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Immunogenic cell death (ICD) effectively triggers adaptive immune responses
against cancer, yet its clinical application in solid tumors is hindered by tumor
microenvironment (TME) barriers. These include immunosuppressive cell
populations, dense extracellular matrix, abnormal vasculature, hypoxia, and
metabolic suppression, which collectively impede immune infiltration and
function. This review evaluates current therapeutic strategies to overcome
these barriers, including vascular normalization (restoring abnormal tumor
blood vessels to a more structured and functional state to improve perfusion
and immune cell infiltration), extracellular matrix (ECM) modulation, alleviation of
hypoxia, metabolic reprogramming, immunosuppressive cell targeting, physical
remodeling, and nanoparticle-based drug delivery. Clinical evidence highlights
the potential of these integrated approaches to enhance ICD-induced antitumor
immunity, suggesting promising avenues for improving patient outcomes
through combined modulation of the TME and ICD induction.
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1 Introduction

Immunogenic cell death (ICD) has emerged as a therapeutic strategy that initiates
adaptive immune responses against cancer (I, 2). By promoting dendritic cell (DC)
activation, antigen presentation, and cytotoxic T-cell priming, ICD effectively turns
dying tumor cells into an in situ vaccine, harnessing the patient’s own immune system
to combat malignancies (3-5). However, despite advances in understanding ICD
mechanisms and applications, the clinical translation of ICD-based therapies,
particularly in solid tumors, remains limited due to the presence of multiple TME
barriers (6).
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The TME of solid tumors is immunosuppressive, structurally
dense, and metabolically hostile. It comprises immunosuppressive
cell populations, including regulatory T cells (Tregs), tumor-
associated macrophages (TAMs), and myeloid-derived suppressor
cells (MDSCs), which collectively suppress eftector immune cell
infiltration and function (7, 8). Additionally, physical constraints,
such as dense extracellular matrix deposition, fibrosis, and
abnormal tumor vasculature, further impede immune cell
trafficking and infiltration, thereby reducing the therapeutic
potential of ICD (9, 10). Furthermore, metabolic factors,
including hypoxia, nutrient scarcity, and accumulation of
immunosuppressive metabolites (adenosine, lactate), impair T-cell
survival and function within the TME (11, 12).

Therefore, a crucial challenge—and equally significant opportunity
—lies in targeting and overcoming these microenvironmental barriers
to realize the therapeutic potential of ICD in solid tumors (2, 13). In
this review article, we discuss the existing tumor microenvironmental
obstacles that limit ICD efficacy, highlight emerging therapeutic
strategies to dismantle these barriers, and underscore the clinical
promise of strategically combining microenvironment-targeted
therapies with ICD induction to significantly enhance cancer
immunotherapy outcomes.

2 Tumor microenvironmental barriers
impairing ICD effectiveness

Despite the promising therapeutic potential of ICD in activating
antitumor immunity, its clinical effectiveness in solid tumors is
severely hampered by complex microenvironmental barriers (14).
These barriers encompass immunological, physical, and metabolic
factors that collectively restrict immune cell infiltration, activation,
and sustained function within tumor sites.

Firstly, the immunosuppressive cellular environment impairs ICD-
induced immune activation. Solid tumors are populated by
immunosuppressive cell types such as Tregs, TAMs polarized toward
the anti-inflammatory M2 phenotype, myeloid-derived suppressor
cells (MDSCs), and cancer-associated fibroblasts (CAFs) (15). These
cells produce various immunosuppressive mediators, including
transforming growth factor-beta (TGF-B), interleukin-10 (IL - 10),
and vascular endothelial growth factor (VEGF), which collectively
inhibit dendritic cell (DC) maturation, reduce cytotoxic T-cell
proliferation, and dampen effector immune responses. Consequently,
even when ICD successfully generates immunogenic signals, their
translation into meaningful clinical responses remains suboptimal
due to these immunological checkpoints within the TME (16-18).

Secondly, physical barriers posed by the TME also present
significant hurdles to effective immune cell trafficking and
infiltration. An extensively developed extracellular matrix (ECM,
the network of structural proteins such as collagen and
glycosaminoglycans that provides physical support to tissues),
characterized by dense collagen fiber networks and high levels of
hyaluronan, physically obstructs immune cell penetration and
reduces the diffusion of therapeutic agents into tumor cores
(19-21). Tumor fibrosis, driven largely by activated CAFs, further
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exacerbates this issue by enhancing ECM rigidity and reducing the
functional perfusion of intratumoral vessels (22). Aberrant and
tortuous tumor vasculature, featuring dysfunctional endothelial
cells and compromised lymphatic drainage, further limits
immune cell entry and migration, thereby maintaining the
immune-excluded or immune-desert phenotype characteristic of
many solid tumors.

Thirdly, metabolic alterations within the TME restrict immune
cell function and survival, thereby limiting the effectiveness of ICD-
induced immune responses. Hypoxia, resulting from poor vascular
perfusion and rapid tumor cell proliferation, triggers tumor
adaptation through hypoxia-inducible factors (HIFs), leading to
increased anaerobic glycolysis (Warburg effect), excessive lactate
production, and acidification of the tumor milieu (23). The
accumulation of metabolites such as lactate, adenosine, and
kynurenine directly suppresses cytotoxic T-cell activation,
proliferation, and effector functions, while promoting the
differentiation and function of immunosuppressive cells (24).
Nutrient depletion (glucose, amino acids such as tryptophan and
arginine) further impairs the metabolic fitness and persistence of
infiltrating immune cells, ultimately compromising antitumor
immunity following ICD induction.

Figure 1 illustrates the key tumor microenvironmental barriers
—including immunosuppressive cells, dense extracellular matrix,
abnormal tumor vasculature, hypoxia, and metabolic suppression—
that significantly impede the effectiveness of ICD. The figure also
outlines corresponding therapeutic strategies currently under
clinical evaluation aimed at dismantling these barriers, thus
enhancing immune infiltration, activation, and sustained
antitumor immune responses. Specifically, checkpoint inhibitors
and depletion agents are designed to overcome immunosuppressive
cell populations such as Tregs and MDSCs; vascular normalization
strategies (e.g., anti-VEGF therapy) target abnormal tumor
vasculature to improve immune cell delivery; ECM-modulating
agents (e.g., hyaluronidase-based therapies) reduce matrix density
to facilitate T cell penetration; and metabolic modulators aim to
restore nutrient and oxygen availability in hypoxic or metabolically
suppressive regions of the TME. These immunological, physical,
and metabolic barriers within the solid tumor microenvironment
substantially limit the potential of ICD to induce effective and
sustained antitumor immune responses (25). Therefore, therapeutic
strategies specifically designed to address and mitigate these barriers
are urgently required to enhance the clinical impact and
effectiveness of ICD-based cancer immunotherapies. In the
following sections, we discuss how these identified barriers inform
the design of therapeutic strategies, emphasizing the direct
connections between each obstacle and the corresponding
interventions currently under preclinical or clinical evaluation.

3 Current strategies to overcome
microenvironmental barriers

To effectively translate ICD into clinically successful cancer
immunotherapy, numerous therapeutic strategies have been
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Schematic illustration of key tumor microenvironmental barriers limiting ICD efficacy and corresponding therapeutic strategies. This figure illustrates
the major immunological, physical, and metabolic barriers within the solid tumor microenvironment that hinder the effectiveness of ICD-based
therapies. Key immunosuppressive components include Tregs, MDSCs, and TAMs, which inhibit antigen presentation and effector T-cell responses.
Physical barriers, such as dense ECM, fibrotic stroma, and abnormal vasculature, obstruct immune cell infiltration and drug penetration. Metabolic
stressors, including hypoxia, glucose depletion, and accumulation of immunosuppressive metabolites (e.g., lactate, adenosine), further compromise
immune function. Therapeutic strategies to overcome these obstacles are highlighted, including vascular normalization, ECM remodeling, metabolic
reprogramming, immunosuppressive cell targeting, and nanomedicine-based delivery. These approaches aim to enhance immune accessibility,
sustain cytotoxic activity, and improve the therapeutic outcome of ICD in solid tumors.

developed to specifically target and overcome the complex TME
barriers. These approaches are primarily designed to reduce
immunosuppression, enhance immune cell infiltration, and
reverse unfavorable metabolic conditions within the solid tumor
environment. To orient the reader, Sections 3.1 - 3.7 map each
major barrier (vascular, stromal/ECM, hypoxic-metabolic,
immunosuppressive cells, physical/ablative, and delivery
constraints) to the corresponding intervention, and Section 4
synthesizes representative clinical studies that evaluate these
approaches in patients.

3.1 Normalization of tumor vasculature

Aberrant angiogenesis creates dysfunctional tumor blood
vessels, significantly limiting immune cell infiltration and
therapeutic drug delivery. Therapeutic strategies, such as VEGF
inhibitors (e.g., bevacizumab), have shown promise in normalizing
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tumor vasculature by pruning immature vessels, stabilizing vessel
structures, and improving tumor perfusion (26, 27). Clinically,
combining anti-VEGF therapy with immune checkpoint
inhibitors enhances immune infiltration and efficacy, with early
evidence from trials such as NCT02366143 (advanced renal cell
carcinoma) (28, 29).

3.2 Modification of extracellular matrix and
fibrosis

ECM deposition and tumor-associated fibrosis restrict immune
cell infiltration and drug diffusion (30). Agents targeting ECM
components, including collagenase and hyaluronidase enzymes,
have demonstrated preclinical efficacy by enhancing immune
infiltration and drug penetration (31). Notably, recombinant
hyaluronidase (PEGPH20) in combination with chemotherapy or
immunotherapy has entered clinical trials (NCT01839487,
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NCT03481920), aiming to alleviate ECM density and thus promote
immune cell access and therapeutic efficacy in pancreatic and other
solid tumors (32, 33). However, the phase III HALO 301 study in
HA-high metastatic pancreatic ductal adenocarcinoma showed no
overall survival (OS) or progression-free survival (PFS) benefit with
PEGPH20 plus nab-paclitaxel/gemcitabine versus placebo plus nab-
paclitaxel/gemcitabine: median OS 11.2 vs 11.5 months (HR 1.00;
95% CI 0.80 — 1.27; P = 0.97) and median PFS 7.1 vs 7.1 months
(HR 0.97; 95% CI 0.75 - 1.26). Although ORR was higher (47% vs
36%), this did not translate into survival improvement, and grade
>3 AEs (e.g., fatigue, muscle spasm, hyponatremia) occurred more
frequently in the PEGPH20 arm (34).

The failure of HALO 301 to achieve survival benefit may be
related to the heterogeneity of hyaluronan expression among
patients, incomplete stromal remodeling, and treatment-limiting
toxicities, which may have offset the potential pharmacokinetic
gains from ECM targeting. This interpretation is supported by both
clinical and mechanistic evidence. Subgroup analyses from earlier
PEGPH20 trials demonstrated that clinical benefit was largely
restricted to patients with uniformly high hyaluronan (HA)
expression, whereas HALO - 301 enrolled an HA-high cohort
with substantial intra- and inter-tumoral variability, potentially
leading to patient misclassification and dilution of effect (32).
Mechanistic studies further reveal that enzymatic depletion of HA
can transiently decompress tumor vessels and enhance drug
delivery, but the degree and durability of stromal remodeling in
patients may be insufficient to translate into consistent survival
gains (7). Additionally, higher rates of grade >3 adverse events in
the PEGPH20 arm, including thromboembolic events, likely
reduced treatment adherence and dose intensity, offsetting
pharmacokinetic advantages (34).

3.3 Alleviation of tumor hypoxia

Hypoxia-driven metabolic adaptations profoundly suppress
immune function within tumors. Therapeutics aimed at targeting
hypoxia-inducible factors (HIF - lo. inhibitors) and innovative
oxygen-releasing nanoparticles have been explored to mitigate
hypoxia (35). Small molecules like evofosfamide (TH - 302),
designed to target hypoxic regions selectively, have shown
promise in preclinical and clinical studies (e.g., NCT01497444),
improving immune cell functionality and tumor sensitivity to
immunotherapy when combined with immune checkpoint
inhibitors (36). Nevertheless, the randomized phase IIT SARC021
trial in soft-tissue sarcoma found that adding evofosfamide to
doxorubicin did not improve OS versus doxorubicin alone;
therefore, this combination cannot be recommended as first-line
therapy in that setting (37). Similarly, the lack of efficacy in
SARCO021 may be explained by insufficient hypoxia selectivity,
heterogeneous tumor oxygenation profiles, and possible
limitations in drug penetration to hypoxic niches.
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3.4 Metabolic reprogramming of the
immunosuppressive microenvironment

Tumor metabolism profoundly shapes immunological
responses through accumulation of immunosuppressive
metabolites such as lactate, adenosine, and kynurenine.
Therapeutics such as adenosine pathway inhibitors (e.g., anti-
CD73, anti-A2A receptor antibodies) are actively being
investigated in clinical trials (NCT02503774, NCT03367819) to
neutralize adenosine-driven immune suppression (38, 39).
Similarly, lactate transport inhibitors targeting monocarboxylate
transporters (MCTs) have entered preclinical testing, aiming to
restore immune effector cell functionality within tumors.

3.5 Targeting immunosuppressive cell
populations

Various approaches target immunosuppressive cells such as
Tregs, MDSCs, and TAMs. Anti-CSF-1R antibodies (e.g.,
cabiralizumab), aimed at reprogramming TAM polarization from
an immunosuppressive M2 phenotype toward a pro-inflammatory
M1 phenotype, are being clinically evaluated (NCT02526017,
NCT02880371) (40, 41). Similarly, anti-CCR4 antibody
(mogamulizumab) targeting Tregs has shown potential for
enhancing immune activation in solid tumors (NCT02946671) (42).

3.6 Physical and ablative strategies to
remodel TME

Localized physical approaches, including radiotherapy,
photodynamic therapy (PDT), and photothermal therapy (PTT),
have been utilized to physically disrupt the tumor architecture and
induce ICD (43). Clinical evidence from radiotherapy combined
with immune checkpoint inhibitors (e.g., PEMBRO-RT,
NCT02492568) supports further evaluation by promoting
immune cell infiltration and reversing local immune suppression
through induced inflammatory responses and DAMP release (44).

3.7 Nanotechnology-based drug delivery
systems:

Advanced nanoparticle-based delivery systems are being
employed to specifically modulate the TME, enhance drug
delivery, and amplify ICD efficacy. For instance, camptothecin-
based nanoparticle formulations (CRLX101, NCT02769962)
enhance tumor-specific ICD induction by promoting controlled
intratumoral release, reducing systemic toxicity, and overcoming
TME barriers through improved bioavailability and therapeutic
targeting (45, 46).
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These multifaceted strategies to overcome immunological,
physical, and metabolic barriers demonstrate substantial potential
to amplify ICD-induced antitumor immunity. Continued clinical
development, optimization of combination regimens, and
identification of predictive biomarkers will further improve the
therapeutic efficacy of ICD in solid tumors, ultimately enhancing
patient outcomes. A comprehensive overview of these therapeutic
strategies, representative agents, mechanisms of action, and
corresponding clinical trials is provided in Table 1. In the next
section, we transition from mechanistic rationale to clinical
translation, explicitly pairing each strategy with outcomes from
representative trials.

10.3389/fimmu.2025.1672601

4 Clinical translation and current
evidence

Clinical translation of strategies targeting TME barriers to
enhance ICD represents a rapidly evolving area in oncology,
underscored by a growing number of clinical trials and promising
therapeutic outcomes (43). Various innovative combinations
designed to reshape the immunosuppressive, metabolic, and
physical landscape of solid tumors have advanced into clinical
evaluation, highlighting both the feasibility and therapeutic
potential of TME-targeted ICD enhancement. Building on the

TABLE 1 Clinical studies of stroma/ECM or TME-modulating strategies (split by outcome) with cancer type and timeline.

Cancer

Therapy

Study

Year

Year Key outcome

o References
Strategy type NCT initiated completed summary
Atezolizumab + . .
. . Met primary endpoints;
Bevacizumab + Metastatic A
Carboplatin/ non Phase IIT ABCP improved OS and
) ’ 201 201 PFS vs BCP; led to FDA 28
Paclitaxel (ABCP) squamous | NCT02366143 015 019 Svs lc : etdz‘)b @9
vs BCP NSCLC approval of atezo-bev
chemo in 1L nsq-NSCLC.
(IMpower150)
Successful
PEGPH20 b-
(positive primary i +na X Signal of PFS/ORR benefit
h paclitaxel + Metastatic X X
endpoint or L Phase II, in HA-high subgroup;
R . gemcitabine PDAC (HA- 2013 2018 (32)
practice-changing (HALO - 202) in high) NCT01839487 prompted Phase IIT
ignal . HALO - 301.
signal) HA-high PDAC 0
Pembroli b
embrotizuma RT—pembro arm improved
after SBRT vs
R Advanced Phase II, out-of-field response and
pembrolizumab NSCLC NCT02492568 2015 2018 showed PFS/OS signals vs @7
alone (PEMBRO- . alonge
RT) P ‘
PEGPH20 + AG vs Metastatic Phase IIT No OS benefit; program
placebo + AG PDAC (HA- N CT027152;04 2016 2019 halted; JCO full results (34)
(HALO - 301) high) published 2020.
PDAC Trial terminated;
PEGPH20 + (chemo Early-phase, 2018 (terminated) r:l istreartril:r?zz :i nr:a? (48)
avelumab . NCT03481920 & €
resistant) reported.
Selected
Cabiralizumab advanced i X
(CSFIR mAb) + | solid tumors | L 1ase 1a/1b, 2015 2020 Completed without practice- (40)
i X NCT02526017 changing efficacy signal.
nivolumab (incl. PDAC
Unsuccessful
(failed primary cohorts)
endpoint/ . ..
ARRY-382 (CSF1R Limited activity;
i A Ph: 1b/2,
terminated/ inhibitor) + liv:nced N C;(:;BS}:Z)/SH 2016 2019 development not advanced (41)
i solid tumors
negative) pembrolizumab based on this study.
T-VEC
. * Unresectable/ Phase ITT Phase 3 missed primary end
pembrolizumab . . .
metastatic component of 2014 2022 point despite Phase 1b (49)
(MASTERKEY - .
melanoma NCT02263508 signal.
265) vs pembro
Evofosfamide
TH - 302 A
( 3_0 ,) * dvaflced Phase III, No OS benefit; combination
doxorubicin vs soft-tissue 2012 2016/2017 (37)
. NCT01440088 not recommended.
doxorubicin sarcoma
(SARC021)
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mechanistic rationale outlined in Section 3, we connect each
intervention to the specific barrier it addresses and summarize
key endpoints (PFS, OS, ORR) from representative studies to clarify
the strength and limitations of the evidence.

4.1 Combining ICD-inducing
chemotherapy with microenvironmental
modulators

Emerging clinical evidence suggests potential benefit from
combining conventional ICD-inducing chemotherapies, such as
oxaliplatin, cyclophosphamide, and paclitaxel, with TME-targeted
therapies in selected populations. For example, oxaliplatin-based
chemotherapy combined with immune checkpoint inhibitors and
antiangiogenic agents (e.g., bevacizumab) has been investigated in
metastatic colorectal cancer (NCT02375672) and pancreatic cancer
(NCT04181645) (50, 51). These studies demonstrated improved
immune cell infiltration, reduced immunosuppression, and
enhanced overall response rates compared to chemotherapy
alone, reflecting synergistic effects from simultaneous ICD
induction and microenvironmental modulation. For instance, in
the phase 3 IMpowerl50 study, atezolizumab + bevacizumab +
carboplatin/paclitaxel achieved a median PFS of 8.3 vs 6.8 months
and 6-month PFS rates of 71.7% vs 57.0% compared with
bevacizumab + chemotherapy; subsequent analyses confirmed an
overall survival advantage for the combination, albeit with effect
sizes on the order of months and varying across subgroups (52). In
part, the clinical success of IMpowerl50 may be attributed to
complementary mechanisms, including VEGF inhibition-
mediated vascular normalization, relief of VEGF-driven
immunosuppression, and chemotherapy-induced immunogenic
cell death, which together facilitate enhanced T-cell infiltration
and activation.

4.2 Radiotherapy-induced ICD combined
with immune checkpoint blockade

Radiotherapy, a potent ICD inducer, has shown preliminary or
modest benefit in combination with immune checkpoint inhibitors
by simultaneously alleviating physical barriers, triggering
immunogenic cell death, and reducing TME-associated immune
suppression. The PEMBRO-RT trial (NCT02492568) combined
pembrolizumab with focal radiotherapy in metastatic non-small-
cell lung cancer (NSCLC), showing increased intratumoral
cytotoxic T-cell infiltration, elevated immune activation
biomarkers, and improved progression-free survival (47). In
PEMBRO-RT, the ORR at 12 weeks was 36% vs 18% (P = 0.07),
median PFS 6.6 vs 1.9 months (HR 0.71; P = 0.19), and median OS
15.9 vs 7.6 months (HR 0.66; P = 0.16) for pembrolizumab + SBRT
versus pembrolizumab alone; although numerical improvements
were observed, differences did not reach statistical significance, with
the largest signal seen in PD-L1-negative tumors (47). Similarly, the
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RADVAX study (NCT01497808) involving prostate cancer patients
combined radiotherapy and ipilimumab, revealing significant
immune modulation and encouraging clinical responses, thereby
providing strong clinical evidence supporting this combinational
approach (53).

4.3 Nanoparticle-based delivery systems
for enhanced ICD and TME modulation

Clinical trials investigating nanoparticle formulations designed
for targeted ICD induction and TME modulation represent another
promising translational avenue. CRLX101, a camptothecin-based
nanoparticle formulation, demonstrated enhanced ICD induction
via potent DNA damage and ER stress, and has been clinically
tested in combination with pembrolizumab for advanced solid
tumors including ovarian and colorectal cancers (NCT02769962)
(54). Preliminary results indicate improved intratumoral drug
retention, enhanced immune cell recruitment, and promising
safety profiles, affirming the clinical feasibility of nanoparticle-
based ICD enhancement strategies. However, efficacy signals
remain preliminary and no randomized phase III data are
currently available for most nanoformulations; thus, any clinical
benefit should be regarded as investigational pending
definitive trials.

4.4 Oncolytic viruses and peptide-based
therapies for TME remodeling

Localized ICD induction approaches such as oncolytic viruses
and intratumoral peptide therapies are gaining clinical traction.
Talimogene laherparepvec (T-VEC), an FDA-approved oncolytic
virus, induces robust ICD through direct tumor lysis and immune
activation, remodeling the local TME. Clinical trials combining T-
VEC with immune checkpoint inhibitors (e.g., KEYNOTE - 034,
NCT02263508) have reported substantial improvement in overall
response rates and prolonged patient survival compared to
historical monotherapy outcomes (55, 56). By contrast, in the
randomized phase 3 MASTERKEY - 265 trial, T-VEC +
pembrolizumab did not significantly improve PFS (HR 0.86; 95%
CI 0.71 - 1.04; P = 0.13) or OS (HR 0.96; 95% CI 0.76 - 1.22;
P = 0.74) compared with pembrolizumab plus placebo; ORR was
48.6% vs 41.3% (CR 17.9% vs 11.6%), and grade >3 treatment-
related AEs occurred in 20.7% vs 19.5% (49). For MASTERKEY -
265, the absence of benefit despite robust intratumoral viral
replication suggests that oncolytic virus-mediated immune
priming alone may be insufficient in poorly immunogenic
tumors, highlighting the need for improved patient selection and
combination sequencing. Likewise, LTX - 315, an oncolytic peptide
designed to trigger ICD and local TME modulation, demonstrated
encouraging immunological responses and tumor regression in
early-phase clinical studies (NCT01986426), further validating the
clinical potential of localized ICD approaches (57).
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4.5 Clinical management of toxicities and
safety considerations

Although promising, these combinational strategies necessitate
careful clinical management due to potential additive toxicities,
particularly immune-related adverse events (irAEs). Clinical
experiences from trials such as PEMBRO-RT in advanced non-small
cell lung cancer (NSCLC) (NCT02492568), RADVAX in metastatic
melanoma (NCT01497808), and nanoparticle-based therapies in
triple-negative breast cancer (TNBC) (NCT02769962) highlight the
importance of meticulous patient monitoring, precise dosing strategies,
and supportive management protocols to ensure optimal safety and
therapeutic effectiveness (47, 58, 59). As an example, in
MASTERKEY - 265, grade >3 treatment-related adverse events
occurred in approximately one-fifth of patients in both arms (20.7%
vs 19.5%), underscoring the need for careful monitoring and patient
selection when deploying TME-modulating combinations (49).

4.6 Summary of clinical insights

Taken together, current clinical studies suggest a potential for
enhancing ICD through targeted modulation of the TME; however,
the magnitude of benefit is generally modest (often measured in
months), heterogeneous across tumor types and biomarkers, and not
consistently accompanied by overall survival gains. Positive signals
(e.g., IMpower150) coexist with neutral phase III results (e.g., HALO
301 for PEGPH20; SARC021 for evofosfamide; MASTERKEY - 265
for T-VEC + pembrolizumab), highlighting unresolved questions
around patient selection, optimal sequencing/combination, and
toxicity management. Consequently, biomarker-guided,
randomized trials with rigorous time-to-event endpoints remain
essential to define where these strategies deliver clinically
meaningful benefit (25).

5 Challenges and concluding
perspectives

Although multiple TME-targeted approaches can potentiate ICD
in principle, most improvements observed clinically are incremental
and become evident only over several months of follow-up. Moreover,
not all mechanistically compelling strategies translate into survival
benefits in randomized settings (e.g, PEGPH20 in HALO 301,
evofosfamide in SARC021, and T-VEC + pembrolizumab in
MASTERKEY - 265), emphasizing the need for stringent patient
stratification and robust phase III validation before broad adoption
(34, 49). These examples illustrate that despite strong mechanistic
rationale, limitations such as inadequate biomarker-driven patient
selection, treatment-related toxicities, and challenges in trial design
often contribute to the lack of survival benefit, highlighting the
importance of refining future clinical approaches.
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Despite significant clinical progress in targeting TME barriers to
enhance ICD, several critical challenges remain. Tumor
heterogeneity continues to complicate therapeutic strategies, as
variable patient responses demand personalized approaches
guided by robust biomarkers (60). Additionally, the complexity of
combinatorial regimens increases the risk of immune-related
adverse events (irAEs), emphasizing the need for refined clinical
management protocols (61). Translating promising preclinical
findings to clinical success requires development of advanced
preclinical models that accurately reflect human tumor biology
and immune interactions.

Nevertheless, integrating ICD induction with precise TME
modulation offers substantial promise. For clarity, this section has
been revised to more clearly articulate how the preceding discussion of
barriers is directly connected to the rationale for these integrated
strategies. Future directions should focus on personalized therapeutic
regimens based on individual tumor characteristics, innovative
delivery platforms (e.g., nanoparticle technologies), and improved
clinical trial designs featuring adaptive strategies and immune-
specific endpoints. Interdisciplinary collaboration among clinicians,
immunologists, bioengineers, and pharmaceutical scientists remains
essential to addressing these challenges. Equally important, these
integrated strategies—particularly the combination of ICD induction
with microenvironment-targeted therapies—hold substantial clinical
promise. However, their translation into routine practice will critically
depend on rigorous validation in well-designed clinical trials.
Ultimately, continued refinement of these integrated approaches is
poised to significantly expand patient populations benefiting from
ICD-based therapies, reshaping the landscape of cancer
immunotherapy and substantially improving clinical outcomes.
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