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Editorial on the Research Topic

Unveiling the host’s acute immune response to infectious mucosal
diseases: insights and implications
Innate immunity constitutes the body’s first line of defense, acting with remarkable

specificity and speed in response to microbial threats. Once considered a blunt instrument

of host defense, the innate immune system is now recognized as highly nuanced, capable of

immunological memory, developmental crosstalk, and tissue-specific modulation (1, 2).

The contributions in this Research Topic reflect the growing appreciation of innate

immune complexity across diverse systems and life stages, from bacterial infection to

tissue repair and early-life development.

The study by Toapanta et al. employs a Controlled Human Infection Model (CHIM)

with Salmonella Typhi to reveal distinct alterations in monocyte subsets during infection.

Classical and intermediate monocytes in individuals who reached typhoid diagnosis criteria

(TD) upregulated pattern recognition receptors (TLR4, TLR5), phagocytic markers (CD36,

CD206), and gut-homing integrins (a4b7). These findings resonate with prior studies

showing monocytes as dynamic responders capable of migrating to mucosal tissues and

differentiating into effector macrophages (3, 4). The observed expansion of activated CM

clusters suggests that monocytes may act not only as precursors to intestinal macrophages

but also as immune amplifiers during systemic infection, shaping both innate and adaptive

responses (5).

Extending the role of non-traditional immune cells, Xiao et al. present compelling

evidence that red blood cells (RBCs), long considered immunologically inert, express

surface TLR9 capable of binding mitochondrial DNA (mtDNA). Their data show that in

bacterial infections, the number of mtDNA bound to RBCs increases significantly and correlates

with C-reactive protein (CRP) levels, a marker of systemic inflammation. This aligns with

emerging views that extracellular mtDNA is a potent damage-associated molecular pattern

(DAMP) capable of triggering TLR9 and cGAS-STING pathways (6, 7). The discovery that
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1672088/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1672088/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1672088/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1672088/full
https://www.frontiersin.org/research-topics/64042
https://www.frontiersin.org/research-topics/64042
https://doi.org/10.3389/fimmu.2024.1454857
https://doi.org/10.3389/fmed.2024.1498627
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1672088&domain=pdf&date_stamp=2025-08-15
mailto:ymw4xw@virginia.edu
mailto:farha64@gmail.com
https://doi.org/10.3389/fimmu.2025.1672088
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1672088
https://www.frontiersin.org/journals/immunology


Arish et al. 10.3389/fimmu.2025.1672088
RBCs may act as immune sentinels through TLR9 expands their

functional repertoire and opens new avenues for biomarker

development in infectious diseases.

In contrast to these inflammation-driven responses, Soma et al.

propose a beneficial immune modulation model via mucosal

administration of lipopolysaccride (LPS). Traditionally viewed as

an endotoxin that drives sepsis when administered systemically (8),

LPS can have markedly different effects when delivered orally or

transdermally. The authors introduce the “macrophage network,” a

framework wherein environmental LPS primes mucosal macrophages,

which in turn communicate with distal tissue-resident macrophages

through juxtacrine signaling. This hypothesis resonates with prior

findings that low-dose LPS exposure can induce endotoxin tolerance

and protective effects (9, 10). Their review article reframes LPS not as a

uniform danger signal but as a context-dependent modulator of

immune tone and tissue homeostasis.

Complementing these findings, Sharafian et al. utilize infant-

derived ileal enteroids to explore how innate cytokines shape

epithelial maturation. Their model reveals that IL-22, secreted by

neonatal Th17 cells, drives epithelial proliferation and secretory

differentiation while downregulating Wnt and Notch pathways.

These results support a growing body of literature positioning IL-

22 as a central regulator of mucosal barrier integrity and

antimicrobial defense (Sharafian et al., 11, 12). The findings also

reinforce the developmental specificity of immune–epithelial

crosstalk, with early-life cytokines serving dual roles in tissue

formation and immune readiness.

Together, these studies underscore the functional plasticity of

the innate immune system. From circulating monocytes and

epithelial crosstalk to erythrocyte surveillance and macrophage

conditioning, innate immunity emerges as a finely tuned network

capable of integrating microbial, developmental, and environmental

signals. These insights challenge traditional compartmentalizations

of immune cell function and suggest that innate cells operate not

just as pathogen destroyers but as orchestrators of homeostasis,

repair, and long-term immunity (13).

We thank all contributors to this Research Topic for their high-

quality work. Their findings not only expand the functional map of

innate immunity but also offer translational potential from infection

biomarkers and vaccine design to mucosal therapies and early-life

interventions. As the field continues to move beyond static

classifications, future studies will benefit from high-resolution
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tools such as single-cell transcriptomics, spatial mapping, and in

vivo imaging to further decode the cellular choreography of innate

immunity in health and disease.
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