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Purpose: This study aimed to construct a risk predictive model for acute kidney

injury in sepsis based on peripheral blood lymphocyte subsets.

Methods: This prospective study included patients with sepsis admitted to the

ICU from March to August 2024 (483 for training and 146 for validation), and 125

patients from September to December 2024 as the external test cohort. Clinical

data and peripheral blood samples on days 1 and 3 were collected after ICU

admission. Lymphocyte subsets were analyzed using flow cytometry, covering T

cell, B cell, NK cell populations. Differences in clinical variables and lymphocyte

subsets between AKI and non-AKI groups were analyzed. A predictive model was

developed using LASSO and multivariate logistic regression and validated

internally (5-fold cross-validation) and externally. Model performance was

assessed using ROC curves, calibration plots, and decision curve analysis

(DCA). A nomogram was constructed for clinical applications.

Results: Among the 483 patients, the incidence of AKI was 54.66%. Compared to

non-AKI patients, the AKI group had significantly higher SOFA and APACHE II

scores and lower GCS scores. Laboratory findings showed higher neutrophil and

monocyte counts, and elevated serum creatinine in the AKI group. On day 1,

several lymphocyte subsets were significantly altered in the AKI group, including

increased CD4+CD38+T%, CD8+CD38+T%, CD155+T%, CD4+TeM+T%,

CD8+TIGIT+T%, and M-MDSC, and decreased CD4+LAG3+T%, CD4+TN+T%,

and Th17 cells. On day 3, AKI patients exhibited further distinct changes in NK

cells and T cell activation/exhaustion markers. A predictive model incorporating

key clinical (APACHE II and creatinine) and lymphocyte subsets (CD15+T%_1st,

CD4+LAG3+T%_1st, Th17_1st, CD8+PD1+T%_3rd, CD8+TIGIT+T%_3rd,

E_MDSC_3rd, CD8+CCR7+CD45RA+T%_3rd, CD4+CTLA4+T%_3rd, CD4+TIM3+T

%_3rd, PMN_MDSC_3rd, and M_MDSC_3rd) achieved high accuracy, with an AUC

of 0.989 in the training set, 0.895 in the validation set, and 0.906 in the test set.

Calibration curves and DCA confirmed the model’s reliability and clinical utility.
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Conclusion: Peripheral blood lymphocyte subsets are significantly altered in

patients who develop SA-AKI and can serve as potential early biomarkers. The

developed predictive model based on clinical and immunological parameters

demonstrated robust performance in identifying patients at high risk of SA-AKI,

offering a practical tool for early warning and clinical decision-making.
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Introduction
Sepsis is a life-threatening condition characterized by organ

dysfunction resulting from a dysregulated host response to

infection, and it remains a leading cause of mortality in intensive

care units (ICUs) (1). According to the Global Burden of Disease

Study, approximately 49 million cases of sepsis occur globally each

year, with an estimated 11 million sepsis-related deaths. Among

critically ill patients, the mortality rate associated with severe sepsis

can reach as high as 30–50% (2). Due to its high incidence and

mortality, sepsis imposes a substantial economic burden on

patients, families, and healthcare systems.

Sepsis is not merely a systemic inflammatory or immune

dysregulation process; it is frequently accompanied by multi-organ

dysfunction. Among its complications, acute kidney injury (AKI) is

one of the most common and severe. When AKI occurs as a

consequence of sepsis, it is referred to as sepsis-associated acute

kidney injury (SA-AKI). SA-AKI is defined by a rapid decline in

renal function, leading to the accumulation of nitrogenous waste

products and disturbances in electrolyte and acid-base homeostasis

(3). Compared to AKI resulting from other causes, SA-AKI is

associated with significantly prolonged hospital stays and increased

in-hospital mortality (4). Notably, the mortality rate in septic patients

with concurrent AKI may be as high as 70% (5). Despite advances in

supportive care and diagnostic technologies, the prognosis of SA-AKI

remains poor, and its diagnosis still relies on conventional indicators

such as changes in serum creatinine and urine output. These markers

lack sensitivity and specificity for detecting early pathophysiological

changes (6). The underlying mechanisms of SA-AKI are complex and

heterogeneous, involving inflammation, complement activation,

dysregulation of the renin–angiotensin–aldosterone system (RAAS),

mitochondrial dysfunction, microcirculatory disturbances, and

metabolic reprogramming (7). Over recent decades, various

biomarkers have been explored for the early prediction of AKI,

including neutrophil gelatinase-associated lipocalin (NGAL), kidney

injury molecule-1 (KIM-1), tissue inhibitor of metalloproteinase-2

(TIMP-2), and insulin-like growth factor-binding protein 7 (IGFBP7),

and C-reactive protein-albumin-lymphocyte index (8–11). However,

many of these biomarkers are limited in clinical utility due to high

cost, technical complexity, and lack of accessibility. Therefore, there is
02
an urgent need for simple, reliable, andwidely available biomarkers for

the early identification and risk stratification of SA-AKI.

Lymphocyte subsets, a group of white blood cells, are essential

components of the immune system and play pivotal roles in

immune regulation. During immune responses, lymphocytes

differentiate into functional subtypes, including T lymphocytes, B

lymphocytes, and natural killer (NK) cells (12). Flow cytometry is

routinely used in clinical practice to assess immune status by

quantifying these subsets. T cells are primarily responsible for

eliminating infected and malignant cells; B cells generate

antibodies for antigen-specific responses; and NK cells target

virus-infected cells by recognizing stress ligands (12). Alterations

in lymphocyte subset counts have been associated with the severity

and prognosis of a variety of diseases, including sepsis (13–15).

Accumulating evidence suggests that the onset and progression of

sepsis are closely tied to immune dysfunction, particularly

immunosuppression mediated by decreased T cell reactivity (16,

17). Sepsis-induced immune dysregulation, often underpinned by

systemic inflammatory response syndrome (SIRS), is characterized

by widespread lymphocyte apoptosis and functional exhaustion. T

cell apoptosis contributes significantly to immune paralysis and T

cell clonal anergy (18, 19). Among T cell subsets, CD3+ T cells

reflect overall cellular immunity, CD4+ T cells (helper T cells) assist

in coordinating the immune response, and CD8+ T cells (cytotoxic/

suppressor T cells) are involved in immune inhibition (20). Thus,

alterations in the absolute counts and ratios of CD3+, CD4+, CD8+

T cells, and the CD4+/CD8+ ratio can reflect changes in cellular

immune status (21). Recent clinical studies have reported that septic

patients with AKI exhibit distinct alterations in CD4+ T cell subsets

(22), and that sepsis-induced AKI is often accompanied by T

lymphopenia (23). Animal studies have further shown that

peripheral T cell apoptosis is mechanistically linked to the

development of SA-AKI, providing a theoretical foundation for

further investigation (24). Given the clinical availability and

simplicity of lymphocyte subset testing, these parameters

represent a promising avenue for non-invasive, early detection of

SA-AKI. However, their predictive value remains underexplored in

this context.

In this study, we performed a comprehensive analysis of

peripheral blood lymphocyte subsets including T cells, B cells,

and NK cells in patients with sepsis, using flow cytometry. By
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integrating lymphocyte profiles with clinical features, we

constructed a predictive model for SA-AKI occurrence. The

model underwent both internal and external validation,

culminating in an individualized risk assessment tool for SA-AKI.

This work aims to provide a practical framework for early warning,

improved clinical decision-making, and optimized management of

patients with sepsis-associated acute kidney injury.
Material and methods

Study population

This study was designed as a prospective investigation. Baseline

data and blood samples were collected from 767 sepsis patients

admitted to the intensive care unit (ICU) of our hospital between

March 7, 2024, and August 30, 2024. To reduce the potential impact

of confounding factors, predefined inclusion and exclusion criteria

were applied to identify eligible participants. Sepsis was diagnosed

according to the Sepsis-3 criteria (25). The inclusion criteria were as

follows: (1) Diagnosis of sepsis based on Sepsis-3, defined as an

increase of ≥2 points in the Sequential Organ Failure Assessment

(SOFA) score from baseline in patients with confirmed or suspected

infection; (2) Age >18 years.

(3) ICU stays longer than 24 hours. The exclusion criteria were:

(1) Age <18 years; (2) ICU stay <24 hours or development of AKI

within 36 hours of admission; (3) History of kidney disease, dialysis,

cancer, hematologic or immune system disorders, or severe liver

dysfunction; (4) Presence of AKI before ICU admission; (5) Missing

baseline data or loss to follow-up, or missing >10% of laboratory

data. Based on these inclusion and exclusion criteria, 629 patients

with sepsis were assigned to the training set (n=483) and validation

set (n=146). For binary logistic regression, the empirical rule of

thumb requires the sample size (N) to be 10–20 times the number of

independent variables (k) N≥10–20×k. In this study, 23

independent variables were included in the initial screening (k =

23). Therefore, the minimum required sample size was estimated as:

Nmin=10×23×(1 + 10%)=253. where 10% was added to account for

potential loss to follow-up. Finally, 629 participants were included

in the analysis, which substantially exceeds the minimum

requirement, ensuring adequate statistical power. An external test

cohort consisting of 125 additional sepsis patients from the same

institution was identified between September 1, 2024, and

December 31, 2024. The follow-up period for all patients was one

month. Figure 1 presented the study process.
Data collection and definitions

The data collection included clinical information and blood

samples. The clinical information consisted of age (year), gender

(male vs female), body mass index (BMI=weight(kg)/height(m)2),

SOFA score, acute physiology and chronic health evaluation II

(APACHEII), and Glasgow Coma scale (GCS). The history of

diseases: chronic obstructive pulmonary disease (COPD),
Frontiers in Immunology 03
hypertension (Systolic blood pressure≥140mm Hg and/or diastolic

blood pressure≥90mm Hg), diabetes (Fasting plasma glucose≥7.0

mmol/L or Oral glucose tolerance test≥11.1 mmol/L), coronary heart

disease (CHD), primary infection, septic shock, (Yes vs No),

continuous renal replacement therapy (CRRT) and vasoactive

drugs usage. The blood samples were collected on the first day and

the third day after admission. The biochemical parameters were

analyzed, including white blood cells (WBC, 109), hemoglobin (g/L),

platelet (109), neutrophil (109), lymphocyte (109), monocyte (109), C-

reactive protein (mg/L), procalcitonin (ng/L), total bilirubin

(mmol/L), albumin (g/L), globulin (g/L), blood urea nitrogen (BUN,

mmol/L), creatinine (mmol/L), and lactate (mmol/L).

The peripheral blood lymphocyte subsets of patients with sepsis

on the first and third days were detected by flow cytometry. To

comprehensively evaluate the role of lymphocyte subgroups in the

development of AKI among patients with sepsis, we employed

established detection methods to systematically measure the

relevant indicators within each lymphocyte subset. The lymphocyte

subsets included T cell subsets (CD3+T%, CD4+T%, CD8+T%,

CD4+CD8+T%, CD4-CD8-T%, CD3+T count, CD4+T count,

CD8+T count, CD4/CD8, CD4+CD8+T count, CD4-CD8-T

count, CD4+CD28+T%, CD4+CD38+T%, CD4+CD69+T%,

CD8+CD28+T%, CD8+CD38+T%, CD8+CD69+T%, CD155+T%,

CD4+BTLA+T%, CD4+CTLA4+T%,CD4+HLADR+T%, CD4+

LAG3+T%,CD4+PD1+T%,CD4+TIGIT+T%, CD4+TIM3+T%,

CD4+TcM+T%, CD4+TeM+T%, CD4+TeMRA+T%, CD4+

TN+T%, CD8+BTLA+T%,CD8+CTLA4+T%,CD8+HLADR+T%,

CD8+LAG3+T%,CD8+PD1+T%,CD8+TIGIT+T%,CD8+

TIM3+T%, CD8+TcM+T%,CD8+TeM+T%, CD8+TeMRA+T%,

CD8+TN+T%, MDSC, PMN_MDSC, M_MDSC, e_MDSC, Th1,

Th2, Th17, Treg, CD4+CD45RA+T%, CD4+CD45RO+T%,

CD8+CD45RA+T%, CD8+CD45RA+T%, CD4+CCR7+CD45+T%,

CD4+CCR7+CD45-T%, CD4+CCR7-CD45+T%, CD4+CCR7-

CD45-T%, CD8+CCR7+CD45+T%, CD8+CCR7+CD45-T%, CD8+

CCR7-CD45+T%, and CD8+CCR7-CD45-T%), B cells subsets

(CD19+B count), lymphocyte count, NK cells subsets (NKT count,

CD16+CD56+NK%, CD16+CD56+NK count, NKT%), and B cells

subsets (CD19+B%), and Neutrophil CD64 index (nCD64).

According to the diagnostic criteria of Kidney Disease

Improving Global Outcomes (KDIGO) (26), the acute kidney

injury (AKI) is defined as follows: Serum creatinine increase of

≥0.3 mg/dL (within 48 hours) and/or ≥50% increase from baseline

creatinine (within 7 days).
Statistical analysis

All data analyses were performed using R version 4.4.3. The

online tool Sangerbox 2 was also used to plot the forest plot (27).

For continuous variables with a normal distribution (age, BMI,

SOFA, APACHEII, GCS, WBC, hemoglobin, platelet, neutrophil,

lymphocyte, monocyte, C-reactive protein, procalcitonin, total

bilirubin, albumin, globulin, BUN, creatinine, and lactate), data

are presented as mean ± standard deviation, and comparisons

between two groups were conducted using the independent
frontiersin.org
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samples t-test. For non-normally distributed continuous variables

(lymphocyte subsets), data are presented as median and

interquartile range, and comparisons between groups were

performed using the Wilcoxon test. The false discovery rate was

applied for multiple comparisons of lymphocyte subsets.

Categorical variables are presented as counts and percentages

(gender, COPD, hypertension, diabetes, CHD, primary infection,

septic shock, CRRT, and vasoactive drugs usage), and comparisons

between groups were conducted using the Chi-square test. P < 0.05

was considered a significant level.

To develop a predictive model for AKI in patients with sepsis,

we used the training set to identify overlapping variables between

those showing significant differences between the AKI and non-AKI
Frontiers in Immunology 04
groups and those identified as significant in univariate logistic

regression. These overlapping variables were then further refined

using the least absolute shrinkage and selection operator (LASSO)

regression. Subsequently, multivariate logistic regression with

forward stepwise selection was performed. Variables with a p-

value < 0.05 were retained in the final predictive model.

The model was validated using two approaches. For internal

validation, five random subsets were extracted from the training set

and subjected to 5-fold cross-validation. For external validation, an

independent cohort dataset was used. Model performance was

assessed using the receiver operating characteristic (ROC) curve

to evaluate discriminative ability. Calibration plots for both the

training and validation sets were generated to assess the agreement
FIGURE 1

Flow chart of the whole study.
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TABLE 1 Comparisons of clinical characteristics between non-AKI and
AKI groups.

Variables Non-AKI AKI P

Age, year 66.07 ± 17.21 65.98 ± 13.94 0.950

Gender, Male (%) 90 (41.10) 87 (32.95) 0.065

BMI, kg/m2 24.82 ± 3.52 25.24 ± 4.57 0.251

SOFA 6.89 ± 3.47 8.94 ± 3.66 <0.001

APACHEII 17.00 ± 7.84 22.86 ± 6.90 <0.001

Wang et al. 10.3389/fimmu.2025.1674673
between predicted and observed probabilities, demonstrating the

model’s stability.

A nomogram for predicting the risk of AKI was constructed

using the R “rms” package based on the multivariate logistic

regression model. Finally, decision curve analysis was conducted

to evaluate the clinical utility of the model by weighing its potential

benefits and risks, thereby determining its applicability in clinical

decision-making. The SHapley Additive explanation (SHAP)

method was used for global and local explanations for the

model explanation.
GCS 11.52 ± 3.74 10.16 ± 3.59 <0.001

COPD, n (%) 0 (0.00) 30 (11.36) <0.001

Hypertension, n (%) 93 (42.47) 87 (32.95) 0.031

Diabetes, n (%) 66 (30.14) 69 (26.14) 0.329

CHD, n (%) 66 (30.14) 87 (32.95) 0.508

CRRT, n (%) 45 (20.55) 105 (39.77) <0.001

Vasoactive drugs, n (%) 123 (56.16) 204 (77.27) <0.001

Septic shock, n (%) 40 (54.79) 71 (80.68) <0.001

Primary Infection, n (%) 183 (83.56) 249 (94.32) <0.001

Whtie blood cell, 109/L 12.90 ± 7.09 15.03 ± 8.76 0.003

Hemoglobin, g/L 113.37 ± 31.48 107.86 ± 29.67 0.049

Platelet, 109/L 171.53 ± 92.37 164.33 ± 113.35 0.442

Neutrophil, 109/L 12.41 ± 11.33 20.77 ± 30.45 <0.001

Lymphocyte, 109/L 0.90 ± 0.84 1.68 ± 3.32 <0.001

Monocyte, 109/L 0.53 ± 0.40 0.84 ± 0.91 <0.001

C-reactive protein, mg/L 134.95 ± 84.79 138.76 ± 104.18 0.658

Procalcitonin, ng/L 20.51 ± 30.80 28.11 ± 33.66 0.010

Total bilirubin, mmol/L 42.87 ± 48.67 38.48 ± 41.95 0.288

Albumin, g/L 30.57 ± 6.62 29.65 ± 5.75 0.102

Globulin, g/L 26.79 ± 4.68 27.09 ± 5.22 0.515

Blood urea nitrogen, mmol/L 14.51 ± 9.10 17.94 ± 12.36 <0.001

Creatinine, mmol/L 128.09 ± 131.74 261.19 ± 258.47 <0.001

Lactate, mmol/L 3.06 ± 2.75 5.33 ± 18.43 0.071
Results

Clinical characteristics between non-AKI
and AKI groups

Based on the predefined inclusion and exclusion criteria, a total of

483 patients with sepsis were included in the training set. The

incidence of acute kidney injury (AKI) was 54.66% (264/483).

Table 1 summarizes the comparisons of clinical characteristics

between the AKI and non-AKI groups. No significant differences

were observed in age (P = 0.971), gender distribution (P = 0.286), or

body mass index (BMI) (P = 0.509) between the two groups.

However, the SOFA score (8.94 ± 3.67 vs. 6.89 ± 3.48, P < 0.001)

and the APACHE II score (22.86 ± 6.93 vs. 17.00 ± 7.87, P < 0.001)

were significantly higher in the AKI group compared to the non-AKI

group. In contrast, the GCS score was significantly lower in the AKI

group (10.16 ± 3.60 vs. 11.52 ± 3.76, P = 0.020). There were no

significant differences in the prevalence of hypertension (P = 0.214),

diabetes mellitus (P = 0.573), or coronary heart disease (CHD) (P =

0.702) between the groups. However, the prevalence of chronic

obstructive pulmonary disease (COPD) (11.36% vs. 0.00%, P =

0.008), use of continuous renal replacement therapy (CRRT)

(39.77% vs. 20.55%, P = 0.009), administration of vasoactive drugs

(77.27% vs. 56.16%, P = 0.004), occurrence of septic shock (80.68% vs.

54.79%, P < 0.001), and rate of primary infection (94.32% vs. 83.56%,

P = 0.027) were all significantly higher in the AKI group.

In terms of laboratory findings, both neutrophil count (20.77 ±

30.56 vs. 12.41 ± 11.38, P = 0.019) and monocyte count (0.84 ± 0.91

vs. 0.53 ± 0.40, P = 0.005) were significantly elevated in the AKI

group. Serum creatinine levels were also markedly higher in the AKI

group (261.19 ± 259.45 vs. 128.09 ± 132.35, P < 0.001). No

significant differences were found between the groups in white

blood cell count (P = 0.098), hemoglobin level (P = 0.258), platelet

count (P = 0.665), lymphocyte count (P = 0.056), C-reactive protein

(P = 0.803), procalcitonin (P = 0.142), total bilirubin (P = 0.542),

albumin (P = 0.348), globulin (P = 0.711), blood urea nitrogen

(BUN) (P = 0.052), or lactate level (P = 0.301).

Lymphocyte subsets between non-AKI and
AKI groups

The first day and third day lymphocyte subsets were compared

between non-AKI and AKI groups. Figure 2 shows the heatmap of the
Frontiers in Immunology 05
lymphocyte subsets on the first day between two groups. Compared

with the non-AKI group, the AKI group exhibited elevated levels of

CD4+CD38+T% (P < 0.011), CD8+CD38+T% (P < 0.001), and

CD155+T% (P = 0.016). Additionally, CD4+TeM+T% (P = 0.001),

CD8+TIGIT+T% (P = 0.012), M-MDSC (P < 0.001), and CD8

+CCR7-CD45RA-T% (P = 0.026) levels were increased in the AKI

group. In contrast, CD4+LAG3+T% (P = 0.017), CD4+TN+T% (P <

0.001), and Th17 (P = 0.014) levels were decreased in the AKI group.

No significant differences were observed in other lymphocyte subsets

between the two groups (P>0.005). More detailed information is

provided in Supplementary Table S1.

Figure 3 showed the heatmap of the lymphocyte subsets on the

third day between the two groups. Compared with the non-AKI
frontiersin.org
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group, the AKI group had lower levels of CD16+CD56+NK%

(P = 0.036), CD16+CD56+NK count (P = 0.005), CD4+CTLA4+

T% (P < 0.001), CD4+TIM3+T% (P = 0.002), CD8+CTLA4+T%

(P = 0.009), CD8+TIM3+T% (P < 0.001), CD8+TeMRA+T%

(P = 0.038), MDSC (P = 0.043), e_MDSC (P = 0.017), and

CD8+CCR7-CD45-T% (P = 0.001). However, the levels of

CD4+TeMRA+T% (P = 0.043), CD8+PD1+T% (P = 0.001),

CD8+TIGIT+T% (P = 0.005), PMN_MDSC (P = 0.002),

M_MDSC (P = 0.004), CD4+CD45RA+T% (P = 0.002),

CD4+CCR7-CD45+T% (P = 0.008), and CD8+CCR7+CD45+T%

(P = 0.006) were significantly higher in the AKI group than in the
Frontiers in Immunology 06
non-AKI group. No significant differences were observed for other

lymphocyte subsets, and more detailed information can be found in

Supplementary Table S2.
Establishment of the prediction model for
AKI in sepsis patients

We identified 32 factors by overlapping the variables that showed

significant differences (Supplementary Table S1, S2) between the AKI

and non-AKI groups with those found to be significant in univariate
FIGURE 2

Heatmap of lymphocyte subset levels on the first day for AKI and non-AKI in sepsis patients.
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logistic regression (Supplementary Table S3). These 32 factors were

then subjected to LASSO regression, resulting in the selection of 23

variables for further analysis (Figures 4A, B). A multivariate logistic

regression using a forward stepwise approach identified 13 factors

associated with the risk of AKI in sepsis patients. Specifically, higher

values of APACHE II (OR: 1.379, 95% CI: 1.152-1.649), creatinine

(OR: 1.011, 95% CI: 1.004-1.018), CD15+T%_1st (OR: 1.066, 95% CI:

1.004-1.132), CD8+PD1+T%_3rd (OR: 1.279, 95% CI: 1.115-1.468),

CD8+TIGIT+T%_3rd (OR: 1.033, 95% CI: 1.001-1.066),

E_MDSC_3rd, and CD8+CCR7+CD45RA+T%_3rd were associated

with an increased risk of AKI. In contrast, higher levels of

CD4+LAG3+T%_1st (OR: 0.924, 95% CI: 0.872-0.978), Th17_1st

(OR: 0.744, 95% CI: 0.616-0.898), CD4+CTLA4+T%_3rd (OR:
Frontiers in Immunology 07
0.830, 95% CI: 0.747-0.923), CD4+TIM3+T%_3rd (OR: 0.928, 95%

CI: 0.874-0.986), PMN_MDSC_3rd (OR: 0.757, 95% CI: 0.595-

0.962), and M_MDSC_3rd (OR: 0.748, 95% CI: 0.627-0.891) were

associated with a decreased risk of AKI (Figure 4C).
Validation and assessment of the
prediction model for AKI in sepsis patients

We first compared the clinical characteristics and lymphocyte

subsets in the training, validation and test sets and found no

significant differences among the three groups. There is good

comparability between among the training, the validation and test
FIGURE 3

Heatmap of lymphocyte subset levels on the third day for AKI and non-AKI in sepsis patients.
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sets (Supplementary Tables S4–S6). ROC analysis showed that the

AUC was 0.989 (95% CI: 0.977-1.000) in the training set, 0.895 (95%

CI: 0.789-1.000) in the validation set (Figure 5A), and 0.906(95%CI:

0.849-0.963) in the test set (Figure 5B). To further evaluate the model’s

robustness, we performed five-fold cross-validation. The AUCs for

Fold 1 to Fold 5 were 0.963 (95% CI: 0.945-0.981), 0.925 (95% CI:

0.907-0.943), 0.950 (95% CI: 0.932-0.968), 0.973 (95% CI: 0.955-

0.991), and 0.977 (95% CI: 0.959-0.995), respectively (Figure 5C).
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Unadjusted calibration plots for both the training, validation

and test sets demonstrated good agreement between predicted and

observed probabilities (Figures 5D–F). After adjustment, the

calibration plots showed reduced bias and improved consistency

(Figures 5G–I). Based on the 13 predictors included in the final

model, we developed an individualized risk scoring system

(Figure 6A). Decision curve analysis indicated that patients in the

training set could benefit from clinical decisions guided by the
FIGURE 4

Establishment of the prediction model for AKI in sepsis patients. (A, B) LASSO regression identified the potential model factors. (C) Forest plot of
multivariate logistic regression for AKI in sepsis patients.
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model (Figure 6B). In the validation and test set, the model

provided clinical net benefit when the decision threshold ranged

from 0.10 to 0.84 (Figures 6C, D). After adjustment, the model

continued to show clinical utility, with net benefit observed across a

decision threshold range of 10% to 90% (Figures 6E–G). As shown

in SHAP summary plots (Figures 7A, B), the importance of

variables was evaluated using the contribution of variables to the

model. The larger the absolute SHAP value, the greater the

contribution to the model and the more important the feature is.

The SHAP dot plot can judge the effect of variables on the AKI. The

high feature value can increase the risk of AKI, such as patients with

high APACHE II, creatinine, CD155+T_1st, CD8+PD1+T%_3rd,

CD8+TIGIT+T%_3rd, E_MDSC_3rd, and CD8+CCR7+CD45RA

+T% (SHAP value>0), which pushed the decision towards the

AKI group. In contrast, patients with the low levels of CD4

+LAG3+T%_1st, Th17_1st, CD4+CTLA4+T%_3rd, CD4+TIM3+T
Frontiers in Immunology 09
%_3rd, PMN_MDSC_3rd, and M_MDSC_3rd had SHAP values

lower than zero, which pushed the decision towards the AKI group.
Discussion

Sepsis-associated acute kidney injury (SA-AKI) is a severe and

life-threatening condition characterized by high mortality and a

lack of specific clinical features. The pathophysiology of sepsis is

complex and often involves multiple organ systems, complicating

both diagnosis and treatment. Due to the unique pathophysiological

characteristics of SA-AKI, its clinical management is particularly

challenging, with high mortality rates and poor prognosis (28, 29).

Sepsis is one of the most common causes of AKI, and conversely,

AKI can serve as an early indicator of sepsis. However, elucidating

the molecular mechanisms underlying SA-AKI remains extremely
FIGURE 5

Validation and assessment of the predict model for AKI in sepsis patients. (A, B) ROCs of training, validation and test sets. (C) ROCs of 5-fold cross-
validation. (D–F) Crude calibration plots of crude for training, validation and test set. (G–I) Corrected calibration plots of crude for training and
validation set.
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difficult (30). Currently, there are no specific or standardized

therapeutic strategies for the treatment of SA-AKI, posing

significant challenges to early diagnosis and effective intervention

(31). These challenges ultimately contribute to poor outcomes in

affected patients. Therefore, early assessment and timely treatment

of SA-AKI are critical for improving patient prognosis. This study

investigated the clinical characteristics and lymphocyte subset

changes in sepsis patients with Acute Kidney Injury (AKI),

aiming to develop and validate a predictive model for AKI based
Frontiers in Immunology 10
on these factors. Our study will offer a promising tool for early AKI

risk assessment in sepsis patients.

Previous studies reported that the incidence of AKI was

approximately 50% in sepsis patients. In a large prospective

cohort study spanning 24 European countries and 198 ICUs,

1177 sepsis patients were observed to have a 51% incidence of

AKI and a 41% ICU mortality rate (32). A retrospective study in

China, encompassing 146,148 sepsis patients, reported an AKI

incidence of 47.1% (33). An ancillary analysis of a multicenter
FIGURE 6

Assessment of individual’s benefits and risk for sepsis patients. (A) Nomogram plot for individual risk assessment in sepsis patients. (B–D) Crude
decision curves of training, validation and test sets. (E–G) Adjusted decision curves of training, validation and test.
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RCT on septic shock, encompassing 1,243 patients, found that

50.4% had AKI upon emergency department admission, with a

further 18.7% developing AKI within the subsequent seven days

(34, 35). The incidence of AKI among septic patients in our cohort

was 54.66%, which is consistent with previously reported rates in

critically ill populations. We found Some clinical characteristics

were significantly different between AKI and non-AKI groups.

Compared to the non-AKI group, AKI patients exhibited

significantly higher SOFA and APACHE II scores, but lower GCS

scores. The SOFA and APACHE II scores were associated with

diseases severity and prognosis, and the lower GCS was related to

the degree of coma (36, 37). Regarding comorbidities and

interventions, the AKI group showed significantly higher

prevalence of COPD, CRRT use, vasoactive drug administration,

septic shock occurrence, and primary infection rates. Laboratory

analyses revealed elevated neutrophil count, monocyte count, and

serum creatinine levels in the AKI group. These changes in the

clinical characteristics of AKI patients could be associated with
Frontiers in Immunology 11
reduced bilateral glomerular perfusion, inflammatory responses,

metabolic adaptations, and impaired microcirculatory function,

which are key mechanisms of organ damage in sepsis patients

(38). However, only APACHE II and creatinine were included in

the final prediction model for AKI in sepsis. That makes sense, as

serum creatinine is a primary indicator for diagnosing sepsis-

associated AKI, while the APACHE II score reflects the overall

severity of illness in sepsis patients (5, 39).

Although the precise role of lymphocyte subsets in sepsis-induced

acute kidney injury (AKI) remains unclear, several studies provide

important insights. It has been suggested that damage-associated

molecular patterns (DAMPs), such as high mobility group box 1

(HMGB1), cell-free DNA (cfDNA), and histones, can be released as a

result of widespread immune cell death. These molecules can trigger

endothelial injury and microcirculatory dysfunction, thereby

contributing to the progression of multiple organ failure in patients

with sepsis (40). In our study, we observed significant alterations in

lymphocyte subsets between the AKI and non-AKI groups on both
FIGURE 7

Model explanation by the SHAP method. (A) SHAP summary bar plot. (B) SHAP summary dot plot.
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the first- and third days following sepsis onset. On day 1, the AKI

group exhibited significantly elevated levels of CD4+CD38+ T%,

CD8+CD38+ T%, CD15+ T%, CD4+TeM+ T%, CD8+TIGIT+ T%,

monocytic myeloid-derived suppressor cells (M-MDSCs), and

CD8+CCR7⁻CD45RA⁻ T%. In contrast, levels of CD4+LAG3+ T%,

CD4+TN+ T%, and Th17 cells were significantly reduced. By day 3, the

AKI group showed notably decreased levels of CD16+CD56+ NK%

and NK cell count, CD4+CTLA4+ T%, CD4+TIM3+ T%,

CD8+CTLA4+ T%, CD8+TIM3+ T%, CD8+TeMRA+ T%, total

MDSCs, and early-stage MDSCs (e-MDSCs). Conversely, the same

group had significantly increased levels of CD4+TeMRA+ T%,

CD8+PD1+ T%, CD8+TIGIT+ T%, polymorphonuclear MDSCs

( PMN -MDSC s ) , M -MDSC s , CD 4 +CD 4 5RA + T% ,

CD4+CCR7⁻CD45+ T%, and CD8+CCR7+CD45+ T%. These

findings suggest that lymphocyte subset dysfunction is not limited

to peripheral blood but may also affect target organs through systemic

circulation. Such dysfunction has been associated with the

dysregulated release of immunoregulatory molecules, including

excessive pro-inflammatory cytokines, which can intensify tissue

inflammation and injury (41). For instance, Akcay et al. reported

that CD4+ T cells contribute to neutrophil recruitment and apoptosis

in a murine model of cisplatin-induced AKI. These cells also

upregulated IL-33 expression and promoted inflammatory factor

release, ultimately causing immune-mediated injury to the

peritubular and glomerular capillary networks (42). Mesenchymal

stem cells attenuate sepsis-AKI by changing the balance of Th17 cells/

Tregs via Gal-9/Tim-3 (43). Conversely, certain interventions have

shown promise in mitigating this damage. Curcumin, a well-known

anti-inflammatory compound, has been shown to alleviate kidney and

lung inflammation by enhancing the suppressive activity of regulatory

T cells (Tregs) (44). Similarly, glutamine supplementation can

attenuate renal injury by promoting balanced T cell polarization

and reducing T cell apoptosis (44). Immune regulation is further

modulated by immune checkpoint molecules expressed on

lymphocytes and antigen-presenting cells, such as PD-1 and PD-L1,

CD40 and CD40L, CD28, cytotoxic T-lymphocyte-associated antigen

4 (CTLA-4), B and T lymphocyte attenuator (BTLA), andmembers of

the T cell immunoglobulin and mucin domain (Tim) family. These

molecules provide essential co-stimulatory signals for T cell activation

and immune homeostasis. Recent studies in vitro particularly

highlight that excessive interaction between PD-1 and PD-L1 can

induce lymphocyte apoptosis, leading to immunosuppression. This

immune dysfunction may contribute to tubular epithelial cell damage

and the development of septic AKI (45). Consequently, therapeutic

strategies aimed at restoring lymphocyte functions such as anti-PD-L1

therapy or lactate receptor blockade, may offer promising avenues for

the treatment of sepsis-associated AKI. Drawing on this evidence, it is

reasonable to propose that reestablishing the function of immune cells,

especially T and B lymphocytes, may play a crucial role in mitigating

sepsis-related organ damage and enhancing patient prognosis. The

multivariate logistic regression analysis further revealed two distinct

cellular patterns associated with AKI risk in sepsis patients: an AKI-

promoting pattern and an AKI-protective pattern. Patients with

elevated proportions of CD8+ T cells expressing inhibitory/

exhaustion markers (PD1+, TIGIT+, TIM3+, CCR7+CD45RA+) and
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E-MDSCs were more likely to develop AKI, suggesting that immune

exhaustion and expansion of immunosuppressive myeloid subsets

contribute to renal vulnerability. Conversely, patients with higher

levels of checkpoint-positive CD4+ T cells (LAG3+, CTLA4+, TIM3+)

and specific MDSC subsets (PMN-MDSCs, M-MDSCs) exhibited a

lower risk of AKI, indicating that these regulatory mechanisms may

buffer excessive immune activation and provide renal protection.

While renal impairment and disease severity are well-recognized

contributors to AKI, our findings underscore the critical role of

immune dysregulation. Taken together, these results suggest that

AKI development is tightly linked to an imbalance between pro-

injury immune exhaustion and compensatory immunoregulation.

This highlights the potential value of targeting immune modulation

as a therapeutic strategy to prevent or attenuate AKI in sepsis.

In this study, we identified 13 key predictive factors for AKI risk

in sepsis patients using the least absolute shrinkage and selection

operator (LASSO) and multivariate logistic regression. The resulting

model demonstrated excellent predictive performance, with areas

under the curve (AUCs) of 0.989 in the training set and 0.895 in the

validation set. Its robustness and accuracy were further validated

through five-fold cross-validation, calibration plots, and decision

curve analysis, highlighting its potential clinical utility. Compared to

previous research, our study presents several distinct advantages. A

prior study investigated the association between T-lymphocyte

subsets and sepsis-induced AKI, focusing on a limited set of

immune parameters (CD3+, CD3+CD4⁻, CD3+CD8+, CD4+/CD8+

ratio, and CD3+ percentage) (23). In contrast, our study evaluated

68 types of lymphocyte subsets, including T, B, and natural killer

(NK) cells. Furthermore, while the previous study primarily

explored the relationship between selected T-lymphocyte subsets

and in-hospital mortality, it also reported that CD3+ and

CD3+CD8+ T-lymphocyte counts had good predictive value for

AKI, with AUCs of 0.849 and 0.856, respectively. In the present

study, we developed a comprehensive predictive model for AKI

based on lymphocyte subsets measured on both day 1 and day 3

after sepsis onset. Unlike the previous study, we conducted both

internal and external validation of our model, further ensuring its

reliability. Additionally, our sample size was more than twice that of

the earlier study, enhancing the generalizability of our findings.

Several other studies have also developed predictive models for

sepsis-associated AKI using various approaches. Lin et al.

constructed a logistic regression model based on clinical

parameters, achieving an AUC of 0.835 in a retrospective analysis

(46). Zhang et al. employed a support vector machine model

incorporating 43 genes selected via a genetic algorithm, yielding

an AUC of 0.948 (47). However, this model lacked external

validation. Yue et al. applied the XGBoost algorithm using data

from the MIMIC-III database and reported an AUC of 0.821, but

similarly did not include a validation cohort (48). Other reported

models include logistic regression (49), lightGBM model (50), and

pooled analyses without adjustment for confounders (51), with

AUCs ranging from 0.712 to 0.873. Compared to these models,

our lymphocyte subset-based prediction model demonstrated

superior performance and validation, making it a promising tool

for the early identification of AKI in sepsis patients.
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The present study still has several limitations. First, this is a

single-canter, observational study with limited sample size. While we

performed rigorous cross-validation and internal validation, external

validation with a larger, more diverse cohort is essential to confirm

the model’s widespread applicability. Second, although we identified

several lymphocyte subsets significantly associated with AKI, their

precise role remains to be fully elucidated. It’s unclear whether these

cells directly contribute to kidney injury or merely reflect the

systemic immune status. Future functional research, incorporating

in vitro and in vivo assays, alongside animal experiments, will be

crucial to clarify the causal role of these cell subsets in sepsis-induced

AKI. Finally, our analysis did not include certain potentially relevant

variables, such as genetic predisposition, detailed hemodynamic

parameters, or specific urine biomarkers. Incorporating these

factors in future studies could further refine risk prediction and

reveal complementary pathophysiological mechanisms.

In conclusion, this study has revealed the unique characteristics

of lymphocyte subsets in patients with sepsis-related AKI and

successfully constructed a predictive model integrating

lymphocyte subsets and clinical indicators, which has good

performance and clinical practical value. Future studies should

further expand the sample size, strengthen external validation and

explore potential molecular mechanisms, with the expectation of

promoting the early identification and precise intervention of AKI.
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