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Exercise induced immune
regulation and drug efficacy in
rhinitis nasopharyngeal
carcinoma implications for
tumor microenvironment single
cell immune signal transduction
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Xiuqin Guo1,2, Wenxian Lu1,2, Xiuhui Ji5, Shang Gao1,2,6*,
Rifu Wei1,2* and Yisheng Chen1,4,7*
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Otolaryngology, Ningde Municipal Hospital of Ningde Normal University, Ningde, China, 3Department
of Otolaryngology, Pingnan County General Hospital of Ningde Municipal Hospital Medical Group,
Ningde, China, 4Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde
Normal University, Ningde, China, 5Department of Pediatrics, School of Pediatrics, Nanjing Medical
University, Nanjing, China, 6Department of Otorhinolaryngology, Shanghai General Hospital,
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Ningde Normal University, Ningde, China
Emerging evidence reveals that exercise modulates immune signaling to enhance

the efficacy of immunotherapy in diseases like allergic rhinitis (AR) and

nasopharyngeal carcinoma (NPC). By influencing immune cell trafficking,

reprogramming inflammatory pathways within the tumor microenvironment

(TME), and altering drug pharmacokinetics, exercise improves immune

responses and therapeutic outcomes. Exercise enhances immune cell activation

and infiltration into tumors, modulates checkpoint and cytokine signaling

cascades, and mitigates treatment-related side effects, thereby improving patient

compliance. Recent advancements in single-cell technologies, such as single-cell

RNA sequencing and spatial omics, provide unprecedented insights into immune

cell heterogeneity and signal transduction dynamics in the TME, uncovering new

targets for exercise-modulated therapies. This review explores the synergistic

effects of combining exercise with immune-based therapies, particularly in

cancer treatment, highlighting the role of exercise in reshaping TME

inflammation, overcoming immune evasion, and enhancing immune-mediated

drug bioavailability. Personalized exercise regimens, tailored to individual patient

profiles, are critical for optimizing therapeutic responses. Integrating exercise with

immunotherapy, guided by single-cell and systems-level analyses, may provide a

transformative approach for improving the clinical outcomes of AR and NPC

patients, paving the way for more effective, individualized cancer treatments.
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1 Synergistic effects of exercise on
drug efficacy and immunoregulation

1.1 Impact of exercise on drug metabolism

Exercise enhances drug metabolism by improving cardiac

output and blood flow, facilitating tissue distribution and

absorption (1, 2). This benefits targeted therapies, as shown with

potassium losartan, where exercise-induced circulation improved

dissolution and nasal delivery (3). Increased vascular permeability

within the tumor microenvironment (TME) further optimizes

intratumoral drug diffusion (4), aiding treatments for rhinitis and

nasopharyngeal carcinoma (NPC) (5, 6).

Exercise also modulates the immune microenvironment,

enhancing drug bioavailability and efficacy, as seen with ebastine

in allergic rhinitis (7–10). By boosting T cell, B cell, and macrophage

activity (11) and improving immune surveillance (12, 13), exercise

supports therapeutic outcomes. Innovations such as transferosome

oral films greatly increase ebastine absorption (14, 15), and when

combined with exercise-induced immune activation, they

strengthen targeted drug delivery for immune-related diseases,

they strengthen spatiotemporal drug delivery and immune

modulation at the single-cell level in immune-related diseases (16).
1.2 Immunoregulatory effects: the role of
exercise in local immunity

Exercise boosts immune responses by enhancing immune cell

function and migration, thereby remodeling the local TME in rhinitis

and NPC (11, 17). In the nasal cavity, it improves circulation, aiding

immune cell aggregation, allergen response, and drug absorption (18).

For cancer, it enhances chemo- and immunotherapy efficacy

inflammation regulation and single-cell immune signaling in the

TME (19). Centipeda minima (CM) shows anti-inflammatory and

antitumor effects, potentiated by exercise through better

hemodynamics and immune activation (20, 21). In NPC, this

synergy reduces immune suppression and improves tumor targeting

(22). Exercise also reprograms immune tolerance in allergic rhinitis

and NPC by boosting immune activity, antigen recognition, and pro-

inflammatory cytokine release (23–25), thereby fostering a responsive

immunotherapeutic microenvironment that can be mapped at single-

cell resolution (26, 27).
1.3 Mechanisms of exercise-enhanced drug
therapy

Exercise regulates inflammation, improving drug efficacy by

increasing anti-inflammatory IL-10 and reducing TNF-a, IL-1b
(28). creating a favorable immune milieu for therapy. Reduced
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inflammation optimizes immune function, drug permeability, and

targeting (26). In rhinitis and NPC, exercise alleviates local

inflammation, enhances immune cell migration/activation, and

supports treatment (29, 30). Combined with immune checkpoint

inhibitors like atezolizumab, it boosts tumor immune activity,

improving efficacy (31). Mechanistically, exercise may modulate

checkpoint pathways and antigen-presenting cell signaling cascades

within the TME, thereby refining immune tolerance and mitigating

immunotherapy side effects (19).
1.4 Exercise intensity, immune modulation,
and drug efficacy

Exercise intensity modulates both immune function and

pharmacological responses. Moderate-intensity exercise (MIE)

enhances immune surveillance, attenuates inflammation, and

facilitates drug absorption and distribution through increased

natural killer (NK) cell activity, improved antigen presentation,

and favorable cytokine shifts (11, 32). In allergic rhinitis (AR), MIE

has been shown to improve intranasal drug penetration, while in

nasopharyngeal carcinoma (NPC), it enhances the efficacy of

immunotherapy. In contrast, high-intensity exercise (HIE) can

induce transient immunosuppression, often referred to as the

“open window” phenomenon (33). This state is characterized by

reduced NK cell activity, decreased salivary immunoglobulin A

(IgA), and elevated stress hormone levels, all of which may impair

drug efficacy. From a pharmacokinetic perspective, MIE helps

sustain therapeutic plasma concentrations, whereas HIE may

accelerate drug clearance and consequently lower tissue drug

exposure (34).Thus, exercise intensity critically dictates the

balance between pro- and anti-inflammatory signaling within the

TME, shaping both immune responses and drug effectiveness.
1.5 Impact of exercise on immune cell
trafficking and drug resistance in NPC

Exercise modulates immune cell trafficking and overcomes

immune resistance in NPC’s TME by enhancing blood flow and

tissue perfusion, facilitating CD8+ T cell and NK cell infiltration

(35). It can reduce PD-L1 expression on tumor and immune cells,

improving T cell function and immune surveillance, while

increasing IL-6 and TNF-a to activate effector T cells. Exercise

also normalizes tumor vasculature, improves oxygenation, and

reduces hypoxia, enhancing drug delivery and limiting Treg/

MDSC accumulation (36). At single-cell resolution, these changes

highlight how exercise remodels the inflammatory and immune

signal transduction landscape of the TME, strengthening

immune-mediated tumor destruction and improving therapeutic

responses (37).
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2 Exercise in rhinitis and
nasopharyngeal carcinoma:
modulating immunity and enhancing
drug efficacy

2.1 Exercise and immune regulation in
allergic rhinitis

Allergic rhinitis (AR), affecting up to 40% globally, is an IgE-

mediated nasal inflammation often comorbid with asthma, triggered

by seasonal or perennial allergens (38, 39). Pharmacotherapy efficacy

is limited, prompting interest in immune-regulating strategies (40).

Moderate exercise enhances T, B, and NK cell activity, suppresses pro-

inflammatory cytokines, and strengthens systemic/local immunity

(Figure 1) (41). In the nasal cavity, it improves blood flow, immune

cell aggregation, and microvascular permeability, optimizing drug

delivery (42). At the immune signaling level, exercise promotes T

cell migration, activation, and IL-10/TGF-b release within local

mucosal niches, thereby reshaping inflammatory pathways and

reducing hypersensitivity (43, 44). It also mitigates allergic

sensitization, though excessive exercise may worsen airway irritation

(45). Individualized intensity programs are thus essential.
2.2 Exercise enhances pharmacological
efficacy in rhinitis

Exercise improves immune regulation in AR and enhances drug

efficacy by boosting circulation and tissue drug delivery (11, 46),

allowing lower doses and fewer side effects. Montelukast (MT),

a leukotriene D4 receptor antagonist for asthma, AR, and EIB,

shows variable efficacy (47, 48). Exercise may enhance MT

pharmacokinetics/dynamics through improved hemodynamics and

modulation of immune-related signaling pathways regulating drug

transporters and metabolism (Figure 1) (49). Increased anti-

inflammatory cytokines can further potentiate MT’s effects, reducing

dose needs (50). Pulmonary benefits, including improved ventilation,

enhanced mucociliary clearance, and greater elasticity, also contribute

to better responsiveness (51, 52). Thus, MT plus moderate exercise

integrates drug action with immune signal regulation, making it a

promising AR strategy warranting optimization studies.
2.3 Immune evasion mechanisms in
nasopharyngeal carcinoma tumor
microenvironment

Nasopharyngeal carcinoma (NPC) exhibits strong immune

evasion within the tumor microenvironment (TME), driven by

tumor–immune–stroma interactions (53). Key mechanisms include

upregulation of immune checkpoints such as PD-1/PD-L1 and

CTLA-4, with PD-1 binding to PD-L1 inducing T cell exhaustion

and weakening antitumor immunity. NPC also secretes TGF-b and

IL-10, promoting regulatory T cell (Treg) and myeloid-derived
Frontiers in Immunology 03
suppressor cell (MDSC) infiltration, further suppressing

immunity (54). Additionally, tumor-associated fibroblasts and

endothelial cells release matrix metalloproteinases (MMPs) and

remodel the extracellular matrix, hindering immune cell

infiltration and reinforcing an immunosuppressive niche. These

mechanisms reshape immune signal transduction networks within

the TME, limiting effector cell function and promoting

tumor persistence.
2.4 Exercise and immune checkpoint
inhibitors in nasopharyngeal carcinoma

Immune checkpoint inhibitors (ICIs), including anti-PD-1/PD-

L1 and anti-CTLA-4, improve NPC treatment by reactivating CTLs

and NK cells, though efficacy is limited by the immunosuppressive

TME (55). Exercise enhances ICI effects through modulation of

immune signaling, boosting T cell function, increasing CD8+ T and

NK cell infiltration into the TME, reducing PD-1/CTLA-4

expression, alleviating hypoxia, and improving blood flow,

thereby promoting antigen recognition (35). Clinical studies show

exercise during ICI therapy improves OS, PFS, and immune

profiles, while reducing fatigue and adverse events (56).

Preclinical data suggest exercise delays NPC growth and shifts the

TME toward immunostimulation, overcoming resistance.

Combining exercise with ICIs refines immune signal transduction

within the TME, offering a promising strategy to enhance efficacy

and patient outcomes (57).
2.5 Exercise, tumor oxygenation, and
immunotherapy enhancement in
nasopharyngeal carcinoma

In NPC, tumor hypoxia drives immune evasion, therapy

resistance, and aggressiveness (58). Aerobic/endurance exercise

alleviates hypoxia by enhancing cardiovascular output,

angiogenesis, and vascular normalization (59), reducing interstitial

fluid pressure and improving oxygen diffusion, thereby loweringHIF-

1a activity (60). This reversal decreases immunosuppressive myeloid-

derived suppressor cells and Tregs, reprograms macrophages toward

anti-tumor activity, and boosts CD8+ T cell infiltration and survival.

At the single-cell level, improved oxygenation synergizes with PD-1/

PD-L1 inhibitors, cancer vaccines, and adoptive T cell transfer by

enhancing antigen presentation, limiting T cell exhaustion, and

increasing effector cytokine production (61). Preclinical NPC

studies support structured aerobic exercise as a non-

pharmacological adjuvant to immunotherapy.
2.6 Exercise as an adjunct in
nasopharyngeal carcinoma immunotherapy

Immunotherapy, particularly ICIs such as anti-PD-1/PD-L1

agents, has transformed treatment landscapes in multiple cancers,
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including NPC (62, 63). However, response rates to ICIs in NPC

remain modest due to immune escape and an immunosuppressive

TME (64). This immunosuppressive TME is shaped by dynamic

interactions among tumor-associated immune cells, which can now

be characterized at single-cell resolution to dissect resistance-related

signal transduction. Exercise increases CD8+ T cell infiltration,

reduces immunosuppressive factors like TGF-b and IL-10, and

improves oxygenation in hypoxic tumor regions, thereby

amplifying cytotoxic immune responses (Figure 1) (65). It also
Frontiers in Immunology 04
fine-tunes inflammatory and immune signaling pathways,

promoting anti-tumor cytokine secretion and systemic immune

activation (66). In NPC specifically, combining Atezolizumab with

exercise may improve outcomes by reversing tumor immune evasion.

This could involve enhanced antigen presentation and improved

spatial organization of immune infiltrates, both of which are crucial

for immunotherapy efficacy. Moreover, exercise could potentiate the

effects of nano-platform photodynamic therapies that induce

immunogenic cell death, further enhancing treatment synergy (67).
FIGURE 1

EExercise–drug combination therapy in tumor immunotherapy. (A) Exercise and allergy modulation. Exercise enhances respiratory immunity, lowers
inflammation, and reduces allergic reactions via anti-inflammatory mediators and allergen-responsive immune cells. (B) Drug–exercise synergy.
Combining montelukast (a leukotriene receptor antagonist) with exercise improves circulation and ventilation, boosting T- and B-cell activity and
strengthening immune defense against tumors and inflammation. (C) Exercise and immunotherapy. Exercise reshapes the tumor microenvironment
by regulating cytokines (e.g., IL-10, TGF-b, IFN-g), enhancing antitumor responses. It complements atezolizumab (a PD-L1 inhibitor) by counteracting
PD-1/PD-L1 immune evasion. (D) Prospects and challenges. In nasopharyngeal cancer, exercise reduces IL-6, TNF-a, and CRP while activating NK
cells, CTLs, and macrophages. Integrating exercise with drug therapy holds promise for improving therapeutic efficacy.
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2.7 Clinical trials and real-world evidence

Clinical studies, including randomized trials and real-world

evidence, show that exercise improves immune regulation in AR

and NPC, enhancing therapeutic outcomes and quality of life. In AR,

RCTs have demonstrated that moderate-intensity exercise reduces

airway inflammation, relieves nasal congestion, and boosts the effects

of antihistamines and nasal corticosteroids by increasing anti-

inflammatory cytokines (IL-10) and decreasing pro-inflammatory

cytokines (TNF-a). Real-world studies also suggest that higher

physical activity levels correlate with fewer rhinitis exacerbations

and less need for medical interventions. In NPC, clinical trials

indicate that structured exercise combined with immunotherapy

enhances immune responses, with increased T-cell infiltration and

reduced PD-1/PD-L1 expression, suggesting synergy between exercise

and immunotherapy. Cohort studies also highlight that single-cell

immune profiling reveals exercise-induced shifts in TME composition,

linking clinical benefit to rewired immune signal transduction (68, 69).
2.8 Clinical translation and emerging
combinatorial strategies

Although Atezolizumab monotherapy has shown limited efficacy

in NPC (ORR ~5%) in Chinese cohorts, combining it with

chemotherapy improves outcomes (70). Exercise may complement

such combinatorial strategies by improving drug delivery through

enhanced perfusion and reprogramming immune cell signal

transduction in the tumor milieu (71). These effects are

increasingly appreciated through spatial transcriptomics and multi-

omics analyses, which reveal how localized perfusion and immune

cell positioning impact drug response. In addition to ICIs, new

therapeutic agents such as Camrelizumab and the natural

compound cinobufagin have shown promise in NPC. Cinobufagin

induces cell cycle arrest and apoptosis in NPC cells and may be a

candidate for integration into multimodal treatment strategies (72).

Exercise could potentially enhance these agents’ efficacy by improving

immune surveillance and systemic metabolism (73). Combining

exercise with immune-activating compounds may remodel the

tumor immune landscape, making it more responsive to targeted

agents. Together, these findings point toward a multimodal, patient-

specific approach that integrates ICIs, novel agents, and exercise-

based interventions to improve NPC outcomes (74).
2.9 Challenges and future perspectives in
exercise-drug integration

While the immunomodulatory potential of exercise is clear, its

integration with pharmacological therapies presents several

challenges. Exercise has a dual role: it can reduce tumor-promoting

inflammation and enhance immune activation, but excessive intensity

or duration may lead to immune suppression and treatment resistance

(75). The key lies in tailoring exercise regimens to individual patient

profiles, including cancer type, treatment phase, and physical
Frontiers in Immunology 05
condition (76). Interindividual variability in treatment response,

tolerance to physical activity, and underlying comorbidities further

complicate standardization (77). For example, frail patients may

experience adverse effects from even mild exertion, while fitter

patients may require higher intensity to achieve benefits.

Personalized prescriptions, ideally integrated into routine care and

synchronized with treatment windows, may optimize outcomes (78).

Patient compliance also remains a hurdle. Fatigue, psychological

burden, and side effects of treatment often limit adherence to

structured exercise programs (79). Incorporating behavioral support,

supervised group programs, and flexibility in exercise formats could

help sustain participation and improve treatment adherence (80).

Future research should leverage single-cell and systems-level analyses

to refine exercise–drug integration strategies, ensuring alignment with

immune signal transduction mechanisms in the TME.
3 Preclinical and clinical evidence on
exercise-drug synergy in rhinitis and
nasopharyngeal carcinoma

3.1 Animal studies on exercise-enhanced
drug efficacy

Preclinical studies highlight the potential of combining exercise

with pharmacological interventions to enhance immune regulation

in AR and NPC. In AR models, exercise activates immune cells

(CD4+, CD8+ T cells, dendritic cells) and shifts the immune

response toward Th1 dominance, reducing Th2-mediated allergic

reactions (Figure 2) (26, 81).

Exercise also promotes anti-inflammatory cytokines like IL-10

and TGF-b, amplifying drug efficacy (82). In NPC models, exercise

reprograms the tumor microenvironment (TME) by modulating

inflammatory signaling and immune infiltration, reducing

immunosuppressive mechanisms and boosting anti-tumor

immune cell activity (83). Single-cell RNA sequencing (scRNA-

seq) provides insights into the molecular effects of exercise,

revealing how exercise reshapes immune signal transduction in

cell subsets in AR (e.g., Tregs, Th2 cells) and NPC (e.g., cytotoxic

CD8+ T cells, TAM reprogramming) (84–86).

Exercise also enhances immune checkpoint inhibitor efficacy by

reducing MDSCs and Tregs, improving immune balance and

therapeutic response (Figure 2) (81). Aerobic exercise reduces

chronic inflammation, improving immunotherapy outcomes (66)

and induces epigenetic and transcriptional changes within immune

pathways, sensitizing tumors to treatments (87). Imaging studies

show exercise improves tumor perfusion and vessel normalization,

enhancing drug delivery.
3.2 Clinical insights into exercise and
immunotherapy

Preliminary clinical studies suggest that exercise is a beneficial

adjuvant in cancer immunotherapy, especially with checkpoint
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inhibitors (e.g., anti-PD-1/PD-L1) (56). For instance, moderate-

intensity aerobic exercise alongside checkpoint inhibition in non-

small cell lung cancer patients boosts immune surveillance,

enhances CD8+ T cell activation, and reduces immunosuppressive

cell populations such as Tregs and MDSCs (88). Similar trends in
Frontiers in Immunology 06
NPC trials show that exercise enhances NK and dendritic cell

function, improves drug delivery, and reduces immune

suppression (89). Exercise likely modulates TME intercellular

signaling and chemokine-mediated communication (e.g., CXCL9/

10), thereby regulating immune cell infiltration (90). In allergic
FIGURE 2

Exercise enhances immunotherapy efficacy by modulating immunity and drug effectiveness in rhinitis and nasopharyngeal cancer. Exercise
strengthens immune function and improves drug treatment outcomes in immune-related conditions. The figure highlights the interplay of physical
activity, immune modulation, and drug therapy in optimizing efficacy. Different exercise forms (e.g., running, weightlifting, aerobics) enhance
oxygenation, drug delivery, and cytotoxic T cell activity. Exercise also synergizes with immunotherapy by fostering anti-tumor immunity, fortifying
the tumor microenvironment, and boosting PD-L1 antibody effectiveness. In addition, it mitigates side effects, facilitates targeted therapy, and
increases immune checkpoint inhibitor efficiency. The lower panel illustrates the cooperative interaction of exercise and medication, underscoring
physical activity as a valuable adjunct to conventional treatment.
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rhinitis, exercise restores immune balance disrupted by chronic

allergens, enhancing immune responses, reducing inflammation,

and improving drug efficacy in symptom management (Figure 2)

(91). Advances in single-cell profiling provide tools to map cell-

type-specific immune signaling changes induced by combined

exercise and immunotherapy (92). Despite promising results,

challenges remain in defining optimal exercise regimens (type,

intensity, duration, timing) for individual patients. The ACSM

guidelines recommend moderate-intensity aerobic exercise (60-

70% HRmax, 30–60 min) as safe (93), with personalized

prescriptions and real-time monitoring tools enhancing tailored

interventions (94).
3.3 Clinical potential of exercise combined
with immunotherapy in NPC

Emerging clinical evidence shows significant synergy between

exercise and immunotherapies like Atezolizumab (anti-PD-L1

antibody) in NPC. Exercise enhances immune cell activation,

promotes tumor infiltration, and reduces common side effects,

such as fatigue, improving patient compliance and outcomes (95).

Clinical studies also show that combined exercise interventions

improve physical endurance, psychological well-being, and immune

response (96). Exercise enhances tumor perfusion and oxygenation,

increasing drug bioavailability and efficacy, addressing limitations

of single-agent immunotherapy (65). Furthermore, exercise-

induced changes in the tumor microenvironment (TME) may

overcome primary and acquired resistance to immune checkpoint

inhibitors. Additionally, exercise mitigates treatment-related side

effects, supports overall health, and enables sustained drug

administration. Clinical data also demonstrate exercise’s positive

effects on emotional well-being and long-term treatment adherence,

underscoring its broader clinical utility.
3.4 Personalized exercise interventions:
tailoring approaches for clinical efficacy

Personalization of exercise interventions remains essential,

considering variability in patient demographics, comorbidities,

tumor biology, and treatment regimens. Comprehensive pre-

exercise evaluations incorporating medical history, physical

capability assessments, and disease staging are critical for effective

customization of exercise prescriptions (97). For patients with

cardiovascular or respiratory comorbidities, low-intensity aerobic

activities such as walking or Tai Chi are recommended initially,

with gradual intensity escalation (98). Patients with diabetes require

close blood glucose monitoring combined with carefully timed

aerobic and resistance exercises (99). Individuals experiencing

musculoskeletal pain may benefit from low-impact exercises like

aquatic therapy (100). These exercises can relieve pain while

maintaining muscle strength and joint flexibility. Future strategies

should also consider integrating exercise training with other

supportive care modalities, such as nutritional interventions or
Frontiers in Immunology 07
psychosocial counseling, to improve adherence and holistic

patient outcomes. Importantly, integrating personalized exercise

with immune monitoring at the single-cell level may optimize safety

and efficacy (37).
3.5 Future directions and challenges

Future research should focus on the molecular and cellular

mechanisms by which exercise regulates immune function in cancer

and allergic diseases. Investigating how exercise affects immune cell

subsets, cytokine profiles, and metabolic pathways will help

optimize exercise regimens to enhance drug efficacy and reduce

side effects (19).

Identifying and validating biomarkers to predict treatment

response is essential. Integrating genomics, transcriptomics,

proteomics, and advanced single-cell and spatial approaches (e.g.,

spatial CITE-seq, CRISPR screening) offers powerful strategies to

uncover immune signaling mechanisms and design personalized

interventions (101). However, challenges remain, including

individual variability in response to exercise. Personalized

interventions are needed to prevent immune overstimulation or

excessive exercise-induced stress (102). Balancing exercise intensity

to optimize immune regulation without exacerbating side effects or

immune-related adverse events is key (103). Systematic research

and well-designed clinical trials are required to define optimal

parameters for combining exercise with drug therapies, ensuring

safe and effective clinical translation (104).
4 Conclusion

The interplay between exercise and immune signaling is a

promising, yet underexplored, pathway for enhancing the

effectiveness of immunotherapy, particularly in conditions such as

allergic rhinitis (AR) and nasopharyngeal carcinoma (NPC).

Current evidence suggests that exercise influences immune cell

activation, remodels inflammatory signaling within the tumor

microenvironment (TME), and improves drug pharmacokinetics,

collectively contributing to better therapeutic outcomes. Recent

advances in single-cell technologies have highlighted the

substantial heterogeneity in immune cell states and immune

signal transduction pathways within the TME. Exercise-induced

changes in immune cell distribution and function likely reshape

these dynamic signaling processes at single-cell resolution.

However, the precise molecular mechanisms by which exercise

influences immune signaling and intercellular communication

remain largely unknown. To address this, future research should

integrate exercise immunology with single-cell transcriptomics and

spatial omics technologies. These approaches will provide high-

resolution insights into how exercise modulates immune cell

populations and their interactions within disease-relevant tissues.

Such integration could uncover new regulatory pathways and

therapeutic targets, facilitating the development of personalized

interventions that combine physical activity with immune-based
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treatments. By bridging exercise science with cutting-edge immune

profiling technologies, researchers can uncover novel mechanisms

supporting exercise as an adjunct to immunotherapy. This

interdisciplinary strategy, focused on inflammation and immune

signal transduction in the TME, may ultimately lead to more

effective, individualized treatments for cancer and other immune-

mediated diseases.
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