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Background: Mitophagy receptor-related genes (MRRGs) orchestrate

mitochondrial quality control and may shape glioma progression and immune

tolerance, yet their integrated prognostic and immunobiological significance

remains unclear.

Methods: We combined WGCNA, single−cell AUCell scoring, and LASSO/Cox

modeling across public glioma cohorts to derive and externally validate a 17−gene

MRRG risk signature. Multi−omics comparisons (transcriptome, pathway

enrichment, mutation, and GWAS association), immune infiltration, and therapy

response prediction were performed. Core driver(s) were interrogated by in vitro

functional assays and in vivo xenograft validation.

Results: The MRRG signature robustly stratified overall survival across

independent datasets and remained an independent prognostic factor after

multivariable adjustment. High−risk tumors exhibited activation of P53

signaling and MAPK signaling pathway, coupled with immunosuppressive

remodeling characterized by increased M2−like macrophage infiltration and T

cell dysfunction. Integrative analyses highlighted IFNAR2 as a central node; its

silencing impaired glioma cell proliferation, invasion, and metastatic potential,

while in vivo suppression attenuated tumor growth. The model correlated with

differential predicted sensitivity to immunotherapy and targeted agents,

suggesting potential for precision stratification.

Conclusion: We present and validate a 17−MRRG prognostic model that links

mitophagy receptors to glioma immunosuppression and clinical outcome, and

identify IFNAR2 as a functional driver. These findings provide a rationale for

incorporating MRRG profiling into prognostic assessment and therapeutic

decision−making in glioma.
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Introduction

Gliomas represent the most common primary malignant

tumors of the central nervous system, encompassing low-grade

gliomas (LGG) and glioblastoma (GBM), with high-grade subtypes

characterized by aggressive invasiveness and therapeutic resistance

(1). Despite continuous advancements in innovative therapeutic

strategies including immunotherapy and molecular-targeted

therapy, along with optimized standard treatment protocols (e.g.,

surgery), patient prognosis remains suboptimal (2–4). This

underscores the urgent need for establishing precise prognostic

evaluation systems and identifying novel biomarkers to advance

personalized treatment.

As a critical form of selective autophagy, mitophagy eliminates

damaged mitochondria through ubiquitin-dependent (e.g., PINK1/

Parkin pathway) or -independent mechanisms, playing a vital role

in mitochondrial homeostasis (5). Emerging evidence revealed its

pro-tumorigenic properties: OMA1-mediated mitophagy in GBM

suppresses cGAS-STING signaling to facilitate immune evasion (6);

hypoxia-induced BNIP3 drives metabolic reprogramming in uveal

melanoma progression (7); while TMX2-triggered mitophagy

enhances hepatocellular carcinoma cell survival (8). These

findings suggest mitophagy may promote tumor progression

through multidimensional mechanisms involving metabolic

reprogramming and immune regulation. Notably, this process is

guided by specific receiver proteins like FUNDC1. However,

current research predominantly focuses on individual receptors,

leaving the holistic regulation network of mitophagy receptors and

their crosstalk with the immune microenvironment in

gliomas unexplored.

This research thoroughly evaluated the biological characteristics

of mitophagy receptor-related genes (MRRG) in gliomas through

multi-omics approaches. We pioneered the construction of an

MRRG prognostic risk model, validated through multiple cohorts

as an independent prognostic indicator. Pan-cancer analyses

confirmed its broad applicability in prognostic prediction.

Comprehensive immune abundance and functional pathway

algorithms also revealed the complicated interaction of MRRG

features with the immunosuppressive microenvironment and pro-

oncogenic signaling pathways. GWAS genetic association analysis

and experimental validation further elucidated the regulatory role of

the key gene IFNAR2 in glioma progression. This investigation not

only contributed new insights for prognostic assessment in gliomas

but also pointed to a novel biomarker for developing targeted

therapeutic strategies.
Materials and methods

Data source

Transcriptomic features and corresponding clinical data were

enrolled from the Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/), the GEO database [Home - GEO - NCBI

(nih.gov)], the UCSC XENA database (https://xenabrowser.net/
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datapages/), and the Chinese Glioma Genome Atlas (CGGA)

database (http://www.cgga.org.cn).
Mitophagy receptor gene collection

Through a systematic review of the relevant literature, 16

mitophagy receptor genes were identified (9–22). The complete

gene list and supporting references are provided in Supplementary

Table S1.
WGCNA calculation

Weighted gene co-expression network analysis (WGCNA) is an

algorithm capable of determining gene sets in connection with the

co-expression of specific features. The purpose of this investigation

has been to utilize this tool to identify the most associated co-

expressed genes for mitophagy receptor enrichment scores.
Extracting and analyzing single-cell data

We have extracted Sc-RNA data from 16,201 glioma cells from

the GSE131928 dataset and utilized the Seurat package for

calculation (23). Strict qualitative control was first engaged in

discarding low-quality and potentially multiple-captured cells and

in eliminating cells with abnormal mitochondrial gene content,

resulting in the retention of high-quality cells for subsequent

analyses. Data were processed for normalization and

standardization. Following that, dimensionality reduction and

clustering were accomplished, and clustering was performed via

the CellMarkers2 website (http://117.50.127.228/CellMarker/

index.html) and classical Markers (23, 24). To further investigate

mitophagy receptor activity, we scored each cell using the AUCell

algorithm and categorized the cells into High and Low-level groups

based on median thresholds, and identified differentially expressed

genes between the two groups, which were labeled as MDEGs.

Eventually, the CellChat package was used to construct a ligand-

receptor communication network between cell subtypes.
The building and valuation of the MRRG
risk model

We proceeded with an intersection analysis of MDEGs and

WGCNA co-expression module genes, subsequently performing

Cox regression analysis on the intersected genes in order to

preliminarily discriminate genes associated with prognosis in

gliomas (P < 0.05). Moving on, the least absolute shrinkage and

selection operator (Lasso) analysis was utilized based on the Glmnet

package using a 10-fold cross-validation method to determine the

appropriate lambda value and optimize the prognostic gene set.

Ultimately, genes with non-zero risk coefficients were chosen as the

building blocks of prognostic models, which was identified as the
frontiersin.org

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://www.cgga.org.cn
http://117.50.127.228/CellMarker/index.html
http://117.50.127.228/CellMarker/index.html
https://doi.org/10.3389/fimmu.2025.1672678
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2025.1672678
MRRG risk model. The samples were categorized into High-risk

and Low-risk groups by calculating a unique risk score for each

sample. In addition, we verified the assessment capability of the risk

model by various methodological means.
Meta-analysis

After digging into relevant databases, several external cohorts

were acquired and organized. ORs and 95% CIs were calculated for

each cohort and meta-analysis using STATA software.
Functional pathway analysis

DEGs between two MRRG risk groups of TCGA-GBMLGG

have been determined using the limma package (Cut off = |Log

(FC)| > 0.5, P.value < 0.05). Utilizing the “GSVA” and

“ClusterProfiler” packages, we performed pathway analyses

on DEGs.
Assessment of immune infiltration

Utilizing the “IOBR” package, we computed data from seven

immune infi l trat ion algorithms, namely CIBERSORT,

MCPcounter, EPIC, ESTIMATE, TIMER, Xcell, and quantiseq to

comprehensively investigate the impact of MRRG signature on the

remodeling of immune infiltration levels in gliomas (25).

Furthermore, the enrichment of various leukocyte subtypes in

each sample was quantified using the ssGSEA algorithm.
Immunotherapy sensitivity analysis

To evaluate the potential responsiveness of glioma samples to

immunotherapy, TIDE scores were obtained from the TIDE

database (http://tide.dfci.harvard.edu/login/). These scores

exhibited a strong positive correlation with immunotherapy

resistance. Emerging evidence suggests that epithelial-

mesenchymal transition (EMT), a critical mechanism underlying

tumor metastasis and invasion, also influences immunotherapy

sensitivity (26). To explore this further, we extracted the

“HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION”

gene set from the MsigDB (GSEA | MSigDB (gsea-msigdb.org)) and

calculated EMT enrichment scores.
Tumor mutation burden analysis

TMB is an indicator to assess the extent of heterogeneity of the

tumor genome. Research has shown that the degree of TMB in

gliomas presents a good correlation with the efficacy of

immunotherapy, so the TCGAbiolinks and maftools packages

were used to estimate the mutation burden (27).
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Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) database

(http://www.cancerRxgene.org) serves as a comprehensive

repository for profi l ing tumor-specific drug response

characteristics (28). To evaluate therapeutic features in gliomas,

we employed the oncoPredict package to calculate the half-maximal

inhibitory concentration (IC50) values of clinically related agents.

Subsequently, we investigated the association between the MRRG

risk scores and drug IC50 values.
GWAS source

Expression quantitative trait locus (eQTL) data for IFNAR2

(accession: eqtl-a-ENSG00000159110) and genome-wide

association study (GWAS) summary statistics for brain tumors

(accession: ebi-a-GCST90018800) were retrieved from the IEU

Open GWAS Project (https://gwas.mrcieu.ac.uk/).
Instrumental variable identification

Instrumental variables (IVs) were extracted from eQTL data

under stringent criteria (SNP: P < 5×10-6), followed by linkage

disequilibrium (LD) clumping (r² < 0.001, kb = 10,000 kb, clump =

TRUE) to ensure independence of IVs. The quantity of SNPs

filtered was four, and the F-value of all SNPs was >= 10, meaning

that the strength of the IVs was acceptable.
Mendelian randomization analysis

The TwoSampleMRpackage in R was used to perform a

Mendelian Randomization (MR) analysis between instrumental

variables (IVs) and outcome variables. The IVW procedure was

applied as the principal analytical framework for causal inference.
Sensitivity analysis and colocalization
analysis

Sensitivity analyses included heterogeneity tests (Cochran’s Q

statistic), pleiotropy assessments, and Leave-one-out analysis.

Bayesian colocalization analysis with coloc R package within

+250/-250 kb flanking regions of the eQTL variant, where

SNP.PP.H4 > 0.9 defined significant evidence for shared

causal variants.
Patients and sample

Tumor tissues and matched adjacent specimens were obtained

from 24 patients undergoing radical resection at Guangzhou

Medical University Affiliated Second Hospital (2017–2022). The
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protocol adhered to institutional/national ethics standards and the

Declaration of Helsinki (1964, amended). Ethical approval was

granted by the Hospital Ethics Committee (No. 2020-YJS-KS-01).

Informed consent was obtained from all participants; waivers for

incapacitated subjects were issued based on the noninterventional

nature and public health priorities.
Cell culture

U87 and U251 were obtained from the Cell Bank, Chinese

Academy of Medical Sciences, Beijing, China. The cells were

cultured in DMEM (Gibco, USA) supplemented with 10% FBS

(Gibco, USA) at 37 °C under 5% CO2.
Transfection

Lentiviral shRNA vectors were transduced per the

manufacturer’s protocol. Cells were harvested 48h post-

transfection for downstream analyses.
Western blotting

Cellular proteins were lysed and separated via 10% SDS-PAGE.

After PVDF membrane transfer, blocking with 5% BSA/TBST was

preceded by overnight incubation with primary antibodies included

anti-IFNAR2 (Cell Signaling Technology, Danvers, MA, USA; Cat#

53883), anti-GAPDH (Cell Signaling Technology, USA, Cat#2118)

(4 °C). Secondary antibody probing (1h, RT) preceded ECL-based

target protein detection.
Cell viability

Cell viability was quantified via CCK-8 assay. Cells (4,000/well)

treated in 96-well plates received 10ml CCK-8 solution (Dojindo,

Japan). After 2h incubation (37 °C), absorbance at 450nm was

measured-results expressed as survival percentage versus

blank controls.
Clonogenic assay

Cells (500/dish) were seeded in 6cm dishes. Post-treatment,

colonies formed over 14 days (medium refreshed triweekly).

Methanol: acetic acid (3:1) fixation preceded 0.5% crystal violet

staining and colony quantification.
Transwell assay

Cell migration/invasion was assessed using 8-mm pore

Transwell chambers. Upper chambers received 20,000 cells
Frontiers in Immunology 04
(200mL 1% FBS DMEM); lower chambers contained 20% FBS

DMEM as a chemoattractant. Matrigel pre-coating defined

invasion assays. After 24h, migrated cells were fixed/stained (0.2%

crystal violet). Five random fields (100) were counted per replicate.

Experiments were performed in triplicate.
Xenograft model

Female BALB/c nude mice, aged 6 weeks and weighing 18-20g,

were obtained from the Second Affiliated Hospital of Guangzhou

Medical University (Guangzhou, China), with all animal care

protocols approved by the Institutional Animal Care Committee

of the same institution, adhering to the People’s Republic of China

National Standard GB/T 35892 for laboratory animal welfare. Mice

were maintained under specific pathogen−free conditions at

temperature 22 ± 2 °C, relative humidity 50-60%, 12 h light/12 h

dark cycle (lights on 07:00-19:00), with autoclaved chow and water

ad libitum, corncob bedding, and nesting material enrichment. U87

cells (1×106 in 4ml PBS) were stereotaxically injected into the right

striatum of female BALB/c nude mice (6 weeks) at coordinates

relative to bregma: +0.5mm A/P, +2.0mm M/L, -2.8mm D/V. Mice

exhibiting neurological deficits were euthanized. Briefly, all

procedures involving live animals were performed under

inhalational isoflurane anesthesia (induction 3-4% and

maintenance 1.5-2% in 100% oxygen at 1.0 L/min; animals placed

on a heated pad). For any terminal blood or tissue collection,

animals were first deeply anesthetized (loss of pedal reflex under

isoflurane 4%) and then euthanized by gradual−fill CO2

asphyxiation at a displacement (fill) rate of 30–40% of chamber

volume per minute, immediately followed by a secondary physical

method (cervical dislocation) to ensure death, in accordance with

AVMA Guidelines (2020) and institutional IACUC approval. No

paralytics were used. Maximum tumor volume or humane

endpoints triggered immediate euthanasia under the same

protocol. Brains were fixed in 4% PFA, paraffin-sectioned

coronally. Maximal tumor area was measured with ImageJ;

volume calculated as V (a*b2)/2 (a: major axis, b: minor axis).

Survival endpoint criteria: immediate sacrifice when moribund, or

at 30 days post-injection. Procedures complied with ARRIVE

guidelines and IACUC approval.
Statistical analysis

Statistical analyses were performed using R (v4.4.2) and SPSS 25

(IBM). Before conducting statistical tests, normality (Shapiro-Wilk

test) and variance homogeneity (Levene’ s or Brown-Forsythe test)

were evaluated. Two-group comparisons employed T-test when

parametric assumptions were met, Welch’s t-test for unequal

variances, and the Wilcoxon rank-sum test for non-parametric

conditions. Multi-group comparisons utilized one-way ANOVA

with Tukey’s post hoc test for normally distributed data, and the

Kruskal-Wallis test with Dunn’s post hoc correction for non-

parametric data. The Benjamini-Hochberg (BH) procedure
frontiersin.org
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controlled the false discovery rate (FDR). Normally distributed data

are expressed as mean ± standard deviation (SD), while non-normal

data are reported as median [interquartile range (IQR)]. Effect sizes

(e.g., HR, correlation coefficients) and confidence intervals are

provided throughout. All expression datasets underwent stringent

quality control; only samples with technical errors were excluded.

Statistical significance was defined as two-tailed P < 0.05 or FDR-

adjusted Q < 0.05, with emphasis on effect size and confidence

interval interpretation.
Result

Identification of co-expressed genes with
mitophagy receptor enrichment scores
utilizing WGCNA analysis

Figure 1A revealed significantly altered expression of 16

mitophagy receptor genes in glioma versus normal tissues (P <

0.05). To preliminarily evaluate the role of mitophagy receptors in

gliomas, we have calculated TCGA-GBMLGG enrichment scores

based on these genes and stratified the samples into High and Low

groups using mid-score thresholds. KM analyses displayed a strong

association between high enrichment scores and adverse prognosis

in glioma patients (all, HR > 1, P < 0.05, Figures 1B–D). Next, the

clustered abnormal samples were eliminated, and the remaining

samples were subjected to WGCNA analysis, in which optimal

connectivity of the data and the presentation of a power-law

distribution were secured when the soft-threshold parameter was

6 and the R2 > 0.85 (Figures 1E, F). For gene module clustering, a

deep split of 2 was chosen, and a similarity threshold of 0.2 was

applied to ensure module independence, resulting in the

identification of 20 gene modules. Finally, as shown in

Figures 1G, H, the MEyellow module, comprising 1576 genes,

exhibited the highest correlation with mitophagy receptor

enrichment scores (R = 0.44, P = 6×10-³5).
Single-cell fractionation identification and
calculation of mitophagy receptors AUCell
scores

To investigate the impact of mitophagy receptors on gliomas at

the single-cell level, we have performed comprehensive single-cell

analyses. Following stringent quality control, high-quality cells were

reserved for downstream analysis. PCA revealed no significant

heterogeneity in cel l cycle scores across the dataset

(Supplementary Figure S1A). No batch effect treatment was

applied in this investigation because this dataset had been

subjected to batch effect reduction prior to extraction. Subsequent

dimensionality reduction and clustering partitioned the cells into 26

distinct subpopulations (Figure 2A, Supplementary Figure S1B).

Based on canonical marker genes, these subpopulations were

annotated into 10 cell types: AC-like (EGFR, HOPX),

Macrophage cells (C1QA, CD163, CD68), MES-like (CHI3L1,
Frontiers in Immunology 05
ADM), NPC-like (DCX), OPC-like (PDGFRA, OLIG1), Astrocyte

cells (AQP4, GFAP, ALDH1L1), Stem cells (SOX2, TOP2A,

MKI67), Oligodendrocyte cells (PTGDS, MBP), NK/T cells

(CD3D, CD8A, CD3E), and Mast cells (CPA3, IL1RL1, MS4A2,

KIT). The annotated clusters were visualized using UMAP and

t-SNE (Figure 2B, Supplementary Figure S1C), while a heatmap

highlighted the expression levels of key markers for each cluster

(Figure 2C). Figure 2D illustrated the cellular composition across

samples. To assess mitophagy receptor activity, AUCell scores were

calculated for each cell. Notably, tumor-associated subpopulations

(AC/OPC/NPC-like cells) exhibited higher AUCell scores,

suggesting a potential role of mitophagy receptors in tumor

heterogeneity (Figure 2E). Cells were stratified into High and

Low-level groups based on the median AUCell threshold,

followed by identifying 1037 MDEGs between the groups (Cut off

= |Log2FC| > 0.5, P.val < 0.05) (Figure 2F).
Cell-chat analysis of cell subpopulations

To decipher the intricate signaling network within the tumor

microenvironment, we performed cell-cell communication analysis

using the Cell-chat algorithm. As depicted in Figure 3A, a complex

interaction network was observed among cellular subpopulations,

while Figure 3B demonstrated the most active signaling pathways.

Given the vital role of leukocytes in microenvironment regulation,

we focused on MIF, MHC-I, and SPP1 signaling systems.

Figures 3C, F, and Supplementary Figure S2A revealed that MIF

signals were predominantly secreted by AC/NPC/OPC-like,

transmitting signals through CD74-CXCR4 receptor complexes to

NK/T cells, and Macrophage cells, with partial signaling via CD74-

CD44 to Mast cells. Prior evidence indicated the MIF-CD74/

CXCR4 signaling axis drives brain tumor progression through

comprehensive mechanisms: suppressing pro-inflammatory

microglial differentiation while facilitating tumor vascular

network formation (29, 30). Further analysis indicated that MHC-

I -med i a t ed HLA-CD8 in t e r a c t i on s c on s t i t u t ed an

immunoregulatory network among tumor cells, macrophages, and

NK/T cells (Figures 3D, G, Supplementary Figure S2B). Notably,

macrophages coordinately regulated NK/T cells, AC-like cells, and

MES-like cells through SPP1 secretion and SPP1-CD44 signaling

activation (Figures 3E, H, Supplementary Figure S2C). Emerging

evidence suggests that SPP1+ tumor-associated macrophages

(TAMs) promote tumor proliferation by inducing T cell

exhaustion and epigenetic remodeling (31–34).
The novel MRRG risk model showed
notable prognostic predictive capabilities
for gliomas

The intersection of WGCNA-MEyellow module genes (n =

1,576) with MDEGs (n = 1,037) yielded 171 hub genes (Figure 4A).

Subsequently, 163 genes were preliminarily filtered to correlate with

the prognosis of gliomas (P < 0.05). Following the systematic
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FIGURE 1

Detection of co-expressed genes with mitophagy receptor enrichment scores utilizing WGCNA analysis. (A) Comparison analysis of mitophagy
receptor in glioma and normal tissues. (test: [Wilcoxon rank−sum test], n(Tumor)= [1157], n(Normal)= [689]). (B–D) KM curves for OS in high vs low
mitophagy receptor enrichment score groups across three cohorts. [HR and 95% CI from univariate Cox, Cohorts: (B) TCGA (n = 698); (C) CGGA
(n = 325)]. (E) Soft threshold screening for WGCNA network construction: the red line denotes the optimal soft threshold (Soft threshold = 0.85).
(F) Network diagram of module construction of WGCNA. (G) Heatmap depicting correlations between gene modules and enrichment scores.
(H) Scatterplot of correlation between ME yellow module genes and enrichment scores. *P < 0.05, ***P < 0.001, HR, hazard ratio; CI, confidence
interval.
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consolidation of data on TCGA-GBMLGG, Lasso regression

analysis was ultimately implemented, and 17 non-zero coefficient

genes were scanned to develop the multigene risk score model,

labeled as the MRRG risk model (Figures 4B–D). The MRRG

signature gene expression of the cell subspecies is presented in

Supplementary Figures S3, S4. The formula for computing the risk

score was as follows: Risk-Scores = 0.445 * ARMC10 + 0.369 *
Frontiers in Immunology 07
IFNAR2 + 0.178 * EFEMP2 + 0.158 * PGM1 + 0.157 * GBE1 + 0.123

* NOL3 + 0.101 * TNFRSF12A + 0.086 * RAB34 + 0.075 *

COMMD7 + 0.075 * NTAN1 + 0.075 * TMEM54 + 0.058 *

TMEM165 + 0.046 * ORMDL2 + 0.036 * UPP1 + 0.007 * AP1S2

- 0.068 * P4HA1 - 0.160 * DOK5. As demonstrated in Figure 4E, the

KM survival curve represented a significant difference in overall

survival (OS) between the two risk groups (HR = 7.81,95%CI [5.73-
FIGURE 2

Determining single-cell subpopulations and performing AUCell analysis. (A) t-SNE visualization of 26 clusters. (B) Cell types are annotated into 10
categories, with specific colors for each cluster. (C) Heatmap of signature gene expression across cellular subclusters. (D) Proportional distribution of
cell types in 10 samples. (E) AUCell scores assessing the abundance of mitophagy receptor activity in individual cells. (F) Distribution of cells with
high and low-level AUCell scores. (Threshold = median of AUCell scores).
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10.64], P < 0.001). Figures 4F–I highlighted the strong prognostic

predictive capability of the MRRG risk scores not only but also the

strong positive association with the malignancy of the tumors.

To establish the prognostic significance of the MRRG risk score,

multivariate Cox regression has established the MRRG risk score as an

independent prognostic component of TCGA-GBMLGG along with

other clinical elements (Figures 4J, K, Supplementary Table S2).

Detailed results were Risk-Scores (HR = 2.663, 95%CI [1.700-4.173],

P < 0.001), Age (HR = 1.030, 95%CI [1.020-1.040], P < 0.001), WHO

Grade (G2&G3 vs. G4, HR = 1.951, 95%CI [1.06.-3.582], P = 0.031),

IDH Mutation (HR = 1.857, 95%CI [1.079-3.197], P = 0.026). A

nomogram containing the above independent prognostic components

was further developed to enhance the overall predictive capacity. The

nomogram adopted a cumulative integral pattern to predict the
Frontiers in Immunology 08
prognosis of gliomas, with higher scores pointing to a poorer

prognosis (Figure 4L). The nomogram (C-index = 0.839, 95%CI

[0.827-0.850]) constructed based on the above factors validated the

predictive accuracy by calibration curves (Figure 4M).
Validation of the novel MRRG risk model

To validate the generalizability of the model, we have utilized

three external datasets, for validation. Survival analyses revealed

significantly lower OS (all, HR > 1, P < 0.001) in the High-risk

group across all sets of data (Figures 5B, D, F). The 1-, 3-, and 5-year

AUC ratings of the risk scores in CGGA-325 and CGGA-693

datasets were CGGA-325 (0.770, 0.861, 0.894) and CGGA-693
FIGURE 3

Cell-Chat analyses. (A) circle plot depicting the number of communications between cell subclusters and the total communication intensity.
(B) Heatmap of the top 9 signaling pathway activations. (C–E) Circle plots to further visualize the communication between cell subclusters of the
MIF, MHC-I, and SPP1 pathways. (F–H) Bubble plots of ligand-receptor interactions between immunologic and malignant cell clusters (bubble size:
P-value; color intensity: interaction weight).
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(0.640, 0.669, 0.661). The 1-, 2-, and 3-year AUC ratings of the risk

scores in GSE43378 were (0.722, 0.877, 0.879) (Figures 5C, E, G).

The further Cox regression of risk scores across the three

datasets consistently demonstrated that Risk-scores was an
Frontiers in Immunology 09
independent prognostic element (Figure 5A). The meta-analysis

integrating four cohorts further confirmed the stability of the

MRRG model, with a pooled OR of 2.20 (95% CI 1.81-

2.68; Figure 5H).
FIGURE 4

Establishing a risk model based on MRRG traits. (A) Venn diagram intersecting MDEGs with ME-yellow module genes. (B) Lasso coefficient trajectory
plot. (C) Lasso coefficient visualization (left dashed line: optimal l.min; right: l.1se within 1 standard error). (D) Bivariate histogram presenting the key
compositions of the MRRG risk model. (E) KM curves for OS in the two MRRG risk groups. (F) Time-dependent ROC curves of risk scores.
(G–I) Boxplots showing higher MRRG risk scores in unfavorable phenotypes: (G) WHO grade, (H) IDH mutation, (I) 1p/19q codeletion (Test: Wilcoxon
rank sum test). (J, K) Forest plots to visualize the outcomes of Cox regressions. (L) A nomogram plot integrating clinical parameters. (M) 1,3,5-year
calibration curves for the nomogram. *** P < 0.001, HR, hazard ratio; CI, confidence interval.
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Functional pathway analysis

Analysis of the TCGA-GBMLGG cohort identified 1,787 DEGs (|

log2FC| > 0.5, P.val < 0.05, Figure 6A). Hub genes were characterized

via PPI analysis utilizing the Maximal Clique Centrality (MCC)

algorithm in Cytoscape (Figure 6B). Functional analyses revealed:

Biological processes (BP): immune-related pathways, including

leukocyte migration, regulation of leukocyte migration, leukocyte

chemotaxis, and oligodendrocyte differentiation. Cellular
Frontiers in Immunology 10
components (CC): lysosomal lumen (implicated in mitophagy),

phagocytic vesicle, NADPH oxidase complex, and phagocytic

vesicle membrane. Molecular functions (MF): extracellular matrix

structural constituent, growth factor binding, cytokine activity, and

superoxide-generating NAD (P) H oxidase activity. KEGG pathways:

Cell cycle, p53 signaling, cytokine-cytokine receptor interactions, and

MAPK signaling pathway (Figure 6C). The MRRG risk scores

exhibited remarkable positive correlations with these pathways (all,

P < 0.001; Figure 6D).
FIGURE 5

External validation of the MRRG risk model. (A) Cox forest plots of external glioma cohorts. (B, D, F) KM OS curves (univariate Cox) for risk groups in
(B) CGGA−325 (n= [325]), (D) CGGA−693 (n= [693]), (F) GSE43378 (n= [50]) (C, E, G) Time-dependent ROC plots of three external cohorts,
(C) CGGA-325, (E) CGGA-693, (G) GSE43378. (H) Meta-forest plots spanning four cohorts.
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GSEA indicated suppression of immune activation pathways

in High-risk gliomas (P.adj < 0.05, FDR < 0.25), including JAK-

STAT signaling pathway, immune effector process, regulation of

immune response, and leukocyte-mediated immunity

(Figures 6E, F, Supplementary Table S3), suggesting an

immunosuppressive microenvironment.
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Reshaping of the immunological
microenvironment by MRRG signature

A comprehensive evaluation of immune microenvironment

signatures using seven distinct algorithms consistently revealed

significantly elevated tumor-associated macrophage (TAM)
FIGURE 6

Functional pathway analyses. (A) Volcano plot depicting the allocation of DEGs, with red dots depicting notably up-regulated DEGs and blue dots
representing notably down-regulated DEGs. (B) Top 10 hub genes of the DEGs-based PPI network. (C) Histograms highlighting the GO and KEGG
pathways enriched by DEGs. (D) Correlation network heatmap demonstrating the correlation of risk scores with the enriched pathways (red: positive
correlation; blue: negative correlation). (E, F) GSEA enrichment analysis outcome. *P < 0.05, ***P < 0.001.
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infiltration and stromal scores, coupled with reduced tumor purity

in the High-risk group (Figure 7A). Quantitative analysis of

leukocyte subpopulations via Cibersort demonstrated increased

proportions of M0/M1/M2 macrophage subtypes (with M2 anti-

inflammatory subtype predominating) alongside increased resting

CD4+ T cel l s , res t ing NK cel l s , both of which are

immunosuppressive cell subpopulations in the High-risk group

(all, P<0.05, Figure 7B, Supplementary Figure S5). ssGSEA

analysis indicated a strong positive correlation between MRRG

risk scores and macrophage infiltration (R = 0.680, P < 0.001),

whereas a significant negative correlation was observed with

plasmacytoid dendritic cell (pDC), a leukocyte subset critical for

maintaining immunocompetence (R = -0.477, P < 0.001,

Figure 7C). Comparative analysis substantiated markedly elevated

macrophage enrichment levels and diminished immune active cells
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activity like pDC, Treg, Tcm, Tem, TFH, Tgd, CD + 8T, and NK

CD56 bright in the High-risk group (all, P<0.001; Figure 7D). These

observations imply that MRRG signature orchestrates an

immunosuppressive microenvironment by suppressing leukocyte

activation and modulating the differentiation of pro-tumorigenic

TAM subsets, ultimately promoting immune evasion and

therapeutic resistance in High-risk gliomas.
Crosstalk between MRRG signature and
glioma immunotherapy

Comparative analysis of ICP expression profiles between risk

subgroups revealed significant upregulation of 10 critical checkpoints

in the High-risk group (Figure 8A). The MRRG risk scores
FIGURE 7

Reshaping of the immunological microenvironment by MRRG signatures. (A) Multiple immunization algorithms emphasizing heterogeneity of
immune infiltrates across two MRRG risk groups. (B) Subgroup comparison plot of leukocyte subtype fractions in two MRRG risk groups (Test:
Wilcoxon rank sum test). (C) Bubble plot of correlation between risk scores and leukocyte subtype enrichment abundance. (D) Subgroup
comparison plot of leukocyte subtype enrichment in two MRRG risk groups (Test: Wilcoxon rank sum test). *P < 0.05, **P < 0.01, ***P < 0.001,
ns not significant.
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demonstrated strong positive correlations with these checkpoint

expressions (Supplementary Table S4), suggesting enhanced

immune tolerance and immunosuppressive microenvironment in

high-MRRG-score patients. TMB was significantly elevated in the

High-risk group (Figure 8D). Notably, IDH1/2-mutant gliomas

(favorable prognostic subtype) were significantly enriched in the

Low-risk group (Figures 8B, C). These outcomes reinforced that
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TMB is a negative predictor of glioma immunotherapy response.

Evaluations using TIDE and EMT scoring systems revealed

significantly higher TIDE (Figure 8E) and EMT scores (Figure 8H)

in the High-risk group, both showing strong correlations withMRRG

risk scores (Figures 8F, G, I, J). These findings indicated that High-

risk tumors exhibited enhanced immune evasion capacity and

immunotherapy insensitivity.
FIGURE 8

Crosstalk between MRRG signature and gliomas immunotherapy. (A) ICP gene expression in two MRRG risk groups (Test: Wilcoxon rank sum test).
(B, C) Waterfall plots representing TMB in two MRRG risk groups (B-Test: Wilcoxon rank sum test). (D) Comparison plot of TMB across different
subgroups. (E–G) TIDE showed a significant positive correlation with MRRG risk scores (E-Test: T test). (H–J) EMT scores strongly correlated with
MRRG risk scores (H-Test: Welch t’ test). ***P < 0.001.
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Drug sensitivity analysis

By evaluating immunotherapy sensitivity in patients of various

levels of MRRG signature, this study further assessed

chemotherapeutic responses in glioma patients. High-risk gliomas

exhibited elevated IC50 values for six chemotherapeutics (P < 0.05,

Figure 9), indicating reduced therapeutic efficacy and enhanced

drug resistance potential in the High-risk cohort.
Mendelian randomization analysis

Given the unique biological role of IFNAR2, a critical

component of the MRRG risk model in mitophagy and glioma

progression, we have conducted comprehensive multi-omics

investigations. Transcriptomic analysis revealed significant

upregulation of IFNAR2 mRNA in glioma tissues (P < 0.001),

and the corresponding results were also reflected in 12 pairs of

tumor tissues and peritumoral tissues from glioma patients

(Figures 10A–C). KM analyses across glioma cohorts

demonstrated markedly reduced OS in IFNAR2-high patients (all,

HR > 1, P < 0.001, Figures 10D–F). Cox regression analysis

confirmed IFNAR2 as an independent prognostic risk element

(HR = 1.819, 95%CI [1.119-2.957], P = 0.016; Supplementary

Table S5). MR analysis (exposure: IFNAR2; outcome: brain

tumors) revealed a causal association via the IVW method

(OR = 1.19, 95%CI [1.01-1.40], P < 0.05, Figure 10G). Sensitivity

analyses substantiated robustness: no significant heterogeneity

(Cochran’s Q P = 0.60), horizontal pleiotropy (MR-Egger

intercept P = 0.86, MR-PRESSO P = 0.608), or influential outliers

(leave-one-out analysis; Supplementary Figure S6) were detected.

Colocalization analysis identified rs1476415 (within -/+ 500kb of

IFNAR2) meeting stringent colocalization criteria (SNP.PP.H4 >

0.9), suggesting this locus may regulate IFNAR2 expression to

mediate brain tumor pathogenesis (Figure 10H).
The influence of low IFNAR2 expression on
the pathobiology of glioma

We then conducted a series of experiments to examine the role

of IFNAR2 in glioma pathology. Initial investigations demonstrated

that IFNAR2 suppression markedly attenuated proliferative

capacity, invasive potential, and migratory activity in both U87

and U251 glioma cell models (Figures 11A–I).

We then utilized a U87 orthotopic xenograft mouse model to

further assess the effects of IFNAR2 gene inhibition on tumor

development in mice. The results indicated that, in comparison

with the control group, mice in the IFNAR2 knockdown group

exhibited a significant reduction in tumor volume and prolonged

survival time within 30 days (Figures 11J–L). Extensive

experimental results have verified the fundamental impact of

IFNAR2 on fostering tumor proliferation.
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Pan-cancer applicability of MRRG risk
models

We systematically evaluated the prognostic utility of MRRG risk

scores across 33 TCGA pan-cancer expression profiles. Cox

regression analyses were estimated to calculate HRs with 95%CIs

for individual types, followed by random-effects meta-analysis. The

integrated results demonstrated a significant association between

elevated MRRG scores and adverse pan-cancer outcomes (pooled

OR = 1.19, 95%CI [1.07-1.31], Supplementary Figure S7),

highlighting its potential as a cross-cancer prognostic biomarker.
Discussion

Gliomas, the most prevalent primary malignant tumors in the

central nervous system, are classified into LGG and GBM, with

high-grade subtypes characterized by aggressive progression and

dismal prognosis (1, 2). Regardless of advancements in surgical and

pharmacological interventions, patient outcomes remain

subop t ima l due t o th e immuno supp r e s s i v e tumor

microenvironment , compromised blood-brain barr ier

permeability, acquired therapeutic resistance, and frequent

recurrence (35, 36). Thus, developing novel therapeutic strategies

to enhance targeted treatment responsiveness and establishing

precision prognostic surveillance systems constitute critical unmet

needs in contemporary neuro-oncology. Mitophagy, a crucial

regulatory mechanism for mitochondrial quality control and

homeostasis, has been implicated in tumor progression through

metabolic reprogramming, ROS homeostasis regulation, and

immune evasion (6–8, 37). However, the systemic relevance of

mitophagy receptors—molecular initiators of this process—in

gliomas remains elusive. In the job, we generated a robust

mitophagy receptor-related prognostic model through multi-

omics integration, which not only enhanced gliomas risk

stratification accuracy but also demonstrated pan-cancer

predictive potential. Furthermore, we uncovered IFNAR2 as a

critical regulator driving glioma genesis.

This study revealed significant differential expression patterns

of mitophagy receptor genes between tumor and normal tissues.

The mitophagy receptor enrichment scores demonstrated strong

associations with adverse prognosis. Through integrative WGCNA

co-expression network analysis and single-cell AUCell functional

scoring, we systematically filtered out prognostic gene clusters and

established the novel MRRG prognostic risk model using Lasso

analysis. Cox regression analysis confirmed the independent

prognostic significance of MRRG risk scores. The prognostic

capacity outperformed existing glioma prognostic models (38–

40). Given the universal hallmarks of metabolic reprogramming

and immune evasion in malignancies, pan-cancer meta-analysis

further substantiated the cross-cancer prognostic applicability of

the MRRG model, offering a unified framework to address

prognostic heterogeneity across tumor types.
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Leveraging the Cell-chat computational framework, we

deciphered intercellular signaling networks across single-cell

subpopulations, identifying pronounced activation of MHC-I, MIF,

and SPP1 immune axes. Mechanistically: Malignant cells attenuate

antigen presentation systems via the MHC-I signaling axis,
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compromising CD8+ T cell-mediated immunosurveillance (41–43);

MIF signaling constrains microglial differentiation toward pro-

inflammatory states (29); SPP1+ TAMs orchestrate T cell

exhaustion (44, 45). The above implied that a sophisticated

immunological evasion system operated in the microenvironment
FIGURE 9

Drug sensitivity analysis. (A–F) Differences in predicted drug susceptibility (IC50) to selected agents between high and low MRRG risk groups.
(G–L) Spearman correlations between MRRG risk scores and predicted drug response metrics for the same agents (asterisks for BH FDR<0.05).
***P < 0.001.
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of gliomas. Integrative computational analysis revealed a prototypical

immunosuppressive signature in high-risk cohorts, characterized by

dominant M2-polarized macrophage infiltration, coupled with

coordinated expansion of quiescent NK cells and resting CD4+T

cells. Notably, this subgroup exhibited systemic depletion of Tregs,

Tcm, and Tfh, collectively indicative of an immune-exhausted

microenvironment. As immunotherapy represents an emerging

approach in cancer treatment (3, 46), this investigation further

investigated the relationship between MRRG risk scores and

immunotherapy feasibility. Primarily, the significant positive

correlation between TIDE scores and risk scores suggested that

high-risk patients may undergo reduced immunotherapy response

rates due to immune escape mechanisms (47). Then, the strong
Frontiers in Immunology 16
positive correlation between risk scores and EMT-scores implied a

potential propensity for primary drug resistance in this cohort (26).

The current standard of care for gliomas involves surgical resection

followed by adjuvant chemotherapy, but therapeutic efficacy varies

due to tumor heterogeneity, with a high probability of drug resistance

(48). Drug resistance evaluation revealed an inverse relationship

between the sensitivity of standard chemotherapeutic agents (e.g.,

TMZ) and risk scores. Collectively, these findings demonstrate that

the MRRG risk scoring system provides multidimensional molecular

insights for personalized glioma treatment, holding potential

translational significance for clinical applications.

Emerging findings highlight that interferon significantly

improves the clinical prognosis of glioma patients by integrating
FIGURE 10

Comprehensive analyses of IFNAR2. (A–C) IFNAR2 expression is remarkably elevated in tumor tissues (Test: Wilcoxon rank sum test). A: n (normal)=
1157, n (tumor) = 689; (B, C) n (peritumoral) = 12, n (tumor) = 12. (D–F) IFNAR2 is linked to an unfavorable prognosis in gliomas. (G) Forest plot of
MR analysis findings. (H) Colocalization analysis results of IFNAR2 and brain tumors. ***P < 0.001.
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FIGURE 11

IFNAR2 knockdown inhibits glioma pathobiology. (A) Western blot of IFNAR2 after shRNA knockdown (representative blot with densitometry
normalized to GAPDH; n = 3; unpaired two−tailed t test). (B, C) CCK-8 assays showing proliferation capacity in U87 and U251 cells with IFNAR2
knockdown, n=3. (D, E) Clonogenic potential of IFNAR2-deficient U87 and U251 cells, n=3. (F–I) Transwell migration and invasion assays
demonstrating impaired motility in IFNAR2-knockdown cells, cells/field; n=3. (J) Histological analyses of orthotopic glioma shNC, shIFNAR2#1, and
shIFNAR2#2 groups. (K) Quantification of orthotopic xenograft volumes. (L) KM curves of glioma-bearing mice. **P < 0.01, ***P < 0.001; #P < 0.05,
##P < 0.01, ### P< 0.001.
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treatment strategies such as standard chemotherapy as well as

nanocarrier-based drug delivery systems (49, 50). As the core

subunit of type I IFN receptor, IFNAR2 orchestrates IFN

signaling transduction and plays critical roles in tumorigenesis,

necessitating comprehensive elucidation of its biological

implications in glioma pathogenesis (51).

This study established IFNAR2 as a prognostic risk factor in

gliomas through integrative transcriptomic analyses. Mendelian

randomization and colocalization analyses further validated

IFNAR2 as a hereditary susceptibil ity gene for brain

tumorigenesis, identifying its pivotal regulatory SNP locus.

Functional in vitro and in vivo experiments demonstrated

IFNAR2’s role in driving gliomas’ malignant progression via cell

migration and invasion.

This study began with the fundamental component of signal

transduction—receptors—and focuses on mitophagy, a core

mechanism for maintaining cellular homeostasis, to innovatively

investigate the biological implications of mitophagy receptors on

gliomas. We developed a robust mitophagy receptor-related risk

model, which is rigorously validated as a powerful prognostic

feature for gliomas. Elevated risk scores significantly related to

adverse outcomes and an immunosuppressive microenvironment

characterized by M2 macrophage polarization and T cell

exhaustion. Additionally, the MRRG score accurately predicted

therapeutic responsiveness. Finally, through genetic analyses and

in vitro/in vivo functional experiments, we preliminarily delineated

the multifaceted regulatory interventions of IFNAR2 in tumor

initiation and progression.

Our work is limited by its retrospective reliance on

heterogeneous public RNA−seq cohorts, which may harbor batch

effects despite normalization. Sample diversity is restricted (few

pediatric or rare molecular subtypes), potentially limiting

generalizability. Single−cell analyses involve a small number of

specimens without spatial context. Drug/immunotherapy

responsiveness is inferred computationally, not clinically

validated. Functional experiments focused only on IFNAR2,

leaving other MRRGs unexplored mechanistically. Prospective,

multi−center, multi−omic and broader functional validation will

be necessary before clinical translation.

Collectively, this study innovatively proposes a mitophagy

receptor-related risk signature as a prognostic stratification tool

for gliomas, while identifying IFNAR2 as a novel therapeutic target.
Conclusion

We developed and externally validated a prognostic model

based on mitophagy MRRGs, which demonstrated superior

prognostic stratification capabilities compared to conventional

clinical markers in glioma. By integrating bulk transcriptomic and

single-cell data along with preliminary functional validation of

IFNAR2, our findings suggest that mitophagy receptor signaling

may modula te immune funct ions wi th in the tumor

microenvironment, such as macrophage polarization and T cell

activity. Clinically, this model holds potential value in three aspects:
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(i) supporting individualized prognostic evaluation; (ii) assisting in

imaging surveillance planning; and (iii) providing a basis for patient

stratification in future trials involving immunotherapy. The

identification of IFNAR2 and other MRRG components as

potential biomarkers lays a groundwork for further research into

combined targeting strategies involving mitophagy and immune

modulation. Although prospective, multi-center, and higher-

resolution studies are necessary before clinical application, the

current study indicates that the MRRG signature offers a novel

perspective for prognostic stratification and informs the design of

future combination therapies.
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