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Pancreatic cancer is a leading cause of cancer-related mortality, and
unfortunately, the prognosis for this stubborn tumor type has remained bleak
for an extended period. Current treatment options are limited and often
ineffective, highlighting the need for innovative therapeutic strategies.
Research in tumor immunotherapy has advanced significantly over the past
few decades, leading to numerous studies progressing to clinical evaluation.
Cancer vaccines are regarded as a promising therapeutic approach for treating
pancreatic cancers. Cancer vaccines offer distinct advantages, especially for
patients who are unresponsive to other treatments, as they can elicit broad
and long-lasting T cell responses. This review offers a thorough examination of
recent preclinical and clinical results of therapeutic cancer vaccines in pancreatic
cancer therapy, highlighting the recent advancements in vaccine delivery
platforms. Despite ongoing clinical efforts to develop cancer vaccines, there
has not been a breakthrough in clinical outcomes, primarily due to substantial
challenges including the low mutation burdens, the assessment of immune
responses in preclinical models, and the intrinsic resistances to cancer
vaccines. By tackling these challenges, cancer vaccines can expand the
possibilities of personalized immunotherapy for pancreatic cancer.
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1 Introduction

Pancreatic cancer is typically a fatal disease characterized by resistant and chronic
nature (1). According to the global cancer statistics, there were 511,000 new cases of
pancreatic cancer and approximately 467,000 deaths, making it the sixth leading cause of
cancer-related mortality worldwide (2). The incidence and mortality rates of pancreatic
cancer are influenced by various risk factors, including long-term smoking, obesity, chronic
pancreatitis, and concurrent diabetes (3). Pancreatic ductal adenocarcinoma (PDAC) is the
main type of pancreatic cancer, and approximately 50-60% of PDAC patients present with
distant metastases, and 5-year survival rate is approximately 13%, which is attributed to its
early systemic dissemination and aggressive local growth (4). The current treatment
strategy for advanced pancreatic cancer consists of standard chemotherapy; however, it
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only presents a minor survival advantage due to the desmoplastic
and chemo-resistant features (5, 6).

Immunotherapy leverages the patient’s immune system to target
and destroy tumor cells, leading to a transformative effect on the
treatment of human cancers (7). Immunomodulators, immune
checkpoint inhibitor (ICI), and adoptive cell therapy provide
promising strategies for solider tumors, including melanoma, lung
cancer, colorectal cancer, and liver cancer (8-11). Early-phase trials
assessing single-agent CTLA-4 or PD-1 blockade in PDAC showed
little clinical activity, with no objective responses observed (12).
Adoptive cell therapy (ACT) represents a novel type of
immunotherapy that involves isolating a patient’s immune cells and
genetically engineering them to mount tumor—specific responses (13).
In pancreatic cancer, active investigations include chimeric antigen
receptor T cells (CAR-T), CAR-NK cells, tumor—infiltrating
lymphocytes (TILs), T—cell receptor (TCR)-engineered T cells, and
cytokine—induced killer (CIK) cells. However, translation to solid
tumors, particularly pancreatic cancer, remains early, and clinical
outcomes to date have been limited (13-15). These unfavorable
results are likely driven by PDAC’s profoundly immunosuppressive
tumor microenvironment and intrinsically poor immunogenicity that
limit the efficacy of immunotherapies (16, 17). Therefore, there is
growing interest in investigating innovative immunotherapeutic
strategies, such as therapeutic cancer vaccines, to tackle these
challenges posed by the hostile TME. The objective of therapeutic
cancer vaccines is to stimulate the generation of effector T cells, leading
to the establishment of a lasting immune response against specific
tumor antigens and eradicating cancerous cells (18, 19). In contrast to
conventional monoclonal antibodies and small molecule inhibitors,
cancer vaccines provide various benefits, such as reduced nonspecific
effects, a wide therapeutic index, and the durable immunological
memory (20, 21). Additionally, cancer vaccines enable precise
targeting tailored to the specific traits of individual tumors (22, 23).
As a result, vaccination represents a promising strategy for personalized
treatment of pancreatic cancer, addressing the complexities introduced
by tumor heterogeneity.

In this review, we offer an extensive overview of the current
landscape of therapeutic cancer vaccines and their clinical
applications in pancreatic cancer. Furthermore, we discuss the
resistance mechanisms that tumors present and assess the
potential benefits of combination therapies, which may help to
enhance the effectiveness of cancer vaccines in the treatment of
pancreatic cancer. Moreover, we outline their advantages,
limitations, and challenges posed by vaccine technology and
provide future perspectives on developing therapeutic vaccine in

pancreatic cancer.

2 Clinical landscape of cancer vaccine
in pancreatic cancer immunotherapy

After vaccination, innate immune cells such as natural killer
(NK) cells, neutrophils, and macrophages rapidly identify foreign
substances through pattern recognition receptors (PRRs), initiating
specific immune responses (24). Distinct dendritic cells (DCs)
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subsets differentially prime defined T-cell lineages. With
maturation, DCs traffic to secondary lymphoid tissues,
particularly the draining lymph nodes (25). DCs capture and
process peptides in peripheral tissues and present them via major
histocompatibility complex (MHC) molecules. Endogenous
proteins activate CD8+ T cells, while exogenous proteins are
presented to CD4" T cells as antigen-MHC-II complexes (26).
APC-mediated activation of CD8" cytotoxic T lymphocytes
(CTLs) exit lymphoid organs, infiltrate tumors, and exert anti-
tumor effects by inducing apoptosis in tumor cells through granule
exocytosis (involving perforin and granzymes) and engagement of
death receptors (such as Fas ligand and tumor necrosis factor-
related apoptosis-inducing ligand) (27, 28). Therefore, the intricate
interactions among immune components significantly influence the
efficacy of cancer vaccines (Figure 1). Established delivery platforms
for vaccines include, DC, tumor cell, nucleic acid and peptide
vaccines, while emerging technologies are also under investigation
(29, 30). In this section, we summarize current landscape of cancer
vaccines in pancreatic cancer (Table 1).

2.1 Cell-based vaccine

Cell-based cancer vaccines utilize the patient’s own immune
cells, particularly DCs, to process both soluble and particulate
antigens (44). Additionally, tumor cells are recognized as valuable
antigen sources for vaccines, presented in multiple formats,
including whole tumor cells (WTC) and tumor cell lysates (45).
Both DC and WTC-based vaccines are evaluated in the clinical
trials of pancreatic cancer. DCs play a crucial role in the immune
system by effectively presenting both exogenous and endogenous
antigens to T cells, thereby triggering adoptive immune responses
(46). By showcasing tumor-specific antigens, DCs can trigger the
generation of cytotoxic T lymphocytes that specifically recognize
and destroy cancer cells (47). DCs are specialized APCs that are
highly effective in generating robust immune responses and
maintaining tolerance to self or benign foreign antigens, making
DCs an appealing tool for developing immunotherapeutic strategies
(48). Since the study has assessed the efficacy of DCs pulsed with
melanoma-associated antigen (MAGE) 1 for treating melanoma
patients, emerging evidence has demonstrated treatments based on
DCs are safe, even in patients with advanced cancer (49).
Additionally, DC-based therapies can enhance immune responses
that lead to sustained remissions, providing optimism for enduring
outcomes (50). The Wilms™ tumor 1 (WT1) antigen has been
recognized as a highly effective target in various cancer types,
including pancreatic cancer (51). WT1-peptide pulsed dendritic
cell (WT1-DC) vaccine combined with gemcitabine chemotherapy
resulted in durable specific T cell immune responses, which were
associated with significant improvements in survival in advanced
PDAC patients (31-35). Further studies broadened the insights into
the potential clinical application of WT1-DC vaccines as evidenced
by vaccine injection combined with chemotherapy exhibited safety
and effectiveness in resected PDAC patients (52). And WT1-DC
vaccine in conjunction with multimodal treatments including
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Mechanism of cancer vaccines. This illustration depicts the process of cancer vaccination and subsequent immune response activation. The series
begins with the injection of a cancer vaccine, which then leads to the activation of T cells in the lymph nodes. Effector T cells migrate to the tumor
site, where they recognize and target tumor antigens on cancer cells. Activated CD8+ T cells release cytokines such as IL-2, IFN-y, and TNF, which
enhance the immune response. Antigen-presenting cells (APCs) also migrate to the tumor site, facilitating further activation of B cells and T cells
through interactions with CD40 and MHC-TCR complexes. This coordinated immune response aims to eliminate tumor cells and promote the
release of additional tumor antigens, potentially enhancing the overall effectiveness of cancer immunotherapy.

chemotherapy, irradiation and surgery was related with longer
overall survival time (53). Moreover, the chemoimmunotherapy
regimen consisted of nab-paclitaxel plus gemcitabine combined
with WT1-DC vaccination regulated TME and facilitated
conversion surgery for advanced pancreatic cancer patients (54).
A chemoimmunotherapy approach combining a WT1-DC vaccine
with multi—agent chemotherapy was observed to reprogram the
TME toward an immunostimulatory phenotype, permitting
conversion surgery in 7 of 9 patients with unresectable pancreatic
ductal adenocarcinoma (55). Although early observations
are encouraging and informative, definitive clarification
of the treatment effect attributable to WTIl-targeted
chemoimmunotherapy will require large, well-controlled studies
with appropriate comparators (55).

Mucin 1 (MUC1) was another tumor-associated antigen
presented in pancreatic cancer cells, considering a promising
antigen for immunotherapy (56, 57). The MUCI peptide-loaded
DC vaccine was elevated in patients after the surgical resection,
which extended the medial survival time of patients to 26 months
and exhibited favorable safety (58, 59). Pan et al. further modified
the DC vaccines by loading the MUC1-PD-L1 immunogen
(MUCI1-Vax) that consist of a fusion gene that incorporated the
extracellular domain of human MUCI along with the programmed
cell death ligand 1 (PD-L1), which demonstrated robust therapeutic
effects against tumors in mice, indicating a promising strategy for
treating pancreatic cancer by double-targeting MUCI and PD-L1
(36). This innovation vaccine strategy should be further assessed in
the clinical settings, further validating the safety and efficiencies in
cancer patients. Similarly, Nagai et al. revealed that WT1/MUCI1-
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DC vaccination extended the 3-year overall survival rate to 77.8% in
the adjuvant setting of pancreatic cancer (37), which awaits to be
assessed its clinical advantages in a large-scale trial. There are
various approaches to load tumor antigens into DC vaccines, with
earlier studies primarily focusing on the use of mRNA for this
purpose (60). Utilizing circular RNA (circRNA) for antigen loading
represents a promising alternative, as its inherent stability prolongs
the duration of protein translation and enhances protein
production compared to linear mRNA (61). Recent study utilized
circRNA loaded FAPo and surviving(circRNAFS) and then
transfected circRNAFS into DCs for vaccination (62). This
vaccine combined with chemotherapy elicited significant
immunogenic cell deaths and overcame immune evasion in
Panc02 tumor model, which provided a novel insight into the
clinical management of pancreatic cancer (62).

WTC vaccines represent a form of cancer immunotherapy that
employs whole or lysed tumor cells, whether unaltered or modified,
as a source of immunogenic components to elicit an anti-tumor
response (63). Algenpantucel-L is an allogeneic pancreatic cancer
vaccine composed of two human PDAC cell lines that express
o-galactosyl (a0Gal) through retroviral transfer of the mouse oGT
gene (38). This vaccine was evaluated as an adjunct to
chemotherapy and radiotherapy in a study involving 70 patients
who underwent surgical resection for PDAC and the inclusion of
Algenpantucel-L resulted in improved disease-free survival (DFS)
and overall survival (OS) (38). However, subsequent phase III trials
did not validate the previous findings (39). To stimulate T-cell
immune responses targeting different tumor antigens, researchers
developed a pancreatic cancer vaccine known as GVAX, which was
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TABLE 1 Selected clinical trials of cancer vaccines in pancreatic cancer.

Clinical trial number

(Bl Antigen Combined therapies Responses Adverse events Reference
UMIN000004855(phase I ) WT1 DC gemcitabine The DCR and mOS were 60% and 243 days well-tolerated (31)
Phase I/IT WT1 DC gemcitabine mPFS and mOSwere 4.9 and 9.6 months, respectively well-tolerated (32)
Phase [ WT1 DC S-1 2-year OS rate was 62.5% well-tolerated (33)
Phase I WT1 DC chemotherapy, radiation mOS and mPFS were 1796.5 and 607 days, respectively well-tolerated (34)
jRCTc030190195(phase I) WT1 DC nab-paclitaxel plus gemcitabine = Seven patients achieved a partial response. grade 1 skin reactions (35)
phase I/I MUCI1 DC / mOS was 26 months for all patients. well-tolerated (36)
d RFS at 3- from the ti f surgical ti 77.89
Phase I/ITa WTI1/MUCI DC / OS and RES at 3-years from the time of surgical resection were 77.8% well-tolerated (37)
and 35.0%,
1 tucel- Gemcitabine, 5-fl il and
NCT00569387 (Phase 1) | 8oPARMICE 1 yyp | emeliablng 2 uorouraciand -y, 1 onth DES was 62 %, and the 12-month OS was 86 % injection site pain and induration. (38)
L radiotherapy
I tucel- FOLFIRINOX itabi
NCT01836432 (Phase III) genpantuce WTC Olt gemcitabine/ No survival benefit well-tolerated (39)
L nab-paclitaxel)
Phase Ib GVAX WTC ipilimumab mOS (3.6 vs. 5.7months) 20% of patients had grade 3/4 adverse events (40)
NCT0245198(Phase II) GVAX WTC Nivolumab and urelumab Improved DFS and OS well-tolerated (41)
Atezolizumab and The median OS and RFS of the patients in the safety-evaluable cohort
NCT04161755 (Phase I) RO7198457 mRNA mMEOLFIRINOX were not reached well-tolerated (42)
i v
NCT02854072 (Phase IIT) GV1001 Peptide gemcitabine/capecitabine Improved mOS (11.3 vs. 7.5 months) and TTP (7.3 vs. 4.5 months) Grade >3 adv.erse events were reported in 77.3% 3)
compared to the control group in the GV1001 group
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categorized as allogeneic and was composed of WTCs that secrete
human GM-CSF (40, 64, 65). Furthermore, researchers revealed
that the combination of GVAX, nivolumab, and urelumab (anti-
CD137 agonist antibody) significantly elevated the levels of
intratumoral cytotoxic T cells, demonstrating efficacy in PDAC
patients undergoing neoadjuvant and adjuvant therapy (41).
Recently, a clinical trial offered new insights into GVAX therapy,
as the combination of the adjuvant GVAX vaccine and
chemoradiotherapy showed good tolerance and moderate survival
outcomes in PDAC patients, pending further validation in future
studies (66). VIReST vaccine was developed by using pancreatic
tumor cells derived from gene-edited induced pluripotent stem cells
that were infected by viruses, which stimulated T cell immune
responses, leading to a delay in malignant onset and progression in
KPC transgenic mice (67), offering an innovation technological
foundation for creating personalized cancer vaccines in high-
risk population.

2.2 Nucleic acid-based vaccine

Nucleic acid-based cancer vaccines, encompassing both DNA
and RNA formulations, signify a groundbreaking advancement in
vaccination technology (68). These vaccines have garnered
significant interest due to their accuracy, adaptability, and ease of
production, positioning them as promising candidates for the
development of personalized cancer vaccines (69). o-Enolase,
known as ENOI, serves as an enzyme in the glycolytic pathway
that was overexpressed in several cancers, including pancreatic
cancer (70). Targeting ENOI with monoclonal antibodies or
silencing its expression could inhibit the migration of PDAC cells
(71, 72). Researchers have developed ENO1 DNA vaccines that
could prolong the survival of genetically engineered mice by
eliciting cellular immune responses against ENO1 (73). However,
the ENO1 DNA vaccine has no effect on the elimination of tumor;
especially in the presence of phosphoinositide-3-kinasey (PI3Ky)
-mediated myeloid-derived suppressor cells (MDSC) recruitment
within the TME (74, 75). Based on these findings, targeting MDSC
through PI3Ky inhibition in conjunction with ENO1 DNA
vaccination could work synergistically to combat tumor growth in
a B-cell-dependent immune response (76). Moreover,
administering gemcitabine before ENO1 DNA vaccination
activated significantly hindered tumor progression compared to
mice that received either the vaccine or chemotherapy treatment
alone, indicating the potential role of chemoimmunotherapy in
pancreatic cancer therapy (77). Melanoma associated antigen A
isoforms (MAGEA) played an essential role in modulating the
interactions between tumor cells and stromal cells in PDAC (78,
79). Notably, vaccination with a MAGEA DNA vaccine targeting
MAGEA?2 and MAGEAL1Q0, could induce a robust immune response
in chemotherapy-resistant mice (80). Administration of OsFS DNA
vaccine that targeted human FAPo and survivin, significantly
remodeling the immunosuppressive TME to impede tumor
growth in PDAC (81). Furthermore, low-dose gemcitabine
treatment could amplify the anti-tumor responses of OsFS,
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representing a promising approach for PDAC therapy (81).
MUCI DNA vaccines also exhibited potent anti-tumor effects on
pancreatic cancer experimental models, which await further
investigation in the clinical setting (82, 83). VVL-DD is a tumor
—selective viral vaccine that demonstrated marked tumor selectivity
in vitro and showed antitumor efficacy in a murine pancreatic
cancer model in vivo (84).

Although advancements in DNA vaccines, however, DNA must
first enter the nucleus, enabling extended production of target
proteins, which arising a safe concern that integrating into the
host genome (85, 86). Conversely, mRNA can be directly translated
in the cytoplasm using the host cell’s machinery, which hold
promise for developing cancer vaccine (87). The application of
lipid nanoparticle (LNP) systems for mRNA vaccines, especially in
the context of targeting personalized neoantigens, has emerged as a
key area of interest (88, 89). Autogene cevumeran was an innovative
mRNA vaccine that included RO7198457 and featured up to 20
patient-specific neoantigens intravenously delivered by LNPs (90),
in combination with atezolizumab, and mFOLFIRINOX
chemotherapy promoted significant T cell-mediated immune
responses and linked to a delay in the recurrence of PDAC in the
adjuvant setting (42). Follow-up results demonstrated that autogene
cevumeran induced the generation of novel CD8" T cells post-
vaccination, which exhibited lasting effector functions and a
memory-like T cell state for up to three years, potentially delaying
the recurrence of PDAC (91). Currently, a global randomized trial
(NCT05968326) is underway. Consequently, these results revealed
that adjuvant mRNA-LNP neoantigen vaccines may address a
significant challenge in pancreatic cancer vaccination.

2.3 Peptide-based vaccine

The peptide vaccine GV1001 consists of 16 amino acids sourced
from the catalytic subunit of human telomerase reverse
transcriptase (hTERT) (92). GV1001 elicited robust CD4" and
CD8" T cell responses, as well as recognition by APCs (93). In
earlier Phase I/II trials, T cell responses specific to GV1001 were
observed in 50-80% of patients with PDAC who had an improved
median survival (94). Notably, in patients with advanced PDAC
who have high levels of eotaxin, the combination of GV1001 with
chemotherapy resulted in improved OS and time to progression
compared to patients treated with chemotherapy alone (43). A
vaccine therapy employing three HLA-A2402-restricted peptides
has shown promising effectiveness in clinical settings for treating
patients with advanced PDAC (95). Recently, Cai et al. illustrated
that targeting mesothelin (MSLN) could enhance the immune
efficacy of neoantigen vaccines by diminishing cancer-associated
fibroblasts (CAFs), which interrupted the conversion of naive CD4™
T cells into regulatory T cells, ultimately boosting t anti-tumor
immunity (96). In line with this, VASH2-peptide vaccine, TM4SF5
peptide vaccine, and TGF-fB- multipeptide vaccination inhibited
PDAC progression in the preclinical studies (97-99), which await
further validation in clinical trials. Moreover, ELI-002 2P vaccine
employed Amph-modified mutant KRAS peptides (G12D, G12R;
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Amph-Peptides—2P) plus the CpG adjuvant Amph—CpG-7909 to
optimize lymph-node delivery and heighten immunogenicity
(100). In the phase 1 AMPLIFY-201 study, 84% of vaccinated
pancreatic cancer patients mounted T-cell responses, tumor
biomarkers declined in six individuals, and the median relapse-
free survival (RES) reached 16.33 months. T-cell reactivity predicted
decreases in tumor biomarkers and ctDNA clearance, and was
strongly associated with an 86% reduction in the risk of recurrence
or death (101). ELI-002 exhibited potent therapeutic activity;
however, further investigation is warranted.

3 Challenges in developing cancer
vaccines

3.1 Low mutation burdens

Various factors related to the biology of PDAC that are
unresponsive to immunotherapy, with hostile TME considered a
key player in this process (102). This environment is highly
immunosuppressive, marked by a low mutational burden and
lack enough neoantigens (103). PDAC exhibit modern burdens in
on-synonymous neo-antigenic mutations, leading to an absence of
effective neoantigens (104). Neoantigens hold potential for
enhancing personalized immunotherapy approaches for
pancreatic cancer. A significant portion of neoantigens has been
found to originate from atypical translation processes, which
require further investigation to identify shared epitopes (105).
Advancements in next-generation sequencing and developments
in computational algorithms could uncover those antigens capable
of effectively activating patients’ T cells, enabling their assessment in
clinical studies, which may help overcome these limitations
(106, 107). Moreover, immunosuppressive cells and factors
present in the TME can hinder the anti-tumor immune response.
Thus, developing effective cancer vaccines necessitates the
implementation of strategies aimed at overcoming these
immunosuppressive elements.

3.2 Technological obstacles in developed
cancer vaccines

The technologies in developing pancreatic cancer vaccines are
still in the early stages that pose multiple challenges. Compared to
personalized neoantigen vaccines, public neoantigen vaccines can
be manufactured in large quantities for immediate use, which
reduces production time and lowers costs (108). However, a
significant challenge is that the low number of shared neo-
antigens among PDAC patients complicates the implementation
of relevant treatment strategies, making them cumbersome and
expensive (19, 109). To overcome the challenges, it is essential to
implement standardized synthetic vaccine technologies that enable
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fully automated production and quality control, facilitating the
establishment of efficient, miniaturized production lines (110).
This approach enhances the overall efficiency and accessibility of
vaccines for clinical applications in pancreatic cancer.

3.3 Lack of optimal preclinical models

Exploring the interactions and evaluating changes in
immunological phenotype following anti-tumor treatments are
considerably challenges due to the complexity and heterogeneity
present in the TME of pancreatic tumors. Additionally, the weak
immunogenicity of PDAC and its immunosuppressive
characteristics complicate the development of animal models
(111, 112). Genetically engineered preclinical models, created
through gene modification and the introduction of mutations,
represent the disease most accurately. However, these models
cannot replicate the gradual accumulation of mutations seen in
human pancreatic cancers, resulting in tumors that are relatively
stable and less responsive to cancer vaccines (113, 114). These
shortcomings highlight the necessity of integrating findings from
animal models with clinical investigations to achieve a thorough
understanding of immunotherapeutic approaches. Leveraging high-
throughput methodologies to advance pancreatic cancer animal
models will enable more faithful recapitulation of human disease
features, thereby expediting the translation of preclinical discoveries
into clinical practice.

3.4 Immunotherapeutic resistance
mechanisms

The interplay between cancer and the immune system is
intricate and dynamic. Adaptive immune resistance mechanisms
enable tumors to protect themselves by adapting to immune attacks,
even though they are recognized by the immune system (115). In
PDAC driven by mutant KRAS (mKRAS), the downstream
signaling pathways play a crucial role in immune evasion (116).
For example, mKRAS facilitated the accumulation of MDSCs, CAFs
and macrophages that inhibited cytotoxic T cell activity, as
evidenced by autochthonous humanized mouse models of PDAC
(117). Additionally, certain oncogenic pathways could induce T cell
exclusion, allowing pancreatic tumors to evade immune attack. The
activation of Wnt signaling pathway facilitated tumor development
via upregulating expression of checkpoint molecules on T cells and
inducing T cell exclusion, which contributed to immune escape
(118). Furthermore, the loss of PTEN was linked to the activation of
the PI3K-AKT signaling pathway and was associated with poor
clinical responses to immunotherapy (119). While cancer vaccines
could regulate TME, they often do not completely eliminate tumors
when administered as standalone treatments due to these resistance
mechanisms in PDAC (120, 121). Importantly, cancer vaccines can
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initiate epitope spreading, thereby expanding T cell responses and
potentially improving the effectiveness of combination therapies
(122). By leveraging the advantages of various treatment
approaches, combination strategies can address the shortcomings
of monotherapy and create a holistic method for targeting
pancreatic tumors (123, 124).

4 Conclusions and perspectives

In recent decades, the recognitions on molecular mechanism of
tumor cells evading immune detection have significantly improved,
leading to notable advancements in cancer vaccines by mimicking
natural immunity. With the advancements of sequencing
technologies, the development of personalized cancer vaccines is
likely to progress rapidly, which may revolutionize the therapeutic
landscape of PDAC (125). Additionally, the careful selection of
delivery systems is crucial for enhancing the immunotherapeutic
responses (126). Recent technological advancements have
introduced promising carriers, such as vaccines based on
nanomaterials, which offer safer and durable immune responses
(127). The integration of innovative strategies, meticulous candidate
selection, and enhanced administration protocols has the potential
to revolutionize cancer treatment, heralding a new era of
therapeutic cancer vaccines. This progress ultimately paves the
way for the effective use of cancer vaccines in the management of
pancreatic cancer.
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