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Antinuclear antibodies (ANAs) are central biomarkers in rheumatological
conditions and can drive disease pathology. Much less is known about the role
of ANAs in neurological symptoms, although a number of experimental studies
have demonstrated direct effects on neuronal function, for example in
neuropsychiatric lupus erythematosus. Moreover, it is unclear whether the
ANAs detected in HEp-2 cell-based assays, the gold standard for ANA
diagnostics, can also be recognized in modern screening assays for anti-
neuronal autoimmunity, such as staining on rodent brain sections or neuronal
cultures. In this study, we therefore conducted a comparative mapping of ANA-
positive sera with well-characterized HEp-2 patterns to central nervous system
(CNS) tissue, utilizing fixed and unfixed murine brain sections and primary murine
neurons. We screened 74 ANA-positive sera classified into 14 individual patterns
and combinations thereof. Majority of the samples reacted with fixed primary
neurons (99%, 73/74 sera), followed by fixed brain sections (93%, 69/74), but
much less to unfixed mouse brain (54%, 40/74). While the PM/SCL- and RPOI-
positive sera showed no binding to unfixed brain sections, the UIRNP (U1 nuclear
ribonucleoprotein particle) and FBLN f(fibrillarin) ANAs reacted strongly across all
assays, indicating differences in antigen accessibility. These findings suggest that
the majority of ANAs can interact with neural components, which may obscure
the detection of other anti-neuronal autoantibodies. The foundational mapping
of ANA binding in CNS tissue provided here can also facilitate recognition of
"CNS-specific ANAs,” which bind to neuronal autoantigens but not to HEp-2
cells. Future studies should explore the association with certain neurological
manifestations and the role of ANAs in neuronal pathology.
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Introduction

Neurological symptoms frequently occur in patients with
rheumatological diseases. For example, in systemic lupus
erythematosus (SLE), neuropsychiatric symptoms have been
reported in approximately 50% of patients (1). Experimental work
has demonstrated that antinuclear antibodies (ANAs) can exert
pathogenic effects on neuronal tissue. A subset of anti-dsDNA
(double-stranded DNA) antibodies bound the N-methyl-p-
aspartate receptor (NMDAR) on neurons, thereby driving
neuronal cell death and neuropsychiatric lupus (2).

ANAs are key biomarkers for disease definition and diagnostics in
rheumatological diseases (3, 4). For example, anti-dsDNA and anti-
SMAG (Smith antigen) antibodies are part of the classification criteria
of SLE, as well as anti-UIRNP (U1 nuclear ribonucleoprotein particle)
for mixed connective tissue disease (5). However, not much is known
about their role in neurological conditions. Although a number of
studies have reported higher frequencies of HEp-2 ANAs in patients
with multiple sclerosis (6) and neuromyelitis optica spectrum disorder
(NMOSD) (7), potentially pointing to worse clinical outcomes (8), it
has not been systematically assessed which ANA subtypes can also
bind to neuronal tissue and cause pathology. At the same time, ANAs
are increasingly detected in screening assays for anti-neuronal
autoantibodies, including tissue-based assays with rodent brain
sections (9), where they may obscure the detection of disease-specific
autoantibodies as ANAs cross-reacting with neuronal structures could
lead to the misinterpretation of diagnostic assays for neuronal
antibodies. Due to the lack of an image catalogue of ANA binding to
neuronal cells, it is difficult to determine whether the underlying ANAs
show a comparable histology pattern seen on HEp-2 cells, the gold
standard for ANA routine diagnostics. Alternatively, the pattern on
brain sections may represent central nervous system “(CNS)-specific
ANAs,” referring to a group of intracellularly binding autoantibodies
that bind to neurons but are not detectable on HEp-2 cells (10).

Methods
Patients and samples

ANA-positive samples from 74 patients and one control serum
were selected from our collection of anonymized leftover samples.
The selection criteria were monospecificity for one antigen, clear
ANA indirect immunofluorescence test (IFT) patterns, and a
clinically relevant titer.

Staining of serum samples on HEp-2 cells

HEp-2 staining was performed strictly according to the protocol
supplied with the kit on a QUANTA-Lyser 4000 QL4K (Inova/
Werfen, Bedford, MA, USA) using the NovaLite ANA Kit (ref. no.
704320; Inova/Werfen). Sera were routinely diluted 1:80 and
incubated on 12-well glass slides coated with HEp-2 cells, which
were already fixed and permeabilized by the manufacturer. Bound
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serum antibodies were detected with a ready-to-use solution of anti-
human IgG (fluorescein isothiocyanate, FITC) in conjunction with
DAPI to enable automated focusing. Titrations were performed by
geometrical serial dilutions of the serum samples. The titers and
staining patterns were assessed on-screen using the QUANTA-Link
software (Inova/Werfen) on a calibrated monitor supported by
visual inspection.

Identification and quantification of specific
antibodies

Specific antigen identification was conducted with ELISA using kits
from Thermo Fisher/Phadia (Waltham, MA, USA) [UIRNP (ref. no.
14-5501-01), CENP-B (ref. no. 14-5505-01), SMAG (ref. no. 14-5672-
01), RO-52 (ref. no. 14-5598-01), RO-60 (ref. no. 14-5525-01), SSB (ref.
no. 14-5504-01), SCL (ref. no. 14-5637-01), PM/SCL (ref. no. 14-5602-
01), RIBO (ref. no. 14-5521-01), FBLN (ref. no. 14-5605-01), and RPOI
(ref. no. 14-5599-01)] on ImmunoCAP250 PHADIA Prime version
2.3.11 or kits from Euroimmun (Liibeck, Germany) [ssDNS (ref. no.
EA 1576-9601 G), DES70 (ref. no. EA 159z-9601G), HIAK (ref. no. EA
1560-9601 G), and NUCLEO (ref. no. EA1574-9601 G)] on EUROLab
Workstation ELISA 45 version 2.6.197 strictly following the
manufacturers’ instructions. The results were interpreted according
to the manufacturer’s cutoff.

Antibodies against dsSDNA were detected with the Farr assay
using a kit from IBL (ref. no. RE19011; Hamburg, Germany)
following the manufacturer’s instructions and were measured on
a Gamma-Counter RA-107, PerkinElmer Wizard (Waltham, MA,
USA). All results =7 TU/ml were considered positive, while results
<7 IU/ml were considered negative. Antibodies against NOR90 and
proliferating cell nuclear antigen (PCNA) were detected using
Western blot and radioimmunoassay respectively, according to
the manufacturer’s protocol. For detailed protocols, please refer to
the Supplementary Material.

Staining of primary neuronal cultures

E16-17 embryos were obtained from pregnant Swiss mice
sacrificed by cervical dislocation. The embryonic hippocampi and
partial cortices were isolated and collected in nutrient broth (NB)
medium containing 10 ml B27, 5 ml penicillin/streptomycin, 1.25
ml L-glutamine, and 485 ml neurobasal medium. Thereafter, an N-
medium (50 ml fetal calf serum, 5 ml penicillin/streptomycin, 5 ml
L-glutamine, 10 mM HEPES, 1 mg/ml insulin, 44 mM glucose, and
5 ml collagen G, filled up to 500ml with Dulbecco’s modified Eagle’s
medium) was added and the tissue centrifuged at 800 rpm for 2 min
at 4°C. The pellet was resuspended in N-medium without collagen,
centrifuged again at 800 rpm for 2 min at 4°C, and the cells diluted
in NB starter medium [25 pl Na-glutamate (100 mM)/100 ml NB
medium). Coverslips in 24-well plates were incubated with poly-1-
lysine solution 1:20 in phosphate-buffered saline (PBS) overnight
and then coated with N-medium containing collagen. Finally, the
medium was removed and the cell solution added (8 x 10*/ml). The

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1674907
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Li et al.

cells were incubated for 10-14 days at 37°C and then used
for immunostaining.

For staining, the cells were washed with 10% PBS two times and
fixed with 10% paraformaldehyde (PFA) for 10 min. Consecutively,
neuronal cells were incubated with patient serum diluted 1:200
overnight, followed by incubation with a secondary antibody. For IgG
detection, sections were incubated with Alexa Fluor 488 coupled with
anti-human IgG (cat. 109-545-003; Dianova, Hamburg, Germany).

Staining on fixed and unfixed murine brain
sections

For tissue sections of unfixed mouse brains, the animals were
sacrificed and the brains were removed and snap-frozen in —50°C
cold 2-methyl butane. Fixed brain sections were obtained
transcardially from animals perfused with 4% PFA. Sagittal
sections (20 um) were cut and then stained with patient sera at
1:200 dilution, in line with laboratory routine testing procedures.
For IgG detection, the sections were incubated with Alexa Fluor 488
coupled with anti-human IgG (cat. 109-545-003; Dianova).

Images were taken at x40 magnification using a Leica DMLB
epifluorescence microscope or a Leica SP2 confocal imaging system.
Image analysis was conducted using Image] version 1.54f and
Adobe Photoshop 22.2.0 software. Descriptive statistics were
analyzed in GraphPad Prism (version 9).

Results

We selected ANA-positive sera from 74 patients with 14 individual
HEp-2 cell-classified staining patterns and combinations thereof, as well
as one control serum negative on HEp-2 cells. The samples were tested
for reactivity against CNS epitopes using primary murine neurons and
PFA-fixed and unfixed murine brain sections. All sera showed >1:80
binding to HEp-2 cells and were analyzed for binding against specific
antigens. The samples covered all subgroups with the most established
ANA antigens, including dsDNA, ssDNA (single-stranded DNA),
UIRNP (Ul nuclear ribonucleoprotein particle), CENP-B
(centromere protein B), RO-52 (Ro/SS-A-p52), RO-62 (Ro/SSA-p60),
SSB (La/SS-B), SCL (Scl70/topoisomerase), PM/SCL (polymyositis/
scleroderma), DFS70 (dense fine speckles), HIAK (histone),
NUCLEO (nucleosome), FBLN (fibrillarin), and RPOI (RNA
polymerase I-III). Some sera contained ANAs reactive to more than
one antigen (15/74), mostly belonging to the same particle subgroup
(the hY-RNP subgroup including RO-52, RO-60, and SSB or the
chromatin subgroup including HTAK, NUCLEO, and dsDNA).

Comparisons between the different assays revealed marked
differences (Figure 1), with the overall highest rate of reactivity in
fixed primary hippocampal neurons, where 73 of 74 HEp-2-positive
sera showed an immunofluorescence signal. The sera were in large
part also positive on fixed murine brain sections (93%, 69/74). On
unfixed murine brain sections, only approximately half (54%, 40/74)
of the sera were reactive. Clear differences in the ANA antigen
subgroups regarding reactivity to unfixed tissue were observed. In
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the PM/SCL group and the RPOI group, none of the tested sera (0/5
and 0/2, respectively) showed binding to unfixed tissue. In contrast,
sera of the UIRNP, HIAK, and SCL subgroups were all reactive on
unfixed murine brain tissue, although the small sample sizes prevent
generalizability and require confirmation in larger sample cohorts.
Detailed analysis of the staining patterns across neuronal assays
and comparison to standard HEp-2 patterns showed a number of
differences at the microscopic level (Figures 2A-P). The
characteristic nuclear HEp-2 pattern of majority of the samples
was closely reflected also on cultured mouse neurons (Figure 2,
second column), for example, with the UIRNP (Figure 2C), SSB
(Figure 2G), DFS70 (Figure 2J), HIAK (Figure 2K), or NUCLEO
antibodies (Figure 2L). Similarly, the samples with multiple ANAs
had corresponding staining patterns, such as serum no. 61
(Figure 20) with a nuclear and speckled staining and serum no.
70 (Figure 2P) with a nuclear and homogeneous staining on both
HEp-2 cells and cultured neurons. In the case of the dsDNA-
(Figure 2A) and ssDNA-reactive ANAs (Figure 2B), the nuclear and
speckled patterns were comparable, although the speckles appeared
more contrasted on the neurons for dsDNA and more homogenous
for ssDNA compared with HEp-2 cells. The cytoplasmic Golgi-like
staining of the RO-52 pattern (Figure 2E) was equally seen on
neurons and HEp-2 cells. As RO-52 ANAs rarely stain HEp-2 cells
and show a cytoplasmic Golgi-like pattern (resembling AC-22),
serum no. 21 likely contained additional antibodies, e.g., against
Golgi antigens. In the ANA subgroups RO-60 (Figure 2F), CENP-B
(Figure 2D), SCL (Figure 2H), PM-SCL (Figure 2I), and RPOI
(Figure 2N), the neuronal staining exceeded the HEp-2 nuclear
staining and included parts of the cytoplasm in a fibrillary pattern.
The immunofluorescence staining on PFA-fixed murine brain
sections (Figure 2, third column) was next compared to HEp-2 cells.
For better comparison with the primary mouse neurons derived from
the hippocampus, the staining patterns were evaluated in the
hippocampus of murine brain sections as well. This comparison
showed equivalent findings, in particular when the HEp-2 pattern
was nuclear, such as with UIRNP, DES70, and RPOI (Figures 2C, ], N).
Sera containing ANAs against SSB, HIAK, and NUCLEO (Figures 2G,
K, L) showed the expected nuclear staining, but with more emphasis on
the outer rim on the PFA-fixed murine brain sections. Sera from the
dsDNA and ssDNA (Figures 2A, B) subgroups stained the fixed brain
mostly nuclear, but with a coarser pattern. The PM/SCL sera
(Figure 2I) showed the characteristic nucleolar pattern known from
HEp-2 cells (AC-8 pattern). Other samples showed differences between
the two assays. For example, CENP-B (Figure 2D) spared the nucleoli
on fixed brain compared with HEp-2 cells, and RO-60 (and even more
so RO-52) showed stronger cytoplasmic staining, with RO-52 leaving
out the nucleus entirely (Figures 2E, F). The SCL serum (no. 33) stained
the cytoplasm more homogeneously than on cultured neurons, but
showed intense spots, most likely representing nucleoli (Figure 2H).
Similar nucleolus-like spots were observed only on fixed brain, with
serum no. 70 containing dsDNA and HIAK ANAs, both antigens with
an AC-1 pattern (Figure 2P). Given that the HEp-2 cell assay utilizes
methanol/acetone fixation according to the majority of used
commercial kits whereas PFA is used for the fixation of brain
sections and neuronal cultures, differences in the staining patterns
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FIGURE 1

Reactivity of antinuclear antibody (ANA)-positive patient sera on fixed neurons and both fixed and unfixed brain sections. ANA-positive sera with

different antigens were stained in a dilution of 1:200 on fixed neurons (E16-

17) and on both fixed and unfixed murine brain sections. Bound

immunoglobulin G (IgG) was detected using Alexa Fluor 488-labeled secondary anti-human IgG antibody. Reactivity for each assay is

indicated in green.

due to fixation agents cannot be fully excluded and should be addressed
in future investigations.

Much less signal was detectable on unfixed mouse brain
(Figure 2, fourth column) compared with HEp-2 cells and fixed
neurons for majority of the samples, and sera with PM-SCL and
RPOI ANAs showed no binding at all (Figures 2I, N). Only the
dsDNA-positive sera appeared similar, with a relatively
homogenous nuclear pattern (Figure 2A). In contrast, subgroups
ssDNA, CENP-B, RO-52, RO-60, SSB, SCL, DFS70, HIAK, and
NUCLEO (Figures 2B, D-H, J-L) showed less evenly distributed
speckling in the nucleus, giving the impression of spared nucleoli.
Such patterns were not observed on HEp-2 cells, cultured neurons,
or fixed brain sections, underlining the influence of tissue
preparation for the diagnostic assays.

Comparison of all four assays revealed that only individual
ANAs showed comparable staining patterns. The FBLN sera
presented a distinct dotted nucleolar staining across all assays and
fixation methods (Figure 2M). Similarly, the UIRNP sera had a
relatively uniform speckled nuclear pattern, although weaker on
unfixed brain (Figure 2C). In general, the staining patterns were
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most comparable between HEp-2 cells and fixed cultured primary
neurons, often also on fixed mouse brain, while unfixed brain
demonstrated the least overlap.

Discussion

In this study, we collected ANA-positive sera with well-
characterized HEp-2 patterns and conducted a comparative
mapping to the CNS tissue, utilizing fixed and unfixed murine
brain sections and primary murine neurons. Of the 74 ANA-
positive sera falling into 14 pattern categories, almost all samples
reacted with fixed primary neurons, demonstrating comparable
staining patterns. Fixed brain sections also recognized majority of
the ANAs with similar patterns, despite some differences in the
speckling and intensity of nuclear staining. In contrast, unfixed
mouse brain reacted with only half of the well-defined ANA-
positive sera, and the nuclear speckling was generally less
homogeneous. As fixation preserves and stabilizes the tissue
architecture, the lower reactivity of ANAs in unfixed tissue is in
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Histological comparison of the staining patterns of patient sera on HEp-2 cells and central nervous system (CNS) tissue. (A—P) The staining patterns
of HEp2-reactive patient sera (first column) were compared to the staining on primary neurons (second column) and on fixed and unfixed brain
sections (third and fourth columns). For the brain sections, representative regions from the hippocampus are shown. When available, one reactive
serum per group is depicted. In the last two rows (sample no. 61 and no. 70), examples of two sera with combined reactivity against multiple

antigens are shown

line with this principle. The detailed staining differences observed
between the methanol/acetone-fixed HEp-2 cells and the PFA-fixed
neuronal tissues likely reflect the distinct manner in which these
fixation methods preserve antigenic structures and conformations.

The almost complete recognition by fixed cultured neurons
suggests that the majority of ANAs can interact with neural
components. This revives the “old” unanswered question of
whether they can exert pathological effects on neurons leading to
neurological symptoms. In AQP4 antibody-positive patients with
NMOSD, ANA seropositivity was correlated with poor clinical
outcomes (8). In a recent study that examined autoimmune
mechanisms in psychotic syndromes, almost one-fourth of the
patients were HEp-2 ANA-positive, which correlated with the
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MRI pathologies (11). More work has been done in
rheumatological conditions, where certain ANAs were found to
be associated with the occurrence of neuropsychiatric SLE (NPSLE).
For example, dsDNA antibodies typically found in SLE can cross-
react with the NR2 subunit of the NMDAR and exert pathogenic
effects by prolongation of the excitatory synaptic transmission, thus
driving excitotoxic neuronal death (2, 12). The NR2 antibody levels
in the cerebrospinal fluid (CSF) were higher in patients with NPSLE
compared with the non-SLE controls. Similarly, the UIRNP ANAs
in the CSF were linked to NPSLE (13), and cross-reactive ANAs
against ribosomal P were associated with NPSLE and caused a
depression phenotype in mice (14-16). Finally, the well-known
anti-Hu antibody (type 1 anti-neuronal nuclear antibody, ANNA-1),
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which is a biomarker of paraneoplastic neurological syndromes, has
been recently shown to directly cause neuronal dysfunction (17).
These studies collectively suggest that ANAs may contribute to
neurological symptoms. Confirmation, however, awaits further
detailed experimental and clinical research, including the
generation of patient-derived monoclonal ANAs and their use in
functional assays and animal models.

The mapping of the ANAs on CNS tissues presented here may
provide an initial framework to explore their characteristics. First
and foremost, we documented how strongly and specifically ANA
reactivity depends on the fixation of the rodent tissue. While the PM/
SCL antibody-positive sera demonstrated a distinct nucleolar
staining pattern on HEp-2 cells and fixed tissue, they completely
lacked binding to unfixed mouse brain. Thus, fixation and
permeabilization appear necessary to expose the PM/SCL epitopes,
which are components of the human exosome involved in the
processing of 5.8S rRNA (18). The main PM/SCL target antigen
presumably is a localized o-helical secondary structure within the
PM/SCL-100 protein (19). Its subcellular localization within a larger
exosomal protein complex likely restricts accessibility under unfixed
conditions. Similarly, the RPOI antibodies directed against RNA
polymerases that are ubiquitously present in tissues including the
brain did not show reactivity without fixation. In contrast, the
UIRNP subgroup exhibited consistent reactivity across all
neuronal assays, including unfixed murine brain. This observation
aligns with the highly conserved nature of the UIRNP antigen Ul-
70K, which is part of the small nuclear ribonucleoproteins (snRNPs)
that play a central role in pre-mRNA splicing (20). Similarly, with
the FBLN ANAs, the underlying antigen fibrillarin is a highly
conserved protein component of the snRNP complex, and the
distinct dotted nucleolar pattern was visible across all fixation and
assay conditions. Our findings therefore highlight the challenges in
interpreting ANA diagnostics when searching for anti-neuronal
autoantibodies using different tissues. It will be interesting to
determine whether a reduced background from ANA binding can
facilitate the diagnostics of some neuronal targets using unfixed
murine brain sections.

Throughout the literature, the term ANA has not always been
used consistently, with some suggesting only using ANA for HEp-2
indirect immunofluorescence assay (IFA). Here, we refer to CNS-
specific ANAs as a group of autoantibodies that bind to the
neuronal nuclei that are not detectable on HEp-2 cells. Assay
differences may be particularly relevant for this particular group
of ANAs. CNS-specific ANAs were more prevalent in multiple
sclerosis compared with NMOSD or healthy controls (10, 21), and
single cases suggested that CNS-specific ANAs may contribute to
neuropsychiatric abnormalities, such as progressive cognitive
decline (22). This relatively new concept can drive research on
novel autoantibodies targeting the nuclei of brain cells, as these are
—in contrast to “normal” HEp-2 ANAs—more likely to induce
neuropathology and clinical symptoms. Future work could include
the immunoblotting and immunoprecipitation of brain tissue
fractions combined with proteomic analyses to identify neuronal
ANA targets, ideally supported by monoclonal antibodies
for verification.
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Taken together, the present study describes the spectrum of
well-established HEp-2 ANAs binding to neuronal structures and
identified important differences related to tissue fixation and
underlying autoantigens. The foundational comprehensive
mapping of ANA binding in CNS tissue provided here can
facilitate the recognition of CNS-specific ANAs and the detection
of neuronal autoantibodies that are potentially obscured by ANAs
and is a starting point for estimating the potential association with
clinical symptoms. While the current study focused on the
histological comparison of different ANA patterns, future work
should also attempt to correlate these ANA patterns and titers with
neuropsychiatric symptoms. Future studies should explore in detail
the association with certain neurological manifestations, but should
also utilize patient-derived monoclonal antibodies for functional
assays and in vivo models in order to understand the role of ANAs
in neuronal pathology.
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Glossary
dsDNA

ssDNA

UIRNP

CENPB

SMAG

RO52

RO62

SSB

SCL

double-stranded DNA

single-stranded DNA

U1 nuclear ribonucleoprotein particle

centromere protein B

Smith antigen

Ro/SS-A-p52 (Sjorgen’s syndrome-related antigen A)
Ro/SS-A-p60 (Sjorgen’s syndrome-related antigen A)
La/SS-B (Sjorgen’s syndrome-related antigen B)

Scl-70/topoisomerase I (scleroderma, extractable 70-
kDa fragment)

Frontiers in Immunology

09

PM/SCL

DFS70

HIAK
NUCLEO
PCNA
RIBO
FBLN
RPOI

NOR90

10.3389/fimmu.2025.1674907

PM/Scl (polymyositis/scleroderma)

DFS70/LEDGF, dense fine speckles/lens epithelium-derived
growth factor

histone

nucleosome

cyclin, auxiliary protein of DNA polymerase delta
ribosomal P proteins

fibrillarin

RNA polymerase I-III

NOR-90/human upstream binding factor 1 (hUBF-1)

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1674907
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Binding of established antinuclear antibodies to neurons depends on tissue fixation and underlying autoantigens
	Introduction
	Methods
	Patients and samples
	Staining of serum samples on HEp-2 cells
	Identification and quantification of specific antibodies
	Staining of primary neuronal cultures
	Staining on fixed and unfixed murine brain sections

	Results
	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References
	Glossary


