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Controlled human infection studies offer a unique opportunity to study the efficacy
of novel interventions, mechanisms of infection and disease, as well as determine
correlates of protection that may underpin the development of novel interventions.
Controlled human malaria infection (CHMI) studies supported the clinical
development of the first malaria vaccines (i.e. RTSS/ASO1 and R21/Matrix-M). The
CHMI model accurately predicted efficacy of these vaccines and accelerated their
clinical development. In addition to vaccine development, over the last decade
CHMI studies have supported the advancement of drugs, monoclonal antibodies
(mAbs) and been instrumental in characterising immunity to malaria by unravelling
immunological and innate mechanisms that may mediate protection. Here, we
briefly review the history and rationale of the available falciparum malaria CHMI
models. We highlight key applications and lessons learned from CHMI studies
conducted in naive and endemic populations with respect to immunological
advances, discoveries in therapeutic targets such as mAbs, and transferring of
the models from high income to low- and middle-income settings.

KEYWORDS

human infection studies, Plasmodium falciparum, vaccines, monoclonal antibodies,
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Introduction

Malaria remains a global health concern as half the world’s population remains at risk
of infection (1, 2). The World Health Organization (WHO) estimates ~263 million malaria
cases with ~597-000 deaths occurred in 2023 (3) rising by ~11 million cases compared to
2022. The increasing reports of malaria resurgence in Africa (4), despite implementation of
the available control tools, makes the historic approval of the first malaria vaccines (RTSS/
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ASO01 in 2021 and R21/Matrix-M in 2023) highly welcomed (5, 6).
However, the level of vaccine protection offered by these vaccines is
incomplete (7). Therefore, continued investment in research and
development is important including other pre-erythrocytic vaccines
(e.g. whole sporozoite vaccines), efforts to develop and implement
either multistage vaccines (e.g. including erythrocytic or
transmission blocking components) or therapeutic interventions
such as monoclonal antibodies (mAbs).

Malaria elimination will likely require multiple interventions,
including currently established approaches (vector control
strategies — such as indoor residual spraying with effective
insecticides, and the use of long-lasting insecticide treated bed
nets, plus the accurate diagnosis and treatment with appropriate
antimalarial drugs (8, 9)) and additional tools such as the vaccines
R21/Matrix -M and RTS,S/AS01, that are currently being deployed
in a number of African countries, specifically in areas of high
malaria transmission (7). Emerging interventions such as fast acting
mAbs and long-acting drugs may also contribute to future malaria
control (10). Controlled human infection studies provide
considerable utility for the clinical development and licensing of
new interventions (11, 12). Challenge studies may be used to derisk
costly phase III trials (13). For example, the clinical development
and licensure of Vaxchora (for cholera) (14) and Vi-tetanus toxoid
conjugate vaccine (for Salmonella typhi) (15) benefited from
controlled human infection studies. In addition, challenge studies
provide a platform to study disease pathogenesis, aetiology, natural
history, acquired immunity, and immune correlates/surrogates of
protection that may further guide intervention design (11, 13).

Human infection studies involve the experimental exposure of an
individual (mainly healthy adults) to a disease- and/or infection-
causing microbe (parasite, virus or bacteria) in a highly controlled
setting for scientific merit (13). Since their practice in the Middle East
during the early modern era (and likely earlier) and further uptake by
Edward Jenner (while studying smallpox) in the early 18" century,
important scientific lessons have been gained across the >30 disease
models developed to date (16). For malaria, the controlled human
malaria infection studies (CHMI) have played key roles in vaccine and
drug development such as the advance of the now approved RTS, S/
ASO01 and R21/Matrix M malaria vaccines (17, 18) and drugs such as
atovaquone-proguanil (19) and Artefenomel (20). CHMI studies have
also been a source of discovery and development for mAbs (21, 22),
genetically attenuated parasites (GAPs) (23-25) and chemoprophylaxis
vaccination with sporozoites (CVac) using chloroquine (late arresting
parasites for improved liver stage T cell immunity) (26-28).

Despite the burden of malaria being greatest in Africa, the
majority of CHMI studies have been conducted in malaria naive
volunteers in high-income countries (29). The reasons for this
include: (a) lack of availability of challenge agents suitable for
delivery in endemic settings; (b) hesitance to conduct research on
apparently “vulnerable” populations in LMICs; (c) lower research
infrastructure and capacity; (d) funding availability; and (e) ethical
and regulatory challenges. Despite these, the first modern CHMI
(well-designed and ethical) conducted in Africa occurred in 2012 in
Tanzania followed by a study in Kenya the following year using the
then newly developed, aseptic, purified, cryopreserved Plasmodium
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falciparum sporozoite product, Sanaria® PfSPZ Challenge (NF54)
(30, 31). Since then, multiple studies have occurred, and several
lessons and insights have been gained thus changing the global
landscape and capacity for the conduct of CHMI studies (Figure 1).

Here, we briefly review the history and rationale of the different
CHMI models. We then summarise the immunological and ethical
lessons learned from CHMI studies conducted among semi-
immune individuals in Africa.

Design of controlled human malaria
infection models

The discovery of mosquitoes as the vector of the Plasmodium
parasite by Grassi, Bignami and Ross may be considered the beginning
of CHMI studies (32-34). They fed mosquitoes on hospitalized malaria
patients, then after allowing the mosquitoes sufficient time to become
infectious, they used these mosquitoes to infect healthy volunteers, thus
confirming mosquitoes as the malaria transmission vector (35).
Deliberate human infections with malaria then grew in prominence
with the development of malariotherapy (the use of malaria-induced
fever for the treatment of neurosyphilis) which earned Julius Wagner-
Jauregg the Nobel prize in 1927 (36-38). Malariotherapy strengthened
our understanding and later acceptance of controlled human malaria
infection until its use waned after the discovery of antibiotics in the
1940s (36, 37).

The first modern-day controlled human malaria infection
(CHMI) experiment in healthy volunteers was conducted by
researchers of the Walter Reed Army Institute and the Naval
Medical Research Institute in the USA in 1986. Since then, >80
CHMI studies have been conducted. Modern CHMI involves the
intentional infection of healthy volunteers (adults) with malaria
parasites prepared under highly regulated Good Manufacturing
Practice (GMP) guidelines. In the modern era, volunteers only
participate after appropriate screening and full informed consent.
Individuals are followed daily to a pre-determined density of blood-
stage parasites, or a clinical symptomology define endpoint where
curative doses of appropriate anti-malarial drugs are provided (39,
40). The monitoring of blood parasitemia was initially carried out
by thick blood smear microscopy, however in recent times the more
sensitive 18s ribosomal quantitative polymerase chain reaction
(qQPCR) assays are preferred (41-43). Among CHMI studies
conducted to date no severe malaria symptoms have been
reported, although acute myocarditis with full recovery probably
linked to PFSPZ infection by mosquito bite under chloroquine
chemoprophylaxis has been described in two volunteers (44, 45).
Importantly, no deaths or lasting disabilities have ever occurred as a
result of CHMI.

Controlled human malaria infection
reagents, models and applications

In summary, the malaria life cycle begins with anopheline
mosquitoes injecting sporozoites into the skin or directly into
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FIGURE 1

Global status of CHMI studies. Map of countries where CHMI studies have been conducted in both the global north and global south. Red
represents where more than five CHMI study protocols have been undertaken, and blue represents countries where five or less CHMI protocols have
been undertaken. This represents studies of all malaria parasite strains including falciparum (Australia, Belgium, Equatorial Guinea, Gabon, Gambia,
Germany, Kenya, Mali, Spain, Tanzania, The Netherlands, UK, USA); malariae (Australia) and vivax (Australia, Colombia, Thailand, and USA).

blood vessels during blood feeding. Sporozoites then invade liver
cells and develop into merozoites that are released into blood.
Merozoites invade blood cells to form trophozoites, and a
continuous cycle of asexual replication leads to successive
generations of merozoites that re-invade red blood cells,
potentially leading to exponential parasite growth. It is at this
point that disease symptoms begin to present. A subset of
merozoites differentiate into sexual forms (gametocytes) that
infect mosquitoes for onward transmission (Figure 2).

To achieve safe, ethical and reproducible infection of volunteers,
initially high quality and then primary GMP level reagents were
developed. These included non-aseptic and aseptic laboratory-
reared Plasmodium infected mosquitoes; and aseptic, purified,
cryopreserved P. falciparum sporozoites (PfSPZ Challenge), that
underpin the sporozoite model. Aseptic Plasmodium infected
erythrocytes have been developed to support the blood stage
models. (Table 1).

Controlled human infection reagents

Malaria challenge experiments can be conducted with a range of
challenge agents:

1. Laboratory-reared Plasmodium infected mosquitoes: Early

studies relied on mosquitoes fed on malaria infected
volunteers or their collected blood samples. This
approach had safety, reproducibility, and efficiency
concerns (63). Further, the availability of gametocytemic
P. falciparum-infected people with which to infect
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mosquitoes is a limiting resource. Consequently, to
facilitate safer volunteer infections, methods for rearing,
aseptic P. falciparum sporozoite-infected mosquitoes under
GMP were developed (64, 65). This involved the methods
for the determination of sporozoite loads, confirmation of
malaria transmission, and the avoidance of mosquito co-
infections (64, 65). An important development was the
growth of continuous in-vitro culture methods of P.
falciparum (66, 67), and blood feeding of laboratory
grown mosquitoes (68). These eliminated the need for
blood from infected patients and increased access to
infected mosquitoes. This approach became the mainstay
approach for malaria infection and multiple parasite strains
were developed and utilized for human infection using
these methods (Table 1). All such studies have been done
with non-aseptic mosquitoes except for two trials with
aseptic A. stephensi mosquitoes (39, 64).

. Aseptic, purified, cryopreserved sporozoites: Scientists at

Sanaria Inc in Maryland USA advanced methods to
produce aseptic, purified, cryopreserved viable PfSPZ
(69). This effort was motivated by developing whole
sporozoite based vaccines, but in addition has
significantly increased the potential for CHMI studies as
aseptic, purified, cryopreserved sporozoites could be stored
and transported across sites with relative ease, and can be
injected with needle and syringe without the requirement
for mosquito containment facilities. This has particularly
been important for facilitating the first CHMI studies in
Africa, beginning in Tanzania (70), and Kenya (71) only
two years after the first CHMI study with PfSPZ Challenge
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FIGURE 2
Plasmodium falciparum challenge models in relation to life cycle stages. CHMI models are currently set up to cover and replicate the pre-
erythrocytic, erythrocytic, and mosquito stages life cycle stages. (A) shows the natural life cycle involving: mosquito injection of sporozoites (1); liver
hepatocyte development into liver stage schizonts which release merozoites into blood circulation (2); merozoites invade red blood cells initiating
the erythrocytic stage (3-4); continuous ring stage to trophozoite differentiation and schizont stage which ends with red cell rupture releasing newly
formed erythrocytic merozoites (5-9); leading to sexual gametocytes and uptake by mosquitoes (10); and male and female gametocyte fertilization
and onward transmission of sporozoites (11). (B) shows the sporozoite model with injection of sporozoites (either aseptic laboratory infected
mosquitoes or cryopreserved sporozoites) then parasite monitoring from day 6 post-infection (red line for naive individuals and blue line semi-
immune). (C) shows a blood-stage model with injection of infected erythrocytes and parasite monitoring typically from day 2 post-infection; and
(D) shows the transmission model involving sub-curative drug treatment following infection (either sporozoite or blood-stage) at pre-defined
parasitaemia threshold to promote gametocyte development with transmission experiments either ex vivo or direct skin mosquito feeding. In all the
models, the endpoint is pre-specified: symptoms and/or set parasitaemia threshold (e.g. 500 parasites/pl).

(NF54) in the Netherlands (31). To date CHMI studies
have been conducted in Mali (72), Gabon (73), Gambia
(74) and Equatorial Guinea (75).

3. Aseptic Plasmodium infected erythrocytes: Early accounts of

direct blood infection studies have been reported and suffer
ethical and safety concerns (76, 77). However, in the modern
era GMP grade aseptic Plasmodium infected erythrocytes
stocks were generated by researchers in Australia at the
Queensland Institute of Medical Research (QIMR) (78).
Two donors were deliberately infected with P. falciparum
3D7 via mosquito bite and blood aliquots of cryopreserved
erythrocytes prepared. Blood samples were extensively tested
to ensure the safety to potential volunteers (78). Direct
infection using blood stage parasites hinges on the
availability of blood stocks collected from suitable malaria-
infected “universal” bloodxgroup O Rh D-negative blood
doners (79) which may be a finite resource. The alternative
approach is to generate stocks from laboratory culturing of
large volumes of defined P. falciparum isolates in blood group
O Rh D-negative blood at GMP levels facilities. This
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is followed by characterization cryopreservation in
appropriate aliquots (46).

The mosquito bite model

Aseptic laboratory reared mosquitoes infected by membrane
feeding approaches using gametocyte-stage parasites from
laboratory culture (standard membrane feeding assays (SMFAs)),
are used to challenge consenting volunteers (68). Typically, three-
five infected mosquitoes are allowed to feed on volunteers for 5
mins (63, 80, 81). Parasitaemia is then monitored either by
microscopy or qPCR to study endpoints as described above
(Figure 2B). For P. vivax challenge studies however, continuous
in vitro culture is not yet established, therefore the P. vivax model is
limited to the use of clinically infected individuals for direct
mosquito infection or to provide blood aliquots that can be used
to feed mosquitoes, as was previously the case for falciparum. On
the other hand, gametocytemia is more frequent and earlier to
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TABLE 1 CHMI parasite species and strain reagents.

Parasite strain/ Model reagent Mosquito
species available species
P. falciparum, NF54/3D7 Mosquito, An. stephensi, (46,
(West Africa) sporozoite, iRBC An freeborni 47)
P. falci , NF135.C10 M it d
Jalcip uTum osaut ,O an An. stephensi (48)
(Cambodia) sporozoite
P. fc?lczpamm, NF166.C8 Mosqult‘o and An. stephensi 9)
(Guinea) sporozoite
P. falciparum, 7G8 (Brazil Mosquito and .
An. 4
IMTM?22 isolate) sporozoite . stephensi (0)
P. falci , Ethiopi 50,
fa czpfzrum ' thiopian Mosquito (
(Tamenie) strain 51)
Plasmodium knowlesi Sporozoite (52)
P. vivax, I isol 53,
( Ct‘)/ll::;bir;;tura isolate Mosquito An. albimanus ;4)
P. vivax, natural Isolate M it An di (55,
osquito n. dirus
(Thailand) 4 56)
P. malariae isolate iRBCs N/A (57)
Plasmodium falciparum
iRBC: N/A 58
(Uganda I) ! s / 8)
P. falciparum HMPO2 (an .
B N/A 5
isolate from Ghana) IRBCs / 9
P. vivax cell bank (59,
iRB N/A
(Australia) iRBCs / 60)
. . . (61,
P. vivax Thai PyW1 clone iRBCs N/A 62)

iRBCs, infected red blood cells; N/A, not applicable.

develop in P. vivax infection, and so this requirement is somewhat
less limiting than was historically the case for falciparum (82). The
mosquito challenge model has been the hallmark of CHMI studies
and supported the majority of CHMI studies (Table 2). Using this
approach >2,000 human volunteers have been challenged safely.

Cryopreserved sporozoites

In this model, aseptic purified and cryopreserved sporozoites
can be thawed and injected into human volunteers via intravenous,
intramuscular or subcutaneous injections at different doses of
choice (117, 118) (Figure 2B). The mosquito bite challenge closely
recapitulates the natural course of infection compared to the PfSPZ
infection model. In general, it has taken exposure to the bites of five
non-aseptic, infected mosquitoes inoculating an estimated 15 to 500
Pf sporozoites to achieve 100% infection of non-immune recipients
(119). In contrast it takes administration of 3,200 aseptic, purified
PfSPZ via direct venous inoculation to achieve 100% infection of
non-immune recipients (118). This is due to the loss of infectivity
associated with cryopreservation of PfSPZ. However, it has
provided considerable utility in the study of vaccine candidates,
drugs and biologics and acquired immunity.
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CHMI of PfSPZ with needle and syringe provides an exact
quantifiable dose of inoculum and allows good control, quality
assurance of CHMI that do not depend on infection, rearing and
biting of infected mosquitoes that are needed for direct mosquito
infections. Furthermore, mosquito bite challenge currently depends
on the vector Anopheles stephensii, which has become an invasive
vector in some parts of Africa and so would be problematic to
import and implement (120).

Blood stage model

The blood-stage challenge model involves the intravenous
administration of aseptic Plasmodium infected erythrocytes,
leading to a blood stage infection in the absence of pre-
erythrocytic stages (78, 79, 121). This is typically a few hundred
to 2,500, parasites. Blood-stage parasite multiplication is then
monitored by microscopy or qPCR (41). This continues until a
defined parasite threshold or patient symptomology when curative
doses of antimalarial drugs are administered (Figure 2C). This
model skips the liver stages of disease and would not allow study
of pre-erythrocytic immunity such as the effect of circumsporozoite
antibodies. It does however offer control over the starting blood
stage parasite burden therefore enabling comparisons and study of
parasite growth rate, whereas the sporozoite based challenge models
result in greater variability in the number of merozoites exiting the
liver stage, which may complicate precision in studying growth
rates (122). Another advantage of the blood-stage challenge model
is that it allows longer follow-up periods, due to low inoculation
dose compared to the number of merozoites released from an
infected hepatocyte(s).

Transmission-blocking model

This model was developed to study the transmission of
gametocytes from an infected individual to mosquitoes (123, 124).
The premise is the need to understand transmission blocking
interventions such as vaccines, drugs and monoclonal antibodies
(mAbs) that may be important for malaria elimination particularly
to enable control of residual transmission on the path to
elimination (125).

First, symptomless malaria infection of a volunteer is induced.
This can be achieved by using any of the infection models (i.e
mosquito bites, cryopreserved sporozoites or infected blood cells),
and providing antimalarial drugs in non-curative doses to suppress
parasitemia while allowing the development of sexual stage
parasites (Figure 2D). In P. falciparum infections, sexual parasites
appear later in the time course of infections. Sub curative doses of
antimalarials drugs (such as sulfadoxine-pyremethamine and or
piperaquine), may stimulate the appearance of gametocytes in the
peripheral circulation (123, 126). Finally, transmission is
determined by feeding mosquitoes through membrane feeding
devise or directly on skin. Fed mosquitoes are dissected and
oocysts quantified to measure transmission potential (11, 127).

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1672945
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ogwang et al.

TABLE 2 Efficacy in CHMI of vaccine and monoclonal antibody candidates tested to date.

10.3389/fimmu.2025.1672945

Vaccine/mAb candidate/Antigen Challenge approach/agent | Efficacy Setting Ref
Mosquito bite 100% HIC (81, 83-86)
PSP Vacene PfSPZ Challenge 50-100%" LMIC ;75(; 75
Mosquito bite 100% HIC (28)
PfSPZ-CVac
PfSPZ Challenge 100% LMIC (27)
‘Whole vaccines
PfSPZ-GA1 Mosquito bite 12% HIC (23)
PfSPZ-GA2 Mosquito bite 89% HIC (25)
PfGAP3KO vaccine Mosquito bite 50% & 15% ° | HIC (87)
:gehr‘;l;yinfeaed erythrocytes with P. falciparum iRBCs 75% HIC (88)
RTSS/AS01 Mosquito bite 50-86.7% * HIC (17, 89, 90)
RTS, S/AS02A Mosquito bite 33-45% * HIC (90-92)
RTS, S QS21 Mosquito bite 0% HIC (93)
RTS, S and ME-TRAP with AS02 Mosquito bite 0% HIC (94)
ICC-1132 with Seppic ISA 720 Mosquito bite 0% HIC (95)
Mosquito bite 82% HIC (18)
R21/Matrix M
PfSPZ Challenge 0-100%¢ LMIC (96)
CelTOS (FMP012/GLA-SE) Mosquito bite 0% HIC 97)
ME-TRAP with AS02 Mosquito bite 0% HIC (94)
DNA/MVA ME-TRAP Mosquito bite 0% HIC (98)
Single recombinant Antigens ChAd63-MVA CS Mosquito bite 7% HIC (99)
ChAd63-MVA ME-TRAP Mosquito bite 17% HIC (99)
ChAd63-MVA ME-TRAP PfSPZ Challenge 0% LMIC (96)
LSA-1 with ASO1 or AS02 Mosquito bite 0% HIC (100)
PfCS102 Montanide ISA 720 Mosquito bite 0% HIC (101)
ChAd63-MVA AMA-1 Mosquito bite 0% HIC (102)
ChAd63-MVA MSP1 Mosquito bite 0% HIC (102)
RH5.1/AS01B P. falciparum iRBCs 0% ¢ HIC (103)
AMA-1/AS01B and AMA-1/AS02A  P. falciparum iRBCs 0% HIC (104)
AMA-1 Vaccine (FMP21/AS01) P. falciparum iRBCs 0% HIC (105)
AMA1-C1/Alhydrogel + CPG 7909 P. falciparum iRBCs 0% HIC (106)
FFM ME-TRAP+PEV3A Mosquito bite 0% HIC (107)
FFM ME-TRAP Mosquito bite 0% HIC (108)
11\)41;3_/371;3?5 féid\z Ii?nle)(NMRC‘ Mosquito bite 27% HIC (109)
Combination vaccines ?Cds_llj ﬁﬁiﬁi\iiAd_PfCA vaccine Mosquito bite 0% HIC (110)
;ES_’;QAFEIB with ChAd63-MVA Mosquito bite 75 - 82.4% * HIC (111)
ChAd63-MVA MSP1 and AMA1 Mosquito bite 0% HIC (102)
P. falciparum iRBCs 0% HIC (112)
(Continued)
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TABLE 2 Continued

Vaccine/mAb candidate/Antigen

Challenge approach/agent

10.3389/fimmu.2025.1672945

Efficacy NE e}

MSP2/MSP1/RESA in Montanide
ISA 720 adjuvant (SEPPIC).

GMZ2 (GLURP and MSP3)/CAF01

or Alhydrogel adjuvanted PfSPZ Challenge <25% LMIC (113)
Monoclonal antibody CIS43LS Mosquito bite 82% HIC (114)
mAbs Monoclonal antibody LILS Mosquito bite 88% HIC (115)
Monoclonal antibody MAMO1 Mosquito bite TBD® HIC (116)

PfSPZ Challenge (aseptic, purified, cryopreserved sporozoites); PfSPZ C-Vac (Plasmodium falciparum (Pf) Sporozoite (SPZ) Chemoprophylaxis Vaccine); “Range observed within different
studies. ®50% at primary challenge and 16% when secondary challenge 6 months later. “0% was observed with DVI and 100% with intradermal administration of PfSPZ Challenge, ‘delayed time

to parasitemia dSterilisaing protection observed in 1 volunteer,“TBD - to be done.

Applications for controlled human
malaria infection studies

Controlled human infections have been utilized for antimalarial
drug assessment, vaccine and mAb efficacy estimation, and study of
naturally acquired immunity and innate resistance to malaria (11).
Other uses of the model include evaluating diagnostic tools and
biomarkers, studying immune correlates and disease pathogenesis.

Antimalarial drug assessment: Drug resistance to commonly
used antimalarial drugs is on the rise and is a major concern
(3, 128). The development of new, long-acting and
single dose treatments is therefore a research and public
health priority. Following pre-clinical development and
safety studies, CHMIs offers the opportunity to quickly
evaluate the therapeutic activity, pharmacokinetic and
pharmacodynamics properties of new drugs (19, 20). The
highly controlled design of these studies allows appropriate
drug efficacy reporting in non-immune participants
without the potential overestimations of efficacy that may
be seen in semi-immune adults, or the risks of first testing
efficacy in children. Both mosquito bite- and blood-stage-
initiated infections have been used to study antimalarial
drugs (46). However, the blood stage approach may be
favored as it allows control of the initial parasite burden.

Vaccine and monoclonal antibody efficacy estimation: RTS, S
for example underwent a lengthy developmental phase

spanning over 30 years, supported by efficacy data from
CHMI studies (10). CHMI models allowed the
optimization of vaccine dose, route, schedule, and
adjuvant formulation prior to (or in some cases
alongside) field trials. Similarly, R21/Matrix-M
demonstrated early efficacy within CHMI studies that
supported its rapid clinical development. Other
recombinant vaccines candidates, DNA/viral vector-based
vaccines and whole sporozoite vaccines have been evaluated
in CHMI models providing important proof-of-concept
efficacy data for go/no go development decision making
(Table 2). Initial concerns were that CHMI studies may be
too stringent for vaccine candidate evaluations and would
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not correlate with actual field efficacies. A reduction in
efficacy within the field that probably relates to
immunogenicity reductions in malaria-exposed children,
waning of antibody levels, and heterogeneity in circulating
parasites stains has been observed. While efficacy studies
using CHMI models in naive adults conducted in the US
and UK for subunit vaccines have often translated to field
efficacy it has not necessarily been the case for whole
parasite approaches such as whole PfSPZ vaccine studies
(129). It is therefore important to test vaccine candidates
using CHMI models within malaria endemic populations.
Hence two key considerations that may improve the
accuracy of CHMI models in predicting efficacy are: a)
conducting CHMI in endemic areas, therefore capturing
the impact of potential reductions in immunogenicity with
some vaccinations; b) developing new parasite strains to use
as challenge agents in CHMI to capture the potential
impact of diverse genotypes in the field.

More recently, monoclonal antibodies (mAbs) are undergoing
clinical development as potential tools for malaria control. The
highly potent and protective CIS43LS (21) and LILS (22) mAbs
were discovered in samples from individuals vaccinated by PfSPZ
vaccine who were protected in sporozoite challenge studies. The
efficacies of these mAbs were later tested within CHMI models and
were shown to be highly protective, and efficacy for one mAb was
recapitulated within clinical field trials in malaria endemic areas.
Currently, field efficacy trials are ongoing to evaluate their utility in
light of cost, production and implementation constraints (115, 130).

Whole sporozoites for vaccination: Here the immune system
can be exposed to the entire array of parasite antigens as

opposed to a single recombinant protein. Radiation
attenuated, chemically and genetically attenuated parasites
that arrest parasite growth are in different stages of clinical
development (131). Radiation attenuated PfSPZ are most
advanced and have demonstrated sterile protection (132,
133). Administration of PfSPZ under chemoprophylaxis
(PfSPZ-CVac) involves infection through mosquito-bite or
direct venous sporozoite induced infections under
chemoprophylaxis. This has been conducted using anti-
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malarial drugs such as chloroquine, mefloquine and
pyrimethamine, that prevent blood stage infection while
allowing the completion of liver stage parasite development.
Sterile protection against heterologous CHMI for 3 months
has been observed with this approach. Genetically
attenuated parasites that arrest development are also in
development (PfSPZ-GA1 (23); PfSPZ-GA2 (25);
PfGAP3KO vaccine (87)) with varying levels of efficacy.
These parasite lines may be utilized as tools to study
immunity (134, 135).

Whole blood stage vaccines have also been evaluated. Here

parasitized red blood cells and are administered with each
infection controlled with Malarone (atovaquone-proguanil)
prior to patency (88). Protection was observed in 3 out of 4
volunteers, however residual anti-malarial drugs that were
not seen in the control arm because of their lack of prior
exposure may have been a significant confounder of the
protection data (136).

Diagnostic development and evaluation: Finally, the fast,

accurate, and cost-effective diagnosis of malaria using
dipstick rapid diagnostic tools that target the Histidine
rich protein-2 (HRP2) transformed diagnosis and
treatment. However, the concerning emergence of HRP2
deleted parasites that render RDTs ineffective is worrying
(137, 138). Although the parasite lactate dehydrogenase
(pLDH) based test kits are available, the development of
more sensitive, cheap, non-invasive tools is important (139,
140). CHMI provides a platform to test different diagnostic
tools providing specimens with controlled timing of
infection and monitoring. Examples of the utilization of
CHMI for diagnostic development include, the evaluation
of breath specimens for Plasmodium falciparum biomarkers
and the development of Plasmodium falciparum HRP-2
antigen a rapid dipstick antigen-capture assay (141).

Study of acquired immunity: Early studies to understand

immunity utilized post-hoc analysis of patients receiving
malariotherapy and highlighted its slow acquisition over
repeated exposures and its strain-dependent nature (36-38,
142, 143). More recently homologous repeat challenge
experiments among naive adults have been conducted to
evaluate acquired immunity (144, 145). One study used a
mosquito bite challenge model to induce four consecutive
repeat malaria episodes with a homologous strain (NF54),
where a delay in patent parasitemia was observed with each
iterative infection (144). A CHMI study among Kenyan
adults with different levels of malaria exposure showed
differing clinical phenotypes and parasite growth patterns.
A proportion of individuals from areas with higher
exposure presented with no parasites or with slower
parasite growth, while those from areas of less exposure
presented with exponential parasite growth with early
development of clinical symptoms (71). These together
confirm the slow acquisition of immunity over repeated
exposures. Another study utilized a blood stage model to
induce three consecutive infections; however no significant
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anti-parasitic blood-stage immunity was observed in the
majority of re-challenges (145). Though careful
interpretation is required this may suggest earlier
acquisition or a lower protection threshold for liver stage
responses compared to blood stage. The key immunological
mechanisms of antimalarial immunity are reviewed in
detail elsewhere (146-149).

Key lessons learned from CHMIs
conducted in endemic populations

The earliest reports of deliberate human malaria infection in Africa
occurred between 1954-1963. The first reported study was conducted
in 1954 among Ugandan adults (58). This study showed the protective
effect of sickle cell trait (SCT) against malaria. In the study, 30
volunteers (n=15 with SCT and n=15 controls) were infected by
either parasitized red blood cells or exposure to infected mosquito
bites. The individuals with SCT had lower parasite infection rates (2/
15) and parasitemia compared with 14/15 in the control group (58).
The same question was later addressed in modern CHMI studies using
aseptic purified cryopreserved sporozoites administered by direct
venous infection. This showed more nuanced findings with slower
growth rates in individuals with SCT rather than complete protection
as suggested in the 1954 study (73). In addition, modern CHMIs
confirmed the protective effect of other blood genotypes in particular
the Dantu blood group which had been seen to be protective in GWAS
studies of severe malaria in children (150).

Another two early studies conducted in Nigeria in 1962 (151)
and Liberia in 1963 (152) used infected red blood and infected
mosquito bite respectively to induce malaria infection. Both clearly
demonstrated acquired immunity showing the innate ability of
malaria-exposed individuals to control parasitaemia and limit
clinical symptoms (151, 152). These observations were
reproduced in modern CHMI studies again using aseptic, purified
and cryopreserved sporozoites in Africa. Furthermore, the
administration of sporozoites to Kenyan (43, 71), Tanzanian (31)
and Gabonese (73, 153) adults at doses that causes 100% infection
among HIC volunteers resulted in a proportion of individuals with
the ability to limit or completely suppress parasite growth.

Immunological studies confirm the relevance of antibodies to
protection as seen in CHMIL The level of antibodies to whole
parasites (anti-schizont (71), anti-merozoite (154), anti-ring stage
(155)) is independently associated with protection from clinical
disease. In addition, the ability of antibodies to induce Fc-mediated
antibody effector functions (154-156) further explains protection in
CHMI. The breadth of effector functions was shown important as
the breadth of Fc function clearly distinguished clinical immune
individuals from non-immune individuals (154). Understanding
the full profile of antigen specific Fc mediated mechanisms of
protection, their rate of acquisition and durability may be
important to tailor vaccines with improved potency.

The prioritization of antigens for vaccine development has been
challenging as Plasmodium parasites have a vast antigenic landscape
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with considerable diversity. A study conducted in Kenya used a
custom protein microarray KILchip expressing >100 immunogenic
merozoite surface antigens to screen responses among individuals
with demonstrable clinical immunity post challenge (157). This
study showed combinations of antigens that may be associated with
sterile protection (manuscript under review). In parallel, another
study explored anti-variant surface antigens (VSA) antibodies (158)
and showed that the breadth of VSA was a stronger predictor of
protection compared to a single VSA response. Identifying the
minimum critical combination of responses needed to achieve
sterile immunity by vaccination remains an important scientific
goal. The fact that multiple responses are co-acquired over repeated
exposures that may not necessary be critical for sterile immunity
makes this challenging.

CHMI studies in Africa have also been used to test candidate
vaccines, including the whole irradiated sporozoite vaccine
evaluated in Tanzania (31) and Mali (72), GMZ2 in Gabon (113)
and R21/Matrix-M in Kenya (96). CHMI in Africa in the modern
era has relied on cryopreserved sporozoites, which were initially
delivered by intramuscular or intradermal injection, but more
recently by direct venous injection, which has been shown to be
the most efficient method (159). In Kenya, comparisons have been
made of R21/Matrix M protection against intradermal injection
(ID) vs direct venous inoculation (DVI) of P. falciparum
sporozoites (PfSPZ Challenge) (96). R21/Matrix-M was highly
protective against intradermal inoculation of PfSPZ (i.e. 100%, 12
out of 12) but not protective against PfSPZ challenge by DVT (i.e.
0%, 0 out of 5) (96).

Ethical considerations learnt for CHMI
in Africa

A key ethical consideration that has emerged from CHMI studies
in Africa is the value of community engagement. This involves
increased communication between communities and research
teams during the planning and implementation of studies (160).
Combining community involvement with informed consent greatly
empowered the decision making of volunteers. A participatory
approach acknowledges the cultural context and values of local
populations, creating an ethical framework for research (161).
Another important ethical consideration is the monetary
compensation that is a fair reflection of the volunteers’
commitment to the study. This must be considered carefully to
avoid undue inducement among different populations at different
economic levels (127). Frameworks to engage with the community to
determine adequate compensation have been developed (162, 163).

Improved understanding of CHMI studies among institutional
review boards in different African countries has allowed improved
regulation. Some African countries have developed specific
regulatory guidelines for CHMI studies. This ensures that modern
CHMI studies in many African countries are done according to
international ethical standards (164). This may be supported by
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ethics training for researchers and local ethics committees to be able
to handle the unique challenges of CHMI studies in Africa (165).

Conclusions

The use of human infection studies to guide vaccine
development and understand pathophysiology of infection is
expanding and diversifying to an increasing range of pathogens
(11). The malaria parasite includes three main stages of its life cycle
in humans which are targets of vaccination, and that are accessible
to study through human infection studies, (i.e. controlled human
malaria infection). Refinements to CHMI continue to be made with
regards to the challenge agent and study conduct. As malaria
vaccines are rolled out we predict that there will be increasing
reliance on CHMI for the following reasons: a) the currently
licensed vaccines will need multiple policy decisions regarding the
timing of boosters, new regimens, and manufacturing process
updates, and CHMI studies will be needed to confirm efficacy; b)
it is likely that multi-stage vaccines will be developed by combining
individual components targeting different life cycle stages, and
similarly it will not be practical to design field trials that test the
efficacy of each component at each stage of clinical development,
whereas CHMI trials can be adapted to isolate efficacy for the
different life cycle stages as well as optimize vaccine regimen; c) next
generation vaccines will need to be compared against existing
products (where replacement is proposed) or in addition to
standard of care (where addition is proposed), and in either case
field trials will become large. CHMI studies will de-risk these
approaches; d) ongoing studies of correlates of protection and/or
infection, either based on naturally acquired or vaccine induced
immunity, will have greater power when the exposure is
standardized in CHMI rather than heterogenous in field trials
(71, 96). Continued investment in infrastructure, capacity, and
the design of CHMI studies tailored for malaria endemic areas
will be important for malaria elimination.
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