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Metabolic regulation of
Th9 cell differentiation:
insights for IL-9-driven diseases
Swetha Peesari and Jeremy P. McAleer*

Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington,
WV, United States
Th9 cells are a CD4 T cell subset that produces interleukin-9 (IL-9), a pleiotropic

cytokine implicated in allergies, autoimmunity and cancer. Defining the cellular

effects of IL-9 and factors regulating its expression are essential for fully

understanding its roles in immunity and disease. IL-9 acts on a variety of

immune and non-immune cells through a heterodimeric receptor composed

of IL-9Ra and the common gamma chain. In CD4 T cells, IL-9 promotes mTOR

activation, aerobic glycolysis, proliferation and reinforces its own expression.

Additional cellular effects include mast cell activation, B cell antibody production

and anti-tumor immunity. These biological activities are complemented by

recent studies that expand our understanding of Th9 differentiation beyond

canonical cytokine and transcription factor pathways. Notably, glycolytic

reprogramming and fatty acid metabolism have emerged as key regulators of

IL-9 production, mediated through the activities of mTOR, PPAR-g and acetyl-

CoA carboxylase 1 (ACC1). mTOR-driven aerobic glycolysis is essential for Th9

cell differentiation, supporting survival, proliferation, and IL9 expression through

HIF-1a activation. In contrast, ACC1 suppresses IL-9 through fatty acid synthesis,

which enhances RARa-mediated transcriptional repression. PPAR-g appears to

have dual functions: it promotes IL-9 production by increasing glucose uptake

and activating mTOR, but reduces IL-9 in response to synthetic agonists that may

increase fatty acid uptake. Overall, these findings highlight critical roles for

metabolic regulators in Th9 responses and suggest that targeting these

pathways may offer new therapeutic strategies for IL-9-driven diseases.
KEYWORDS

Th9 cells, interleukin-9 (IL-9), allergies, autoimmunity, cancer, MTOR activation,
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Introduction

IL-9 was identified in 1988 as a T helper cell growth factor produced in mitogen-

stimulated cultures (1). Originally named P40, IL-9 has 126 amino acids and an unmodified

molecular weight of 14 kDa, with post translational glycosylation further increasing the

weight to 40kDa (2, 3). Human IL-9 shares 56% amino acid similarity to its murine

counterpart (4), with cytokines in both species sharing similar functions. In vitro, IL-9
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induces the proliferation and activation of IL-4 responsive CD4+

helper T cells and mast cells (1, 5), although it may also suppress

lymphocyte proliferation under some conditions (6). On the other

hand, IL-9 was not observed to stimulate cytotoxic CD8+ T cells, B

cells or myeloid cells (7). In vivo, several inflammatory conditions

induce IL-9, including asthma, atopic and contact dermatitis, food

allergies and bacterial infections (8–10). These studies and others

stimulated interest in identifying cellular sources of IL-9 and the

mechanisms regulating its production.
Cytokine regulation of Th9 cell
differentiation

CD4 T cells are the best characterized cell type that produces IL-

9, although other cells including mast cells and NKT cells are also

capable (11). In 1994, naïve CD4 T cell activation with TGF-b and

IL-4 was shown to induce the differentiation of a novel subset later

named Th9 (12). Subsequent studies demonstrated indispensable

roles for STAT6 and GATA3 in the ability of IL-4 to enhance IL-9

production from T cells treated with TGF-b (13, 14). This was

associated with IL-4 suppressing the Treg differentiation factor

Foxp3 following TGF-b treatment. On the other hand, IL-10 was

expressed at similar levels in murine Th2 and Th9 cells (13). The

precise role of GATA3 was not immediately clear: although Th9 cells

express negligible levels of the canonical Th2 transcription factor,

GATA3 deficiency abrogates IL-9 production. This suggests GATA3

is involved in the early transition of Th2 to Th9 cells prior to its

downregulation by TGF-b (13). GATA3 deficiency also increases

Foxp3 expression in the presence of TGF-b, highlighting

antagonistic functions for these transcription factors. Human Th9

cells share similar differentiation requirements as their murine

counterparts, although GATA3 and Foxp3 appear to be expressed

at higher levels (15). Other transcription factors involved in Th9

differentiation include PU.1, IRF4, AP1 and NF-kB (7). PU.1

suppresses Th2 cytokines and increases IL-9 production by

promoting histone acetylation at the Il9 locus (16). IRF4

contributes to Th9, Th2 and Th17 differentiation (7, 17). Both Th2

and Th17 differentiation conditions can induce IL-9 production

from murine CD4 T cells (18). Overall, the coordinated action of

multiple transcription factors supports IL-9 production in Th9 cells,

which have been classified as a subset of Th2 cells (19). While IL-4

and TGF-b are essential for IL-9 induction, other cytokines have

been identified that either increase (e.g. type I IFNs, IL-1b, IL-2, IL-6,
IL-9, IL-10, IL-12, IL-21, IL-25) or decrease (e.g. IFN-g, IL-23, IL-27)
IL-9 production from CD4 T cells (7, 14, 15). In addition to Th9

cells, other TGF-b-dependent subsets (e.g. Th17, Tregs) are capable
of IL-9 production (18, 20), indicating a degree of functional overlap

among these populations.
Cellular effects of IL-9

IL-9 signals through a heterodimeric receptor composed of IL-9

receptor alpha (IL-9Ra) and the common gamma chain (gc), the
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latter of which is shared with receptors for IL-2, IL-4, IL-7, IL-15

and IL-21. Thus, IL-9 responsiveness is restricted to cells expressing

both subunits, including lymphocyte subsets and mast cells.

Inflammatory conditions can broaden IL-9 responsiveness in

other populations (e.g. antigen presenting cells and epithelial

cells) by upregulating IL-9Ra or gc (21). The binding of IL-9 to

its receptor complex primarily activates JAK/STAT signaling

pathways, with documented roles for JAK1, JAK3, STAT1,

STAT3 and STAT5 (22). Additional signaling pathways include

Mitogen-Activated Protein Kinase (MAPK) and insulin receptor

substrate (IRS)-Phosphatidylinositol-3 Kinase (PI3K). Negative

regulation is mediated by receptor ubiquitination and inhibitory

molecules such as SOCS proteins, PIAS and SH-PTP2 (22).

Originally identified as a CD4 T cell growth factor (1), IL-9

induces the expression of genes involved in survival and

proliferation. While naïve CD4 T cells lack IL-9R and are non-

responsive to this cytokine, several effector subsets are regulated by

IL-9. For instance, activating murine CD4 T cells with IL-9

upregulates both IL-4 and TGF-b (18), cytokines integral to the

differentiation of Th2, Th9, Th17 and regulatory T cell (Treg)

subsets. In Th9 cells, IL-9 acts in an autocrine/paracrine manner to

promote effector function (14). This positive feedback loop was

attributed to the upregulation of lactate transporter MCT1, leading

to aerobic glycolysis (23). In Th2 cells, IL-9 augments IL-5

production (24), while in combination with TGF-b promotes

Th17 differentiation (18), possibly due to STAT3 activation by IL-

9. The same study also found that IL-9 enhances the suppressive

function of Tregs. These findings demonstrate that IL-9 can

promote pro- or anti-inflammatory responses depending on the

cell type.

Beyond T cells, IL-9 influences several hematopoietic and non-

hematopoietic populations. In mast cells, IL-9 enhances

proliferation, survival, and activation, leading to increased

production of cytokines such as IL-1b, IL-5, IL-6 and IL-13 (5,

11). Transgenic overexpression of IL-9 increases the production of

antigen-specific antibodies following immunization, presumably

due to IL-9-driven B cell expansion (25). In antigen presenting

cells, IL-9 induces TGF-b and suppresses IL-12 (26, 27), dampening

Th1 responses. Roles for IL-9 in hematopoiesis have been suggested

due to its proliferative effects on IL-3-dependent myeloid cell lines

(28). Most non-hematopoietic cells remain non-responsive due to

their lack of the gc receptor subunit, although inflammatory

conditions may lead to its upregulation. For example, IL-4

enhances IL-9R expression on keratinocytes, and treatment with

IL-9 stimulates IL-8 production in an ERK-dependent manner (29).

This suggests inflammatory environments can transiently render

epithelial cells to be IL-9-responsive. Some tumors also directly

respond to IL-9, with protective and pathogenic effects described

(30). Lymphoma cell lines show increased proliferation and survival

against apoptotic-inducing agents in the presence of IL-9 (31). In

contrast, melanoma cell lines upregulate anti-proliferative (p21) or

pro-apoptotic (TRAIL) molecules in response to IL-9, enhancing

apoptosis (32). Currently, the role of tumor-specific IL-9R

expression on Th9-mediated anti-tumor immunity in vivo

remains unclear. Collectively, the cellular effects of IL-9 support
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its diverse roles in mucosal host defense, allergic disease,

autoimmunity and anti-tumor immunity, as described

next (Figure 1).
Role of IL-9 in diseases

IL-9 contributes to inflammatory reactions in the skin, intestine

and lungs, as well as cancer and autoimmunity. While not typically

the dominant cytokine, IL-9 modulates disease progression through

its diverse effects on immune and non-immune populations (21).

For instance, atopic dermatitis (AD) is primarily a Th2-driven

disease, although Th9 cells are increasingly recognized due to their

preferential skin migration (33), elevated IL9/IL9R expression in

lesional tissue (19, 34), correlations between Th9 cell frequencies

and disease severity (35), and disease amelioration following IL-9

neutralization (36). Mechanisms through which IL-9 contributes to

skin inflammation include promoting IgE production, eosinophil

and mast cell infiltration, and VEGF secretion from keratinocytes

(37). In asthma, IL-9 was identified as a genetic risk factor in 1997

(38), and subsequent studies confirmed its involvement in airway
Frontiers in Immunology 03
hyperresponsiveness, eosinophilia, mast cell hyperplasia and tissue

pathology (17, 39). Ulcerative colitis is another Th2 disease

associated with elevated IL-9 expression. Notably, IL-9 deficiency

or neutralization protects mice from experimental colitis (40–42).

The IL-9-driven intestinal pathology may result from its direct

effects on intestinal epithelial cells, leading to decreased growth,

proliferation, wound healing and tight junction protein expression

(40, 41, 43). Despite its pathogenic role in colitis, IL-9 protects

against intestinal nematode infections by enhancing antibody

responses, mast cell function and basophilia (44–46). This

suggests IL-9 mediated inflammation on epithelial surfaces may

have originally evolved as a host defense mechanism.

In cancer, IL-9 plays dual roles acting as either a tumor

suppressor or promoter depending on the tumor type (30). Non-

hematopoietic models demonstrate potent anti-tumor activities of

IL-9 and Th9 cells. For instance, IL-9 directly induces apoptosis and

suppresses proliferation in melanoma, enhances CD8 T cell

cytotoxicity, and improves mast cell anti-tumor activity (32, 47–

49). Notably, endogenous IL-9 inhibits melanoma growth in pre-

clinical models, and adoptively-transferred Th9 cells improve

survival (47). The anti-melanoma activity is enhanced by
FIGURE 1

IL-9 receptor signaling and cellular targets. Th9 cells are the primary source of IL-9, although other T cell subsets, including Th17 and Tregs, are also
capable of IL-9 production. The IL-9 receptor is a heterodimer composed of IL-9Ra and the common gamma chain (gc). Ligand binding activates
three major intracellular signaling pathways. The JAK/STAT pathway promotes Th9 differentiation and IL-9 production. The PI3K/Akt pathway
contributes to mTOR activation, resulting in aerobic glycolysis, survival and macromolecule synthesis required for cell growth. The MAP kinase
cascade facilitates the transcription of genes involved in effector T cell proliferation. In addition to Th9 cells, IL-9 targets a range of hematopoietic
and sometimes non-hematopoietic cells. Among CD4 T cell subsets and B cells, IL-9 enhances proliferation, differentiation and effector function. In
mast cells, IL-9 promotes activation, cytokine secretion and survival. Keratinocytes can also respond to IL-9 when they express the receptor
complex, leading to pro-inflammatory cytokine production. In cancer, IL-9 plays dual roles through promoting proliferation and survival in
lymphomas, while inducing apoptosis in melanoma. The responsiveness of non-hematopoietic populations to IL-9 occurs through the upregulation
of IL-9R components in inflammatory settings. Altogether, these pathways and target cell responses contribute to the pleiotropic roles of IL-9 in
immunity, inflammation and disease.
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stimulation of the Epidermal Growth Factor Receptor (EGFR)

during Th9 differentiation (50). Th9 cells themselves may directly

contribute to tumor clearance through expression of granzymes and

perforin (51). Additional cytokines involved in the anti-tumor

activity of Th9 cells include IL-21 and IL-24 (49, 52, 53). In gastric

cancer, high IL-9 expression correlates with improved patient

survival, and recombinant IL-9 augments the efficacy anti-PD-1

immunotherapy (54). These findings have led to the investigation of

Th9 cells in adoptive transfer approaches for solid tumors (30).

Conversely, IL-9 can support tumor growth in IL-9R-expressing

malignancies, including lymphomas, lung cancer and pancreatic

cancer (30, 55–57). IL-9 may also promote immune evasion by

upregulating PD-1 on CD8+ cytotoxic T cells (58), or enhancing

Treg-mediated suppression (59). These dual roles underscore the

importance of tumor-intrinsic IL-9R expression and the tumor

microenvironment in determining whether IL-9 promotes or

inhibits tumor growth. Thus, IL-9 is being explored therapeutically

for enhancing its activity in cancer immunotherapy or inhibiting its

function in IL-9-responsive malignancies.

Interleukin-9 also has complex roles in autoimmune diseases.

Rheumatoid arthritis and psoriatic arthritis patients have elevated

IL-9 in synovial fluid and tissues (60, 61). Synovial T cell infiltration

was associated with high levels of IL-9R expression, and circulating

Th9 cells were expanded by citrullinated peptides. Despite this pro-

inflammatory profile, IL-9-deficient mice develop worsened antigen-

induced-arthritis, including cartilage destruction and impaired Treg

function (62). Similarly, systemic lupus erythematosus patients show

elevated IL-9 and Th9 cells in circulation (63, 64), although IL-9

neutralization in lupus-prone mice reduces autoantibody production

and renal pathology, especially when combined with IL-17 blockade

(65). This was attributed to the ability of IL-9 to promote B cell

proliferation and antibody production. In multiple sclerosis models,

IL-9 and Th9 cells have been shown to contribute to pathology (66,

67), with IL-9R deficiency either exacerbating or suppressing

experimental autoimmune encephalomyelitis (68, 69). These

results may reflect IL-9 enhancing both Th17 differentiation and

Treg suppressive function (18). Collectively, these findings

underscore dual roles for IL-9 in autoimmunity, where it promotes

pathology through Th9, Th17 or B cells, while protecting against

disease through Tregs and dendritic cells.
Metabolic regulation of IL-9
production

As with other CD4 T cell subsets, metabolism plays a central

role in the differentiation and function of Th9 cells. Several

metabolic products, including lipids, amino acids and TCA cycle

intermediates, have been shown to directly affect IL-9 production

and/or Th9 differentiation (50, 70–73). Here, we highlight roles of

the major metabolic regulators mTOR, PPAR-g and ACC1, drawing
upon what is broadly known from CD4 T cell differentiation, as well

as recent studies focused specifically on IL-9. Other reviews have

also summarized metabolic control of Th9 cells (74, 75).
Frontiers in Immunology 04
mTOR

T cell activation induces profound metabolic changes to support

the energy production and biomass accumulation required for clonal

expansion and effector cell differentiation. This has been well

characterized for glucose metabolism, with Akt and mTOR playing

critical roles in driving aerobic glycolysis (76). Among the CD4 T cell

subsets, Th9 cells exhibited the highest glycolytic activity, with mTOR

required for optimal IL-9 production (77). Accessibility of the IL9

promoter is further enhanced by STAT5-induced histone acetylation,

facilitating the binding of transcription factors such as BATF, Foxo1

and HIF-1a (77–80). In the absence of mTOR activation, IL9

transcription is suppressed by Foxp1 and the histone deacetylase

SIRT1 (77, 78). Genetic deficiency of SIRT1 increases glycolytic and

mTORC1 activity in Th9 cells, enhancing anti-tumor immunity and

allergic airway inflammation (77). Importantly, mTOR-driven IL-9

production has been associated with pathology and mast cell

hyperplasia in experimental food allergy (81). Both mTORC1 and

the rapamycin-insensitive mTORC2 complex contribute to Th9

differentiation, as Rictor deficiency impairs Th9 polarization and

allergic airway inflammation (82). Several endogenous molecules can

enhance IL-9 production through mTOR. For instance, extracellular

ATP induces nitric oxide and mTOR activation, increasing IL-9

production in anHIF-1a-dependent manner (83). Amphiregulin was

later shown to activate HIF-1a through the epidermal growth factor

receptor (EGFR) (50). The STING ligand 2’3’-cGAMP increases IL-9

in an mTOR-dependent manner, enhancing anti-tumor immunity

(84). High glucose concentrations enhance IL-9 production through

PPAR-g mediated aerobic glycolysis (23). This study showed that

PPAR-g suppression decreases mTORC1 phosphorylation, while

another demonstrated the microRNA miR-145 suppresses IL-9

through mTOR-HIF1a inhibition (85). Collectively, these studies

highlight an indispensable role for mTOR-driven glycolysis in Th9

cell differentiation, and suggest that metabolic interventions targeting

this pathway could modulate IL-9-dependent inflammation

and immunity.
PPAR-g

Peroxisome proliferator-activated receptor-g (PPAR-g) is a

member of a nuclear receptor superfamily of transcription factors

activated by fatty acids (86). Ligand binding drives the expression of

genes involved in adipogenesis, lipid metabolism, glucose

homeostasis and inflammation (86–88). Clinically, PPAR-g is

targeted by thiazolidinediones for type 2 diabetes and 5-

aminosalicylates for inflammatory bowel disease. While its role in

adipose tissue insulin sensitivity is well established, distinct

functions for PPAR-g in CD4 T cells have been identified. In

response to antigen and costimulation, PPAR-g promotes fatty

acid uptake and lipolysis to support T cell proliferation (89). In

Th2 cells, IL-4-induced PPARG expression increases lipid

metabolism and IL-5 production (90). In vivo, Pparg expression

in CD4 T cells contributes to Th2-driven inflammation in the
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intestine, lungs and skin (91–93). PPAR-g is also expressed in

regulatory T cells (Tregs), where it supports their suppressive

function and protects against experimental colitis, psoriasis, graft-

versus-host disease and insulin resistance (94–98). Thus, anti-

inflammatory effects of PPAR-g are partially due to the

enhancement of Treg-mediated suppression. Interestingly,

thiazolidinediones can increase Foxp3 expression and Treg

differentiation independently of PPAR-g (98). Collectively, these

studies show that PPAR-g mediates both pro- and anti-

inflammatory functions depending on the T cell subset.

The role of PPAR-g in Th9 cell differentiation has recently

become elucidated. Human Th9 cells were characterized as a

subpopulation of Th2 cells expressing high levels of PPAR-g (19).
This population is enriched within memory CD4+ CCR4+ CCR8+

cells in human blood, and the upregulation of IL-9 following T cell

activation correlates with a transient decrease in canonical Th2

cytokines IL-4, IL-5 and IL-13. Several genes coordinate the

transitioning of Th2 to Th9 cells, including cytokines, growth

factors and their receptor signaling pathways (99). PPAR-g
suppression in Th9 cells decreased IL-9 production, as well as the

expression of genes promoting T cell activation, glucose metabolism

and aerobic glycolysis (19, 23). These pro-glycolytic functions of

PPAR-g occurred under high glucose conditions and were

associated with glucose uptake, mTORC1 phosphorylation and

proliferation. In line with this, paracrine IL-9 activity increased

the expression of genes involved in aerobic glycolysis, including

SLC16A1 which encodes for the lactate transporter MCT1,

contributing to proliferation (23). The regulatory relationship

between PPAR-g and mTORC1 appears to be bidirectional;

however, as another study demonstrated mTORC1 activation

prior to PPAR-g-mediated fatty acid uptake (89). While the

endogenous ligand(s) responsible for PPAR-g activation in Th9

cells remains unknown, the synthetic agonist rosiglitazone

suppresses IL-9 in human Th9 cells (100). Combining

rosiglitazone with the glucose metabolism inhibitor 2-deoxy-D-

glucose decreased IL-9 more potently than either treatment alone,

suggesting a glycolysis-independent component of rosiglitazone-

mediated suppression. It remains to be determined if this is due to

fatty acid uptake or another mechanism, as rosiglitazone exhibits

PPAR-g-dependent and -independent effects on cells (101).

Nonetheless, the anti-inflammatory properties of rosiglitazone in

vitro align with therapeutic benefits of PPAR-g agonists in IL-9-

associated diseases such as atopic dermatitis and psoriasis (91, 102–

104). Collectively, PPAR-g modulators suppress IL-9 production

from Th9 cells through metabolic regulation.
Acetyl-CoA carboxylase 1

T cell activation increases cellular demands for fatty acids,

leading to the upregulation of enzymes and transcription factors

involved in fatty acid biosynthesis (76, 89). Central to this process is

acetyl-CoA Carboxylase 1 (ACC1), which catalyzes the

carboxylation of acetyl-CoA to generate malonyl-CoA, the
Frontiers in Immunology 05
precursor for mid- and long-chain fatty acids (105). In this way,

ACC1 supports T cell growth during clonal expansion. Low cellular

ATP levels inactivate ACC1 through phosphorylation by AMP-

activated protein kinase (AMPK), which diverts metabolism toward

fatty acid oxidation to restore ATP levels. Experimentally, ACC1

function can be assessed with pharmacologic inhibitors and/or

genetic silencing of its gene ACACA. A mouse model found that

diet-induced obesity increases ACC1 expression in memory CD4 T

cells, enhancing IL-17 production and Th17-driven pathology

(106). Further, ACC1 inhibition reduces IL-17 while increasing

Foxp3 expression in Th17 cultures (107), demonstrating its pivotal

role in Th17 cell differentiation. Mice lacking ACC1 in CD4 T cells

are protected from diseases associated with IL-17, such as asthma,

psoriasis and colitis, but show increased susceptibility to infections

(108–111). These pro-inflammatory effects of ACC1 are mediated

by glycolytic and oxidative metabolic reprogramming (112).

Intriguingly, ACC1 inhibition may either enhance or reduce

memory CD4 T cell generation depending on the context (113,

114). These studies highlight opposing functions for ACC1 in Th17

and Treg differentiation, raising the question of how this pathway

influences other effector subsets such as Th9 cells.

Recent studies identified a suppressive role for ACC1 in Th9

differentiation. Culturing Th9 cells with ACC1 inhibitors or under

fatty acid-free conditions substantially increases IL-9 production

(100, 115). This increased IL-9 can be restored with exogenous oleic

acid or palmitic acid, demonstrating de novo fatty acid synthesis and

fatty acid uptake suppress Th9 differentiation. At the chromatin

level, ACC1 suppression led to greater histone acetylation at the Il9

and Batf3 promoter regions, consistent with a permissive chromatin

landscape (115). This may be due to the accumulation intracellular

acetyl-CoA following ACC1 suppression, which is used by histone

acetyltransferases to globally increase chromatin histone acetylation

(116). In addition, ACC1 suppression enhances the sensitivity of

cells to TGF-b by increasing SMAD2/3 phosphorylation and its

subsequent binding to Il9 (115). The same study demonstrated that

retinoic acid receptor-alpha (RARa) signaling may contribute to

the suppressive effects of ACC1 and exogenous oleic acid on IL-9

production. This is consistent with RARa activation suppressing

Th9 differentiation (117). Pre-treatment of Th9 cells with an ACC1

inhibitor in vitro enhanced their anti-tumor activity following

adoptive transfer to tumor-bearing mice (115), demonstrating

robust Th9 immunity. Human Th9 cultures also contain a small

population of Foxp3+ IL-9- cells (100), possibly due to exogenous

TGF-b or TCR/CD28 stimulation (118, 119). ACC1 suppression

increases the ratio of IL-9+:Foxp3- cells, demonstrating a pro-

inflammatory shift in vitro (100). This contrasts with Th17

cultures, in which ACC1 suppression decreases the ratio of IL-

17+:Foxp3- cells (107). Further studies are necessary to understand

differential effects of ACC1 on Foxp3 expression in Th9 versus Th17

cultures. Nonetheless, Foxp3 inhibition did not affect IL-9

production in cultures containing TGF-b (100), suggesting the

Foxp3+ cells are not functional Tregs. These findings demonstrate

that ACC1 limits IL-9 expression through coordinated metabolic

and epigenetic mechanisms. Further elucidating how ACC1 limits
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1672072
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peesari and McAleer 10.3389/fimmu.2025.1672072
IL-9 expression will provide key insights into the lipid-mediated

control of inflammatory responses.
Conclusions

Recent insights into the metabolic regulation of Th9 cells have

expanded our understanding beyond canonical cytokine signaling

and transcription factor pathways (Figure 2). Glycolytic

reprogramming and fatty acid metabolism play critical roles in

Th9 differentiation and IL-9 production, with important

contributions from mTOR, PPAR-g and ACC1. A more detailed

mechanistic understanding will require investigation of additional

regulators such as fatty acid synthase (FAS), sterol regulatory

element-binding protein 1 (SREBP1) and AMPK. Challenges in

using IL-9 targeted therapies may arise from its pleiotropic effects

on multiple cell types, including Th9, Th17, Tregs, B cells, epithelial
Frontiers in Immunology 06
and cancer cells. For instance, the IL-9 neutralizing antibody Medi-

528 did not show clinical benefit in an asthma trial (120). In cancer,

ACC1 antagonism may facilitate Th9 immunity while also inducing

tumor cell apoptosis (100, 115, 121–123). Conversely, ACC1

suppression has been shown to increase Foxp3+ Tregs (107), and

induce hypertriglyceridemia (124), possibly limiting its therapeutic

value. Similarly, PPAR-g agonists used clinically for metabolic

disorders can suppress IL-9 production (100), but may cause

adverse effects including weight gain, fluid retention, and bone

loss (86). These challenges underscore the need for cell-specific

delivery strategies that target Th9 cells or IL-9R-expressing

populations. Moving forward, key priorities should include: (A)

defining how metabolic pathways influence IL-9-driven diseases,

(B) identifying metabolic signatures that distinguish pathogenic

from regulatory IL-9R+ cell populations, and (C) determining how

metabolic interventions can fine-tune IL-9-dependent immunity.

As Th9 cells gain recognition for their diverse roles in immune
FIGURE 2

Metabolic regulation of Th9 differentiation. (A) Th9 differentiation is induced through the coordinated activities of STAT and SMAD pathways in CD4
T cells. IL-4, TGF-b and IL-21 induce several transcription factors required Th9 differentiation, while STAT5 promotes histone acetylation to enhance
their binding to the IL9 promoter. In the absence of Th9-inducing signals, IL9 expression is repressed by Foxp1 and SIRT1. (B) mTOR promotes Th9
differentiation through aerobic glycolysis, leading to HIF-1a nuclear translocation, IL9 expression, cell growth and proliferation. This activity is
enhanced with high extracellular glucose, 2,3-cGAMP and ATP, and is inhibited by miR-145. (C) PPAR-g has positive and negative effects on IL-9. By
enhancing glucose uptake and MCT1-mediated lactate export, PPAR-g stimulates aerobic glycolysis and IL-9 production. By increasing the
expression of genes involved in fatty acid uptake (red), PPAR-g can also have a negative impact on IL-9. (D) ACC1 suppresses IL-9 production
through fatty acid synthesis. The conversion of acetyl-CoA to malonyl-CoA generates the substrate for fatty acids, increasing RARa activity and
decreasing IL9 expression. In addition, ACC1 suppresses SMAD2/3 phosphorylation in response to TGF-b, further limiting Th9 differentiation. ACC1
suppression increases IL-9 by suppressing fatty acid synthesis and RARa activity, increasing SMAD2 phosphorylation, and possibly promoting histone
acetylation via acetyl-CoA (dotted line).
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regulation, metabolic targeting may become crucial for harnessing

their full therapeutic potential.
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