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Background: Mitophagy receptor-related genes (MRRGs) orchestrate
mitochondrial quality control and may shape glioma progression and immune
tolerance, yet their integrated prognostic and immunobiological significance
remains unclear.

Methods: We combined WGCNA, single—cell AUCell scoring, and LASSO/Cox
modeling across public glioma cohorts to derive and externally validate a 17—gene
MRRG risk signature. Multi—omics comparisons (transcriptome, pathway
enrichment, mutation, and GWAS association), immune infiltration, and therapy
response prediction were performed. Core driver(s) were interrogated by in vitro
functional assays and in vivo xenograft validation.

Results: The MRRG signature robustly stratified overall survival across
independent datasets and remained an independent prognostic factor after
multivariable adjustment. High-risk tumors exhibited activation of P53
signaling and MAPK signaling pathway, coupled with immunosuppressive
remodeling characterized by increased M2-like macrophage infiltration and T
cell dysfunction. Integrative analyses highlighted IFNAR2 as a central node; its
silencing impaired glioma cell proliferation, invasion, and metastatic potential,
while in vivo suppression attenuated tumor growth. The model correlated with
differential predicted sensitivity to immunotherapy and targeted agents,
suggesting potential for precision stratification.

Conclusion: We present and validate a 17-MRRG prognostic model that links
mitophagy receptors to glioma immunosuppression and clinical outcome, and
identify IFNAR2 as a functional driver. These findings provide a rationale for
incorporating MRRG profiling into prognostic assessment and therapeutic
decision—making in glioma.
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Introduction

Gliomas represent the most common primary malignant
tumors of the central nervous system, encompassing low-grade
gliomas (LGG) and glioblastoma (GBM), with high-grade subtypes
characterized by aggressive invasiveness and therapeutic resistance
(1). Despite continuous advancements in innovative therapeutic
strategies including immunotherapy and molecular-targeted
therapy, along with optimized standard treatment protocols (e.g.,
surgery), patient prognosis remains suboptimal (2-4). This
underscores the urgent need for establishing precise prognostic
evaluation systems and identifying novel biomarkers to advance
personalized treatment.

As a critical form of selective autophagy, mitophagy eliminates
damaged mitochondria through ubiquitin-dependent (e.g., PINK1/
Parkin pathway) or -independent mechanisms, playing a vital role
in mitochondrial homeostasis (5). Emerging evidence revealed its
pro-tumorigenic properties: OMAI-mediated mitophagy in GBM
suppresses cGAS-STING signaling to facilitate immune evasion (6);
hypoxia-induced BNIP3 drives metabolic reprogramming in uveal
melanoma progression (7); while TMX2-triggered mitophagy
enhances hepatocellular carcinoma cell survival (8). These
findings suggest mitophagy may promote tumor progression
through multidimensional mechanisms involving metabolic
reprogramming and immune regulation. Notably, this process is
guided by specific receiver proteins like FUNDCI1. However,
current research predominantly focuses on individual receptors,
leaving the holistic regulation network of mitophagy receptors and
their crosstalk with the immune microenvironment in
gliomas unexplored.

This research thoroughly evaluated the biological characteristics
of mitophagy receptor-related genes (MRRG) in gliomas through
multi-omics approaches. We pioneered the construction of an
MRRG prognostic risk model, validated through multiple cohorts
as an independent prognostic indicator. Pan-cancer analyses
confirmed its broad applicability in prognostic prediction.
Comprehensive immune abundance and functional pathway
algorithms also revealed the complicated interaction of MRRG
features with the immunosuppressive microenvironment and pro-
oncogenic signaling pathways. GWAS genetic association analysis
and experimental validation further elucidated the regulatory role of
the key gene IFNAR2 in glioma progression. This investigation not
only contributed new insights for prognostic assessment in gliomas
but also pointed to a novel biomarker for developing targeted
therapeutic strategies.

Materials and methods
Data source

Transcriptomic features and corresponding clinical data were
enrolled from the Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/), the GEO database [Home - GEO - NCBI
(nih.gov)], the UCSC XENA database (https://xenabrowser.net/
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datapages/), and the Chinese Glioma Genome Atlas (CGGA)
database (http://www.cgga.org.cn).

Mitophagy receptor gene collection

Through a systematic review of the relevant literature, 16
mitophagy receptor genes were identified (9-22). The complete
gene list and supporting references are provided in Supplementary
Table S1.

WGCNA calculation

Weighted gene co-expression network analysis (WGCNA) is an
algorithm capable of determining gene sets in connection with the
co-expression of specific features. The purpose of this investigation
has been to utilize this tool to identify the most associated co-
expressed genes for mitophagy receptor enrichment scores.

Extracting and analyzing single-cell data

We have extracted Sc-RNA data from 16,201 glioma cells from
the GSE131928 dataset and utilized the Seurat package for
calculation (23). Strict qualitative control was first engaged in
discarding low-quality and potentially multiple-captured cells and
in eliminating cells with abnormal mitochondrial gene content,
resulting in the retention of high-quality cells for subsequent
analyses. Data were processed for normalization and
standardization. Following that, dimensionality reduction and
clustering were accomplished, and clustering was performed via
the CellMarkers2 website (http://117.50.127.228/CellMarker/
index.html) and classical Markers (23, 24). To further investigate
mitophagy receptor activity, we scored each cell using the AUCell
algorithm and categorized the cells into High and Low-level groups
based on median thresholds, and identified differentially expressed
genes between the two groups, which were labeled as MDEGs.
Eventually, the CellChat package was used to construct a ligand-
receptor communication network between cell subtypes.

The building and valuation of the MRRG
risk model

We proceeded with an intersection analysis of MDEGs and
WGCNA co-expression module genes, subsequently performing
Cox regression analysis on the intersected genes in order to
preliminarily discriminate genes associated with prognosis in
gliomas (P < 0.05). Moving on, the least absolute shrinkage and
selection operator (Lasso) analysis was utilized based on the Glmnet
package using a 10-fold cross-validation method to determine the
appropriate lambda value and optimize the prognostic gene set.
Ultimately, genes with non-zero risk coefficients were chosen as the
building blocks of prognostic models, which was identified as the
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MRRG risk model. The samples were categorized into High-risk
and Low-risk groups by calculating a unique risk score for each
sample. In addition, we verified the assessment capability of the risk
model by various methodological means.

Meta-analysis

After digging into relevant databases, several external cohorts
were acquired and organized. ORs and 95% CIs were calculated for
each cohort and meta-analysis using STATA software.

Functional pathway analysis

DEGs between two MRRG risk groups of TCGA-GBMLGG
have been determined using the limma package (Cut off = |Log
(FC)| > 0.5, P.value < 0.05). Utilizing the “GSVA” and
“ClusterProfiler” packages, we performed pathway analyses
on DEGs.

Assessment of immune infiltration

Utilizing the “IOBR” package, we computed data from seven
immune infiltration algorithms, namely CIBERSORT,
MCPcounter, EPIC, ESTIMATE, TIMER, Xcell, and quantiseq to
comprehensively investigate the impact of MRRG signature on the
remodeling of immune infiltration levels in gliomas (25).
Furthermore, the enrichment of various leukocyte subtypes in
each sample was quantified using the ssGSEA algorithm.

Immunotherapy sensitivity analysis

To evaluate the potential responsiveness of glioma samples to
immunotherapy, TIDE scores were obtained from the TIDE
database (http://tide.dfci.harvard.edu/login/). These scores
exhibited a strong positive correlation with immunotherapy
resistance. Emerging evidence suggests that epithelial-
mesenchymal transition (EMT), a critical mechanism underlying
tumor metastasis and invasion, also influences immunotherapy
sensitivity (26). To explore this further, we extracted the
“HALLMARK_EPITHELIAL_ MESENCHYMAL_TRANSITION”
gene set from the MsigDB (GSEA | MSigDB (gsea-msigdb.org)) and
calculated EMT enrichment scores.

Tumor mutation burden analysis

TMB is an indicator to assess the extent of heterogeneity of the
tumor genome. Research has shown that the degree of TMB in
gliomas presents a good correlation with the efficacy of
immunotherapy, so the TCGAbiolinks and maftools packages
were used to estimate the mutation burden (27).
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Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) database
(http://www.cancerRxgene.org) serves as a comprehensive
repository for profiling tumor-specific drug response
characteristics (28). To evaluate therapeutic features in gliomas,
we employed the oncoPredict package to calculate the half-maximal
inhibitory concentration (IC50) values of clinically related agents.
Subsequently, we investigated the association between the MRRG
risk scores and drug IC50 values.

GWAS source

Expression quantitative trait locus (eQTL) data for IFNAR2
(accession: eqtl-a-ENSG00000159110) and genome-wide
association study (GWAS) summary statistics for brain tumors
(accession: ebi-a-GCST90018800) were retrieved from the IEU
Open GWAS Project (https://gwas.mrcieu.ac.uk/).

Instrumental variable identification

Instrumental variables (IVs) were extracted from eQTL data
under stringent criteria (SNP: P < 5x10°), followed by linkage
disequilibrium (LD) clumping (r* < 0.001, kb = 10,000 kb, clump =
TRUE) to ensure independence of IVs. The quantity of SNPs
filtered was four, and the F-value of all SNPs was >= 10, meaning
that the strength of the IVs was acceptable.

Mendelian randomization analysis

The TwoSampleMRpackage in R was used to perform a
Mendelian Randomization (MR) analysis between instrumental
variables (IVs) and outcome variables. The IVW procedure was
applied as the principal analytical framework for causal inference.

Sensitivity analysis and colocalization
analysis

Sensitivity analyses included heterogeneity tests (Cochran’s Q
statistic), pleiotropy assessments, and Leave-one-out analysis.
Bayesian colocalization analysis with coloc R package within
+250/-250 kb flanking regions of the eQTL variant, where
SNP.PP.H4 > 0.9 defined significant evidence for shared
causal varijants.

Patients and sample

Tumor tissues and matched adjacent specimens were obtained
from 24 patients undergoing radical resection at Guangzhou
Medical University Affiliated Second Hospital (2017-2022). The
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protocol adhered to institutional/national ethics standards and the
Declaration of Helsinki (1964, amended). Ethical approval was
granted by the Hospital Ethics Committee (No. 2020-YJS-KS-01).
Informed consent was obtained from all participants; waivers for
incapacitated subjects were issued based on the noninterventional
nature and public health priorities.

Cell culture

U87 and U251 were obtained from the Cell Bank, Chinese
Academy of Medical Sciences, Beijing, China. The cells were
cultured in DMEM (Gibco, USA) supplemented with 10% FBS
(Gibco, USA) at 37 °C under 5% CO,.

Transfection

Lentiviral shRNA vectors were transduced per the
manufacturer’s protocol. Cells were harvested 48h post-
transfection for downstream analyses.

Western blotting

Cellular proteins were lysed and separated via 10% SDS-PAGE.
After PVDF membrane transfer, blocking with 5% BSA/TBST was
preceded by overnight incubation with primary antibodies included
anti-IFNAR?2 (Cell Signaling Technology, Danvers, MA, USA; Cat#
53883), anti-GAPDH (Cell Signaling Technology, USA, Cat#2118)
(4 °C). Secondary antibody probing (1h, RT) preceded ECL-based
target protein detection.

Cell viability

Cell viability was quantified via CCK-8 assay. Cells (4,000/well)
treated in 96-well plates received 10ul CCK-8 solution (Dojindo,
Japan). After 2h incubation (37 °C), absorbance at 450nm was
measured-results expressed as survival percentage versus
blank controls.

Clonogenic assay

Cells (500/dish) were seeded in 6cm dishes. Post-treatment,
colonies formed over 14 days (medium refreshed triweekly).
Methanol: acetic acid (3:1) fixation preceded 0.5% crystal violet
staining and colony quantification.

Transwell assay

Cell migration/invasion was assessed using 8-um pore
Transwell chambers. Upper chambers received 20,000 cells
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(200uL 1% FBS DMEM); lower chambers contained 20% FBS
DMEM as a chemoattractant. Matrigel pre-coating defined
invasion assays. After 24h, migrated cells were fixed/stained (0.2%
crystal violet). Five random fields (100) were counted per replicate.
Experiments were performed in triplicate.

Xenograft model

Female BALB/c nude mice, aged 6 weeks and weighing 18-20g,
were obtained from the Second Affiliated Hospital of Guangzhou
Medical University (Guangzhou, China), with all animal care
protocols approved by the Institutional Animal Care Committee
of the same institution, adhering to the People’s Republic of China
National Standard GB/T 35892 for laboratory animal welfare. Mice
were maintained under specific pathogen—free conditions at
temperature 22 + 2 °C, relative humidity 50-60%, 12 h light/12 h
dark cycle (lights on 07:00-19:00), with autoclaved chow and water
ad libitum, corncob bedding, and nesting material enrichment. U87
cells (1x10° in 4ul PBS) were stereotaxically injected into the right
striatum of female BALB/c nude mice (6 weeks) at coordinates
relative to bregma: +0.5mm A/P, +2.0mm M/L, -2.8mm D/V. Mice
exhibiting neurological deficits were euthanized. Briefly, all
procedures involving live animals were performed under
inhalational isoflurane anesthesia (induction 3-4% and
maintenance 1.5-2% in 100% oxygen at 1.0 L/min; animals placed
on a heated pad). For any terminal blood or tissue collection,
animals were first deeply anesthetized (loss of pedal reflex under
isoflurane 4%) and then euthanized by gradual-fill CO,
asphyxiation at a displacement (fill) rate of 30-40% of chamber
volume per minute, immediately followed by a secondary physical
method (cervical dislocation) to ensure death, in accordance with
AVMA Guidelines (2020) and institutional IACUC approval. No
paralytics were used. Maximum tumor volume or humane
endpoints triggered immediate euthanasia under the same
protocol. Brains were fixed in 4% PFA, paraffin-sectioned
coronally. Maximal tumor area was measured with Image]J;
volume calculated as V (a*b2)/2 (a: major axis, b: minor axis).
Survival endpoint criteria: immediate sacrifice when moribund, or
at 30 days post-injection. Procedures complied with ARRIVE
guidelines and IACUC approval.

Statistical analysis

Statistical analyses were performed using R (v4.4.2) and SPSS 25
(IBM). Before conducting statistical tests, normality (Shapiro-Wilk
test) and variance homogeneity (Levene’ s or Brown-Forsythe test)
were evaluated. Two-group comparisons employed T-test when
parametric assumptions were met, Welch’s t-test for unequal
variances, and the Wilcoxon rank-sum test for non-parametric
conditions. Multi-group comparisons utilized one-way ANOVA
with Tukey’s post hoc test for normally distributed data, and the
Kruskal-Wallis test with Dunn’s post hoc correction for non-
parametric data. The Benjamini-Hochberg (BH) procedure
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controlled the false discovery rate (FDR). Normally distributed data
are expressed as mean + standard deviation (SD), while non-normal
data are reported as median [interquartile range (IQR)]. Effect sizes
(e.g., HR, correlation coefficients) and confidence intervals are
provided throughout. All expression datasets underwent stringent
quality control; only samples with technical errors were excluded.
Statistical significance was defined as two-tailed P < 0.05 or FDR-
adjusted Q < 0.05, with emphasis on effect size and confidence
interval interpretation.

Result

Identification of co-expressed genes with
mitophagy receptor enrichment scores
utilizing WGCNA analysis

Figure 1A revealed significantly altered expression of 16
mitophagy receptor genes in glioma versus normal tissues (P <
0.05). To preliminarily evaluate the role of mitophagy receptors in
gliomas, we have calculated TCGA-GBMLGG enrichment scores
based on these genes and stratified the samples into High and Low
groups using mid-score thresholds. KM analyses displayed a strong
association between high enrichment scores and adverse prognosis
in glioma patients (all, HR > 1, P < 0.05, Figures 1B-D). Next, the
clustered abnormal samples were eliminated, and the remaining
samples were subjected to WGCNA analysis, in which optimal
connectivity of the data and the presentation of a power-law
distribution were secured when the soft-threshold parameter was
6 and the R2 > 0.85 (Figures 1E, F). For gene module clustering, a
deep split of 2 was chosen, and a similarity threshold of 0.2 was
applied to ensure module independence, resulting in the
identification of 20 gene modules. Finally, as shown in
Figures 1G, H, the MEyellow module, comprising 1576 genes,
exhibited the highest correlation with mitophagy receptor
enrichment scores (R = 0.44, P = 6x107*).

Single-cell fractionation identification and
calculation of mitophagy receptors AUCell
scores

To investigate the impact of mitophagy receptors on gliomas at
the single-cell level, we have performed comprehensive single-cell
analyses. Following stringent quality control, high-quality cells were
reserved for downstream analysis. PCA revealed no significant
heterogeneity in cell cycle scores across the dataset
(Supplementary Figure S1A). No batch effect treatment was
applied in this investigation because this dataset had been
subjected to batch effect reduction prior to extraction. Subsequent
dimensionality reduction and clustering partitioned the cells into 26
distinct subpopulations (Figure 2A, Supplementary Figure S1B).
Based on canonical marker genes, these subpopulations were
annotated into 10 cell types: AC-like (EGFR, HOPX),
Macrophage cells (C1QA, CD163, CD68), MES-like (CHI3L1,
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ADM), NPC-like (DCX), OPC-like (PDGFRA, OLIG1), Astrocyte
cells (AQP4, GFAP, ALDHI1L1), Stem cells (SOX2, TOP2A,
MKI67), Oligodendrocyte cells (PTGDS, MBP), NK/T cells
(CD3D, CD8A, CD3E), and Mast cells (CPA3, ILIRL1, MS4A2,
KIT). The annotated clusters were visualized using UMAP and
t-SNE (Figure 2B, Supplementary Figure S1C), while a heatmap
highlighted the expression levels of key markers for each cluster
(Figure 2C). Figure 2D illustrated the cellular composition across
samples. To assess mitophagy receptor activity, AUCell scores were
calculated for each cell. Notably, tumor-associated subpopulations
(AC/OPC/NPC-like cells) exhibited higher AUCell scores,
suggesting a potential role of mitophagy receptors in tumor
heterogeneity (Figure 2E). Cells were stratified into High and
Low-level groups based on the median AUCell threshold,
followed by identifying 1037 MDEGs between the groups (Cut off
= |Log2FC| > 0.5, P.val < 0.05) (Figure 2F).

Cell-chat analysis of cell subpopulations

To decipher the intricate signaling network within the tumor
microenvironment, we performed cell-cell communication analysis
using the Cell-chat algorithm. As depicted in Figure 3A, a complex
interaction network was observed among cellular subpopulations,
while Figure 3B demonstrated the most active signaling pathways.
Given the vital role of leukocytes in microenvironment regulation,
we focused on MIF, MHC-I, and SPPI1 signaling systems.
Figures 3C, F, and Supplementary Figure S2A revealed that MIF
signals were predominantly secreted by AC/NPC/OPC-like,
transmitting signals through CD74-CXCR4 receptor complexes to
NK/T cells, and Macrophage cells, with partial signaling via CD74-
CD44 to Mast cells. Prior evidence indicated the MIF-CD74/
CXCR4 signaling axis drives brain tumor progression through
comprehensive mechanisms: suppressing pro-inflammatory
microglial differentiation while facilitating tumor vascular
network formation (29, 30). Further analysis indicated that MHC-
I-mediated HLA-CD8 interactions constituted an
immunoregulatory network among tumor cells, macrophages, and
NK/T cells (Figures 3D, G, Supplementary Figure S2B). Notably,
macrophages coordinately regulated NK/T cells, AC-like cells, and
MES-like cells through SPP1 secretion and SPP1-CD44 signaling
activation (Figures 3E, H, Supplementary Figure S2C). Emerging
evidence suggests that SPP1+ tumor-associated macrophages
(TAMs) promote tumor proliferation by inducing T cell
exhaustion and epigenetic remodeling (31-34).

The novel MRRG risk model showed
notable prognostic predictive capabilities
for gliomas

The intersection of WGCNA-MEyellow module genes (n =
1,576) with MDEGs (n = 1,037) yielded 171 hub genes (Figure 4A).
Subsequently, 163 genes were preliminarily filtered to correlate with
the prognosis of gliomas (P < 0.05). Following the systematic
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mitophagy receptor enrichment score groups across three cohorts. [HR and 95% CI from univariate Cox, Cohorts: (B) TCGA (n = 698); (C) CGGA
(n = 325)]. (E) Soft threshold screening for WGCNA network construction: the red line denotes the optimal soft threshold (Soft threshold = 0.85).
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FIGURE 2

Determining single-cell subpopulations and performing AUCell analysis. (A) t-SNE visualization of 26 clusters. (B) Cell types are annotated into 10
categories, with specific colors for each cluster. (C) Heatmap of signature gene expression across cellular subclusters. (D) Proportional distribution of
cell types in 10 samples. (E) AUCell scores assessing the abundance of mitophagy receptor activity in individual cells. (F) Distribution of cells with
high and low-level AUCell scores. (Threshold = median of AUCell scores).

consolidation of data on TCGA-GBMLGG, Lasso regression  IFNAR2 +0.178 * EFEMP2 +0.158 * PGM1 + 0.157 * GBE1 +0.123
analysis was ultimately implemented, and 17 non-zero coefficient ~ * NOL3 + 0.101 * TNFRSFI12A + 0.086 * RAB34 + 0.075 *
genes were scanned to develop the multigene risk score model, ~COMMD7 + 0.075 * NTAN1 + 0.075 * TMEM54 + 0.058 *
labeled as the MRRG risk model (Figures 4B-D). The MRRG = TMEM165 + 0.046 * ORMDL2 + 0.036 * UPP1 + 0.007 * AP1S2
signature gene expression of the cell subspecies is presented in - 0.068 * PAHA1L - 0.160 * DOK5. As demonstrated in Figure 4E, the
Supplementary Figures S3, S4. The formula for computing the risk KM survival curve represented a significant difference in overall
score was as follows: Risk-Scores = 0.445 * ARMCIO + 0.369 *  survival (OS) between the two risk groups (HR = 7.81,95%CI [5.73-
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FIGURE 3

Cell-Chat analyses. (A) circle plot depicting the number of communications between cell subclusters and the total communication intensity.

(B) Heatmap of the top 9 signaling pathway activations. (C—E) Circle plots to further visualize the communication between cell subclusters of the
MIF, MHC-I, and SPP1 pathways. (F=H) Bubble plots of ligand-receptor interactions between immunologic and malignant cell clusters (bubble size:
P-value; color intensity: interaction weight).

10.64], P < 0.001). Figures 4F-I highlighted the strong prognostic ~ prognosis of gliomas, with higher scores pointing to a poorer
predictive capability of the MRRG risk scores not only but also the  prognosis (Figure 4L). The nomogram (C-index = 0.839, 95%CI
strong positive association with the malignancy of the tumors. [0.827-0.850]) constructed based on the above factors validated the
To establish the prognostic significance of the MRRG risk score,  predictive accuracy by calibration curves (Figure 4M).

multivariate Cox regression has established the MRRG risk score as an

independent prognostic component of TCGA-GBMLGG along with

other clinical elements (Figures 4], K, Supplementary Table $2). Validation of the novel MRRG risk model
Detailed results were Risk-Scores (HR = 2.663, 95%CI [1.700-4.173],

P <0.001), Age (HR = 1.030, 95%CI [1.020-1.040], P < 0.001), WHO To validate the generalizability of the model, we have utilized
Grade (G2&G3 vs. G4, HR = 1.951, 95%CI [1.06.-3.582], P = 0.031),  three external datasets, for validation. Survival analyses revealed
IDH Mutation (HR = 1.857, 95%CI [1.079-3.197], P = 0.026). A  significantly lower OS (all, HR > 1, P < 0.001) in the High-risk
nomogram containing the above independent prognostic components  group across all sets of data (Figures 5B, D, F). The 1-, 3-, and 5-year
was further developed to enhance the overall predictive capacity. The ~ AUC ratings of the risk scores in CGGA-325 and CGGA-693
nomogram adopted a cumulative integral pattern to predict the  datasets were CGGA-325 (0.770, 0.861, 0.894) and CGGA-693
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FIGURE 4

Establishing a risk model based on MRRG traits. (A) Venn diagram intersecting MDEGs with ME-yellow module genes. (B) Lasso coefficient trajectory
plot. (C) Lasso coefficient visualization (left dashed line: optimal A.min; right: A.1se within 1 standard error). (D) Bivariate histogram presenting the key
compositions of the MRRG risk model. (E) KM curves for OS in the two MRRG risk groups. (F) Time-dependent ROC curves of risk scores.

(G-1) Boxplots showing higher MRRG risk scores in unfavorable phenotypes: (G) WHO grade, (H) IDH mutation, (1) 1p/19q codeletion (Test: Wilcoxon
rank sum test). (J, K) Forest plots to visualize the outcomes of Cox regressions. (L) A nomogram plot integrating clinical parameters. (M) 1,3,5-year
calibration curves for the nomogram. *** P < 0.001, HR, hazard ratio; Cl, confidence interval.

(0.640, 0.669, 0.661). The 1-, 2-, and 3-year AUC ratings of the risk
scores in GSE43378 were (0.722, 0.877, 0.879) (Figures 5C, E, G).
The further Cox regression of risk scores across the three
datasets consistently demonstrated that Risk-scores was an
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2.68; Figure 5H).

09

independent prognostic element (Figure 5A). The meta-analysis
integrating four cohorts further confirmed the stability of the
MRRG model, with a pooled OR of 2.20 (95% CI 1.81-
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FIGURE 5

External validation of the MRRG risk model. (A) Cox forest plots of external glioma cohorts. (B, D, F) KM OS curves (univariate Cox) for risk groups in
(B) CGGA-325 (n= [325]), (D) CGGA-693 (n= [693]), (F) GSE43378 (n= [50]) (C, E, G) Time-dependent ROC plots of three external cohorts,
(C) CGGA-325, (E) CGGA-693, (G) GSE43378. (H) Meta-forest plots spanning four cohorts.

Functional pathway analysis

Analysis of the TCGA-GBMLGG cohort identified 1,787 DEGs (|
log2FC]| > 0.5, P.val < 0.05, Figure 6A). Hub genes were characterized
via PPI analysis utilizing the Maximal Clique Centrality (MCC)
algorithm in Cytoscape (Figure 6B). Functional analyses revealed:
Biological processes (BP): immune-related pathways, including
leukocyte migration, regulation of leukocyte migration, leukocyte
chemotaxis, and oligodendrocyte differentiation. Cellular

Frontiers in Immunology

components (CC): lysosomal lumen (implicated in mitophagy),

phagocytic vesicle, NADPH oxidase complex, and phagocytic

vesicle membrane. Molecular functions (MF): extracellular matrix

structural constituent, growth factor binding, cytokine activity, and
superoxide-generating NAD (P) H oxidase activity. KEGG pathways:

Cell cycle, p53 signaling, cytokine-cytokine receptor interactions, and
MAPK signaling pathway (Figure 6C). The MRRG risk scores
exhibited remarkable positive correlations with these pathways (all,
P < 0.001; Figure 6D).
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FIGURE 6

Functional pathway analyses. (A) Volcano plot depicting the allocation of DEGs, with red dots depicting notably up-regulated DEGs and blue dots
representing notably down-regulated DEGs. (B) Top 10 hub genes of the DEGs-based PPl network. (C) Histograms highlighting the GO and KEGG
pathways enriched by DEGs. (D) Correlation network heatmap demonstrating the correlation of risk scores with the enriched pathways (red: positive
correlation; blue: negative correlation). (E, F) GSEA enrichment analysis outcome. *P < 0.05, ***P < 0.001.

GSEA indicated suppression of immune activation pathways Reshaping of the immuno[ogica[

in High-risk gliomas (P.adj < 0.05, FDR < 0.25), including JAK-  microenvironment by MRRG signature
STAT signaling pathway, immune effector process, regulation of

immune response, and leukocyte-mediated immunity A comprehensive evaluation of immune microenvironment
(Figures 6E, F, Supplementary Table S3), suggesting an  gignatures using seven distinct algorithms consistently revealed
immunosuppressive microenvironment. significantly elevated tumor-associated macrophage (TAM)
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infiltration and stromal scores, coupled with reduced tumor purity
in the High-risk group (Figure 7A). Quantitative analysis of
leukocyte subpopulations via Cibersort demonstrated increased
proportions of MO/M1/M2 macrophage subtypes (with M2 anti-
inflammatory subtype predominating) alongside increased resting
CD4+ T cells, resting NK cells, both of which are
immunosuppressive cell subpopulations in the High-risk group
(all, P<0.05, Figure 7B, Supplementary Figure S5). ssGSEA
analysis indicated a strong positive correlation between MRRG
risk scores and macrophage infiltration (R = 0.680, P < 0.001),
whereas a significant negative correlation was observed with
plasmacytoid dendritic cell (pDC), a leukocyte subset critical for
-0.477, P < 0.001,
Figure 7C). Comparative analysis substantiated markedly elevated

maintaining immunocompetence (R

macrophage enrichment levels and diminished immune active cells

10.3389/fimmu.2025.1672678

activity like pDC, Treg, Tcm, Tem, TFH, Tgd, CD + 8T, and NK
CD56 bright in the High-risk group (all, P<0.001; Figure 7D). These
observations imply that MRRG signature orchestrates an
immunosuppressive microenvironment by suppressing leukocyte
activation and modulating the differentiation of pro-tumorigenic
TAM subsets, ultimately promoting immune evasion and
therapeutic resistance in High-risk gliomas.

Crosstalk between MRRG signature and
glioma immunotherapy

Comparative analysis of ICP expression profiles between risk
subgroups revealed significant upregulation of 10 critical checkpoints
in the High-risk group (Figure 8A). The MRRG risk scores

A
"I/ :‘I"l\‘ ‘N ‘\l‘\l\ | “‘I “‘\I““ ! I“‘I\‘“ \M‘ Hl;\ \I\I I W () y \‘\ ! | H: ‘H‘ lm:
e e et B
|7‘ M " ‘hll'“‘:r" V ﬁu”‘ ! wﬂw ”I/fm.w i ‘.“ i F‘”hj‘u‘ 'iv I : e _os s - =
1] W.b’u | .‘.k... ATy IS | & Risk-Scors
wﬂ‘.m HH ‘H‘,H'M ph ..."\m'lprm ?M Hﬂlh mmd I M‘Iﬂm I L
s hh
i mw.A‘J.ww\w I ‘H.wx il M w“ &ﬁwﬁ“ “’; Ay "° S @“’
I I HH\ Il \l L) H\‘ [y \ \IHHHM eo &Qe\oh Goé\t;\i@ﬁib(?\\eg é‘.élj? Q¢ @QPOQ’D(' & §o \S!;’:‘(b\&
R i st
il W\ il \H‘“I‘IH\‘H\'I‘H\I\IA\I“\l‘ \‘\M‘Hn‘uﬂ‘& \I“\u‘m ﬂh‘”‘\:”‘f” “ I \I‘\‘\“ml“‘"‘m c
(LRUUE U LTI TR TRV T T T ) WI\IIIH {l H\I’ wll’ I‘H\\ \Hll » M\Ilfﬂmﬂ-
i AR AT
’HH\I LT IH\H W ‘ I' LRl ‘ IRI\HI‘I\I\IIF\I WI IIH\I\I\I \HII\IIIIII\”I 0.50 F'.V;\6
i A ihmanmHM i Tk 0z I I I I I I T T Ig;
L)l Wl i |‘H| ‘“IHW Mmm u' M HW l"‘h W” ‘k ‘”\‘u *‘ ‘Hmb”: 0.00 T T ey DAO
HIUII‘\ I I IJ\ HHH‘I\ 1 \‘Hml ‘\I I \‘ ‘HH HIIHII’ L] \m\ Jlﬂlml \I\II\IIII’!}IH\I‘ Il ‘ l l l 1 l IOCO(;‘Z
VBT “ 1“"4"3 \ \L i “\WT ﬂh.!w».\‘ “g»l bl 1 l 5
Hll‘r\m‘\‘\l:“/\yl‘m H IW’ li “ f V” i W N‘ "r‘\l I lF ‘:‘Im\ \“\‘“H \M" II}:\‘“I“‘I‘I\E 050 L)
IR A whm T S L SF ESFEGTIS PSS RS F
E &S *.o‘g’ & S ‘:Q SO
it o == * ’
LT \I my HI \\H‘H\ I \I\ I I\ my ‘\I\ 0 01 0 ’\‘\H ’\ n
Uil ﬂ:'v“ﬂrwwmw b -
‘\ H“ H‘\ UL LS “\ [T \’ 1) \‘ ‘l\ i
AR ++ ++ -
:\ \:\ I\:‘IHHH \“H\HI\‘ I ‘l:\‘\‘ HHH I 506 ,":; ﬂ;‘. ) ::‘-,:; . ’-: :;l' ey ‘;:;’ """" ™ ! . N
I\I J“;:’:"‘"\ \‘\‘ ‘MII\‘\\ IVHHII\H\IIIHIW “I‘ﬂ\ ‘ N ] ﬂ LI} I‘\I’\‘I " \‘:“Il\l\ll‘f:’ww I “ “‘l \‘IHI é 04 ; “ | T Y | # j""‘ # N i *## I # '.:;' # H -ISH‘;-g;] rrllssl;
\IH\ ’ \w n\“\‘“\'u” wf ’\IHSH‘\‘\ “u‘h |IH\NM "ﬂ‘“ W\(‘”\h"‘”{ f"“‘;m'n % 02 #* : *++ 4 # # . ﬁ
HHH LTS \‘H‘\‘\H LN TR \‘H \H“ | ! 0.0 :
H }”r WW HI“\‘“’\‘I‘I“\Wll\”%\l‘I)ulhlu“\\l\u“\\H"‘MJ:;:\ ‘lp‘\"‘\“u‘l"‘um‘u \EI/\‘J‘TE é)o 0\\’2&}\"0 & oi’pé\\e & 0&%\@\:@@\@ Oﬂ}\i@\% 00 \\'2 & ,@‘,@6‘&@3‘ @b\é}\'j\ﬁ:,ﬁ\b&qp‘b
IV I‘W\WL\‘\”IIM\“:I’I WH ”flr\\\l\‘:”\!‘ 'ﬂ“ MM ‘EH\‘:\\:‘ / I‘WWW ooz & 4 &fé\\“&ijﬁﬁ@& N /\Qo\ &8
HMH,MIIHI,\ \M“\’M M\F\\II\ Hw Iﬂh,ﬂ wl‘ M”III\, ']” }I‘ / Me:‘ll\ll\*twh éb <
L] ‘1 iy ‘\ le\h “ ‘\H“IIH”“HI\\\ H‘h f \H\‘\HH*HI‘I‘\‘H}‘*MHH\ “II Jiw IH‘

Reshaping of the immunological microenvironment by MRRG signatures. (A) Multiple immunization algorithms emphasizing heterogeneity of
immune infiltrates across two MRRG risk groups. (B) Subgroup comparison plot of leukocyte subtype fractions in two MRRG risk groups (Test:
Wilcoxon rank sum test). (C) Bubble plot of correlation between risk scores and leukocyte subtype enrichment abundance. (D) Subgroup
comparison plot of leukocyte subtype enrichment in two MRRG risk groups (Test: Wilcoxon rank sum test). *P < 0.05, **P < 0.01, ***P < 0.001,

ns not significant.

Frontiers in Immunology

12

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1672678
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xu et al.

demonstrated strong positive correlations with these checkpoint
expressions (Supplementary Table S4), suggesting enhanced
immune tolerance and immunosuppressive microenvironment in
high-MRRG-score patients. TMB was significantly elevated in the
High-risk group (Figure 8D). Notably, IDH1/2-mutant gliomas
(favorable prognostic subtype) were significantly enriched in the
Low-risk group (Figures 8B, C). These outcomes reinforced that

10.3389/fimmu.2025.1672678

TMB is a negative predictor of glioma immunotherapy response.
Evaluations using TIDE and EMT scoring systems revealed
significantly higher TIDE (Figure 8E) and EMT scores (Figure 8H)
in the High-risk group, both showing strong correlations with MRRG
risk scores (Figures 8F, G, I, J). These findings indicated that High-
risk tumors exhibited enhanced immune evasion capacity and
immunotherapy insensitivity.
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Drug sensitivity analysis

By evaluating immunotherapy sensitivity in patients of various
levels of MRRG signature, this study further assessed
chemotherapeutic responses in glioma patients. High-risk gliomas
exhibited elevated IC50 values for six chemotherapeutics (P < 0.05,
Figure 9), indicating reduced therapeutic efficacy and enhanced
drug resistance potential in the High-risk cohort.

Mendelian randomization analysis

Given the unique biological role of IFNAR2, a critical
component of the MRRG risk model in mitophagy and glioma
progression, we have conducted comprehensive multi-omics
investigations. Transcriptomic analysis revealed significant
upregulation of IFNAR2 mRNA in glioma tissues (P < 0.001),
and the corresponding results were also reflected in 12 pairs of
tumor tissues and peritumoral tissues from glioma patients
(Figures 10A-C). KM analyses across glioma cohorts
demonstrated markedly reduced OS in IFNAR2-high patients (all,
HR > 1, P < 0.001, Figures 10D-F). Cox regression analysis
confirmed IFNAR2 as an independent prognostic risk element
(HR = 1.819, 95%CI [1.119-2.957], P = 0.016; Supplementary
Table S5). MR analysis (exposure: IFNAR2; outcome: brain
tumors) revealed a causal association via the IVW method
(OR = 1.19, 95%CI [1.01-1.40], P < 0.05, Figure 10G). Sensitivity
analyses substantiated robustness: no significant heterogeneity
(Cochran’s Q P = 0.60), horizontal pleiotropy (MR-Egger
intercept P = 0.86, MR-PRESSO P = 0.608), or influential outliers
(leave-one-out analysis; Supplementary Figure S6) were detected.
Colocalization analysis identified rs1476415 (within -/+ 500kb of
IFNAR2) meeting stringent colocalization criteria (SNP.PP.H4 >
0.9), suggesting this locus may regulate IFNAR2 expression to
mediate brain tumor pathogenesis (Figure 10H).

The influence of low IFNAR2 expression on
the pathobiology of glioma

We then conducted a series of experiments to examine the role
of IFNAR?2 in glioma pathology. Initial investigations demonstrated
that IFNAR2 suppression markedly attenuated proliferative
capacity, invasive potential, and migratory activity in both U87
and U251 glioma cell models (Figures 11A-T).

We then utilized a U87 orthotopic xenograft mouse model to
further assess the effects of IFNAR2 gene inhibition on tumor
development in mice. The results indicated that, in comparison
with the control group, mice in the IFNAR2 knockdown group
exhibited a significant reduction in tumor volume and prolonged
survival time within 30 days (Figures 11J-L). Extensive
experimental results have verified the fundamental impact of
IFNAR2 on fostering tumor proliferation.
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Pan-cancer applicability of MRRG risk
models

We systematically evaluated the prognostic utility of MRRG risk
scores across 33 TCGA pan-cancer expression profiles. Cox
regression analyses were estimated to calculate HRs with 95%Cls
for individual types, followed by random-effects meta-analysis. The
integrated results demonstrated a significant association between
elevated MRRG scores and adverse pan-cancer outcomes (pooled
OR = 1.19, 95%CI [1.07-1.31], Supplementary Figure S7),
highlighting its potential as a cross-cancer prognostic biomarker.

Discussion

Gliomas, the most prevalent primary malignant tumors in the
central nervous system, are classified into LGG and GBM, with
high-grade subtypes characterized by aggressive progression and
dismal prognosis (1, 2). Regardless of advancements in surgical and
pharmacological interventions, patient outcomes remain
suboptimal due to the immunosuppressive tumor
microenvironment, compromised blood-brain barrier
permeability, acquired therapeutic resistance, and frequent
recurrence (35, 36). Thus, developing novel therapeutic strategies
to enhance targeted treatment responsiveness and establishing
precision prognostic surveillance systems constitute critical unmet
needs in contemporary neuro-oncology. Mitophagy, a crucial
regulatory mechanism for mitochondrial quality control and
homeostasis, has been implicated in tumor progression through
metabolic reprogramming, ROS homeostasis regulation, and
immune evasion (6-8, 37). However, the systemic relevance of
mitophagy receptors—molecular initiators of this process—in
gliomas remains elusive. In the job, we generated a robust
mitophagy receptor-related prognostic model through multi-
omics integration, which not only enhanced gliomas risk
stratification accuracy but also demonstrated pan-cancer
predictive potential. Furthermore, we uncovered IFNAR2 as a
critical regulator driving glioma genesis.

This study revealed significant differential expression patterns
of mitophagy receptor genes between tumor and normal tissues.
The mitophagy receptor enrichment scores demonstrated strong
associations with adverse prognosis. Through integrative WGCNA
co-expression network analysis and single-cell AUCell functional
scoring, we systematically filtered out prognostic gene clusters and
established the novel MRRG prognostic risk model using Lasso
analysis. Cox regression analysis confirmed the independent
prognostic significance of MRRG risk scores. The prognostic
capacity outperformed existing glioma prognostic models (38-
40). Given the universal hallmarks of metabolic reprogramming
and immune evasion in malignancies, pan-cancer meta-analysis
further substantiated the cross-cancer prognostic applicability of
the MRRG model, offering a unified framework to address
prognostic heterogeneity across tumor types.
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***P < 0.001.

Leveraging the Cell-chat computational framework, we
deciphered intercellular signaling networks across single-cell
subpopulations, identifying pronounced activation of MHC-I, MIF,
and SPP1 immune axes. Mechanistically: Malignant cells attenuate
antigen presentation systems via the MHC-I signaling axis,
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compromising CD8+ T cell-mediated immunosurveillance (41-43);
MIF signaling constrains microglial differentiation toward pro-
inflammatory states (29); SPP1+ TAMs orchestrate T cell
exhaustion (44, 45). The above implied that a sophisticated
immunological evasion system operated in the microenvironment
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Comprehensive analyses of IFNAR2. (A—C) IFNAR2 expression is remarkably elevated in tumor tissues (Test: Wilcoxon rank sum test). A: n (normal)=
1157, n (tumor) = 689; (B, C) n (peritumoral) = 12, n (tumor) = 12. (D—F) IFNAR2 is linked to an unfavorable prognosis in gliomas. (G) Forest plot of
MR analysis findings. (H) Colocalization analysis results of IFNAR2 and brain tumors. ***P < 0.001.

of gliomas. Integrative computational analysis revealed a prototypical
immunosuppressive signature in high-risk cohorts, characterized by
dominant M2-polarized macrophage infiltration, coupled with
coordinated expansion of quiescent NK cells and resting CD4+T
cells. Notably, this subgroup exhibited systemic depletion of Tregs,
Tcm, and Tth, collectively indicative of an immune-exhausted
microenvironment. As immunotherapy represents an emerging
approach in cancer treatment (3, 46), this investigation further
investigated the relationship between MRRG risk scores and
immunotherapy feasibility. Primarily, the significant positive
correlation between TIDE scores and risk scores suggested that
high-risk patients may undergo reduced immunotherapy response
rates due to immune escape mechanisms (47). Then, the strong
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positive correlation between risk scores and EMT-scores implied a
potential propensity for primary drug resistance in this cohort (26).
The current standard of care for gliomas involves surgical resection
followed by adjuvant chemotherapy, but therapeutic efficacy varies
due to tumor heterogeneity, with a high probability of drug resistance
(48). Drug resistance evaluation revealed an inverse relationship
between the sensitivity of standard chemotherapeutic agents (e.g.,
TMZ) and risk scores. Collectively, these findings demonstrate that
the MRRG risk scoring system provides multidimensional molecular
insights for personalized glioma treatment, holding potential
translational significance for clinical applications.

Emerging findings highlight that interferon significantly
improves the clinical prognosis of glioma patients by integrating
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IFNAR2 knockdown inhibits glioma pathobiology. (A) Western blot of IFNAR2 after shRNA knockdown (representative blot with densitometry
normalized to GAPDH; n = 3; unpaired two-tailed t test). (B, C) CCK-8 assays showing proliferation capacity in U87 and U251 cells with IFNAR2
knockdown, n=3. (D, E) Clonogenic potential of IFNAR2-deficient U87 and U251 cells, n=3. (F-1) Transwell migration and invasion assays
demonstrating impaired motility in IFNAR2-knockdown cells, cells/field; n=3. (J) Histological analyses of orthotopic glioma shNC, shIFNAR2#1, and
shIFNAR2#2 groups. (K) Quantification of orthotopic xenograft volumes. (L) KM curves of glioma-bearing mice. **P < 0.01, ***P < 0.001; #P < 0.05,
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treatment strategies such as standard chemotherapy as well as
nanocarrier-based drug delivery systems (49, 50). As the core
subunit of type I IFN receptor, IFNAR2 orchestrates IFN
signaling transduction and plays critical roles in tumorigenesis,
necessitating comprehensive elucidation of its biological
implications in glioma pathogenesis (51).

This study established IFNAR2 as a prognostic risk factor in
gliomas through integrative transcriptomic analyses. Mendelian
randomization and colocalization analyses further validated
IFNAR2 as a hereditary susceptibility gene for brain
tumorigenesis, identifying its pivotal regulatory SNP locus.
Functional in vitro and in vivo experiments demonstrated
IFNAR?2’s role in driving gliomas’ malignant progression via cell
migration and invasion.

This study began with the fundamental component of signal
transduction—receptors—and focuses on mitophagy, a core
mechanism for maintaining cellular homeostasis, to innovatively
investigate the biological implications of mitophagy receptors on
gliomas. We developed a robust mitophagy receptor-related risk
model, which is rigorously validated as a powerful prognostic
feature for gliomas. Elevated risk scores significantly related to
adverse outcomes and an immunosuppressive microenvironment
characterized by M2 macrophage polarization and T cell
exhaustion. Additionally, the MRRG score accurately predicted
therapeutic responsiveness. Finally, through genetic analyses and
in vitro/in vivo functional experiments, we preliminarily delineated
the multifaceted regulatory interventions of IFNAR2 in tumor
initiation and progression.

Our work is limited by its retrospective reliance on
heterogeneous public RNA-seq cohorts, which may harbor batch
effects despite normalization. Sample diversity is restricted (few
pediatric or rare molecular subtypes), potentially limiting
generalizability. Single—cell analyses involve a small number of
specimens without spatial context. Drug/immunotherapy
responsiveness is inferred computationally, not clinically
validated. Functional experiments focused only on IFNAR2,
leaving other MRRGs unexplored mechanistically. Prospective,
multi—center, multi—omic and broader functional validation will
be necessary before clinical translation.

Collectively, this study innovatively proposes a mitophagy
receptor-related risk signature as a prognostic stratification tool
for gliomas, while identifying IFNAR2 as a novel therapeutic target.

Conclusion

We developed and externally validated a prognostic model
based on mitophagy MRRGs, which demonstrated superior
prognostic stratification capabilities compared to conventional
clinical markers in glioma. By integrating bulk transcriptomic and
single-cell data along with preliminary functional validation of
IFNAR?2, our findings suggest that mitophagy receptor signaling
may modulate immune functions within the tumor
microenvironment, such as macrophage polarization and T cell
activity. Clinically, this model holds potential value in three aspects:

Frontiers in Immunology

18

10.3389/fimmu.2025.1672678

(i) supporting individualized prognostic evaluation; (ii) assisting in
imaging surveillance planning; and (iii) providing a basis for patient
stratification in future trials involving immunotherapy. The
identification of IFNAR2 and other MRRG components as
potential biomarkers lays a groundwork for further research into
combined targeting strategies involving mitophagy and immune
modulation. Although prospective, multi-center, and higher-
resolution studies are necessary before clinical application, the
current study indicates that the MRRG signature offers a novel
perspective for prognostic stratification and informs the design of
future combination therapies.
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