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Emerging evidence reveals that exercise modulates immune signaling to enhance
the efficacy of immunotherapy in diseases like allergic rhinitis (AR) and
nasopharyngeal carcinoma (NPC). By influencing immune cell trafficking,
reprogramming inflammatory pathways within the tumor microenvironment
(TME), and altering drug pharmacokinetics, exercise improves immune
responses and therapeutic outcomes. Exercise enhances immune cell activation
and infiltration into tumors, modulates checkpoint and cytokine signaling
cascades, and mitigates treatment-related side effects, thereby improving patient
compliance. Recent advancements in single-cell technologies, such as single-cell
RNA sequencing and spatial omics, provide unprecedented insights into immune
cell heterogeneity and signal transduction dynamics in the TME, uncovering new
targets for exercise-modulated therapies. This review explores the synergistic
effects of combining exercise with immune-based therapies, particularly in
cancer treatment, highlighting the role of exercise in reshaping TME
inflammation, overcoming immune evasion, and enhancing immune-mediated
drug bioavailability. Personalized exercise regimens, tailored to individual patient
profiles, are critical for optimizing therapeutic responses. Integrating exercise with
immunotherapy, guided by single-cell and systems-level analyses, may provide a
transformative approach for improving the clinical outcomes of AR and NPC
patients, paving the way for more effective, individualized cancer treatments.
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1 Synergistic effects of exercise on
drug efficacy and immunoregulation

1.1 Impact of exercise on drug metabolism

Exercise enhances drug metabolism by improving cardiac
output and blood flow, facilitating tissue distribution and
absorption (1, 2). This benefits targeted therapies, as shown with
potassium losartan, where exercise-induced circulation improved
dissolution and nasal delivery (3). Increased vascular permeability
within the tumor microenvironment (TME) further optimizes
intratumoral drug diffusion (4), aiding treatments for rhinitis and
nasopharyngeal carcinoma (NPC) (5, 6).

Exercise also modulates the immune microenvironment,
enhancing drug bioavailability and efficacy, as seen with ebastine
in allergic rhinitis (7-10). By boosting T cell, B cell, and macrophage
activity (11) and improving immune surveillance (12, 13), exercise
supports therapeutic outcomes. Innovations such as transferosome
oral films greatly increase ebastine absorption (14, 15), and when
combined with exercise-induced immune activation, they
strengthen targeted drug delivery for immune-related diseases,
they strengthen spatiotemporal drug delivery and immune
modulation at the single-cell level in immune-related diseases (16).

1.2 Immunoregulatory effects: the role of
exercise in local immunity

Exercise boosts immune responses by enhancing immune cell
function and migration, thereby remodeling the local TME in rhinitis
and NPC (11, 17). In the nasal cavity, it improves circulation, aiding
immune cell aggregation, allergen response, and drug absorption (18).
For cancer, it enhances chemo- and immunotherapy efficacy
inflammation regulation and single-cell immune signaling in the
TME (19). Centipeda minima (CM) shows anti-inflammatory and
antitumor effects, potentiated by exercise through better
hemodynamics and immune activation (20, 21). In NPC, this
synergy reduces immune suppression and improves tumor targeting
(22). Exercise also reprograms immune tolerance in allergic rhinitis
and NPC by boosting immune activity, antigen recognition, and pro-
inflammatory cytokine release (23-25), thereby fostering a responsive
immunotherapeutic microenvironment that can be mapped at single-
cell resolution (26, 27).

1.3 Mechanisms of exercise-enhanced drug
therapy

Exercise regulates inflammation, improving drug efficacy by

increasing anti-inflammatory IL-10 and reducing TNF-o, IL-1B
(28). creating a favorable immune milieu for therapy. Reduced
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inflammation optimizes immune function, drug permeability, and
targeting (26). In rhinitis and NPC, exercise alleviates local
inflammation, enhances immune cell migration/activation, and
supports treatment (29, 30). Combined with immune checkpoint
inhibitors like atezolizumab, it boosts tumor immune activity,
improving efficacy (31). Mechanistically, exercise may modulate
checkpoint pathways and antigen-presenting cell signaling cascades
within the TME, thereby refining immune tolerance and mitigating
immunotherapy side effects (19).

1.4 Exercise intensity, immune modulation,
and drug efficacy

Exercise intensity modulates both immune function and
pharmacological responses. Moderate-intensity exercise (MIE)
enhances immune surveillance, attenuates inflammation, and
facilitates drug absorption and distribution through increased
natural killer (NK) cell activity, improved antigen presentation,
and favorable cytokine shifts (11, 32). In allergic rhinitis (AR), MIE
has been shown to improve intranasal drug penetration, while in
nasopharyngeal carcinoma (NPC), it enhances the efficacy of
immunotherapy. In contrast, high-intensity exercise (HIE) can
induce transient immunosuppression, often referred to as the
“open window” phenomenon (33). This state is characterized by
reduced NK cell activity, decreased salivary immunoglobulin A
(IgA), and elevated stress hormone levels, all of which may impair
drug efficacy. From a pharmacokinetic perspective, MIE helps
sustain therapeutic plasma concentrations, whereas HIE may
accelerate drug clearance and consequently lower tissue drug
exposure (34).Thus, exercise intensity critically dictates the
balance between pro- and anti-inflammatory signaling within the
TME, shaping both immune responses and drug effectiveness.

1.5 Impact of exercise on immune cell
trafficking and drug resistance in NPC

Exercise modulates immune cell trafficking and overcomes
immune resistance in NPC’s TME by enhancing blood flow and
tissue perfusion, facilitating CD8" T cell and NK cell infiltration
(35). It can reduce PD-L1 expression on tumor and immune cells,
improving T cell function and immune surveillance, while
increasing IL-6 and TNF-o to activate effector T cells. Exercise
also normalizes tumor vasculature, improves oxygenation, and
reduces hypoxia, enhancing drug delivery and limiting Treg/
MDSC accumulation (36). At single-cell resolution, these changes
highlight how exercise remodels the inflammatory and immune
signal transduction landscape of the TME, strengthening
immune-mediated tumor destruction and improving therapeutic
responses (37).
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2 Exercise in rhinitis and
nasopharyngeal carcinoma:
modulating immunity and enhancing
drug efficacy

2.1 Exercise and immune regulation in
allergic rhinitis

Allergic rhinitis (AR), affecting up to 40% globally, is an IgE-
mediated nasal inflammation often comorbid with asthma, triggered
by seasonal or perennial allergens (38, 39). Pharmacotherapy efficacy
is limited, prompting interest in immune-regulating strategies (40).
Moderate exercise enhances T, B, and NK cell activity, suppresses pro-
inflammatory cytokines, and strengthens systemic/local immunity
(Figure 1) (41). In the nasal cavity, it improves blood flow, immune
cell aggregation, and microvascular permeability, optimizing drug
delivery (42). At the immune signaling level, exercise promotes T
cell migration, activation, and IL-10/TGF-B release within local
mucosal niches, thereby reshaping inflammatory pathways and
reducing hypersensitivity (43, 44). It also mitigates allergic
sensitization, though excessive exercise may worsen airway irritation
(45). Individualized intensity programs are thus essential.

2.2 Exercise enhances pharmacological
efficacy in rhinitis

Exercise improves immune regulation in AR and enhances drug
efficacy by boosting circulation and tissue drug delivery (11, 46),
allowing lower doses and fewer side effects. Montelukast (MT),
a leukotriene D4 receptor antagonist for asthma, AR, and EIB,
shows variable efficacy (47, 48). Exercise may enhance MT
pharmacokinetics/dynamics through improved hemodynamics and
modulation of immune-related signaling pathways regulating drug
transporters and metabolism (Figure 1) (49). Increased anti-
inflammatory cytokines can further potentiate MT’s effects, reducing
dose needs (50). Pulmonary benefits, including improved ventilation,
enhanced mucociliary clearance, and greater elasticity, also contribute
to better responsiveness (51, 52). Thus, MT plus moderate exercise
integrates drug action with immune signal regulation, making it a
promising AR strategy warranting optimization studies.

2.3 Immune evasion mechanisms in
nasopharyngeal carcinoma tumor
microenvironment

Nasopharyngeal carcinoma (NPC) exhibits strong immune
evasion within the tumor microenvironment (TME), driven by
tumor-immune-stroma interactions (53). Key mechanisms include
upregulation of immune checkpoints such as PD-1/PD-L1 and
CTLA-4, with PD-1 binding to PD-L1 inducing T cell exhaustion
and weakening antitumor immunity. NPC also secretes TGF-3 and
IL-10, promoting regulatory T cell (Treg) and myeloid-derived
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suppressor cell (MDSC) infiltration, further suppressing
immunity (54). Additionally, tumor-associated fibroblasts and
endothelial cells release matrix metalloproteinases (MMPs) and
remodel the extracellular matrix, hindering immune cell
infiltration and reinforcing an immunosuppressive niche. These
mechanisms reshape immune signal transduction networks within
the TME, limiting effector cell function and promoting
tumor persistence.

2.4 Exercise and immune checkpoint
inhibitors in nasopharyngeal carcinoma

Immune checkpoint inhibitors (ICIs), including anti-PD-1/PD-
L1 and anti-CTLA-4, improve NPC treatment by reactivating CTLs
and NK cells, though efficacy is limited by the immunosuppressive
TME (55). Exercise enhances ICI effects through modulation of
immune signaling, boosting T cell function, increasing CD8" T and
NK cell infiltration into the TME, reducing PD-1/CTLA-4
expression, alleviating hypoxia, and improving blood flow,
thereby promoting antigen recognition (35). Clinical studies show
exercise during ICI therapy improves OS, PFS, and immune
profiles, while reducing fatigue and adverse events (56).
Preclinical data suggest exercise delays NPC growth and shifts the
TME toward immunostimulation, overcoming resistance.
Combining exercise with ICIs refines immune signal transduction
within the TME, offering a promising strategy to enhance efficacy
and patient outcomes (57).

2.5 Exercise, tumor oxygenation, and
immunotherapy enhancement in
nasopharyngeal carcinoma

In NPC, tumor hypoxia drives immune evasion, therapy
resistance, and aggressiveness (58). Aerobic/endurance exercise
alleviates hypoxia by enhancing cardiovascular output,
angiogenesis, and vascular normalization (59), reducing interstitial
fluid pressure and improving oxygen diffusion, thereby lowering HIF-
1o activity (60). This reversal decreases immunosuppressive myeloid-
derived suppressor cells and Tregs, reprograms macrophages toward
anti-tumor activity, and boosts CD8" T cell infiltration and survival.
At the single-cell level, improved oxygenation synergizes with PD-1/
PD-L1 inhibitors, cancer vaccines, and adoptive T cell transfer by
enhancing antigen presentation, limiting T cell exhaustion, and
increasing effector cytokine production (61). Preclinical NPC
studies support structured aerobic exercise as a non-
pharmacological adjuvant to immunotherapy.

2.6 Exercise as an adjunct in
nasopharyngeal carcinoma immunotherapy

Immunotherapy, particularly ICIs such as anti-PD-1/PD-L1
agents, has transformed treatment landscapes in multiple cancers,
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Exercise and drug combination therapy as a tumor immunotherapy strategy
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EExercise—drug combination therapy in tumor immunotherapy. (A) Exercise and allergy modulation. Exercise enhances respiratory immunity, lowers
inflammation, and reduces allergic reactions via anti-inflammatory mediators and allergen-responsive immune cells. (B) Drug—exercise synergy.
Combining montelukast (a leukotriene receptor antagonist) with exercise improves circulation and ventilation, boosting T- and B-cell activity and
strengthening immune defense against tumors and inflammation. (C) Exercise and immunotherapy. Exercise reshapes the tumor microenvironment
by regulating cytokines (e.g., IL-10, TGF-B, IFN-y), enhancing antitumor responses. It complements atezolizumab (a PD-L1 inhibitor) by counteracting
PD-1/PD-L1 immune evasion. (D) Prospects and challenges. In nasopharyngeal cancer, exercise reduces IL-6, TNF-o, and CRP while activating NK

cells, CTLs, and macrophages. Integrating exercise with drug therapy holds promise for improving therapeutic efficacy.

including NPC (62, 63). However, response rates to ICIs in NPC
remain modest due to immune escape and an immunosuppressive
TME (64). This immunosuppressive TME is shaped by dynamic
interactions among tumor-associated immune cells, which can now
be characterized at single-cell resolution to dissect resistance-related
signal transduction. Exercise increases CD8" T cell infiltration,
reduces immunosuppressive factors like TGF-f and IL-10, and
improves oxygenation in hypoxic tumor regions, thereby
amplifying cytotoxic immune responses (Figure 1) (65). It also
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fine-tunes inflammatory and immune signaling pathways,
promoting anti-tumor cytokine secretion and systemic immune
activation (66). In NPC specifically, combining Atezolizumab with
exercise may improve outcomes by reversing tumor immune evasion.
This could involve enhanced antigen presentation and improved
spatial organization of immune infiltrates, both of which are crucial
for immunotherapy efficacy. Moreover, exercise could potentiate the
effects of nano-platform photodynamic therapies that induce
immunogenic cell death, further enhancing treatment synergy (67).
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2.7 Clinical trials and real-world evidence

Clinical studies, including randomized trials and real-world
evidence, show that exercise improves immune regulation in AR
and NPC, enhancing therapeutic outcomes and quality of life. In AR,
RCTs have demonstrated that moderate-intensity exercise reduces
airway inflammation, relieves nasal congestion, and boosts the effects
of antihistamines and nasal corticosteroids by increasing anti-
inflammatory cytokines (IL-10) and decreasing pro-inflammatory
cytokines (TNF-o). Real-world studies also suggest that higher
physical activity levels correlate with fewer rhinitis exacerbations
and less need for medical interventions. In NPC, clinical trials
indicate that structured exercise combined with immunotherapy
enhances immune responses, with increased T-cell infiltration and
reduced PD-1/PD-L1 expression, suggesting synergy between exercise
and immunotherapy. Cohort studies also highlight that single-cell
immune profiling reveals exercise-induced shifts in TME composition,
linking clinical benefit to rewired immune signal transduction (68, 69).

2.8 Clinical translation and emerging
combinatorial strategies

Although Atezolizumab monotherapy has shown limited efficacy
in NPC (ORR ~5%) in Chinese cohorts, combining it with
chemotherapy improves outcomes (70). Exercise may complement
such combinatorial strategies by improving drug delivery through
enhanced perfusion and reprogramming immune cell signal
transduction in the tumor milieu (71). These effects are
increasingly appreciated through spatial transcriptomics and multi-
omics analyses, which reveal how localized perfusion and immune
cell positioning impact drug response. In addition to ICIs, new
therapeutic agents such as Camrelizumab and the natural
compound cinobufagin have shown promise in NPC. Cinobufagin
induces cell cycle arrest and apoptosis in NPC cells and may be a
candidate for integration into multimodal treatment strategies (72).
Exercise could potentially enhance these agents’ efficacy by improving
immune surveillance and systemic metabolism (73). Combining
exercise with immune-activating compounds may remodel the
tumor immune landscape, making it more responsive to targeted
agents. Together, these findings point toward a multimodal, patient-
specific approach that integrates ICIs, novel agents, and exercise-
based interventions to improve NPC outcomes (74).

2.9 Challenges and future perspectives in
exercise-drug integration

While the immunomodulatory potential of exercise is clear, its
integration with pharmacological therapies presents several
challenges. Exercise has a dual role: it can reduce tumor-promoting
inflammation and enhance immune activation, but excessive intensity
or duration may lead to immune suppression and treatment resistance
(75). The key lies in tailoring exercise regimens to individual patient
profiles, including cancer type, treatment phase, and physical
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condition (76). Interindividual variability in treatment response,
tolerance to physical activity, and underlying comorbidities further
complicate standardization (77). For example, frail patients may
experience adverse effects from even mild exertion, while fitter
patients may require higher intensity to achieve benefits.
Personalized prescriptions, ideally integrated into routine care and
synchronized with treatment windows, may optimize outcomes (78).
Patient compliance also remains a hurdle. Fatigue, psychological
burden, and side effects of treatment often limit adherence to
structured exercise programs (79). Incorporating behavioral support,
supervised group programs, and flexibility in exercise formats could
help sustain participation and improve treatment adherence (80).
Future research should leverage single-cell and systems-level analyses
to refine exercise-drug integration strategies, ensuring alignment with
immune signal transduction mechanisms in the TME.

3 Preclinical and clinical evidence on
exercise-drug synergy in rhinitis and
nasopharyngeal carcinoma

3.1 Animal studies on exercise-enhanced
drug efficacy

Preclinical studies highlight the potential of combining exercise
with pharmacological interventions to enhance immune regulation
in AR and NPC. In AR models, exercise activates immune cells
(CD4"%, CD8" T cells, dendritic cells) and shifts the immune
response toward Thl dominance, reducing Th2-mediated allergic
reactions (Figure 2) (26, 81).

Exercise also promotes anti-inflammatory cytokines like IL-10
and TGF-, amplifying drug efficacy (82). In NPC models, exercise
reprograms the tumor microenvironment (TME) by modulating
inflammatory signaling and immune infiltration, reducing
immunosuppressive mechanisms and boosting anti-tumor
immune cell activity (83). Single-cell RNA sequencing (scRNA-
seq) provides insights into the molecular effects of exercise,
revealing how exercise reshapes immune signal transduction in
cell subsets in AR (e.g., Tregs, Th2 cells) and NPC (e.g., cytotoxic
CD8" T cells, TAM reprogramming) (84-86).

Exercise also enhances immune checkpoint inhibitor efficacy by
reducing MDSCs and Tregs, improving immune balance and
therapeutic response (Figure 2) (81). Aerobic exercise reduces
chronic inflammation, improving immunotherapy outcomes (66)
and induces epigenetic and transcriptional changes within immune
pathways, sensitizing tumors to treatments (87). Imaging studies
show exercise improves tumor perfusion and vessel normalization,

enhancing drug delivery.

3.2 Clinical insights into exercise and
immunotherapy

Preliminary clinical studies suggest that exercise is a beneficial
adjuvant in cancer immunotherapy, especially with checkpoint
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FIGURE 2
Exercise enhances immunotherapy efficacy by modulating immunity and drug effectiveness in rhinitis and nasopharyngeal cancer. Exercise
strengthens immune function and improves drug treatment outcomes in immune-related conditions. The figure highlights the interplay of physical
activity, immune modulation, and drug therapy in optimizing efficacy. Different exercise forms (e.g., running, weightlifting, aerobics) enhance
oxygenation, drug delivery, and cytotoxic T cell activity. Exercise also synergizes with immunotherapy by fostering anti-tumor immunity, fortifying
the tumor microenvironment, and boosting PD-L1 antibody effectiveness. In addition, it mitigates side effects, facilitates targeted therapy, and
increases immune checkpoint inhibitor efficiency. The lower panel illustrates the cooperative interaction of exercise and medication, underscoring
physical activity as a valuable adjunct to conventional treatment.

inhibitors (e.g., anti-PD-1/PD-L1) (56). For instance, moderate-
intensity aerobic exercise alongside checkpoint inhibition in non-
small cell lung cancer patients boosts immune surveillance,
enhances CD8" T cell activation, and reduces immunosuppressive
cell populations such as Tregs and MDSCs (88). Similar trends in
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NPC trials show that exercise enhances NK and dendritic cell
function, improves drug delivery, and reduces immune
suppression (89). Exercise likely modulates TME intercellular
signaling and chemokine-mediated communication (e.g., CXCL9/
10), thereby regulating immune cell infiltration (90). In allergic

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1673383
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

He et al.

rhinitis, exercise restores immune balance disrupted by chronic
allergens, enhancing immune responses, reducing inflammation,
and improving drug efficacy in symptom management (Figure 2)
(91). Advances in single-cell profiling provide tools to map cell-
type-specific immune signaling changes induced by combined
exercise and immunotherapy (92). Despite promising results,
challenges remain in defining optimal exercise regimens (type,
intensity, duration, timing) for individual patients. The ACSM
guidelines recommend moderate-intensity aerobic exercise (60-
70% HRmax, 30-60 min) as safe (93), with personalized
prescriptions and real-time monitoring tools enhancing tailored
interventions (94).

3.3 Clinical potential of exercise combined
with immunotherapy in NPC

Emerging clinical evidence shows significant synergy between
exercise and immunotherapies like Atezolizumab (anti-PD-L1
antibody) in NPC. Exercise enhances immune cell activation,
promotes tumor infiltration, and reduces common side effects,
such as fatigue, improving patient compliance and outcomes (95).
Clinical studies also show that combined exercise interventions
improve physical endurance, psychological well-being, and immune
response (96). Exercise enhances tumor perfusion and oxygenation,
increasing drug bioavailability and efficacy, addressing limitations
of single-agent immunotherapy (65). Furthermore, exercise-
induced changes in the tumor microenvironment (TME) may
overcome primary and acquired resistance to immune checkpoint
inhibitors. Additionally, exercise mitigates treatment-related side
effects, supports overall health, and enables sustained drug
administration. Clinical data also demonstrate exercise’s positive
effects on emotional well-being and long-term treatment adherence,
underscoring its broader clinical utility.

3.4 Personalized exercise interventions:
tailoring approaches for clinical efficacy

Personalization of exercise interventions remains essential,
considering variability in patient demographics, comorbidities,
tumor biology, and treatment regimens. Comprehensive pre-
exercise evaluations incorporating medical history, physical
capability assessments, and disease staging are critical for effective
customization of exercise prescriptions (97). For patients with
cardiovascular or respiratory comorbidities, low-intensity aerobic
activities such as walking or Tai Chi are recommended initially,
with gradual intensity escalation (98). Patients with diabetes require
close blood glucose monitoring combined with carefully timed
aerobic and resistance exercises (99). Individuals experiencing
musculoskeletal pain may benefit from low-impact exercises like
aquatic therapy (100). These exercises can relieve pain while
maintaining muscle strength and joint flexibility. Future strategies
should also consider integrating exercise training with other
supportive care modalities, such as nutritional interventions or
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psychosocial counseling, to improve adherence and holistic
patient outcomes. Importantly, integrating personalized exercise
with immune monitoring at the single-cell level may optimize safety
and efficacy (37).

3.5 Future directions and challenges

Future research should focus on the molecular and cellular
mechanisms by which exercise regulates immune function in cancer
and allergic diseases. Investigating how exercise affects immune cell
subsets, cytokine profiles, and metabolic pathways will help
optimize exercise regimens to enhance drug efficacy and reduce
side effects (19).

Identifying and validating biomarkers to predict treatment
response is essential. Integrating genomics, transcriptomics,
proteomics, and advanced single-cell and spatial approaches (e.g.,
spatial CITE-seq, CRISPR screening) offers powerful strategies to
uncover immune signaling mechanisms and design personalized
interventions (101). However, challenges remain, including
individual variability in response to exercise. Personalized
interventions are needed to prevent immune overstimulation or
excessive exercise-induced stress (102). Balancing exercise intensity
to optimize immune regulation without exacerbating side effects or
immune-related adverse events is key (103). Systematic research
and well-designed clinical trials are required to define optimal
parameters for combining exercise with drug therapies, ensuring
safe and effective clinical translation (104).

4 Conclusion

The interplay between exercise and immune signaling is a
promising, yet underexplored, pathway for enhancing the
effectiveness of immunotherapy, particularly in conditions such as
allergic rhinitis (AR) and nasopharyngeal carcinoma (NPC).
Current evidence suggests that exercise influences immune cell
activation, remodels inflammatory signaling within the tumor
microenvironment (TME), and improves drug pharmacokinetics,
collectively contributing to better therapeutic outcomes. Recent
advances in single-cell technologies have highlighted the
substantial heterogeneity in immune cell states and immune
signal transduction pathways within the TME. Exercise-induced
changes in immune cell distribution and function likely reshape
these dynamic signaling processes at single-cell resolution.
However, the precise molecular mechanisms by which exercise
influences immune signaling and intercellular communication
remain largely unknown. To address this, future research should
integrate exercise immunology with single-cell transcriptomics and
spatial omics technologies. These approaches will provide high-
resolution insights into how exercise modulates immune cell
populations and their interactions within disease-relevant tissues.
Such integration could uncover new regulatory pathways and
therapeutic targets, facilitating the development of personalized
interventions that combine physical activity with immune-based
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treatments. By bridging exercise science with cutting-edge immune
profiling technologies, researchers can uncover novel mechanisms
supporting exercise as an adjunct to immunotherapy. This
interdisciplinary strategy, focused on inflammation and immune
signal transduction in the TME, may ultimately lead to more
effective, individualized treatments for cancer and other immune-
mediated diseases.
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