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Host proteases: key regulators
in viral infection and
therapeutic targeting
Qiongrong Xia*†, Xiaohua Liu*† and Huacui Huang †

Department of Medical Laboratory, Xindu District People’s Hospital of Chengdu, Chengdu,
Sichuan, China
Viral infections pose a major threat to global health, causing severe pneumonia,

meningitis, hepatitis, and fatal complications. Viruses are highly dependent on

host cellular factors to complete their life cycle, and host proteases, as one of the

core regulatory hubs, profoundly influence the progression of infection and

pathogenicity. Viruses rely on specific host proteases (e.g., transmembrane

serine proteases [TMPRSS family], furin, cathepsins, and others such as

caspases and metalloproteases) to precisely cleave and activate viral surface

glycoproteins and internal precursor proteins, thereby facilitating efficient

invasion, replication, release, and immune evasion. Meanwhile, host proteases

participate bidirectionally in immune regulation. They can be exploited by viruses

to exacerbate pathological damage (e.g., triggering cytokine storms), yet also act

as key defense components by directly cleaving viral proteins to inhibit infection.

Different viruses have evolved sophisticated strategies to hijack host proteases,

whose activity, specificity, and tissue distribution directly determine the viral

tissue tropism and pathogenic potential. Compared to highly mutable viral

targets, host proteases serve as ideal targets for developing host-directed

antiviral drugs (HADs) due to their genetic stability and conserved mechanisms,

but their toxicity requires careful evaluation because of their physiological roles.

Inhibitor strategies targeting host proteases have demonstrated promising

breakthrough potential in circumventing drug resistance and exerting broad-

spectrum inhibitory activity against diverse viruses. Elucidating the

multidimensional roles of host proteases in infection is crucial for designing

the next-generation of broad-spectrum, anti-drug resistance antiviral strategies.

This review systematically summarizes the regulatory mechanisms of host

proteases at various stages of viral infection and advances in targeted

intervention strategies, providing theoretical support for the development of

resistance-resistant and broad-spectrum antiviral therapeutics.
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1 Introduction

Viral infectious diseases persistently threaten global public

health, with over 200 viruses known to cause human diseases, yet

currently approved antiviral drugs effectively target only

approximately 10 viral pathogens (1). Over the past decade, the

frequency of emerging disease outbreaks has increased. From the

Ebola virus (EBOV) epidemic to the coronavirus disease 2019

(COVID-19) pandemic, these events reveal the severe impact of

v i ra l in fec t ions . Chronic infec t ions such as human

immunodeficiency virus (HIV), hepatitis B virus (HBV), and

hepatitis C virus (HCV) have cumulatively affected over 350

million people and claimed more than 40 million lives to date (2,

3). Meanwhile, acute pathogens such as influenza virus (FluV) and

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

infect over 1 billion people annually, leading to more than 5 million

severe cases and over 10 million related deaths (4, 5). Current viral

protease-targeting antiviral therapies face two major challenges.

First, the issue of drug resistance targeting viral proteases is

becoming increasingly prominent. The treatment failure rate of

HIV-1 protease inhibitors (e.g., lopinavir) has reached 20% (6, 7),

oseltamivir resistance rates in circulating hemagglutinin 1

neuraminidase 1 (H1N1) strains reached 3.76% (8), and the

Glu166Val (E166V) mutation in SARS-CoV-2 main protease

(Mpro, also known as 3CLpro) reduces nirmatrelvir activity by

100-fold, often causing treatment failure (9–11). Second, narrow-

spectrum activity limits efficacy against highly variable viruses with

multiple serotypes, such as dengue virus (DENV) (1). These critical

challenges urgently require innovative antiviral strategies

and targets.

Viruses depend entirely on host cells to accomplish critical life

cycle steps, including invasion, replication, maturation, and release.

During this process, host proteases, as key enzymes responsible for

protein degradation and modification, serve as pivotal regulators at

every infection stage, positioning them as high-potential

breakthrough targets. Their core value is first evidenced by

conserved cleavage mechanisms across viral families. Furin

mediates the cleavage of HIV envelope glycoprotein gp160 into

gp120/gp41 subunits to initiate membrane fusion (12). It also

hydrolyzes human papillomavirus (HPV) late protein 2 (L2) at

Arg470, enabling viral genome translocation across the nuclear

membrane (13). Such protease-mediated conformational

rearrangements are essential for cross-family viral infections. This

compartmentalization ensures precise activation of viral proteins at

critical subcellular sites. EBOV requires endosomal cathepsins B/L

(CTSB/L) under low-pH conditions to trim glycoprotein 1 (GP1)

subunits and expose the receptor-binding domain (14–17), while

coronaviruses (CoVs) undergo furin-mediated pre-cleavage of spike

(S) proteins in the Golgi compartments to enhance infectivity (18,

19). Compartment-specific proteases (e.g., transmembrane protease

serine 2 (TMPRSS2)) spatiotemporally optimize cleavage (20, 21).

In addition to acting as viral cofactors, host proteases further

influence viral proliferation and transmission by modulating host

cell signaling (22, 23), immune responses (24, 25), and apoptosis

(26, 27). Consequently, targeting host proteases not only blocks the
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viral life cycle but also pioneers innovative therapeutic strategies by

regulating host responses.

Despite the substantial potential of host proteases as antiviral

targets, their intrinsic biological properties pose significant

challenges for targeted interventions. The same protease often

exhibits functional pleiotropy in distinct infection contexts. For

example, furin enhances viral particle maturation in HIV infection

(28, 29), yet generates incompletely cleaved immature particles in

DENV infection, facilitating host cell invasion via non-canonical

pathways and exacerbating severe disease (30). Similarly, TMPRSS2

drives respiratory viral infections through its high expression in the

bronchial epithelium (31), yet in prostate tissue, it is androgen-

regulated and participates in epithelial differentiation and tissue

remodeling. Aberrant TMPRSS2 expression may promote prostatic

hyperplasia or carcinoma (31). These complexities necessitate

intervention strategies with precisely regulated spatiotemporal

specificities. A deeper layer of challenge stems from the essential

physiological functions performed by these proteases themselves.

Taking furin as an example, this critical precursor protein

convertase participates in multiple core physiological processes. It

regulates neuronal activity by processing b-nerve growth factor (b-
NGF) (32); within the skeletal system, it is responsible for the

maturation of the pro-hormone pro-osteocalcin (pro-OCN),

modulating its activation and endocrine function, while also

influencing the secretion of osteoblast-derived metabolic

hormones (33). Similarly, TMPRSS2 plays a pivotal role across

multiple tissues. In the kidneys, it participates in processing the

epithelial sodium channel (ENaC) to regulate sodium reabsorption

(34, 35). In the prostate, it is highly expressed and regulates

prostatic fluid secretion and sperm function (36). And in the

intestine, it maintains intestinal barrier integrity by cleaving the

tight junction protein occluding (34). Collectively, these complex

biological characteristics underscore that antiviral strategies

targeting host proteases must establish a delicate balance between

antiviral efficacy and physiological safety. Any intervention crucially

requires precise avoidance of interference with their normal

physiological functions.

This review focuses on the multifaceted roles of host proteases

in viral infections, systematically outlining their core functions

across four key stages. These stages include viral entry activation,

replication and assembly, release and dissemination, and immune

evasion. It also provides an in-depth assessment of innovative

intervention strategies targeting these proteases. By analyzing the

multiple functions of these proteases, this review aims to pioneer

novel therapeutic approaches to suppress viral transmission and

pathogenicity and provide a new perspective and theoretical basis

for future viral therapeutic research.
2 Classification and function of host
proteases

Host proteases serve as key effector molecules in virus-host

interactions, exerting multifaceted regulatory roles via the viral life

cycle through specific peptide bond hydrolysis. Their primary
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functions include (1) cleavage and activation of viral precursor

proteins (e.g., glycoproteins, polyproteins) to confer infectivity or

replication capacity; (2) modulation of host signaling pathways to

alter cellular states for viral replication or immune evasion; and (3)

remodeling of the extracellular matrix or membrane structures to

create a favorable microenvironment for viral entry, assembly, or

dissemination. Specifically, viruses have evolved a three-pronged

strategy to manipulate this system: (i) targeted exploitation of

tissue- or cell-specifically expressed protease isoforms [e.g.,

TMPRSS2 is highly expressed in the respiratory epithelium (37)];

(ii) induction of aberrant protease expression or activation in the

infection microenvironment[(e.g., furin cleaves influenza virus HA0

(38, 39)]; (iii) evolution of specific cleavage motifs in viral proteins

that are recognized by host proteases [e.g., HIV gp120 contains an

REKR cleavage motif (40)]. Based on catalytic mechanisms, host

proteases are classified into three major classes (serine proteases,

cysteine proteases, and metalloproteases), in addition to aspartic

proteases and threonine proteases. Their functional diversity

originates from evolutionary divergence in active-site residues and

substrate-binding pocket architectures.
2.1 Serine proteases

Serine proteases are characterized by a highly conserved Ser-His-

Asp catalytic triad (41), as exemplified by TMPRSS2 (Figure 1A). The

structural basis for their functional divergence lies in the diverse

stereoconformations of substrate-binding pockets. For instance, the

catalytic groove of TMPRSS2 precisely accommodates the receptor-

binding domain (RBD) of coronavirus spike proteins (e.g., human

coronavirus HKU1 (HCoV-HKU1)), inducing conformational

changes that trigger membrane fusion (42). Conversely, furin

recognizes multibasic cleavage motifs (e.g., Arg-X-X-Arg↓) within the

polyproteins of diverse pathogens through its distinctive substrate-

binding cleft, mediating their maturation and infectivity (40). During

viral infections, serine proteases are extensively exploited to activate

both surface glycoproteins (e.g., influenza HA, CoVs S, and HIV

gp160) and internal precursor polyproteins—serving as critical rate-

limiting steps in viral entry and maturation.
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2.2 Metalloproteases

Metalloproteases are characterized by an active center

coordinated through specific metal ions (e.g., Zn²+) coordinated

by surrounding amino acid residues (e.g., histidine, glutamate, or

aspartate) (43) , as exemplified by a dis integr in and

metalloproteinase 17 (ADAM17) (Figure 1B). Their functional

diversity arises from the structural plasticity of the metal-binding

and catalytic domains. For example, matrix metalloprotease-2

(MMP-2) and matrix metalloprotease-9 (MMP-9) exemplify this

diversity, utilizing catalytic domains to degrade collagen networks

with high efficiency (44), while ADAM17 precisely cleaves

transmembrane signaling molecules using its zinc-finger motif

(45). Under physiological conditions, metalloproteases maintain

homeostasis by regulating extracellular matrix remodeling, growth

factor release, and the migration of inflammatory cells. Viruses

disrupt this balance through dual mechanisms: (1) inducing

aberrant overexpression of metalloproteases in the inflammatory

microenvironment, such as HBV infection upregulating MMP-9 to

promote liver fibrosis (46), or (2) hijacking proteolytic functions to

facilitate dissemination routes, as evidenced by HIV exploiting

metalloprotease-mediated degradation of extracellular matrix

components to enhance cell-to-cell spread (47).
2.3 Cysteine proteases

Cysteine proteases feature a cysteine residue at their active site,

functioning through a Cys-His catalytic dyad (48), exemplified by

cathepsin L (CTSL) (Figure 1C). Their activity is tightly regulated by

subcellular localization (e.g., pH, redox status). For instance,

cathepsin B (CTSB) and CTSL activate viral fusion proteins in the

acidic environment of endosomes (15), whereas caspase-3 executes

apoptotic cascades in the cytoplasm (49). These enzymes dominate

critical host processes—including lysosomal antigen processing,

irreversible initiation of programmed cell death, and dynamic

cytoskeletal remodeling—all precisely driven by the redox-sensitive

thiol activity of their cysteine residues. Viruses hijack these

mechanisms through spatiotemporally precise strategies. In the
FIGURE 1

Three-dimensional structures and catalytic center characteristics of three types of core host proteases. (A). In the TMPRSS2 structure (serine
protease; PDB: 7MEQ), key residues of the catalytic triad—His296 (red), Asp345 (green), and Ser441 (blue)—are positioned at the active site,
demonstrating the conserved catalytic architecture characteristic of serine proteases. (B). The ADAM17 structure (metalloprotease; PDB: 9O54)
reveals the catalytic Zn²+ ion (green sphere) coordinated by residues Glu406 (magenta), Met435, Ala439, and Leu348 (orange), illustrating the metal
ion-dependent catalytic mechanism. (C). Within the CTSL structure (cysteine protease; PDB: 7W34), the catalytic dyad residues Cys25 (blue) and
His163 (red) localize to the active pocket, underpinning the catalytic functionality of cysteine proteases.
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TABLE 1 Roles of host proteases in the viral life cycle.

Classification Protease Target/Function Viral life cycle stage Inhibitors References

Nafamostat, N-0385, Nafamostat
mesylate

(20, 58–62, 68, 172–175)

(20, 21, 82–84)

(101–103)

(106)

Dec-RVKR-cmk, Cypermethrin, MI-
1851, luteolin

(55, 83, 137, 186, 187, 189)

(18, 19)

(12)

(16)

(118)

(126)

(135, 136)

(137)

(30)

(143)

(144, 145)

Compound 15 (59, 60, 63, 68, 178)

(91)

– (64, 65, 68)

– (66)

– (65, 67–70)

N-0430 (71, 194)

(91, 92)

– (71)

– (134)

– (71)

Basic phenylalanine analogs (73, 74, 179)
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Serine Proteases TMPRSS2 Cleave Fluv HA Invasion

Cleave CoVs S Invasion

As the invasion receptor for HKU1 Invasion

Activate EBOV GP Invasion

Furin Cleave Fluv HA Assembly

Cleave CoVs S Invasion

Cleave HIV gp160 Invasion

Cleave the EBOV GP precursor Invasion

Cleave HPV L2 Invasion

Cleave CHIKV E2-E1 Invasion

Cleave CCHV PreGn Assembly

Cleave RSV F Assembly

Cleave DENV prM Assembly

Cleave BDV GP Release

Cleave PRV gB Intercellular transmission

HAT
(TMPRSS11D)

Cleave Fluv HA Invasion

Weakly activates the cell fusion of
CoVs

Invasion

TMPRSS4 Cleave Fluv HA Invasion

TMPRSS11A Cleave Fluv HA Invasion

Matriptase Cleave Fluv HA Invasion

TMPRSS13
(MSPL)

Cleave Fluv HA Invasion

Cleave CoVs S Invasion

hepsin Cleave Fluv HA Invasion

trypsin Cleave HAstV-8 ORF2 Assembly

prostasin Cleave Fluv HA Invasion

plasmin Cleave Fluv HA Invasion
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TABLE 1 Continued

Classification Protease Target/Function Viral life cycle stage Inhibitors References

– (75–77)

– (79, 80)

– (79, 80)

(79)

– (91)

– (104)

(129)

– (89)

(88)

– (128)

E64d, Z-FY-CHO, K11777,
Adamantane

(20, 83, 85–87, 127, 180,
181)

(15, 16, 106)

(121)

(127)

– (15)

(121)

– (120)

Z-VEID-FMK (124, 195)

(130)

– (125)

(27)

(131)

(147)

(Continued)
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KLK5/12 Cleave Fluv HA Invasion

Tryptase Clara Recognizes the Gln-X-Arg motif to
activate viruses

Invasion

TL2 Recognizes the Gln-X-Arg motif to
activate viruses

Invasion

Cleave HIV gp120 Assembly

DESC1 Weakly activates the cell fusion of
CoVs

Invasion

Thrombin Activate HIV gp120 Invasion

Cleave HEV ORF1 Replication

FXa Cleave CoVs S Invasion

Blocks the binding of CoVs spike to
ACE2 (under thrombotic pathological

conditions).

Invasion

ACOT2 Cleave DENV NS2B-NS3pro Replication

Cysteine Protease CTSL Cleave CoVs S Invasion

Activate EBOV GP Invasion

Cleave RV s3 Uncoating

Cleave HEV ORF2 Invasion

CTSB Synergize with CTSL to activate
EBOV GP

Invasion

Cleave RV s3 Uncoating

CTSS Cleave RV s3 Uncoating

Caspase-6 Cleave lamin A/C Invasion

Cleave CSFV NS5A Replication

Caspase-3 Cleave nuclear lamin Invasion

Cleave AD2/12 E1A Replication

Cleave ADV NS1 Replication

Cleave ARVs mmNS Release
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acidic endosomal microenvironment, activated CTSB/CTSL

promotes viral entry [e.g., EBOV (14–17)]; in the cytoplasm, they

regulate apoptosis-related proteases such as caspases to inhibit or

promote cell death, creating a metabolic environment conducive to

viral replication [e.g., adenovirus delays apoptosis by inhibiting

caspase-3 activity (27)]. The mechanisms by which these

microenvironmental molecular interactions determine infection

outcomes will be dissected in subsequent mechanistic investigations.

In addition to the above, the host protease network also includes

aspartic proteases and threonine proteases. Aspartic proteases utilize

an active center formed by two conserved aspartic acid residues (Asp)

(50), which enables the specific recognition and cleavage of viral

polyprotein substrates in acidic microenvironments. For example,

cathepsin D (CTSD) mediates the conformational rearrangement of

HIV gp120, thereby facilitating direct interaction with coreceptors

and enhancing the efficiency of viral membrane fusion (51).

Threonine proteases employ threonine residues as nucleophilic

attack centers to drive proteolytic cascades (52). The threonine

hydrolase activity of the proteasome plays dual regulatory roles in

the rotavirus life cycle, mediating viral capsid uncoating for genome

release during invasion, and optimizing viral particle maturation

through degradation of host restriction factors during assembly (53,

54). Through substrate-specific cleavage, these two protease classes

cooperatively regulate key nodes of the viral replication cycle

alongside previously described proteases.

From a molecular evolutionary perspective, the functional

diversity of host proteases reflects a dynamic equilibrium forged

through protracted virus-host coevolution. For example, the

acquisition of furin cleavage sites (e.g., PRRA insertion in SARS-

CoV-2) by coronavirus spike proteins likely reflects the adaptive

evolution of viruses to exploit furin, which is highly expressed in the

respiratory mucosa. In response, hosts have evolved defense

mechanisms, such as the serine protease inhibitor (serpin) family,

to continuously counteract the viral hijacking of proteases. This

persistent evolutionary pressure drives the structural plasticity of

protease substrate-binding domains, enabling specific viral families

to utilize distinct protease subtypes to complete their life cycles,

while also shaping the complexity of host defense networks

(elaborated in Section 3) (Table 1).
3 Core mechanistic roles of host
proteases in viral infection

3.1 Host protease regulatory networks in
viral invasion

The process of viral invasion into host cells constitutes a

dynamic interplay between pathogens and the host protease

system. Conformational activation of viral surface glycoproteins,

driven by host protease-mediated site-specific proteolytic cleavage,

constitutes the essential initial step in the infection cascade. This

regulatory strategy exhibits remarkable viral specificity and

evolutionary adaptability.
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3.1.1 Host protease-dependent activation
mechanisms of influenza viruses

The influenza virus hemagglutinin (HA) glycoprotein functions

as the principal mediator of viral entry, and its proteolytic

processing determines infection efficiency, exhibiting significant

subcellular localization specificity and viral subtype dependency.

The HA precursor (HA0) must be cleaved by host proteases to

generate HA1/HA2 subunits, thereby exposing the N-terminal

fusion peptide (GLFGAIAGFIE) and enabling the virus to acquire

membrane fusion capability—it is particularly emphasized that

although uncleaved HA0 can bind to sialic acid receptors on host

cells, it completely loses the ability to drive membrane fusion (38,

39, 55, 56). This critical cleavage event occurs at two stages of the

viral life cycle. Furin primarily cleaves HA0 (especially in highly

pathogenic H5/H7 subtypes) in the host cell’s Golgi apparatus

during viral assembly and release, allowing newly formed virions

to acquire fusion potential before release (55, 57); in contrast,

TMPRSS2 and others complete the cleavage on the surface of

host cell membranes during the viral entry stage (58–62). This

activation process is orchestrated through cooperative actions

within the host protease network, including human airway

trypsin-like protease (HAT, also referred to as TMPRSS11D) (59,

60, 63), TMPRSS2 (58–62), TMPRSS4 (64, 65), TMPRSS11A (66),

and matriptase (ST14 gene) (65, 67–70) (Figure 2A), which catalyze

HA cleavage on the cell membrane surface to induce fusogenic

conformational changes, thereby facilitating infection across diverse

influenza subtypes. Notably, influenza subtypes exhibit distinct

protease dependencies. TMPRSS2 is indispensable for HA

activation of H7N9 and H1N1pdm in primary human bronchial

epithelial cells, consistent with its high expression in respiratory

mucosal epithelia. In contrast, TMPRSS4 dominates HA processing

of H3N2 and influenza B viruses in murine alveolar type II

epithelial cells due to its specific distribution in lung parenchymal

cells (37, 71). In the absence of TMPRSS2, TMPRSS13 (alias MSPL,

matriptase-like protease), hepsin, and prostasin maintain viral

infectivity through compensatory cleavage (71). This segregation

of protease function likely reflects the divergent expression profiles

of type II transmembrane serine protease (TTSP) family members.

Influenza C virus (ICV) employs a distinct mechanism, wherein

its hemagglutinin-esterase (HE) fusion protein, which has dual

functions in receptor binding and destruction, strictly relies on

TMPRSS2 for activation on the cell membrane surface (72),

exemplifying viral adaptive evolution to host systems. Moreover,

secretory protease networks [e.g., plasmin (73, 74), kallikrein (KLK)

(75, 76), and KLK12 (77)] can promote the spread of avian

influenza viruses by specifically cleaving HA subtypes in the

extracellular environment (such as respiratory secretions).

Notably, TMPRSS13 plays a unique role in activating highly

pathogenic avian influenza virus (HPAIV, e.g., H5N1/H7N9

subtypes) through its broad-spectrum cleavage capability

(processing both monobasic and polybasic sites) and calcium-

independent catalytic activity (78). Tryptase Clara and tryptase

TL2 specifically recognize the consensus cleavage motif Gln (Glu)-

X-Arg in influenza A and Sendai viruses to activate the viruses in
Frontiers in Immunology 07
the extracellular microenvironment of respiratory epithelial cells

(79, 80). Conversely, some viruses (e.g., H1N1 subtypes) utilize

endosomal proteases to accomplish HA cleavage after

endocytosis (81).

3.1.2 Multi-layered host protease regulatory
networks orchestrate coronavirus invasion

Coronavirus entry is governed by the spatiotemporal

coordinated activation of the spike (S) glycoprotein through host

protease interplay. In SARS-CoV-2, priming cleavage at the S1/S2

junction (multibasic PRRAR motif) by furin and TMPRSS2 within

the Golgi apparatus enhances virion maturation and infectivity (18,

19, 82, 83). Subsequent activation diverges into dual pathways. At

the plasma membrane surface, TMPRSS2-mediated cleavage of the

S2’ site exposes the fusion peptide to drive immediate virus-host

membrane fusion (20, 21, 84). Endocytosed virions rely on

endosomal CTSL for S protein processing (85–87) (Figure 2B).

Notably, host protease-mediated viral entry exhibits significant

bidirectionality. Coagulation factor Xa (FXa) can inhibit viral

entry and infection by cleaving specific domains of the S protein,

thereby blocking its binding to the ACE2 receptor (88); however, it

paradoxically enhances membrane fusion efficiency through S1/S2

or S2’ cleavage in thrombotic microenvironments alongside

thrombin (89). Additionally, porcine epidemic diarrhea virus

(PEDV) enters cells through clathrin-mediated endocytosis in

synergy with serine proteases (90), suggesting evolutionarily

conserved strategies among different coronaviruses in utilizing

host factors.

Host proteases exhibit functional divergence in viral invasion.

TMPRSS2 and TMPRSS13 play central roles in both virus-cell

fusion and subsequent cell-cell fusion stages. In contrast, HAT

and differentially expressed in squamous cell carcinoma gene 1

(DESC1) show significantly weaker activation efficiency in these

two fusion processes (91). TMPRSS13 has been shown to

specifically promote the membrane fusion of swine acute diarrhea

syndrome coronavirus (SADS-CoV) (92), suggesting the potential

regulatory properties of TTSP members in determining viral host

range. Metalloproteases enhance viral attachment by cleaving

coronavirus spikes and ACE2 receptors, while ADAM17

facilitates viral endocytosis and is associated with inflammatory

damage by mediating ACE2 shedding (93–97). Evolutionary

analyses reveal that the E484 mutation enables SARS-CoV-2 to

acquire cross-binding capacity with the MERS-CoV receptor

dipeptidyl peptidase 4 (DPP4, also known as CD26) (98, 99), a

receptor plasticity potentially attributable to furin-mediated

optimization of spike protein conformation. Studies indicate that

the binding of DPP4 receptors to MERS-CoV and the infection

process are species-dependent. Differences in glycosylation patterns

of mouse DPP4 restrict viral infection, whereas DPP4 receptors

from bats, camels, and humans can support efficient viral infection

(100). Notably, TMPRSS2 can also act as a receptor to bind the RBD

of the human coronavirus HKU1 spike protein, inducing its

conformational changes to trigger fusion (101–103), highlighting

the critical role of TTSPs in cross-species transmission.
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3.1.3 Host protease utilization strategies in other
viral families

The utilization of host proteases represents a universal strategy

for both enveloped and non-enveloped viruses during invasion

(Figure 3). Among enveloped viruses, furin, as the core enzyme

mediating the cleavage of HIV gp160, recognizes the conserved R-

X-K/R-R motif in its sequence to cleave gp160 into gp120 and gp41,

thereby activating viral invasion capability (12); meanwhile,

thrombin enhances virus-induced cell fusion by activating HIV

gp120 (104). During the initiation stage of cell fusion in placental

development, the human endogenous retroviruses (HERVs)

envelope protein Syncytin-1 similarly relies on furin cleavage to

activate its fusion function, while Syncytin-2 maintains fusion

activity via processing by the proprotein convertase subtilisin/

kexin type 7 (PCSK7) (105). Filoviruses, such as EBOV, employ a

proteolytic cascade activation strategy for their glycoprotein (GP).

Furin mediates initial cleavage of the GP precursor in the secretory

pathway, and endosomal CTSB/CTSL further trim the GP1 subunit

to expose the human endosomal receptor Niemann-Pick C1

(NPC1) receptor-binding domain (14–17). Studies have

confirmed that TMPRSS2 and CTSL can form a redundant

mechanism to compensate for furin functional defects (106),

highlighting the complexity of host protease networks. The

activation of the fusion (F) protein of paramyxoviruses

universally depends on host proteases. Respiratory syncytial virus

(RSV) requires elastase and proteinase 3 for F protein cleavage
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(107), whereas human parainfluenza virus 3 (HPIV3) and mumps

virus (MuV) utilize trypsin-like proteases or furin (108, 109). In-

depth research reveals that TMPRSS2 and TMPRSS13 in the lung

epithelium can directly cleave the HPIV3 F protein, regulating the

release efficiency of infectious virions (108). Notably, furin cleavage

sites exhibit cross-species conservation within the Paramyxoviridae

family. The F proteins of HPIV3, HPIV5, virulent Newcastle disease

virus (NDV) strains, measles virus (MV), and RSV all contain such

sites (110–115), implying their universal value as key molecular

switches. Structural conservation extends to fusion mechanisms.

The post-fusion core conformations of enveloped viral fusion

proteins—including SARS S, murine hepatitis virus (MHV) S,

EBOV GP2, influenza virus HA2, HIV gp41, and paramyxovirus

F2—exhibit striking homology (116), revealing deep evolutionary

convergence across viral families. This conservation reflects a

shared evolutionary strategy, where host protease activation (e.g.,

furin cleavage, cathepsin trimming) serves as a molecular switch

that triggers conformational rearrangements from metastable pre-

fusion states to stable post-fusion cores, ensuring spatiotemporally

regulated membrane fusion across viral families.

Among non-enveloped viruses, HPV relies on furin-mediated

cleavage of the minor capsid protein L2. The released C-terminal

peptide (L2CT) not only mediates viral genome escape from

endosomes but also recruits the nuclear transport factor

karyopherin alpha2 (KPNA2) to guide DNA across the nuclear

membrane barrier (13, 117). While L2 cleavage-deficient mutants
FIGURE 2

Differences in the host protease-dependent invasion mechanisms of influenza virus and SARS-CoV-2. (A) Influenza virus invades via the endosome-
dependent pathway: Host proteases (e.g., TMPRSS2, cathepsins) cleave the HA, exposing the fusion peptide, which mediates the fusion of the viral
envelope with the endosomal membrane in the acidic endosomal environment. (B) SARS-CoV-2 employs a dual-pathway strategy: On the plasma
membrane surface, furin, TMPRSS2/13, and FXa cleave the S1/S2 or S2’ sites of the spike protein (S), directly triggering immediate fusion between the
viral envelope and the host cell membrane; In the endosomal pathway, CTSL/B cleave the S protein, driving fusion between the viral envelope and
the endosomal membrane.
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do not affect viral attachment and endocytosis, they result in

complete loss of infectivity due to failed nuclear import,

indicating that furin-mediated cleavage of L2 is a critical rate-

limiting step in the HPV infection cycle (118). Within the

Reoviridae family, cleavage of the rotavirus VP4 spike protein by

trypsin significantly enhances its membrane fusion capacity (119).

For reoviruses, the s3 capsid protein requires cleavage by cathepsin

S (CTSS) or CTSL/B to facilitate viral uncoating and genome release

(120, 121). Additionally, neutrophil elastase can promote rotavirus

uncoating and infection in U937 promonocytes, substituting for

CTSL to mediate a non-canonical infection pathway (122).

Enteroviruses may be inactivated through conformational changes

induced by serine proteases, such as subtilisin A, via capsid binding

or direct cleavage, causing viral disintegration (123). Notably,

polyomavirus SV40 employs a distinct strategy in quiescent cells.

It activates host caspase-6 to cleave nuclear lamin A/C, inducing
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transient nuclear membrane deformation and dephosphorylation.

This process establishes a locally softened “nuclear membrane

window” to facilitate direct transport of the viral genome from

the endoplasmic reticulum into the nucleus (124). This finding

reveals a novel pathway by which viruses utilize host proteases to

remodel the nuclear physical barriers. Similarly, the parvovirus

minute virus of mice (MVM) induces caspase-3-mediated cleavage

of the nuclear lamina to form physical pores, promoting capsid

nuclear entry (125). Together, these findings highlight the

innovative evolutionary adaptations of non-enveloped viruses in

the mechanisms of nuclear membrane traversal.

Alphaviruses, such as chikungunya virus (CHIKV), rely on

furin-mediated processing of their envelope protein precursor

E3E2 to form functional E2-E1 heterodimers. The receptor-

binding activity of these heterodimers, together with low pH-

induced conformational instability, collectively drives the viral
FIGURE 3

Multinodal regulation of viral life cycles by host proteases. Viruses such as influenza and SARS-CoV-2 hijack host proteases (e.g., TMPRSS2, furin)
during the stages of entry, replication, assembly, and release, achieving infection through a multi-node regulatory pattern.
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membrane fusion process. Geographic isolation has driven the

evolutionary divergence of protease utilization. African strains

specifically depend on membrane-bound cilia proteases and PC5B

for cleavage of E3E2 at the HRQRR64/ST site, whereas Asian strains

achieve cleavage at the RRQRR64/SI site via membrane-bound/

soluble cilia proteases, PC5A, PC5B, and PACE4. Notably, PC7 and

SKI-1 lack cleavage activity against both strain types (126),

reflecting the adaptive evolution of viruses to regional host

microenvironments. Additionally, hepatitis E virus (HEV) entry

into hepatocytes depends on CTSL-mediated processing of viral

particles and cleavage of the glycosylated ORF2 protein (127),

confirming the universal role of cysteine proteases in the invasion

of enveloped viruses.
3.2 Dynamic regulatory mechanisms of
host proteases in viral replication and
assembly

Host proteases precisely regulate viral replication and assembly

through specific cleavage events, exhibiting multidimensional

coordination and dynamic evolutionary characteristics. During

the viral replication phase, host proteases play a central role in

regulating key processes, such as the activation of viral precursor

proteins and the formation of replication complexes (Figure 3). For

instance, in RNA viruses, the dengue virus NS3 serine protease

requires cooperation with the host serine protease acyl-CoA

thioesterase 2 (ACOT2) to cleave polyproteins for functional

replication complex formation (128). HEV initiates genome

replication through thrombin-mediated cleavage at conserved

sites of the ORF1 polyprotein (129). The caspase-6 cleavage motif

(DTTD/272) in the non-structural protein NS5A of classical swine

fever virus (CSFV) further confirms its regulatory role in viral

replication (130). In DNA virus systems, caspase-mediated cleavage

events exhibit bidirectional regulation of viral replication. Cleavage

of adenovirus 2/12 (Ad2/12) early region 1A (E1A) protein by

caspase-3 results in the loss of transcriptional activation function,

impairing the transcriptional program necessary for efficient

replication (27). In contrast, removal of the nuclear localization

sequence from the NS1 protein of Aleutian mink disease parvovirus

(AMDV) by caspase-3 promotes the cytoplasmic transport of

ribonucleoprotein complexes, facilitating replication-related

processes (131). These findings reveal the multi-target regulatory

characteristics of host proteases in the viral replication process.

During virus assembly, host proteases primarily exert precise

regulation by mediating the modification and maturation of viral

structural proteins. The nucleocapsid protein (N) of transmissible

gastroenteritis virus (TGEV) and IAV loses its genome-binding

capacity after caspase-6/7 cleavage, resulting in a dramatic decrease

in infectious virus particle yield (132, 133); the human astrovirus

type 8 (HAstV-8) ORF2 polyprotein is specifically cleaved by

trypsin to generate functional fragments that participate in capsid

assembly and replication, respectively (134). Notably, protease

processing strategies are viral species-specific. HIV-1 promotes

the exposure of the gp41 fusion domain and the correct assembly
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of Env proteins through TL2 serine protease-mediated cleavage of

the gp120 V3 loop (79). While furin/PC protease processing of the

Crimean-Congo hemorrhagic fever (CCHF) glycoprotein precursor

produces the GP38 glycoprotein, which may optimize the viral

assembly environment through membrane remodeling mechanisms

(135, 136). Furin cleavage of the RSV F protein is not essential for its

transport but can significantly enhance viral particle assembly

efficiency (137), highlighting their precise regulation of viral

morphogenes is . In addi t ion, caspase-3 mediates the

nuc leocy top la smic t ranspor t o f the influenza v i rus

ribonucleoprotein complex (RNP), and its inhibition leads to

RNP retention in the nucleus and triggers assembly defects. The

enzyme cleaves the nuclear lamina protein Lamin A/C via a non-

apoptotic pathway, remodels the nuclear membrane structure to

facilitate RNP transport to the cytoplasm, and provides key

components for viral particle assembly (138), further confirming

the multifaceted regulatory mechanism of host proteases in

viral morphogenesis.

The host-virus interaction network at the protease level is

characterized by dynamic interplay and coevolution. Host factors,

such as TRAB domain-containing protein 2A (TRABD2A), can

inhibit viral assembly by degrading the Gag protein of HIV-1 (139),

while the primate-specific restriction factor FAM111B inhibits the

replication of mouse cytomegalovirus (MCMV) in human cells by

enriching in viral replication regions—a restriction stemming from

the fact that MCMV has not evolved strategies against family with

sequence similarity 111 member B (FAM111B) in its natural hosts

(rodents) (140). Studies on cross-species transmission reveal that

viruses can actively utilize host proteases to break through barriers.

The conserved cleavage of HEV pORF1 by thrombin and FXa is a

key basis for its ability to cross host boundaries (141). Tick-borne

encephalitis virus (TBEV) reorganizes the membrane system by

relocating host ADAM15 protease to its replication region, thereby

optimizing its own replication environment (142). Such adaptive

strategies frequently drive systematic mutations in the cleavage sites

of viral proteases.
3.3 Diverse regulatory mechanisms of host
proteases in viral release and transmission

Host proteases profoundly enhance viral particle release and

transmission efficiency through precise regulation of viral

maturation and microenvironment remodeling (Figure 3). The

core function of furin is evolutionarily conserved across viral

families during terminal maturation. For example, furin-mediated

cleavage of HIV gp160 enhances viral particle infectivity and

induces conformational rearrangements to evade neutralizing

antibodies (28, 29); flaviviruses (e.g., DENV and ZIKV) require

furin cleavage of prM to M protein for mature particle formation,

though incompletely cleaved immature particles retain infectivity

via non-canonical entry pathways that exacerbate disease severity

(30). While Borna disease virus (BDV) glycoprotein (GP, encoded

by ORF-IV) strictly depends on site-specific furin cleavage at

Arg249 to maintain bioactivity (143). These collective
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mechanisms underscore how proteolytic processing fine-tunes viral

dissemination strategies across diverse species.

Viral cell-to-cell transmission involves a more extensive

proteolytic regulatory network. Although furin cleavage of

pseudorabies virus glycoprotein B (gB) is dispensable for in vitro

viral replication, it remains critical for mediating membrane fusion

and syncytium formation (144, 145). MMP-9 significantly enhances

HIV cell-to-cell transmission by degrading extracellular matrix

components (47). Additionally, caspase family members play

pivotal roles in facilitating viral release. They cleave the human

astrovirus capsid precursor VP90 to form mature capsids, thereby

promoting viral release (146); while they dissolve cytoplasmic

inclusion bodies maintained by Avian reoviruses (ARVs) mmNS
protein to expel mature particles (147). Collectively, these diverse

mechanisms highlight the intricate deep coevolutionary

relationship between viruses and the host protease system.
3.4 Host protease regulatory networks in
immune response and evasion

Host proteases construct multidimensional regulatory networks

spanning molecular cleavage to systemic immunity during viral

immune responses and evasion strategies (Table 2). Viruses achieve

immune evasion by hijacking the protease activity. For instance,

influenza viruses employ TMPRSS2 not only to enhance viral

membrane fusion efficiency, but also to promote vascular

permeability by activating the “influenza virus-cytokine-trypsin”

cycle. The upregulated trypsin and pro-inflammatory cytokines

exacerbate tissue destruction and immune suppression, enabling

the virus to evade immune clearance and continue to replicate

(148). Similarly, cathepsin G (CTSG) recruits monocytes/

macrophages to inflammatory sites during HIV-1 infection and

heightens their viral susceptibility, establishing a positive feedback

loop (25). Conversely, the host has evolved protease-based antiviral

defenses—neutrophil serine proteases (NE/PR3/CTSG) directly

cleave the SARS-CoV-2 spike protein to block viral entry (149),

while myeloid-specific serine proteases interfere with NF-kB
activation by processing its p65 subunit, thereby inhibiting critical

HIV replication processes (24). This bidirectional protease warfare

underscores the evolutionary arms race at the host-

pathogen interface.

The precise regulation of host protease activity by host factors

constitutes a critical mechanism in antiviral defense. Interferon-

induced guanylate binding proteins (GBPs, such as GBP2 and

GBP5) inhibit furin and PCSK family activity, impeding the

maturation of viral envelope glycoprotein precursors, including

HIV-1 gp160, and significantly reducing the infectivity of various

viruses, including HIV-1, ZIKV, MV, and IAV (150). Alpha-soluble

NSF attachment protein (a-SNAP) binds to the P-domain of furin,

inhibiting cleavage of the SARS-CoV-2 spike protein and other

furin-dependent viral glycoproteins (151). Members of the serine

protease inhibitor superfamily (SERPIN) also play essential roles,

alpha (1)-antitrypsin (A1AT) inhibits TMPRSS2 and ADAM17,

blocking SARS-CoV-2 spike protein activation and ACE2 shedding
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(152–154), while plasminogen activator inhibitor-1 (PAI-1)

regulates fibrinolysis and additionally inhibits the enzymatic

activity of proteases including FXIIa and TMPRSS2 (155).

Furthermore, cystatin C (CST3) competitively inhibits the activity

of CTSB/CTSL through its N-terminal region, while its dimer form

enhances CTSB activity by binding to a structure-specific allosteric

pocket of CTSB (156). Interleukin-1b (IL-1b) activates ADAM17

through phosphorylation (157). Collectively, these regulatory

networks of host factors over protease activities profoundly

influence viral infection processes.

The functions of host proteases frequently exhibit tissue- and

cell-compartment specificity, and profoundly influence systemic

immune responses. In renal cells, SARS-CoV-2 evades the

inhibitory effect of the host restriction factor nuclear coactivator 7

(NCOA7) via a TMPRSS2-mediated non-endosomal pathway

(158). Conversely, when SARS-CoV-2 infects human bronchial

epithelial cells, it induces ST14/TMPRSS11D to activate

prothrombin, triggering acute fibrin deposition (159). At the

systemic level, SARS-CoV-2 activates the NETs-PAD-4 pathway

to induce lung epithelial cell death (22), whereas dengue virus is

directly linked to imbalances in the coagulation-fibrinolytic system

through a metalloproteinase-mediated vascular leakage mechanism

(160). Moreover, the degree of coagulation and fibrinolytic

activation induced by it is positively correlated with disease

severity (161).

The matrix metalloproteinase (MMP) family exhibits complex

and differentiated functions in viral immunomodulation. In HBV

infection, MMP-9 promotes viral replication and hepatic fibrosis by

inhibiting interferon signaling (46). RSV infection efficiently

stimulates MMP-9 expression in vivo and in vitro (162), while

disruption of the MMP-9/TIMP-1 balance drives airway

remodeling—a key pathogenic feature of chronic pulmonary

fibrosis (163). In a neuroinvasive model, mouse adenovirus

(MAV-1) activates microglial MMP-2/MMP-9 to disrupt the

blood-brain barrier, representing a critical pathological

mechanism underlying encephalitis development (164). Studies

on MHV infection further revealed that increased viral replication

during lethal infection is closely associated with significantly

elevated expression levels of MMPs, TIMPs, and chemokine genes

(165). Conversely, MMP-3 exerts broad-spectrum antiviral activity

against vesicular stomatitis virus (VSV), H1N1, and HSV-1 through

NF-kB signaling potentiation via nuclear translocation, while

simultaneously enhancing anti-dengue immune responses

(23, 166).

Complement system regulation represents another critical

battleground for viral immune evasion. Aberrant interactions

between the mannose-binding lectin-associated serine protease 2

(MASP-2) and the SARS-CoV-2 N protein drive complement

hyperactivation, fueling cytokine storms and multiorgan damage

—a mechanism particularly prominent in severe COVID-19 (167).

Conversely, the high-temperature requirement protein A2 (HtrA2/

Omi) effectively limits cytomegalovirus (CMV) spread by triggering

apoptotic pathways through cleavage of key viral or host proteins

(26). Long-term host-virus coevolution has forged dynamic

equilibria in proteolytic cleavage sites. ADAM17, a pivotal
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TABLE 2 Immune regulatory functions of host proteases in viral infections.

Effect
direction

Related viruses Targeting significance References

Defense SARS-CoV-2 Block early infection (149)

Damage SARS-CoV-2 Mitigate severe organ injury (167)

Bidirectional HBV, RSV Anti-fibrotic therapy (46, 162, 163)

Damage DENV Reduce hemorrhagic fever (160)

Damage MAV-1 Prevent encephalitis (164)

Damage RABV Protect the neural barrier (170)

Damage RSV Block airway remodeling (171)

Evasion HIV-1 Prevent “infectious niche” formation (25)

Damage SARS-CoV-2 Alleviate acute lung injury (95–97)

Defense BVDV/CSFV Block viral cross-species transmission (168)

Evasion HCMV Block immune evasion (169)

Damage Influenza virus Prevent multi-organ failure (148)

Damage SARS-CoV-2 Alleviate damage (159)

Defense VSV, H1N1, DENV Broad-spectrum immune enhancer (23, 166)

Defense MCMV
Target for cross-species transmission

barrier
(140)

Defense CMV Pro-apoptotic antiviral strategy (26)
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Protease Immunological mechanism

Neutrophil elastase Cleave viral spike proteins to block cellular entry

MASP-2 Activate complement system causing cytokine storm

MMP-9

Suppress IFN signaling + Promote fibrosis

Enhance vascular endothelial permeability

Disrupt the blood-brain barrier

MMP-8 Degrade tight junction proteins to disrupt the blood-brain barrier

MMP-10 Upregulate NF-kB/JAK-STAT dual pathways and degrade extracellular matrix

CTSG Recruit infection-promoting immune cells

ADAM17

Mediate ACE2 shedding to promote viral endocytosis, associated with inflammatory
damage

Key attachment factor

Stabilize immune receptors and inhibit antiviral responses

TMPRSS2 Induce cytokine storm cycle

TMPRSS11D Activate prothrombin, triggering acute fibrin deposition

MMP-3
Nuclear translocation enhances NF-kB signaling, promoting antiviral cytokine

secretion

FAM111B Enrich in viral replication regions, restricting MCMV replication in human cells

HtrA2/Omi Cleavage of viral proteins triggers apoptosis, restricting viral spread

“-” represents “unidentified.” BVDV, Bovine Viral Diarrhea Virus; RABV, Rabies Virus.
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immunoregulatory node, plays essential roles in host defense

aga ins t pes t iv i ruses (168) , whi le be ing targe ted by

cytomegaloviruses to remodel the cell surface proteome (169).

Neuroinvasive viruses exploit MMP-8 to degrade tight junctions

in the blood-brain barrier (170), whereas RSV infection induces

MMP-10 expression in nasal epithelial cells and modulates the

immune microenvironment through NF-kB/JAK-STAT crosstalk

(171). These mechanisms collectively demonstrate how viruses

ach ieve immune microenv i ronment remode l ing v ia

multidimensional regulation of proteolytic networks.
4 Antiviral intervention strategies
targeting host proteases: from single-
target inhibition to multidimensional
synergistic regulation

Compared with the drug resistance challenges posed by high-

frequency mutations in viral genomes, host proteases, due to the

high genetic stability of their encoding genes, emerge as highly

attractive targets for developing host-directed antiviral drugs

(HADs). This approach significantly mitigates risks of viral escape

mutations. Furthermore, inhibitors targeting host proteases

generally exhibit broad-spectrum antiviral potential, providing a

feasible approach to combat multiple viral infections. With the

deepening understanding of the viral infection complexity and

immune evasion mechanisms, intervention strategies targeting

these critical regulatory nodes in the viral life cycle are

dynamically evolving from traditional single-target inhibition to

multidimensional synergistic regulation.
4.1 Continuous advancement in single-
target inhibition research

Currently, research on single-target inhibitors targeting key

host proteases continues to deepen. Small-molecule inhibitors

remain the primary focus due to their favorable drugability and

high maturity in development. In the field of targeting

transmembrane serine proteases, the TMPRSS2 inhibitor

nafamostat (Figure 4A) blocks 93% of SARS-CoV-2 plasma

membrane invasion but exhibits limited inhibitory effects on

TMPRSS4-dependent MERS-CoV (20, 172). The new-generation

inhibitor N-0385, with low nanomolar potency, effectively inhibits

the invasion of variants, including Omicron (173, 174). While

nafamostat mesylate can reduce viral load in murine lungs (175),

its clinical efficacy is limited by rapid cleavage and inactivation by

TMPRSS11D (176). Other broad-spectrum serine protease

inhibitors, such as 4-(2-aminoethyl) benzenesulfonyl fluoride

(AEBSF) and N-alpha-tosyl-L-phenylalanyl chloromethyl ketone

(TPCK), can inhibit RSV infection, among which AEBSF acts

primarily at the early stage of viral entry (177). Structurally

optimized HAT serine protease inhibitors (e.g., compound 15, Ki

= 15 nM) enhance selectivity through novaricine modification,
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thereby effectively inhibiting influenza virus replication (178).

Additionally, basic phenylalanine analogs reduce the titers of

West Nile virus (WNV) and DENV by 10,000-fold via plasmin

inhibition (179).

Classical cysteine protease inhibitors targeting CTSL

demonstrate broad-spectrum antiviral efficacy. In vitro models,

inhibitors E64d (Figure 4B) and Z-FY-CHO effectively suppress

SARS-CoV-2 pseudovirus infection (20, 83, 180, 181), while the

broad-spectrum inhibitor K11777 exhibits potent inhibitory activity

against HEV, with an EC50 of approximately 0.02 nM (127). In vivo,

rotavirus capsid disassembly strictly depends on CTSL, and

treatment with the inhibitor Z-Phe-Tyr(t-Bu)-diazomethyl ketone

causes drastic viral yield reduction (121). Additionally, amantadine,

an anti-influenza drug, blocks SARS-CoV-2 infection by inhibiting

CTSL activity (87), while the natural product gallinamide A and its

analogs also exhibit potent antiviral activity (182).

Furin inhibitor development has achieved significant advances

across multiple fronts. The competitive inhibitor dec-RVKR-cmk

can block F protein cleavage and viral budding of RSV (137), while

exerting anti-SARS-CoV-2 activity by inhibiting spike protein

cleavage and syncytium formation (183), though it is ineffective

against filoviruses (184). This compound additionally suppresses

flavivirus release without affecting RNA replication (185). In terms

of allosteric inhibitors, cypermethrin exhibits broad-spectrum

activity against drug-resistant SARS-CoV-2 by binding to a novel

allosteric pocket (186), while the reversible inhibitor MI-1851

reduces viral load by 190-fold (83, 187). It is worth noting that

protease inhibitors designed based on the (3,5-dichlorophenyl)

pyridine skeleton (Figure 4C) exhibit high potency and antiviral

activity against SARS-CoV-2 at the cellular level (188), providing

new insights for broad-spectrum antiviral treatment. The natural

product luteolin inhibits furin in a non-competitive manner and

significantly reduces DENV viremia in vivo (189). Emerging

approaches explore novel paradigms. Targeting the off-state of

furin opens new avenues for the design of selective inhibitors

(190). Decanoyl-RVKR-CMK effectively blocks E3E2 precursor

cleavage by CHIKV (30). And furin conformation provides new

opportunities for structure-based drug discovery (186),

demonstrating the feasibility of developing customized inhibitors

for specific viruses.

In addition to small-molecule inhibitors, peptide-based

compounds, endogenous regulatory factors, and biologics serve as

vital complements to single-target inhibition strategies due to their

targeting specificity and biocompatibility advantages. In peptide

inhibitor research, polyarginine repeat sequences function as

competitive inhibitors of furin substrate cleavage, effectively

inhibiting HIV infection by blockade of gp160 protein processing

(191). Peptides P9 and P9R significantly reduce SARS-CoV-2 viral

load in hamster models by impairing CTSL activity (192, 193). The

TMPRSS13 peptidomimetic inhibitor N-0430 blocks SARS-CoV-2

pseudovirus entry (194), while the caspase-6 inhibitor Z-VEID-

FMK alleviates pathological damage in SARS-CoV-2 and MERS-

CoV animal models (195). Recombinant applications of

endogenous inhibitors demonstrate substantial progress.

Interferon-induced GBP5 protein inhibits furin activity, markedly
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reducing infectivity of multiple pathogens, including HIV-1, Zika

virus (ZIKV), MV, and IAV (150). Serpin family B member 8

(Serpin B8, also known as PI8 and CAP2) binds to and inhibits the

proprotein convertase furin (28). Furthermore, a-SNAP suppresses

furin-dependent viral glycoprotein cleavage through binding to the

furin P-domain (149). In the field of biologics, nanobodies exhibit

exceptional advantages due to their high specificity. The anti-

TMPRSS2 nanobodies inhibit the enzymatic activity of TMPRSS2

and hinder HKU1 pseudovirus entry using S441A TMPRSS2 (101).

Dromedary heavy-chain-derived nanobodies specifically inhibit the

catalytic activity of furin, blocking its cleavage of two critical

substrates, transforming growth factor beta (TGFb) and glypican-

3 (GPC3) (196).
4.2 Translational breakthroughs in inhibitor
synergy strategies

Multi-target synergistic strategies are overcoming the limitations of

single-inhibitor therapies. Clinical studies have shown that the

TMPRSS2 inhibitor N-0385, when combined with the antiviral drugs

remdesivir or nirmatrelvir, exhibits broad-spectrum synergistic activity

against Omicron subvariants (174). In chronic hepatitis B treatment,

entecavir coupled with furin inhibitors concurrently suppresses viral

replication and hepatitis B e antigen (HBeAg) secretion (197).

Spironolactone enhances antiviral effects by antagonizing TMPRSS2/

ADAM17 to reduce soluble ACE2, synergizing with DPP-4 inhibitors

to improve clinical outcomes in COVID-19 patients (198).

Additionally, xanthan gum combined with camostat significantly

enhances anti-influenza virus potency (199). Mechanistic studies

further confirmed that non-toxic furin inhibitors combined with

TMPRSS2 inhibitors block 95% of lung cell infections (200),

demonstrating the translational potential of inhibitor synergy

strategies in multistep blockade of viral invasion.
4.3 Innovative waves in multi-target drug
development

Dual- and multi-target therapeutics are spearheading novel

antiviral strategies. Compound BAPA exhibits an EC50 of 0.3 mM
Frontiers in Immunology 14
against H1N1 by inhibiting HAT/TMPRSS2 (201). The tri-targeting

peptidomimetic MM3122 simultaneously inhibits TMPRSS2,

matriptase, and hepsin, maintains sub-nanomolar potency against

the SARS-CoV-2 EG.5.1 variant, and significantly attenuates

pulmonary edema in mice (202). Delivery system innovations

propel the development of bispecific compound 212-148, which

simultaneously inhibits TMPRSS2 and CTSL/CTSB (203), with

nanoerythrocyte carriers substantially enhancing delivery

efficiency (204). Diazoxide inhibits TMPRSS2/furin (IC50=1.35/

13.2 mM), while compound MI-1148 blocks transmission of

highly pathogenic avian influenza (HPAI) and canine distemper

virus by targeting PC1/3 (205). Notably, the mechanisms of action

of protease inhibitors nafamostat and camostat may extend beyond

TMPRSS2 inhibition itself, involving coagulation cascade-induced

cleavage of spike proteins. Given the centrality of anticoagulation

management in COVID-19 therapy, early intervention may provide

synergistic benefits by blocking viral entry (89).

Structure-guided design has achieved pivotal breakthroughs.

The a-ketoamide inhibitors 14a/14b exhibit potent broad-

spectrum anti-coronaviral activity through covalent binding to

CTSL and calpain-1 (CAPN1), achieving exceptional potency

against SARS-CoV-2 variants (EC50 as low as 0.80 nM) (206).

The natural product omicsynin B4 demonstrates pan-coronaviral

activity against human coronavirus 229E (HCoV-229E), human

coronavirus OC43 (HCoV-OC43), and SARS-CoV-2 prototype/

variants by dual blockade of CTSL/TMPRSS2 (207). At the level of

respiratory protease regulation, influenza HA activation mediated

by human eosinophils and DESC1 (but not TMPRSS11A) is

specifically inhibited by hepatocyte growth factor activator

inhibitor 1 (HAI-1) (66). The endogenous regulator serine

protease inhibitor Kazal‐type 6 (SPINK6) inhibits HAT/KLK5 to

restrict influenza virion maturation (208), while dichlorobiphenyl-

containing matriptase inhibitors achieve ultrahigh potency (Ki < 3

nM) through chemical optimization, demonstrating exceptional

thrombin selectivity and concentration-dependent inhibition of

H9N2 viral replication in MDCK(II) cells (209). Among

matriptase/TMPRSS2 inhibitors evaluated by Gamba, D. et al.,

MI-463 and MI-1900 exhibit antiviral effects against H1N1/H9N2

at concentrations of 20-50 μM, suggesting that they block viral

entry by inhibiting host protease-mediated cleavage (210). The oral

dual-target drug olgotrelvir, which simultaneously inhibits SARS-
FIGURE 4

Active site binding modes of host protease-inhibitor complexes. Three-dimensional structures of (A) TMPRSS2-nafamostat (PDB: 7MEQ), (B) CTSL-
E64d (PDB: 8HET), and (C) furin in complex with dichlorophenylpyridine-based inhibitor 3 (DBI3, PDB: 7QXY) are shown. Inhibitors (green) targetedly
insert into the active sites of proteases, forming key interactions with catalytic residues and surrounding amino acids (e.g., Ser441 in TMPRSS2, Cys25
in CTSL, Asp154 in furin) via hydrogen bonds and hydrophobic interactions. The catalytic centers are highlighted in magenta.
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CoV-2 Mpro and CTSL, has emerged as a new paradigm for clinical

translation (211).
4.4 Translational challenges and cutting-
edge strategies

Despite extensive development of host protease inhibitors

demonstrating antiviral potential in preclinical models, few have

successfully transitioned to clinical application. The current

translational bottlenecks primarily stem from three key

challenges. First, host compensatory escape—viruses can not only

bypass inhibition by activating functionally redundant host

proteases, such as SARS-CoV-2 switching from TMPRSS2-

dependent entry to CTSL-mediated invasion pathways (85–87);

they can also utilize their own encoded proteases to compensate for

critical functions. For instance, HCV relies solely on its NS3/4A

serine protease with NS4A as a cofactor to independently cleave

viral polyproteins (212). Similarly, DENV requires its NS3 protease

—an essential component for nonstructural protein hydrolysis—

which functions with its own NS2B cofactor (213). Meanwhile,

SARS-CoV-2 processes polyproteins pp1a and pp1ab through its

Mpro to generate 16 mature nonstructural proteins (nsp1-nsp16),

which collectively form the replication/transcription complex that

provides core support for viral replication (214). Second, off-target

toxicity—broad-spectrum inhibitors (e.g., camostat) inhibit

TMPRSS2 while interfering with proteases involved in

coagulation, inflammation, and blood pressure regulation,

significantly increasing the risk of serious adverse events in

clinical treatment groups (215); third, tissue delivery obstacles—

small-molecule inhibitors struggle to penetrate specific

compartments (e.g., inactivation in the acidic lysosomal

environment, blockage by the blood-brain barrier).

It is noteworthy that multi-target synergistic strategies aimed at

enhancing antiviral efficacy, such as dual-target proteolysis-

targeting chimera (PROTAC) degraders, may increase off-target

risks due to the expanded range of target molecules. Current

research seeks breakthroughs through two precision-optimized

design approaches. One leverages spatial precision by confining

activity release ranges using tissue-microenvironment-responsive

carriers (216), while another employs conformational precision

through allosteric site engineering to selectively engage inactive

states of host proteases, thereby enhancing specificity (217). These

approaches pave a critical pathway for balancing synergistic

potency and safety. Thus, developing novel inhibitors with high

selectivity, resistance barriers, and microenvironmental adaptability

has become an urgent need to address the challenges of viral

evolution. Cutting-edge strategies focus on three breakthroughs.

One is the exploration of allosteric inhibitory sites (e.g., targeting

furin exosite-III). Another is the design of dual-target PROTAC

degraders (e.g., simultaneous degradation of TMPRSS2/CTSB). The

third is the development of smart responsive nanocarriers (e.g., pH-

sensitive liposomes loaded with cystatin C targeting endosomes).
Frontiers in Immunology 15
5 Conclusion

Viral infections can trigger various severe diseases, such as

pneumonia, meningitis, hepatitis, and cardiovascular diseases, posing

a significant threat to human health. The regulatory role of host

proteases in viral infections has transcended traditional

understanding. As one of the core dynamic hubs in the virus-host

interaction network, these enzymes not only directly drive critical

processes, including viral entry, replication, and immune evasion, but

also profoundly reshape infection progression through spatiotemporal

activity regulation. Viruses typically hijack host protease activity to

facilitate infection, with their specificity and activity directly

determining viral pathogenicity. Research has elucidated three core

viral evolutionary strategies enabling cross-species transmission—

hijacking tissue-enriched proteases (e.g., TMPRSS2 in respiratory

epithelial cells); inducing abnormal activation of microenvironment

proteases (e.g., inflammation-driven MMP-9 overexpression); and

optimizing adaptability of cleavage sites (e.g., the PRRA motif in the

SARS-CoV-2 S protein). These mechanisms provide molecular

foundations for understanding viral pathogenicity variations. In

therapeutic development, host protease targeting is transitioning

from single-inhibition approaches toward multidimensional

synergistic paradigms. Innovative designs, including dual-target

PROTAC degraders, allosteric inhibitors, and intelligent delivery

systems, mark a significant turning point in the field. However,

clinical translation encounters three persistent challenges—host

compensatory escape mechanisms, off-target toxicity, and delivery

barriers. Future breakthroughs require a focus on space-

conformation precision technologies, such as employing

microenvironment-responsive carriers to restrict active compound

distribution or designing selective binding to inactive states of

proteases based on allosteric sites, thereby balancing efficacy with

physiological safety.

Looking forward, host protease-targeted therapy progress will

focus on three interconnected dimensions. At the mechanism-

elucidation level, cryo-EM and molecular dynamics simulations

reveal dynamic conformational changes of protease-substrate

complexes (e.g., the transient intermediates formed during furin

cleaves the S protein), providing atomic-resolution blueprints for

allosteric inhibitor design. At the technological development level,

an AI-driven multi-target degradation agent screening for multi-

target degraders integrates, host proteomics and viral evolution data

to predict optimal target combinations (e.g., the combined

intervention of TMPRSS2 and CTSL). At the clinical translation

level, it requires establishing tiered organoid-animal model

evaluation systems to assess tissue-specific toxicity in human-

mimetic microenvironments (e.g., the long-term consequences of

prostate TMPRSS2 suppression), alongside exploring sequential

therapies against viral escape. The paramount value of these

advances lies not only in significantly reducing the risk of target

mutation-driven drug resistance—the genetic stability of host

proteases makes them an “anchor” for controlling highly variable

viruses (such as HIV and DENV)—but also in providing broad-
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spectrum countermeasures for emerging viral outbreaks. From

respiratory to neuroinvasive viruses, host protease-targeting

strategies are transforming antiviral development paradigms.

Realizing this vision demands deep integration of virology,

structural biology, and nanomedicine. Consequently, developing

novel intervention strategies targeting host proteases holds broad

application prospects and significant research value in the field of

antiviral therapy.
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Glossary

a-SNAP alpha-soluble NSF attachment protein
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A1AT alpha (1)-antitrypsin
ACOT2 acyl-CoA thioesterase 2
ADAM17 a disintegrin and metalloproteinase 17
Ad2/12 adenovirus 2/12
AEBSF 4-(2-aminoethyl) benzenesulfonyl fluoride
AMDV Aleutian mink disease parvovirus
ARVs Avian reoviruses
Asp aspartic
b-NGF b-nerve growth factor
BDV Borna disease virus
CAPN1 calpain-1
CCHF Crimean-Congo hemorrhagic fever
CHIKV chikungunya virus
CMV cytomegalovirus
COVID-19 coronavirus disease 2019
cryo-EM cryo-electron microscopy
CSFV classical swine fever virus
CST3 cystatin C
CTSB cathepsin B
CTSD cathepsin D
CTSG cathepsin G
CTSL cathepsin L
CTSS cathepsin S
DENV dengue virus
DESC1 differentially expressed in squamous cell carcinoma gene 1
DPP4 dipeptidyl peptidase 4
E166V Glu166Val
E1A region 1A
EBOV Ebola virus
ENaC epithelial sodium channel
FAM111B family with sequence similarity 111 member B
FluV influenza virus
Fxa coagulation factor Xa
gB glycoprotein B
GBPs guanylate binding proteins
GP glycoprotein
GP1 glycoprotein 1
GPC3 glypican-3
H1N1 hemagglutinin 1 neuraminidase 1
HA hemagglutinin
HADs host-directed antiviral drugs
HAI-1 hepatocyte growth factor activator inhibitor 1
HAstV-8 human astrovirus type 8
HAT human airway trypsin-like protease
HBeAg hepatitis B e antigen
HBV hepatitis B virus
ogy 22
HCV hepatitis C virus
HCoV-229E human coronavirus 229E
HCoV-HKU1 human coronavirus HKU1
HCoV-OC43 human coronavirus OC43
HE hemagglutinin-esterase
HERVs human endogenous retroviruses
HEV hepatitis E virus
HIV human immunodeficiency virus
HPIV3 human parainfluenza virus 3
HPV human papillomavirus
ICV Influenza C virus
IL-1b interleukin-1b
KPNA2 karyopherin alpha2
L2 late protein 2
MASP-2 Mannose-binding lectin-associated serine protease 2
MAV-1 mouse adenovirus
MCMV mouse cytomegalovirus
MHV murine hepatitis virus
MMP matrix metalloproteinase
MMP-2 matrix metalloprotease-2
MMP-9 matrix metalloprotease-9
MuV mumps virus
MV measles virus
MVM minute virus of mice
NCOA7 Nuclear receptor coactivator 7
NDV Newcastle disease virus
NPC1 the human endosomal receptor Niemann-Pick C1
PAI-1 plasminogen activator inhibitor-1
PCSK7 proprotein convertase subtilisin/kexin type 7
PEDV porcine epidemic diarrhea virus
pro-OCN pro-osteocalcin
PROTAC proteolysis-targeting chimera
RBD receptor-binding domain
RNP ribonucleoprotein
RSV Respiratory syncytial virus
SADS-CoV swine acute diarrhea syndrome coronavirus
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SERPIN serine protease inhibitor superfamily
SPINK6 Serine protease inhibitor Kazal‐type 6
TBEV tick-borne encephalitis virus
TGFb transforming growth factor beta
TGEV transmissible gastroenteritis virus
TMPRSS transmembrane serine protease
TPCK N-alpha-tosyl-L-phenylalanyl chloromethyl ketone
TRABD2A TRAB domain-containing protein 2A
TTSP type II transmembrane serine protease
VSV Vesicular Stomatitis Virus
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