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Pancreatic cancer is a leading cause of cancer-related mortality, and

unfortunately, the prognosis for this stubborn tumor type has remained bleak

for an extended period. Current treatment options are limited and often

ineffective, highlighting the need for innovative therapeutic strategies.

Research in tumor immunotherapy has advanced significantly over the past

few decades, leading to numerous studies progressing to clinical evaluation.

Cancer vaccines are regarded as a promising therapeutic approach for treating

pancreatic cancers. Cancer vaccines offer distinct advantages, especially for

patients who are unresponsive to other treatments, as they can elicit broad

and long-lasting T cell responses. This review offers a thorough examination of

recent preclinical and clinical results of therapeutic cancer vaccines in pancreatic

cancer therapy, highlighting the recent advancements in vaccine delivery

platforms. Despite ongoing clinical efforts to develop cancer vaccines, there

has not been a breakthrough in clinical outcomes, primarily due to substantial

challenges including the low mutation burdens, the assessment of immune

responses in preclinical models, and the intrinsic resistances to cancer

vaccines. By tackling these challenges, cancer vaccines can expand the

possibilities of personalized immunotherapy for pancreatic cancer.
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1 Introduction

Pancreatic cancer is typically a fatal disease characterized by resistant and chronic

nature (1). According to the global cancer statistics, there were 511,000 new cases of

pancreatic cancer and approximately 467,000 deaths, making it the sixth leading cause of

cancer-related mortality worldwide (2). The incidence and mortality rates of pancreatic

cancer are influenced by various risk factors, including long-term smoking, obesity, chronic

pancreatitis, and concurrent diabetes (3). Pancreatic ductal adenocarcinoma (PDAC) is the

main type of pancreatic cancer, and approximately 50-60% of PDAC patients present with

distant metastases, and 5-year survival rate is approximately 13%, which is attributed to its

early systemic dissemination and aggressive local growth (4). The current treatment

strategy for advanced pancreatic cancer consists of standard chemotherapy; however, it
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only presents a minor survival advantage due to the desmoplastic

and chemo-resistant features (5, 6).

Immunotherapy leverages the patient’s immune system to target

and destroy tumor cells, leading to a transformative effect on the

treatment of human cancers (7). Immunomodulators, immune

checkpoint inhibitor (ICI), and adoptive cell therapy provide

promising strategies for solider tumors, including melanoma, lung

cancer, colorectal cancer, and liver cancer (8–11). Early-phase trials

assessing single-agent CTLA-4 or PD-1 blockade in PDAC showed

little clinical activity, with no objective responses observed (12).

Adoptive cell therapy (ACT) represents a novel type of

immunotherapy that involves isolating a patient’s immune cells and

genetically engineering them to mount tumor−specific responses (13).

In pancreatic cancer, active investigations include chimeric antigen

receptor T cells (CAR−T), CAR−NK cells, tumor−infiltrating

lymphocytes (TILs), T−cell receptor (TCR)–engineered T cells, and

cytokine−induced killer (CIK) cells. However, translation to solid

tumors, particularly pancreatic cancer, remains early, and clinical

outcomes to date have been limited (13–15). These unfavorable

results are likely driven by PDAC’s profoundly immunosuppressive

tumor microenvironment and intrinsically poor immunogenicity that

limit the efficacy of immunotherapies (16, 17). Therefore, there is

growing interest in investigating innovative immunotherapeutic

strategies, such as therapeutic cancer vaccines, to tackle these

challenges posed by the hostile TME. The objective of therapeutic

cancer vaccines is to stimulate the generation of effector T cells, leading

to the establishment of a lasting immune response against specific

tumor antigens and eradicating cancerous cells (18, 19). In contrast to

conventional monoclonal antibodies and small molecule inhibitors,

cancer vaccines provide various benefits, such as reduced nonspecific

effects, a wide therapeutic index, and the durable immunological

memory (20, 21). Additionally, cancer vaccines enable precise

targeting tailored to the specific traits of individual tumors (22, 23).

As a result, vaccination represents a promising strategy for personalized

treatment of pancreatic cancer, addressing the complexities introduced

by tumor heterogeneity.

In this review, we offer an extensive overview of the current

landscape of therapeutic cancer vaccines and their clinical

applications in pancreatic cancer. Furthermore, we discuss the

resistance mechanisms that tumors present and assess the

potential benefits of combination therapies, which may help to

enhance the effectiveness of cancer vaccines in the treatment of

pancreatic cancer. Moreover, we outline their advantages,

limitations, and challenges posed by vaccine technology and

provide future perspectives on developing therapeutic vaccine in

pancreatic cancer.
2 Clinical landscape of cancer vaccine
in pancreatic cancer immunotherapy

After vaccination, innate immune cells such as natural killer

(NK) cells, neutrophils, and macrophages rapidly identify foreign

substances through pattern recognition receptors (PRRs), initiating

specific immune responses (24). Distinct dendritic cells (DCs)
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subsets differentially prime defined T-cell lineages. With

maturation, DCs traffic to secondary lymphoid tissues,

particularly the draining lymph nodes (25). DCs capture and

process peptides in peripheral tissues and present them via major

histocompatibility complex (MHC) molecules. Endogenous

proteins activate CD8+ T cells, while exogenous proteins are

presented to CD4+ T cells as antigen-MHC-II complexes (26).

APC-mediated activation of CD8+ cytotoxic T lymphocytes

(CTLs) exit lymphoid organs, infiltrate tumors, and exert anti-

tumor effects by inducing apoptosis in tumor cells through granule

exocytosis (involving perforin and granzymes) and engagement of

death receptors (such as Fas ligand and tumor necrosis factor-

related apoptosis-inducing ligand) (27, 28). Therefore, the intricate

interactions among immune components significantly influence the

efficacy of cancer vaccines (Figure 1). Established delivery platforms

for vaccines include, DC, tumor cell, nucleic acid and peptide

vaccines, while emerging technologies are also under investigation

(29, 30). In this section, we summarize current landscape of cancer

vaccines in pancreatic cancer (Table 1).
2.1 Cell-based vaccine

Cell-based cancer vaccines utilize the patient’s own immune

cells, particularly DCs, to process both soluble and particulate

antigens (44). Additionally, tumor cells are recognized as valuable

antigen sources for vaccines, presented in multiple formats,

including whole tumor cells (WTC) and tumor cell lysates (45).

Both DC and WTC-based vaccines are evaluated in the clinical

trials of pancreatic cancer. DCs play a crucial role in the immune

system by effectively presenting both exogenous and endogenous

antigens to T cells, thereby triggering adoptive immune responses

(46). By showcasing tumor-specific antigens, DCs can trigger the

generation of cytotoxic T lymphocytes that specifically recognize

and destroy cancer cells (47). DCs are specialized APCs that are

highly effective in generating robust immune responses and

maintaining tolerance to self or benign foreign antigens, making

DCs an appealing tool for developing immunotherapeutic strategies

(48). Since the study has assessed the efficacy of DCs pulsed with

melanoma-associated antigen (MAGE) 1 for treating melanoma

patients, emerging evidence has demonstrated treatments based on

DCs are safe, even in patients with advanced cancer (49).

Additionally, DC-based therapies can enhance immune responses

that lead to sustained remissions, providing optimism for enduring

outcomes (50). The Wilms’ tumor 1 (WT1) antigen has been

recognized as a highly effective target in various cancer types,

including pancreatic cancer (51). WT1-peptide pulsed dendritic

cell (WT1-DC) vaccine combined with gemcitabine chemotherapy

resulted in durable specific T cell immune responses, which were

associated with significant improvements in survival in advanced

PDAC patients (31–35). Further studies broadened the insights into

the potential clinical application of WT1-DC vaccines as evidenced

by vaccine injection combined with chemotherapy exhibited safety

and effectiveness in resected PDAC patients (52). And WT1-DC

vaccine in conjunction with multimodal treatments including
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chemotherapy, irradiation and surgery was related with longer

overall survival time (53). Moreover, the chemoimmunotherapy

regimen consisted of nab-paclitaxel plus gemcitabine combined

with WT1-DC vaccination regulated TME and facilitated

conversion surgery for advanced pancreatic cancer patients (54).

A chemoimmunotherapy approach combining a WT1−DC vaccine

with multi−agent chemotherapy was observed to reprogram the

TME toward an immunostimulatory phenotype, permitting

conversion surgery in 7 of 9 patients with unresectable pancreatic

ductal adenocarcinoma (55). Although early observations

are encouraging and informative, definitive clarification

of the treatment effect attributable to WT1−targeted

chemoimmunotherapy will require large, well−controlled studies

with appropriate comparators (55).

Mucin 1 (MUC1) was another tumor-associated antigen

presented in pancreatic cancer cells, considering a promising

antigen for immunotherapy (56, 57). The MUC1 peptide-loaded

DC vaccine was elevated in patients after the surgical resection,

which extended the medial survival time of patients to 26 months

and exhibited favorable safety (58, 59). Pan et al. further modified

the DC vaccines by loading the MUC1-PD-L1 immunogen

(MUC1-Vax) that consist of a fusion gene that incorporated the

extracellular domain of human MUC1 along with the programmed

cell death ligand 1 (PD-L1), which demonstrated robust therapeutic

effects against tumors in mice, indicating a promising strategy for

treating pancreatic cancer by double-targeting MUC1 and PD-L1

(36). This innovation vaccine strategy should be further assessed in

the clinical settings, further validating the safety and efficiencies in

cancer patients. Similarly, Nagai et al. revealed that WT1/MUC1-
Frontiers in Immunology 03
DC vaccination extended the 3-year overall survival rate to 77.8% in

the adjuvant setting of pancreatic cancer (37), which awaits to be

assessed its clinical advantages in a large-scale trial. There are

various approaches to load tumor antigens into DC vaccines, with

earlier studies primarily focusing on the use of mRNA for this

purpose (60). Utilizing circular RNA (circRNA) for antigen loading

represents a promising alternative, as its inherent stability prolongs

the duration of protein translation and enhances protein

production compared to linear mRNA (61). Recent study utilized

circRNA loaded FAPa and surviving(circRNAFS) and then

transfected circRNAFS into DCs for vaccination (62). This

vaccine combined with chemotherapy elicited significant

immunogenic cell deaths and overcame immune evasion in

Panc02 tumor model, which provided a novel insight into the

clinical management of pancreatic cancer (62).

WTC vaccines represent a form of cancer immunotherapy that

employs whole or lysed tumor cells, whether unaltered or modified,

as a source of immunogenic components to elicit an anti-tumor

response (63). Algenpantucel-L is an allogeneic pancreatic cancer

vaccine composed of two human PDAC cell lines that express

a-galactosyl (aGal) through retroviral transfer of the mouse aGT
gene (38). This vaccine was evaluated as an adjunct to

chemotherapy and radiotherapy in a study involving 70 patients

who underwent surgical resection for PDAC and the inclusion of

Algenpantucel-L resulted in improved disease-free survival (DFS)

and overall survival (OS) (38). However, subsequent phase III trials

did not validate the previous findings (39). To stimulate T-cell

immune responses targeting different tumor antigens, researchers

developed a pancreatic cancer vaccine known as GVAX, which was
FIGURE 1

Mechanism of cancer vaccines. This illustration depicts the process of cancer vaccination and subsequent immune response activation. The series
begins with the injection of a cancer vaccine, which then leads to the activation of T cells in the lymph nodes. Effector T cells migrate to the tumor
site, where they recognize and target tumor antigens on cancer cells. Activated CD8+ T cells release cytokines such as IL-2, IFN-g, and TNF, which
enhance the immune response. Antigen-presenting cells (APCs) also migrate to the tumor site, facilitating further activation of B cells and T cells
through interactions with CD40 and MHC-TCR complexes. This coordinated immune response aims to eliminate tumor cells and promote the
release of additional tumor antigens, potentially enhancing the overall effectiveness of cancer immunotherapy.
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TABLE 1 Selected clinical trials of cancer vaccines in pancreatic cancer.

Clinical trial number
Responses Adverse events Reference

e DCR and mOS were 60% and 243 days well-tolerated (31)

FS and mOSwere 4.9 and 9.6 months, respectively well-tolerated (32)

ear OS rate was 62.5% well-tolerated (33)

S and mPFS were 1796.5 and 607 days, respectively well-tolerated (34)

en patients achieved a partial response. grade 1 skin reactions (35)

S was 26 months for all patients. well-tolerated (36)

and RFS at 3-years from the time of surgical resection were 77.8%
35.0%,

well-tolerated (37)

month DFS was 62 %, and the 12-month OS was 86 % injection site pain and induration. (38)

survival benefit well-tolerated (39)

S (3.6 vs. 5.7months) 20% of patients had grade 3/4 adverse events (40)

proved DFS and OS well-tolerated (41)

e median OS and RFS of the patients in the safety-evaluable cohort
e not reached

well-tolerated (42)

proved mOS (11.3 vs. 7.5 months) and TTP (7.3 vs. 4.5 months)
pared to the control group

Grade >3 adverse events were reported in 77.3%
in the GV1001 group

(43)
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categorized as allogeneic and was composed of WTCs that secrete

human GM-CSF (40, 64, 65). Furthermore, researchers revealed

that the combination of GVAX, nivolumab, and urelumab (anti-

CD137 agonist antibody) significantly elevated the levels of

intratumoral cytotoxic T cells, demonstrating efficacy in PDAC

patients undergoing neoadjuvant and adjuvant therapy (41).

Recently, a clinical trial offered new insights into GVAX therapy,

as the combination of the adjuvant GVAX vaccine and

chemoradiotherapy showed good tolerance and moderate survival

outcomes in PDAC patients, pending further validation in future

studies (66). VIReST vaccine was developed by using pancreatic

tumor cells derived from gene-edited induced pluripotent stem cells

that were infected by viruses, which stimulated T cell immune

responses, leading to a delay in malignant onset and progression in

KPC transgenic mice (67), offering an innovation technological

foundation for creating personalized cancer vaccines in high-

risk population.
2.2 Nucleic acid-based vaccine

Nucleic acid-based cancer vaccines, encompassing both DNA

and RNA formulations, signify a groundbreaking advancement in

vaccination technology (68). These vaccines have garnered

significant interest due to their accuracy, adaptability, and ease of

production, positioning them as promising candidates for the

development of personalized cancer vaccines (69). a-Enolase,
known as ENO1, serves as an enzyme in the glycolytic pathway

that was overexpressed in several cancers, including pancreatic

cancer (70). Targeting ENO1 with monoclonal antibodies or

silencing its expression could inhibit the migration of PDAC cells

(71, 72). Researchers have developed ENO1 DNA vaccines that

could prolong the survival of genetically engineered mice by

eliciting cellular immune responses against ENO1 (73). However,

the ENO1 DNA vaccine has no effect on the elimination of tumor;

especially in the presence of phosphoinositide-3-kinaseg (PI3Kg)
-mediated myeloid-derived suppressor cells (MDSC) recruitment

within the TME (74, 75). Based on these findings, targeting MDSC

through PI3Kg inhibition in conjunction with ENO1 DNA

vaccination could work synergistically to combat tumor growth in

a B-cell-dependent immune response (76). Moreover,

administering gemcitabine before ENO1 DNA vaccination

activated significantly hindered tumor progression compared to

mice that received either the vaccine or chemotherapy treatment

alone, indicating the potential role of chemoimmunotherapy in

pancreatic cancer therapy (77). Melanoma associated antigen A

isoforms (MAGEA) played an essential role in modulating the

interactions between tumor cells and stromal cells in PDAC (78,

79). Notably, vaccination with a MAGEA DNA vaccine targeting

MAGEA2 and MAGEA10, could induce a robust immune response

in chemotherapy-resistant mice (80). Administration of OsFS DNA

vaccine that targeted human FAPa and survivin, significantly

remodeling the immunosuppressive TME to impede tumor

growth in PDAC (81). Furthermore, low-dose gemcitabine

treatment could amplify the anti-tumor responses of OsFS,
Frontiers in Immunology 05
representing a promising approach for PDAC therapy (81).

MUC1 DNA vaccines also exhibited potent anti-tumor effects on

pancreatic cancer experimental models, which await further

investigation in the clinical setting (82, 83). VVL−DD is a tumor

−selective viral vaccine that demonstrated marked tumor selectivity

in vitro and showed antitumor efficacy in a murine pancreatic

cancer model in vivo (84).

Although advancements in DNA vaccines, however, DNA must

first enter the nucleus, enabling extended production of target

proteins, which arising a safe concern that integrating into the

host genome (85, 86). Conversely, mRNA can be directly translated

in the cytoplasm using the host cell’s machinery, which hold

promise for developing cancer vaccine (87). The application of

lipid nanoparticle (LNP) systems for mRNA vaccines, especially in

the context of targeting personalized neoantigens, has emerged as a

key area of interest (88, 89). Autogene cevumeran was an innovative

mRNA vaccine that included RO7198457 and featured up to 20

patient-specific neoantigens intravenously delivered by LNPs (90),

in combination with atezolizumab, and mFOLFIRINOX

chemotherapy promoted significant T cell-mediated immune

responses and linked to a delay in the recurrence of PDAC in the

adjuvant setting (42). Follow-up results demonstrated that autogene

cevumeran induced the generation of novel CD8+ T cells post-

vaccination, which exhibited lasting effector functions and a

memory-like T cell state for up to three years, potentially delaying

the recurrence of PDAC (91). Currently, a global randomized trial

(NCT05968326) is underway. Consequently, these results revealed

that adjuvant mRNA-LNP neoantigen vaccines may address a

significant challenge in pancreatic cancer vaccination.
2.3 Peptide-based vaccine

The peptide vaccine GV1001 consists of 16 amino acids sourced

from the catalytic subunit of human telomerase reverse

transcriptase (hTERT) (92). GV1001 elicited robust CD4+ and

CD8+ T cell responses, as well as recognition by APCs (93). In

earlier Phase I/II trials, T cell responses specific to GV1001 were

observed in 50-80% of patients with PDAC who had an improved

median survival (94). Notably, in patients with advanced PDAC

who have high levels of eotaxin, the combination of GV1001 with

chemotherapy resulted in improved OS and time to progression

compared to patients treated with chemotherapy alone (43). A

vaccine therapy employing three HLA-A2402-restricted peptides

has shown promising effectiveness in clinical settings for treating

patients with advanced PDAC (95). Recently, Cai et al. illustrated

that targeting mesothelin (MSLN) could enhance the immune

efficacy of neoantigen vaccines by diminishing cancer-associated

fibroblasts (CAFs), which interrupted the conversion of naive CD4+

T cells into regulatory T cells, ultimately boosting t anti-tumor

immunity (96). In line with this, VASH2-peptide vaccine, TM4SF5

peptide vaccine, and TGF-b- multipeptide vaccination inhibited

PDAC progression in the preclinical studies (97–99), which await

further validation in clinical trials. Moreover, ELI−002 2P vaccine

employed Amph−modified mutant KRAS peptides (G12D, G12R;
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Amph−Peptides−2P) plus the CpG adjuvant Amph−CpG−7909 to

optimize lymph−node delivery and heighten immunogenicity

(100). In the phase 1 AMPLIFY-201 study, 84% of vaccinated

pancreatic cancer patients mounted T-cell responses, tumor

biomarkers declined in six individuals, and the median relapse-

free survival (RFS) reached 16.33 months. T-cell reactivity predicted

decreases in tumor biomarkers and ctDNA clearance, and was

strongly associated with an 86% reduction in the risk of recurrence

or death (101). ELI−002 exhibited potent therapeutic activity;

however, further investigation is warranted.
3 Challenges in developing cancer
vaccines

3.1 Low mutation burdens

Various factors related to the biology of PDAC that are

unresponsive to immunotherapy, with hostile TME considered a

key player in this process (102). This environment is highly

immunosuppressive, marked by a low mutational burden and

lack enough neoantigens (103). PDAC exhibit modern burdens in

on-synonymous neo-antigenic mutations, leading to an absence of

effective neoantigens (104). Neoantigens hold potential for

enhancing personalized immunotherapy approaches for

pancreatic cancer. A significant portion of neoantigens has been

found to originate from atypical translation processes, which

require further investigation to identify shared epitopes (105).

Advancements in next-generation sequencing and developments

in computational algorithms could uncover those antigens capable

of effectively activating patients’ T cells, enabling their assessment in

clinical studies, which may help overcome these limitations

(106, 107). Moreover, immunosuppressive cells and factors

present in the TME can hinder the anti-tumor immune response.

Thus, developing effective cancer vaccines necessitates the

implementation of strategies aimed at overcoming these

immunosuppressive elements.
3.2 Technological obstacles in developed
cancer vaccines

The technologies in developing pancreatic cancer vaccines are

still in the early stages that pose multiple challenges. Compared to

personalized neoantigen vaccines, public neoantigen vaccines can

be manufactured in large quantities for immediate use, which

reduces production time and lowers costs (108). However, a

significant challenge is that the low number of shared neo-

antigens among PDAC patients complicates the implementation

of relevant treatment strategies, making them cumbersome and

expensive (19, 109). To overcome the challenges, it is essential to

implement standardized synthetic vaccine technologies that enable
Frontiers in Immunology 06
fully automated production and quality control, facilitating the

establishment of efficient, miniaturized production lines (110).

This approach enhances the overall efficiency and accessibility of

vaccines for clinical applications in pancreatic cancer.
3.3 Lack of optimal preclinical models

Exploring the interactions and evaluating changes in

immunological phenotype following anti-tumor treatments are

considerably challenges due to the complexity and heterogeneity

present in the TME of pancreatic tumors. Additionally, the weak

immunogenicity of PDAC and its immunosuppressive

characteristics complicate the development of animal models

(111, 112). Genetically engineered preclinical models, created

through gene modification and the introduction of mutations,

represent the disease most accurately. However, these models

cannot replicate the gradual accumulation of mutations seen in

human pancreatic cancers, resulting in tumors that are relatively

stable and less responsive to cancer vaccines (113, 114). These

shortcomings highlight the necessity of integrating findings from

animal models with clinical investigations to achieve a thorough

understanding of immunotherapeutic approaches. Leveraging high-

throughput methodologies to advance pancreatic cancer animal

models will enable more faithful recapitulation of human disease

features, thereby expediting the translation of preclinical discoveries

into clinical practice.
3.4 Immunotherapeutic resistance
mechanisms

The interplay between cancer and the immune system is

intricate and dynamic. Adaptive immune resistance mechanisms

enable tumors to protect themselves by adapting to immune attacks,

even though they are recognized by the immune system (115). In

PDAC driven by mutant KRAS (mKRAS), the downstream

signaling pathways play a crucial role in immune evasion (116).

For example, mKRAS facilitated the accumulation of MDSCs, CAFs

and macrophages that inhibited cytotoxic T cell activity, as

evidenced by autochthonous humanized mouse models of PDAC

(117). Additionally, certain oncogenic pathways could induce T cell

exclusion, allowing pancreatic tumors to evade immune attack. The

activation of Wnt signaling pathway facilitated tumor development

via upregulating expression of checkpoint molecules on T cells and

inducing T cell exclusion, which contributed to immune escape

(118). Furthermore, the loss of PTEN was linked to the activation of

the PI3K-AKT signaling pathway and was associated with poor

clinical responses to immunotherapy (119). While cancer vaccines

could regulate TME, they often do not completely eliminate tumors

when administered as standalone treatments due to these resistance

mechanisms in PDAC (120, 121). Importantly, cancer vaccines can
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initiate epitope spreading, thereby expanding T cell responses and

potentially improving the effectiveness of combination therapies

(122). By leveraging the advantages of various treatment

approaches, combination strategies can address the shortcomings

of monotherapy and create a holistic method for targeting

pancreatic tumors (123, 124).
4 Conclusions and perspectives

In recent decades, the recognitions on molecular mechanism of

tumor cells evading immune detection have significantly improved,

leading to notable advancements in cancer vaccines by mimicking

natural immunity. With the advancements of sequencing

technologies, the development of personalized cancer vaccines is

likely to progress rapidly, which may revolutionize the therapeutic

landscape of PDAC (125). Additionally, the careful selection of

delivery systems is crucial for enhancing the immunotherapeutic

responses (126). Recent technological advancements have

introduced promising carriers, such as vaccines based on

nanomaterials, which offer safer and durable immune responses

(127). The integration of innovative strategies, meticulous candidate

selection, and enhanced administration protocols has the potential

to revolutionize cancer treatment, heralding a new era of

therapeutic cancer vaccines. This progress ultimately paves the

way for the effective use of cancer vaccines in the management of

pancreatic cancer.
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