORF2 Invasion (127)
CTSB Synergize with CTSL to activate Invasion - (15)
EBOV GP
Cleave RV 63 Uncoating (121)
CTSS Cleave RV 63 Uncoating - (120)
Caspase-6 Cleave lamin A/C Invasion Z-VEID-FMK (124, 195)
Cleave CSFV NS5A Replication (130)
Caspase-3 Cleave nuclear lamin Invasion - (125)
Cleave AD2/12 E1A Replication (27)
Cleave ADV NS1 Replication (131)
Cleave ARVs muNS Release (147)
(Continued)
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Protease Target/Function

Classification

(95-97)

Invasion

Mediates the shedding of ACE2

ADAM17

Metalloproteas

(142)

Recombinant virus replication Replication

ADIMI5

organelles

(139)

Degrade HIV Gag Inhibit assembly

TRABD2A

(47)

Degrade extracellular matrix Intercellular transmission.

MMP-9

components

(107)

Invasion

Cleave RSV F

elastase

Other

(107)

Invasion

Cleave RSV F

proteinase 3

-” represents “unidentified”.
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acidic endosomal microenvironment, activated CTSB/CTSL
promotes viral entry [e.g., EBOV (14-17)]; in the cytoplasm, they
regulate apoptosis-related proteases such as caspases to inhibit or
promote cell death, creating a metabolic environment conducive to
viral replication [e.g., adenovirus delays apoptosis by inhibiting
caspase-3 activity (27)]. The mechanisms by which these
microenvironmental molecular interactions determine infection
outcomes will be dissected in subsequent mechanistic investigations.

In addition to the above, the host protease network also includes
aspartic proteases and threonine proteases. Aspartic proteases utilize
an active center formed by two conserved aspartic acid residues (Asp)
(50), which enables the specific recognition and cleavage of viral
polyprotein substrates in acidic microenvironments. For example,
cathepsin D (CTSD) mediates the conformational rearrangement of
HIV gp120, thereby facilitating direct interaction with coreceptors
and enhancing the efficiency of viral membrane fusion (51).
Threonine proteases employ threonine residues as nucleophilic
attack centers to drive proteolytic cascades (52). The threonine
hydrolase activity of the proteasome plays dual regulatory roles in
the rotavirus life cycle, mediating viral capsid uncoating for genome
release during invasion, and optimizing viral particle maturation
through degradation of host restriction factors during assembly (53,
54). Through substrate-specific cleavage, these two protease classes
cooperatively regulate key nodes of the viral replication cycle
alongside previously described proteases.

From a molecular evolutionary perspective, the functional
diversity of host proteases reflects a dynamic equilibrium forged
through protracted virus-host coevolution. For example, the
acquisition of furin cleavage sites (e.g., PRRA insertion in SARS-
CoV-2) by coronavirus spike proteins likely reflects the adaptive
evolution of viruses to exploit furin, which is highly expressed in the
respiratory mucosa. In response, hosts have evolved defense
mechanisms, such as the serine protease inhibitor (serpin) family,
to continuously counteract the viral hijacking of proteases. This
persistent evolutionary pressure drives the structural plasticity of
protease substrate-binding domains, enabling specific viral families
to utilize distinct protease subtypes to complete their life cycles,
while also shaping the complexity of host defense networks
(elaborated in Section 3) (Table 1).

3 Core mechanistic roles of host
proteases in viral infection

3.1 Host protease regulatory networks in
viral invasion

The process of viral invasion into host cells constitutes a
dynamic interplay between pathogens and the host protease
system. Conformational activation of viral surface glycoproteins,
driven by host protease-mediated site-specific proteolytic cleavage,
constitutes the essential initial step in the infection cascade. This
regulatory strategy exhibits remarkable viral specificity and
evolutionary adaptability.
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3.1.1 Host protease-dependent activation
mechanisms of influenza viruses

The influenza virus hemagglutinin (HA) glycoprotein functions
as the principal mediator of viral entry, and its proteolytic
processing determines infection efficiency, exhibiting significant
subcellular localization specificity and viral subtype dependency.
The HA precursor (HAO0) must be cleaved by host proteases to
generate HA1/HA2 subunits, thereby exposing the N-terminal
fusion peptide (GLFGAIAGFIE) and enabling the virus to acquire
membrane fusion capability—it is particularly emphasized that
although uncleaved HAO can bind to sialic acid receptors on host
cells, it completely loses the ability to drive membrane fusion (38,
39, 55, 56). This critical cleavage event occurs at two stages of the
viral life cycle. Furin primarily cleaves HAO (especially in highly
pathogenic H5/H7 subtypes) in the host cell's Golgi apparatus
during viral assembly and release, allowing newly formed virions
to acquire fusion potential before release (55, 57); in contrast,
TMPRSS2 and others complete the cleavage on the surface of
host cell membranes during the viral entry stage (58-62). This
activation process is orchestrated through cooperative actions
within the host protease network, including human airway
trypsin-like protease (HAT, also referred to as TMPRSS11D) (59,
60, 63), TMPRSS2 (58-62), TMPRSS4 (64, 65), TMPRSS11A (66),
and matriptase (ST14 gene) (65, 67-70) (Figure 2A), which catalyze
HA cleavage on the cell membrane surface to induce fusogenic
conformational changes, thereby facilitating infection across diverse
influenza subtypes. Notably, influenza subtypes exhibit distinct
protease dependencies. TMPRSS2 is indispensable for HA
activation of H7N9 and HIN1pdm in primary human bronchial
epithelial cells, consistent with its high expression in respiratory
mucosal epithelia. In contrast, TMPRSS4 dominates HA processing
of H3N2 and influenza B viruses in murine alveolar type II
epithelial cells due to its specific distribution in lung parenchymal
cells (37, 71). In the absence of TMPRSS2, TMPRSS13 (alias MSPL,
matriptase-like protease), hepsin, and prostasin maintain viral
infectivity through compensatory cleavage (71). This segregation
of protease function likely reflects the divergent expression profiles
of type II transmembrane serine protease (TTSP) family members.

Influenza C virus (ICV) employs a distinct mechanism, wherein
its hemagglutinin-esterase (HE) fusion protein, which has dual
functions in receptor binding and destruction, strictly relies on
TMPRSS2 for activation on the cell membrane surface (72),
exemplifying viral adaptive evolution to host systems. Moreover,
secretory protease networks [e.g., plasmin (73, 74), kallikrein (KLK)
(75, 76), and KLK12 (77)] can promote the spread of avian
influenza viruses by specifically cleaving HA subtypes in the
extracellular environment (such as respiratory secretions).
Notably, TMPRSS13 plays a unique role in activating highly
pathogenic avian influenza virus (HPAIV, e.g.,, H5N1/H7N9
subtypes) through its broad-spectrum cleavage capability
(processing both monobasic and polybasic sites) and calcium-
independent catalytic activity (78). Tryptase Clara and tryptase
TL2 specifically recognize the consensus cleavage motif Gln (Glu)-
X-Arg in influenza A and Sendai viruses to activate the viruses in
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the extracellular microenvironment of respiratory epithelial cells
(79, 80). Conversely, some viruses (e.g., HINI1 subtypes) utilize
endosomal proteases to accomplish HA cleavage after
endocytosis (81).

3.1.2 Multi-layered host protease regulatory
networks orchestrate coronavirus invasion

Coronavirus entry is governed by the spatiotemporal
coordinated activation of the spike (S) glycoprotein through host
protease interplay. In SARS-CoV-2, priming cleavage at the S1/S2
junction (multibasic PRRAR motif) by furin and TMPRSS2 within
the Golgi apparatus enhances virion maturation and infectivity (18,
19, 82, 83). Subsequent activation diverges into dual pathways. At
the plasma membrane surface, TMPRSS2-mediated cleavage of the
S2’ site exposes the fusion peptide to drive immediate virus-host
membrane fusion (20, 21, 84). Endocytosed virions rely on
endosomal CTSL for S protein processing (85-87) (Figure 2B).
Notably, host protease-mediated viral entry exhibits significant
bidirectionality. Coagulation factor Xa (FXa) can inhibit viral
entry and infection by cleaving specific domains of the S protein,
thereby blocking its binding to the ACE2 receptor (88); however, it
paradoxically enhances membrane fusion efficiency through S1/52
or S2’ cleavage in thrombotic microenvironments alongside
thrombin (89). Additionally, porcine epidemic diarrhea virus
(PEDV) enters cells through clathrin-mediated endocytosis in
synergy with serine proteases (90), suggesting evolutionarily
conserved strategies among different coronaviruses in utilizing
host factors.

Host proteases exhibit functional divergence in viral invasion.
TMPRSS2 and TMPRSS13 play central roles in both virus-cell
fusion and subsequent cell-cell fusion stages. In contrast, HAT
and differentially expressed in squamous cell carcinoma gene 1
(DESC1) show significantly weaker activation efficiency in these
two fusion processes (91). TMPRSS13 has been shown to
specifically promote the membrane fusion of swine acute diarrhea
syndrome coronavirus (SADS-CoV) (92), suggesting the potential
regulatory properties of TTSP members in determining viral host
range. Metalloproteases enhance viral attachment by cleaving
coronavirus spikes and ACE2 receptors, while ADAMI17
facilitates viral endocytosis and is associated with inflammatory
damage by mediating ACE2 shedding (93-97). Evolutionary
analyses reveal that the E484 mutation enables SARS-CoV-2 to
acquire cross-binding capacity with the MERS-CoV receptor
dipeptidyl peptidase 4 (DPP4, also known as CD26) (98, 99), a
receptor plasticity potentially attributable to furin-mediated
optimization of spike protein conformation. Studies indicate that
the binding of DPP4 receptors to MERS-CoV and the infection
process are species-dependent. Differences in glycosylation patterns
of mouse DPP4 restrict viral infection, whereas DPP4 receptors
from bats, camels, and humans can support efficient viral infection
(100). Notably, TMPRSS2 can also act as a receptor to bind the RBD
of the human coronavirus HKU1 spike protein, inducing its
conformational changes to trigger fusion (101-103), highlighting
the critical role of TTSPs in cross-species transmission.
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FIGURE 2

Differences in the host protease-dependent invasion mechanisms of influenza virus and SARS-CoV-2. (A) Influenza virus invades via the endosome-
dependent pathway: Host proteases (e.g., TMPRSS2, cathepsins) cleave the HA, exposing the fusion peptide, which mediates the fusion of the viral
envelope with the endosomal membrane in the acidic endosomal environment. (B) SARS-CoV-2 employs a dual-pathway strategy: On the plasma
membrane surface, furin, TMPRSS2/13, and FXa cleave the S1/S2 or S2' sites of the spike protein (S), directly triggering immediate fusion between the
viral envelope and the host cell membrane; In the endosomal pathway, CTSL/B cleave the S protein, driving fusion between the viral envelope and

the endosomal membrane.

3.1.3 Host protease utilization strategies in other
viral families

The utilization of host proteases represents a universal strategy
for both enveloped and non-enveloped viruses during invasion
(Figure 3). Among enveloped viruses, furin, as the core enzyme
mediating the cleavage of HIV gp160, recognizes the conserved R-
X-K/R-R motif in its sequence to cleave gp160 into gp120 and gp41,
thereby activating viral invasion capability (12); meanwhile,
thrombin enhances virus-induced cell fusion by activating HIV
gp120 (104). During the initiation stage of cell fusion in placental
development, the human endogenous retroviruses (HERVs)
envelope protein Syncytin-1 similarly relies on furin cleavage to
activate its fusion function, while Syncytin-2 maintains fusion
activity via processing by the proprotein convertase subtilisin/
kexin type 7 (PCSK7) (105). Filoviruses, such as EBOV, employ a
proteolytic cascade activation strategy for their glycoprotein (GP).
Furin mediates initial cleavage of the GP precursor in the secretory
pathway, and endosomal CTSB/CTSL further trim the GP1 subunit
to expose the human endosomal receptor Niemann-Pick C1
(NPC1) receptor-binding domain (14-17). Studies have
confirmed that TMPRSS2 and CTSL can form a redundant
mechanism to compensate for furin functional defects (106),
highlighting the complexity of host protease networks. The
activation of the fusion (F) protein of paramyxoviruses
universally depends on host proteases. Respiratory syncytial virus
(RSV) requires elastase and proteinase 3 for F protein cleavage
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(107), whereas human parainfluenza virus 3 (HPIV3) and mumps
virus (MuV) utilize trypsin-like proteases or furin (108, 109). In-
depth research reveals that TMPRSS2 and TMPRSS13 in the lung
epithelium can directly cleave the HPIV3 F protein, regulating the
release efficiency of infectious virions (108). Notably, furin cleavage
sites exhibit cross-species conservation within the Paramyxoviridae
family. The F proteins of HPIV3, HPIVS5, virulent Newcastle disease
virus (NDV) strains, measles virus (MV), and RSV all contain such
sites (110-115), implying their universal value as key molecular
switches. Structural conservation extends to fusion mechanisms.
The post-fusion core conformations of enveloped viral fusion
proteins—including SARS S, murine hepatitis virus (MHV) S,
EBOV GP2, influenza virus HA2, HIV gp41, and paramyxovirus
F2—exhibit striking homology (116), revealing deep evolutionary
convergence across viral families. This conservation reflects a
shared evolutionary strategy, where host protease activation (e.g.,
furin cleavage, cathepsin trimming) serves as a molecular switch
that triggers conformational rearrangements from metastable pre-
fusion states to stable post-fusion cores, ensuring spatiotemporally
regulated membrane fusion across viral families.

Among non-enveloped viruses, HPV relies on furin-mediated
cleavage of the minor capsid protein L2. The released C-terminal
peptide (L2CT) not only mediates viral genome escape from
endosomes but also recruits the nuclear transport factor
karyopherin alpha2 (KPNA2) to guide DNA across the nuclear
membrane barrier (13, 117). While L2 cleavage-deficient mutants
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do not affect viral attachment and endocytosis, they result in
complete loss of infectivity due to failed nuclear import,
indicating that furin-mediated cleavage of L2 is a critical rate-
limiting step in the HPV infection cycle (118). Within the
Reoviridae family, cleavage of the rotavirus VP4 spike protein by
trypsin significantly enhances its membrane fusion capacity (119).
For reoviruses, the 63 capsid protein requires cleavage by cathepsin
S (CTSS) or CTSL/B to facilitate viral uncoating and genome release
(120, 121). Additionally, neutrophil elastase can promote rotavirus
uncoating and infection in U937 promonocytes, substituting for
CTSL to mediate a non-canonical infection pathway (122).
Enteroviruses may be inactivated through conformational changes
induced by serine proteases, such as subtilisin A, via capsid binding
or direct cleavage, causing viral disintegration (123). Notably,
polyomavirus SV40 employs a distinct strategy in quiescent cells.
It activates host caspase-6 to cleave nuclear lamin A/C, inducing

10.3389/fimmu.2025.1671173

transient nuclear membrane deformation and dephosphorylation.
This process establishes a locally softened “nuclear membrane
window” to facilitate direct transport of the viral genome from
the endoplasmic reticulum into the nucleus (124). This finding
reveals a novel pathway by which viruses utilize host proteases to
remodel the nuclear physical barriers. Similarly, the parvovirus
minute virus of mice (MVM) induces caspase-3-mediated cleavage
of the nuclear lamina to form physical pores, promoting capsid
nuclear entry (125). Together, these findings highlight the
innovative evolutionary adaptations of non-enveloped viruses in
the mechanisms of nuclear membrane traversal.

Alphaviruses, such as chikungunya virus (CHIKV), rely on
furin-mediated processing of their envelope protein precursor
E3E2 to form functional E2-El heterodimers. The receptor-
binding activity of these heterodimers, together with low pH-
induced conformational instability, collectively drives the viral
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membrane fusion process. Geographic isolation has driven the
evolutionary divergence of protease utilization. African strains
specifically depend on membrane-bound cilia proteases and PC5B
for cleavage of E3E2 at the HRQRR“/ST site, whereas Asian strains
achieve cleavage at the RRQRR®'/SI site via membrane-bound/
soluble cilia proteases, PC5A, PC5B, and PACE4. Notably, PC7 and
SKI-1 lack cleavage activity against both strain types (126),
reflecting the adaptive evolution of viruses to regional host
microenvironments. Additionally, hepatitis E virus (HEV) entry
into hepatocytes depends on CTSL-mediated processing of viral
particles and cleavage of the glycosylated ORF2 protein (127),
confirming the universal role of cysteine proteases in the invasion
of enveloped viruses.

3.2 Dynamic regulatory mechanisms of
host proteases in viral replication and
assembly

Host proteases precisely regulate viral replication and assembly
through specific cleavage events, exhibiting multidimensional
coordination and dynamic evolutionary characteristics. During
the viral replication phase, host proteases play a central role in
regulating key processes, such as the activation of viral precursor
proteins and the formation of replication complexes (Figure 3). For
instance, in RNA viruses, the dengue virus NS3 serine protease
requires cooperation with the host serine protease acyl-CoA
thioesterase 2 (ACOT2) to cleave polyproteins for functional
replication complex formation (128). HEV initiates genome
replication through thrombin-mediated cleavage at conserved
sites of the ORF1 polyprotein (129). The caspase-6 cleavage motif
(DTTD/272) in the non-structural protein NS5A of classical swine
fever virus (CSFV) further confirms its regulatory role in viral
replication (130). In DNA virus systems, caspase-mediated cleavage
events exhibit bidirectional regulation of viral replication. Cleavage
of adenovirus 2/12 (Ad2/12) early region 1A (E1A) protein by
caspase-3 results in the loss of transcriptional activation function,
impairing the transcriptional program necessary for efficient
replication (27). In contrast, removal of the nuclear localization
sequence from the NS1 protein of Aleutian mink disease parvovirus
(AMDYV) by caspase-3 promotes the cytoplasmic transport of
ribonucleoprotein complexes, facilitating replication-related
processes (131). These findings reveal the multi-target regulatory
characteristics of host proteases in the viral replication process.

During virus assembly, host proteases primarily exert precise
regulation by mediating the modification and maturation of viral
structural proteins. The nucleocapsid protein (N) of transmissible
gastroenteritis virus (TGEV) and IAV loses its genome-binding
capacity after caspase-6/7 cleavage, resulting in a dramatic decrease
in infectious virus particle yield (132, 133); the human astrovirus
type 8 (HAstV-8) ORF2 polyprotein is specifically cleaved by
trypsin to generate functional fragments that participate in capsid
assembly and replication, respectively (134). Notably, protease
processing strategies are viral species-specific. HIV-1 promotes
the exposure of the gp41 fusion domain and the correct assembly
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of Env proteins through TL2 serine protease-mediated cleavage of
the gp120 V3 loop (79). While furin/PC protease processing of the
Crimean-Congo hemorrhagic fever (CCHF) glycoprotein precursor
produces the GP38 glycoprotein, which may optimize the viral
assembly environment through membrane remodeling mechanisms
(135, 136). Furin cleavage of the RSV F protein is not essential for its
transport but can significantly enhance viral particle assembly
efficiency (137), highlighting their precise regulation of viral
morphogenesis. In addition, caspase-3 mediates the
nucleocytoplasmic transport of the influenza virus
ribonucleoprotein complex (RNP), and its inhibition leads to
RNP retention in the nucleus and triggers assembly defects. The
enzyme cleaves the nuclear lamina protein Lamin A/C via a non-
apoptotic pathway, remodels the nuclear membrane structure to
facilitate RNP transport to the cytoplasm, and provides key
components for viral particle assembly (138), further confirming
the multifaceted regulatory mechanism of host proteases in
viral morphogenesis.

The host-virus interaction network at the protease level is
characterized by dynamic interplay and coevolution. Host factors,
such as TRAB domain-containing protein 2A (TRABD2A), can
inhibit viral assembly by degrading the Gag protein of HIV-1 (139),
while the primate-specific restriction factor FAM111B inhibits the
replication of mouse cytomegalovirus (MCMV) in human cells by
enriching in viral replication regions—a restriction stemming from
the fact that MCMYV has not evolved strategies against family with
sequence similarity 111 member B (FAM111B) in its natural hosts
(rodents) (140). Studies on cross-species transmission reveal that
viruses can actively utilize host proteases to break through barriers.
The conserved cleavage of HEV pORF1 by thrombin and FXa is a
key basis for its ability to cross host boundaries (141). Tick-borne
encephalitis virus (TBEV) reorganizes the membrane system by
relocating host ADAM15 protease to its replication region, thereby
optimizing its own replication environment (142). Such adaptive
strategies frequently drive systematic mutations in the cleavage sites
of viral proteases.

3.3 Diverse regulatory mechanisms of host
proteases in viral release and transmission

Host proteases profoundly enhance viral particle release and
transmission efficiency through precise regulation of viral
maturation and microenvironment remodeling (Figure 3). The
core function of furin is evolutionarily conserved across viral
families during terminal maturation. For example, furin-mediated
cleavage of HIV gpl60 enhances viral particle infectivity and
induces conformational rearrangements to evade neutralizing
antibodies (28, 29); flaviviruses (e.g., DENV and ZIKV) require
furin cleavage of prM to M protein for mature particle formation,
though incompletely cleaved immature particles retain infectivity
via non-canonical entry pathways that exacerbate disease severity
(30). While Borna disease virus (BDV) glycoprotein (GP, encoded
by ORE-1V) strictly depends on site-specific furin cleavage at
Arg249 to maintain bioactivity (143). These collective
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mechanisms underscore how proteolytic processing fine-tunes viral
dissemination strategies across diverse species.

Viral cell-to-cell transmission involves a more extensive
proteolytic regulatory network. Although furin cleavage of
pseudorabies virus glycoprotein B (gB) is dispensable for in vitro
viral replication, it remains critical for mediating membrane fusion
and syncytium formation (144, 145). MMP-9 significantly enhances
HIV cell-to-cell transmission by degrading extracellular matrix
components (47). Additionally, caspase family members play
pivotal roles in facilitating viral release. They cleave the human
astrovirus capsid precursor VP90 to form mature capsids, thereby
promoting viral release (146); while they dissolve cytoplasmic
inclusion bodies maintained by Avian reoviruses (ARVs) muNS
protein to expel mature particles (147). Collectively, these diverse
mechanisms highlight the intricate deep coevolutionary
relationship between viruses and the host protease system.

3.4 Host protease regulatory networks in
immune response and evasion

Host proteases construct multidimensional regulatory networks
spanning molecular cleavage to systemic immunity during viral
immune responses and evasion strategies (Table 2). Viruses achieve
immune evasion by hijacking the protease activity. For instance,
influenza viruses employ TMPRSS2 not only to enhance viral
membrane fusion efficiency, but also to promote vascular
permeability by activating the “influenza virus-cytokine-trypsin”
cycle. The upregulated trypsin and pro-inflammatory cytokines
exacerbate tissue destruction and immune suppression, enabling
the virus to evade immune clearance and continue to replicate
(148). Similarly, cathepsin G (CTSG) recruits monocytes/
macrophages to inflammatory sites during HIV-1 infection and
heightens their viral susceptibility, establishing a positive feedback
loop (25). Conversely, the host has evolved protease-based antiviral
defenses—neutrophil serine proteases (NE/PR3/CTSG) directly
cleave the SARS-CoV-2 spike protein to block viral entry (149),
while myeloid-specific serine proteases interfere with NF-kB
activation by processing its p65 subunit, thereby inhibiting critical
HIV replication processes (24). This bidirectional protease warfare
underscores the evolutionary arms race at the host-
pathogen interface.

The precise regulation of host protease activity by host factors
constitutes a critical mechanism in antiviral defense. Interferon-
induced guanylate binding proteins (GBPs, such as GBP2 and
GBP5) inhibit furin and PCSK family activity, impeding the
maturation of viral envelope glycoprotein precursors, including
HIV-1 gp160, and significantly reducing the infectivity of various
viruses, including HIV-1, ZIKV, MV, and IAV (150). Alpha-soluble
NSF attachment protein (0.-SNAP) binds to the P-domain of furin,
inhibiting cleavage of the SARS-CoV-2 spike protein and other
furin-dependent viral glycoproteins (151). Members of the serine
protease inhibitor superfamily (SERPIN) also play essential roles,
alpha (1)-antitrypsin (A1AT) inhibits TMPRSS2 and ADAM17,
blocking SARS-CoV-2 spike protein activation and ACE2 shedding
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(152-154), while plasminogen activator inhibitor-1 (PAI-1)
regulates fibrinolysis and additionally inhibits the enzymatic
activity of proteases including FXIIa and TMPRSS2 (155).
Furthermore, cystatin C (CST3) competitively inhibits the activity
of CTSB/CTSL through its N-terminal region, while its dimer form
enhances CTSB activity by binding to a structure-specific allosteric
pocket of CTSB (156). Interleukin-13 (IL-1B) activates ADAM17
through phosphorylation (157). Collectively, these regulatory
networks of host factors over protease activities profoundly
influence viral infection processes.

The functions of host proteases frequently exhibit tissue- and
cell-compartment specificity, and profoundly influence systemic
immune responses. In renal cells, SARS-CoV-2 evades the
inhibitory effect of the host restriction factor nuclear coactivator 7
(NCOA?7) via a TMPRSS2-mediated non-endosomal pathway
(158). Conversely, when SARS-CoV-2 infects human bronchial
epithelial cells, it induces ST14/TMPRSS11D to activate
prothrombin, triggering acute fibrin deposition (159). At the
systemic level, SARS-CoV-2 activates the NETs-PAD-4 pathway
to induce lung epithelial cell death (22), whereas dengue virus is
directly linked to imbalances in the coagulation-fibrinolytic system
through a metalloproteinase-mediated vascular leakage mechanism
(160). Moreover, the degree of coagulation and fibrinolytic
activation induced by it is positively correlated with disease
severity (161).

The matrix metalloproteinase (MMP) family exhibits complex
and differentiated functions in viral immunomodulation. In HBV
infection, MMP-9 promotes viral replication and hepatic fibrosis by
inhibiting interferon signaling (46). RSV infection efficiently
stimulates MMP-9 expression in vivo and in vitro (162), while
disruption of the MMP-9/TIMP-1 balance drives airway
remodeling—a key pathogenic feature of chronic pulmonary
fibrosis (163). In a neuroinvasive model, mouse adenovirus
(MAV-1) activates microglial MMP-2/MMP-9 to disrupt the
blood-brain barrier, representing a critical pathological
mechanism underlying encephalitis development (164). Studies
on MHYV infection further revealed that increased viral replication
during lethal infection is closely associated with significantly
elevated expression levels of MMPs, TIMPs, and chemokine genes
(165). Conversely, MMP-3 exerts broad-spectrum antiviral activity
against vesicular stomatitis virus (VSV), HIN1, and HSV-1 through
NF-xB signaling potentiation via nuclear translocation, while
simultaneously enhancing anti-dengue immune responses
(23, 166).

Complement system regulation represents another critical
battleground for viral immune evasion. Aberrant interactions
between the mannose-binding lectin-associated serine protease 2
(MASP-2) and the SARS-CoV-2 N protein drive complement
hyperactivation, fueling cytokine storms and multiorgan damage
—a mechanism particularly prominent in severe COVID-19 (167).
Conversely, the high-temperature requirement protein A2 (HtrA2/
Omi) effectively limits cytomegalovirus (CMV) spread by triggering
apoptotic pathways through cleavage of key viral or host proteins
(26). Long-term host-virus coevolution has forged dynamic
equilibria in proteolytic cleavage sites. ADAMI17, a pivotal
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TABLE 2 Immune regulatory functions of host proteases in viral infections.

Protease Immunological mechanism diE(fefft(i:;n Related viruses Targeting significance References
Neutrophil elastase Cleave viral spike proteins to block cellular entry Defense SARS-CoV-2 Block early infection (149)
MASP-2 Activate complement system causing cytokine storm Damage SARS-CoV-2 Mitigate severe organ injury (167)
Suppress IFN signaling + Promote fibrosis Bidirectional HBV, RSV Anti-fibrotic therapy (46, 162, 163)
MMP-9 Enhance vascular endothelial permeability Damage DENV Reduce hemorrhagic fever (160)
Disrupt the blood-brain barrier Damage MAV-1 Prevent encephalitis (164)
MMP-8 Degrade tight junction proteins to disrupt the blood-brain barrier Damage RABV Protect the neural barrier (170)
MMP-10 Upregulate NF-kB/JAK-STAT dual pathways and degrade extracellular matrix Damage RSV Block airway remodeling (171)
CTSG Recruit infection-promoting immune cells Evasion HIV-1 Prevent “infectious niche” formation (25)
Mediate ACE2 shedding to promote viral endocytosis, associated with inflammatory Damage SARS-CoV-2 Alleviate acute lung injury (95-97)
damage
ADAMI7 Key attachment factor Defense BVDV/CSFV Block viral cross-species transmission (168)
Stabilize immune receptors and inhibit antiviral responses Evasion HCMV Block immune evasion (169)
TMPRSS2 Induce cytokine storm cycle Damage Influenza virus Prevent multi-organ failure (148)
TMPRSS11D Activate prothrombin, triggering acute fibrin deposition Damage SARS-CoV-2 Alleviate damage (159)
MMP-3 Nuclear translocation enhances NF-kB s.ignaling, promoting antiviral cytokine Defense VSV, HINL, DENV Broad-spectrum immune enhancer 23, 166)
secretion
FAMI111B Enrich in viral replication regions, restricting MCMYV replication in human cells Defense MCMV Target for cros;—asfreizies transmission (140)
HtrA2/Omi Cleavage of viral proteins triggers apoptosis, restricting viral spread Defense CMV Pro-apoptotic antiviral strategy (26)

“-” represents “unidentified.” BVDV, Bovine Viral Diarrhea Virus; RABV, Rabies Virus.
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immunoregulatory node, plays essential roles in host defense
against pestiviruses (168), while being targeted by
cytomegaloviruses to remodel the cell surface proteome (169).
Neuroinvasive viruses exploit MMP-8 to degrade tight junctions
in the blood-brain barrier (170), whereas RSV infection induces
MMP-10 expression in nasal epithelial cells and modulates the
immune microenvironment through NF-kB/JAK-STAT crosstalk
(171). These mechanisms collectively demonstrate how viruses
achieve immune microenvironment remodeling via
multidimensional regulation of proteolytic networks.

4 Antiviral intervention strategies
targeting host proteases: from single-
target inhibition to multidimensional
synergistic regulation

Compared with the drug resistance challenges posed by high-
frequency mutations in viral genomes, host proteases, due to the
high genetic stability of their encoding genes, emerge as highly
attractive targets for developing host-directed antiviral drugs
(HADs). This approach significantly mitigates risks of viral escape
mutations. Furthermore, inhibitors targeting host proteases
generally exhibit broad-spectrum antiviral potential, providing a
feasible approach to combat multiple viral infections. With the
deepening understanding of the viral infection complexity and
immune evasion mechanisms, intervention strategies targeting
these critical regulatory nodes in the viral life cycle are
dynamically evolving from traditional single-target inhibition to
multidimensional synergistic regulation.

4.1 Continuous advancement in single-
target inhibition research

Currently, research on single-target inhibitors targeting key
host proteases continues to deepen. Small-molecule inhibitors
remain the primary focus due to their favorable drugability and
high maturity in development. In the field of targeting
transmembrane serine proteases, the TMPRSS2 inhibitor
nafamostat (Figure 4A) blocks 93% of SARS-CoV-2 plasma
membrane invasion but exhibits limited inhibitory effects on
TMPRSS4-dependent MERS-CoV (20, 172). The new-generation
inhibitor N-0385, with low nanomolar potency, effectively inhibits
the invasion of variants, including Omicron (173, 174). While
nafamostat mesylate can reduce viral load in murine lungs (175),
its clinical efficacy is limited by rapid cleavage and inactivation by
TMPRSS11D (176). Other broad-spectrum serine protease
inhibitors, such as 4-(2-aminoethyl) benzenesulfonyl fluoride
(AEBSF) and N-alpha-tosyl-L-phenylalanyl chloromethyl ketone
(TPCK), can inhibit RSV infection, among which AEBSF acts
primarily at the early stage of viral entry (177). Structurally
optimized HAT serine protease inhibitors (e.g., compound 15, K;
= 15 nM) enhance selectivity through novaricine modification,
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thereby effectively inhibiting influenza virus replication (178).
Additionally, basic phenylalanine analogs reduce the titers of
West Nile virus (WNV) and DENV by 10,000-fold via plasmin
inhibition (179).

Classical cysteine protease inhibitors targeting CTSL
demonstrate broad-spectrum antiviral efficacy. In vitro models,
inhibitors E64d (Figure 4B) and Z-FY-CHO effectively suppress
SARS-CoV-2 pseudovirus infection (20, 83, 180, 181), while the
broad-spectrum inhibitor K11777 exhibits potent inhibitory activity
against HEV, with an ECs, of approximately 0.02 nM (127). In vivo,
rotavirus capsid disassembly strictly depends on CTSL, and
treatment with the inhibitor Z-Phe-Tyr(t-Bu)-diazomethyl ketone
causes drastic viral yield reduction (121). Additionally, amantadine,
an anti-influenza drug, blocks SARS-CoV-2 infection by inhibiting
CTSL activity (87), while the natural product gallinamide A and its
analogs also exhibit potent antiviral activity (182).

Furin inhibitor development has achieved significant advances
across multiple fronts. The competitive inhibitor dec-RVKR-cmk
can block F protein cleavage and viral budding of RSV (137), while
exerting anti-SARS-CoV-2 activity by inhibiting spike protein
cleavage and syncytium formation (183), though it is ineffective
against filoviruses (184). This compound additionally suppresses
flavivirus release without affecting RNA replication (185). In terms
of allosteric inhibitors, cypermethrin exhibits broad-spectrum
activity against drug-resistant SARS-CoV-2 by binding to a novel
allosteric pocket (186), while the reversible inhibitor MI-1851
reduces viral load by 190-fold (83, 187). It is worth noting that
protease inhibitors designed based on the (3,5-dichlorophenyl)
pyridine skeleton (Figure 4C) exhibit high potency and antiviral
activity against SARS-CoV-2 at the cellular level (188), providing
new insights for broad-spectrum antiviral treatment. The natural
product luteolin inhibits furin in a non-competitive manner and
significantly reduces DENV viremia in vivo (189). Emerging
approaches explore novel paradigms. Targeting the off-state of
furin opens new avenues for the design of selective inhibitors
(190). Decanoyl-RVKR-CMK effectively blocks E3E2 precursor
cleavage by CHIKV (30). And furin conformation provides new
opportunities for structure-based drug discovery (186),
demonstrating the feasibility of developing customized inhibitors
for specific viruses.

In addition to small-molecule inhibitors, peptide-based
compounds, endogenous regulatory factors, and biologics serve as
vital complements to single-target inhibition strategies due to their
targeting specificity and biocompatibility advantages. In peptide
inhibitor research, polyarginine repeat sequences function as
competitive inhibitors of furin substrate cleavage, effectively
inhibiting HIV infection by blockade of gp160 protein processing
(191). Peptides P9 and P9R significantly reduce SARS-CoV-2 viral
load in hamster models by impairing CTSL activity (192, 193). The
TMPRSS13 peptidomimetic inhibitor N-0430 blocks SARS-CoV-2
pseudovirus entry (194), while the caspase-6 inhibitor Z-VEID-
FMK alleviates pathological damage in SARS-CoV-2 and MERS-
CoV animal models (195). Recombinant applications of
endogenous inhibitors demonstrate substantial progress.
Interferon-induced GBP5 protein inhibits furin activity, markedly
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FIGURE 4
Active site binding modes of host protease-inhibitor complexes. Three-dimensional structures of (A) TMPRSS2-nafamostat (PDB: 7MEQ), (B) CTSL-
E64d (PDB: 8HET), and (C) furin in complex with dichlorophenylpyridine-based inhibitor 3 (DBI3, PDB: 7QXY) are shown. Inhibitors (green) targetedly
insert into the active sites of proteases, forming key interactions with catalytic residues and surrounding amino acids (e.g., Ser441 in TMPRSS2, Cys25
in CTSL, Asp154 in furin) via hydrogen bonds and hydrophobic interactions. The catalytic centers are highlighted in magenta.

reducing infectivity of multiple pathogens, including HIV-1, Zika
virus (ZIKV), MV, and IAV (150). Serpin family B member 8
(Serpin B8, also known as PI8 and CAP2) binds to and inhibits the
proprotein convertase furin (28). Furthermore, 0.-SNAP suppresses
furin-dependent viral glycoprotein cleavage through binding to the
furin P-domain (149). In the field of biologics, nanobodies exhibit
exceptional advantages due to their high specificity. The anti-
TMPRSS2 nanobodies inhibit the enzymatic activity of TMPRSS2
and hinder HKU1 pseudovirus entry using S441A TMPRSS2 (101).
Dromedary heavy-chain-derived nanobodies specifically inhibit the
catalytic activity of furin, blocking its cleavage of two critical
substrates, transforming growth factor beta (TGFB) and glypican-
3 (GPC3) (196).

4.2 Translational breakthroughs in inhibitor
synergy strategies

Multi-target synergistic strategies are overcoming the limitations of
single-inhibitor therapies. Clinical studies have shown that the
TMPRSS2 inhibitor N-0385, when combined with the antiviral drugs
remdesivir or nirmatrelvir, exhibits broad-spectrum synergistic activity
against Omicron subvariants (174). In chronic hepatitis B treatment,
entecavir coupled with furin inhibitors concurrently suppresses viral
replication and hepatitis B e antigen (HBeAg) secretion (197).
Spironolactone enhances antiviral effects by antagonizing TMPRSS2/
ADAM17 to reduce soluble ACE2, synergizing with DPP-4 inhibitors
to improve clinical outcomes in COVID-19 patients (198).
Additionally, xanthan gum combined with camostat significantly
enhances anti-influenza virus potency (199). Mechanistic studies
further confirmed that non-toxic furin inhibitors combined with
TMPRSS2 inhibitors block 95% of lung cell infections (200),
demonstrating the translational potential of inhibitor synergy
strategies in multistep blockade of viral invasion.

4.3 Innovative waves in multi-target drug
development

Dual- and multi-target therapeutics are spearheading novel
antiviral strategies. Compound BAPA exhibits an ECsy of 0.3 uM
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against HIN1 by inhibiting HAT/TMPRSS2 (201). The tri-targeting
peptidomimetic MM3122 simultaneously inhibits TMPRSS2,
matriptase, and hepsin, maintains sub-nanomolar potency against
the SARS-CoV-2 EG.5.1 variant, and significantly attenuates
pulmonary edema in mice (202). Delivery system innovations
propel the development of bispecific compound 212-148, which
simultaneously inhibits TMPRSS2 and CTSL/CTSB (203), with
nanoerythrocyte carriers substantially enhancing delivery
efficiency (204). Diazoxide inhibits TMPRSS2/furin (ICso=1.35/
13.2 uM), while compound MI-1148 blocks transmission of
highly pathogenic avian influenza (HPAI) and canine distemper
virus by targeting PC1/3 (205). Notably, the mechanisms of action
of protease inhibitors nafamostat and camostat may extend beyond
TMPRSS2 inhibition itself, involving coagulation cascade-induced
cleavage of spike proteins. Given the centrality of anticoagulation
management in COVID-19 therapy, early intervention may provide
synergistic benefits by blocking viral entry (89).

Structure-guided design has achieved pivotal breakthroughs.
The a-ketoamide inhibitors 14a/14b exhibit potent broad-
spectrum anti-coronaviral activity through covalent binding to
CTSL and calpain-1 (CAPN1), achieving exceptional potency
against SARS-CoV-2 variants (ECs, as low as 0.80 nM) (206).
The natural product omicsynin B4 demonstrates pan-coronaviral
activity against human coronavirus 229E (HCoV-229E), human
coronavirus OC43 (HCoV-OC43), and SARS-CoV-2 prototype/
variants by dual blockade of CTSL/TMPRSS2 (207). At the level of
respiratory protease regulation, influenza HA activation mediated
by human eosinophils and DESC1 (but not TMPRSSI11A) is
specifically inhibited by hepatocyte growth factor activator
inhibitor 1 (HAI-1) (66). The endogenous regulator serine
protease inhibitor Kazal-type 6 (SPINK6) inhibits HAT/KLK5 to
restrict influenza virion maturation (208), while dichlorobiphenyl-
containing matriptase inhibitors achieve ultrahigh potency (K; < 3
nM) through chemical optimization, demonstrating exceptional
thrombin selectivity and concentration-dependent inhibition of
HO9N2 viral replication in MDCK(II) cells (209). Among
matriptase/TMPRSS2 inhibitors evaluated by Gamba, D. et al,
MI-463 and MI-1900 exhibit antiviral effects against HIN1/HIN2
at concentrations of 20-50 uM, suggesting that they block viral
entry by inhibiting host protease-mediated cleavage (210). The oral
dual-target drug olgotrelvir, which simultaneously inhibits SARS-
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CoV-2 MP™ and CTSL, has emerged as a new paradigm for clinical
translation (211).

4.4 Translational challenges and cutting-
edge strategies

Despite extensive development of host protease inhibitors
demonstrating antiviral potential in preclinical models, few have
successfully transitioned to clinical application. The current
translational bottlenecks primarily stem from three key
challenges. First, host compensatory escape—viruses can not only
bypass inhibition by activating functionally redundant host
proteases, such as SARS-CoV-2 switching from TMPRSS2-
dependent entry to CTSL-mediated invasion pathways (85-87);
they can also utilize their own encoded proteases to compensate for
critical functions. For instance, HCV relies solely on its NS3/4A
serine protease with NS4A as a cofactor to independently cleave
viral polyproteins (212). Similarly, DENV requires its NS3 protease
—an essential component for nonstructural protein hydrolysis—
which functions with its own NS2B cofactor (213). Meanwhile,
SARS-CoV-2 processes polyproteins ppla and pplab through its
MP™ to generate 16 mature nonstructural proteins (nspl-nspl16),
which collectively form the replication/transcription complex that
provides core support for viral replication (214). Second, oft-target
toxicity—broad-spectrum inhibitors (e.g., camostat) inhibit
TMPRSS2 while interfering with proteases involved in
coagulation, inflammation, and blood pressure regulation,
significantly increasing the risk of serious adverse events in
clinical treatment groups (215); third, tissue delivery obstacles—
small-molecule inhibitors struggle to penetrate specific
compartments (e.g., inactivation in the acidic lysosomal
environment, blockage by the blood-brain barrier).

It is noteworthy that multi-target synergistic strategies aimed at
enhancing antiviral efficacy, such as dual-target proteolysis-
targeting chimera (PROTAC) degraders, may increase off-target
risks due to the expanded range of target molecules. Current
research seeks breakthroughs through two precision-optimized
design approaches. One leverages spatial precision by confining
activity release ranges using tissue-microenvironment-responsive
carriers (216), while another employs conformational precision
through allosteric site engineering to selectively engage inactive
states of host proteases, thereby enhancing specificity (217). These
approaches pave a critical pathway for balancing synergistic
potency and safety. Thus, developing novel inhibitors with high
selectivity, resistance barriers, and microenvironmental adaptability
has become an urgent need to address the challenges of viral
evolution. Cutting-edge strategies focus on three breakthroughs.
One is the exploration of allosteric inhibitory sites (e.g., targeting
furin exosite-III). Another is the design of dual-target PROTAC
degraders (e.g., simultaneous degradation of TMPRSS2/CTSB). The
third is the development of smart responsive nanocarriers (e.g., pH-
sensitive liposomes loaded with cystatin C targeting endosomes).
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5 Conclusion

Viral infections can trigger various severe diseases, such as
pneumonia, meningitis, hepatitis, and cardiovascular diseases, posing
a significant threat to human health. The regulatory role of host
proteases in viral infections has transcended traditional
understanding. As one of the core dynamic hubs in the virus-host
interaction network, these enzymes not only directly drive critical
processes, including viral entry, replication, and immune evasion, but
also profoundly reshape infection progression through spatiotemporal
activity regulation. Viruses typically hijack host protease activity to
facilitate infection, with their specificity and activity directly
determining viral pathogenicity. Research has elucidated three core
viral evolutionary strategies enabling cross-species transmission—
hijacking tissue-enriched proteases (e.g., TMPRSS2 in respiratory
epithelial cells); inducing abnormal activation of microenvironment
proteases (e.g., inflammation-driven MMP-9 overexpression); and
optimizing adaptability of cleavage sites (e.g., the PRRA motif in the
SARS-CoV-2 S protein). These mechanisms provide molecular
foundations for understanding viral pathogenicity variations. In
therapeutic development, host protease targeting is transitioning
from single-inhibition approaches toward multidimensional
synergistic paradigms. Innovative designs, including dual-target
PROTAC degraders, allosteric inhibitors, and intelligent delivery
systems, mark a significant turning point in the field. However,
clinical translation encounters three persistent challenges—host
compensatory escape mechanisms, off-target toxicity, and delivery
barriers. Future breakthroughs require a focus on space-
conformation precision technologies, such as employing
microenvironment-responsive carriers to restrict active compound
distribution or designing selective binding to inactive states of
proteases based on allosteric sites, thereby balancing efficacy with
physiological safety.

Looking forward, host protease-targeted therapy progress will
focus on three interconnected dimensions. At the mechanism-
elucidation level, cryo-EM and molecular dynamics simulations
reveal dynamic conformational changes of protease-substrate
complexes (e.g., the transient intermediates formed during furin
cleaves the S protein), providing atomic-resolution blueprints for
allosteric inhibitor design. At the technological development level,
an Al-driven multi-target degradation agent screening for multi-
target degraders integrates, host proteomics and viral evolution data
to predict optimal target combinations (e.g., the combined
intervention of TMPRSS2 and CTSL). At the clinical translation
level, it requires establishing tiered organoid-animal model
evaluation systems to assess tissue-specific toxicity in human-
mimetic microenvironments (e.g., the long-term consequences of
prostate TMPRSS2 suppression), alongside exploring sequential
therapies against viral escape. The paramount value of these
advances lies not only in significantly reducing the risk of target
mutation-driven drug resistance—the genetic stability of host
proteases makes them an “anchor” for controlling highly variable
viruses (such as HIV and DENV)—but also in providing broad-
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spectrum countermeasures for emerging viral outbreaks. From
respiratory to neuroinvasive viruses, host protease-targeting
strategies are transforming antiviral development paradigms.
Realizing this vision demands deep integration of virology,
structural biology, and nanomedicine. Consequently, developing
novel intervention strategies targeting host proteases holds broad
application prospects and significant research value in the field of
antiviral therapy.
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Glossary
o-SNAP
A1AT
ACOT2
ADAM17
Ad2/12
AEBSF
AMDV
ARVs
Asp
B-NGF
BDV
CAPN1
CCHF
CHIKV
CMV
COVID-19
cryo-EM
CSFV
CST3
CTSB
CTSD
CTSG
CTSL
CTSS
DENV
DESC1
DPP4
El66V
E1A
EBOV
ENaC
FAMI111B
FluV

Fxa

gB

GBPs
GP

GP1
GPC3
HINI
HA
HADs
HAI-1
HAstV-8
HAT
HBeAg
HBV

alpha-soluble NSF attachment protein
odpha (1)-antitrypsin

acyl-CoA thioesterase 2

a disintegrin and metalloproteinase 17
adenovirus 2/12

4-(2-aminoethyl) benzenesulfonyl fluoride
Aleutian mink disease parvovirus
Avian reoviruses

aspartic

B-nerve growth factor

Borna disease virus

calpain-1

Crimean-Congo hemorrhagic fever
chikungunya virus

cytomegalovirus

coronavirus disease 2019
cryo-electron microscopy

classical swine fever virus

cystatin C

cathepsin B

cathepsin D

cathepsin G

cathepsin L

cathepsin S

dengue virus

differentially expressed in squamous cell carcinoma gene 1
dipeptidyl peptidase 4

Glulé66Val

region 1A

Ebola virus

epithelial sodium channel

family with sequence similarity 111 member B
influenza virus

coagulation factor Xa

glycoprotein B

guanylate binding proteins
glycoprotein

glycoprotein 1

glypican-3

hemagglutinin 1 neuraminidase 1
hemagglutinin

host-directed antiviral drugs
hepatocyte growth factor activator inhibitor 1
human astrovirus type 8

human airway trypsin-like protease
hepatitis B e antigen

hepatitis B virus
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HCV
HCoV-229E
HCoV-HKU1
HCoV-0C43
HE

HERVs
HEV

HIV
HPIV3
HPV

ICV

IL-1B
KPNA2

L2
MASP-2
MAV-1
MCMV
MHV
MMP
MMP-2
MMP-9
MuV

MV

MVM
NCOA7
NDV
NPC1
PAI-1
PCSK7
PEDV
pro-OCN
PROTAC
RBD

RNP

RSV
SADS-CoV
SARS-CoV-2
SERPIN
SPINK6
TBEV
TGEB
TGEV
TMPRSS
TPCK
TRABD2A
TTSP

VSV
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hepatitis C virus

human coronavirus 229E

human coronavirus HKU1

human coronavirus OC43
hemagglutinin-esterase

human endogenous retroviruses

hepatitis E virus

human immunodeficiency virus

human parainfluenza virus 3

human papillomavirus

Influenza C virus

interleukin-13

karyopherin alpha2

late protein 2

Mannose-binding lectin-associated serine protease 2
mouse adenovirus

mouse cytomegalovirus

murine hepatitis virus

matrix metalloproteinase

matrix metalloprotease-2

matrix metalloprotease-9

mumps virus

measles virus

minute virus of mice

Nuclear receptor coactivator 7

Newcastle disease virus

the human endosomal receptor Niemann-Pick C1
plasminogen activator inhibitor-1
proprotein convertase subtilisin/kexin type 7
porcine epidemic diarrhea virus
pro-osteocalcin

proteolysis-targeting chimera
receptor-binding domain

ribonucleoprotein

Respiratory syncytial virus

swine acute diarrhea syndrome coronavirus
severe acute respiratory syndrome coronavirus 2
serine protease inhibitor superfamily

Serine protease inhibitor Kazal-type 6
tick-borne encephalitis virus

transforming growth factor beta
transmissible gastroenteritis virus
transmembrane serine protease
N-alpha-tosyl-L-phenylalanyl chloromethyl ketone
TRAB domain-containing protein 2A

type II transmembrane serine protease

Vesicular Stomatitis Virus
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