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Accurately assessing and quantifying immune competence in cancer patients
remains a major challenge in tumor immunology. Traditional intratumoral
immune profiling, such as tissue pathology and tissue-based cytometry
techniques, faces significant challenges due to difficulties in tissue sampling,
spatial heterogeneity, and technical limitations. In contrast, peripheral blood
immune profiling is a more practical and reproducible approach, providing
valuable insights into systemic immune status. This article introduces a novel
immune structural model, inspired by protein structural hierarchy, to classify
immune components into three hierarchical levels: primary, secondary, and
tertiary immune structures. We hypothesize that this model can provide a
systematic framework for constructing an immune scoring system (ISS) that
integrates multi-dimensional immune information from flow cytometry, cytokine
profiling, and immune checkpoint molecule assessments. The proposed model
offers a new way to assess immune status and could serve as a valuable tool for
clinical personalized treatment and prognostic evaluation.

peripheral blood immune profiling, immune structural model, immune scoring system,
tumor immune microenvironment, immunotherapy biomarkers

1 Introduction

The tumor immune microenvironment (TME) is an intricate and dynamic network
consisting of various cell types, signaling molecules, and cellular interactions (1). Unlike
normal tissue, the TME is characterized by a diverse and evolving composition that can
drastically influence tumor progression, immune surveillance, and therapeutic outcomes.
The complexity of the TME arises from the following factors:
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1.1 Cellular heterogeneity

The TME contains a broad spectrum of immune and non-immune
cells, each playing distinct roles in either supporting or inhibiting
tumor progression. Immune cells in the TME include cytotoxic T
lymphocytes (CTLs), regulatory T cells (Tregs), B cells, natural killer
(NK) cells, macrophages, and dendritic cells (DCs) (2). These immune
cells do not only interact with tumor cells but also with other non-
immune stromal cells like fibroblasts, endothelial cells, and the
extracellular matrix, creating a highly heterogeneous and constantly
changing microenvironment. The functional state and activation of
these immune cells are influenced by various molecular signals and
environmental factors within the TME (3).

1.2 Molecular signaling networks

In the TME, immune cells are constantly exposed to tumor-
secreted factors, such as cytokines, chemokines, and growth factors,
which profoundly shape their behavior. Tumor cells often secrete
immunosuppressive cytokines like TGF-f3 and IL-10, which promote
immune tolerance and inhibit anti-tumor immunity. On the other
hand, pro-inflammatory cytokines such as IL-2, IFN-y, and TNF-o. are
essential for activating immune responses. The balance between these
pro-inflammatory and immunosuppressive signals plays a critical role
in determining whether the immune response in the TME will lead to
tumor control or immune evasion (4).

1.3 Immune evasion mechanisms

Tumor cells are adept at modulating the immune
microenvironment to escape immune detection. This occurs
through various mechanisms, including immune checkpoint
activation (e.g., PD-1/PD-L1, CTLA-4, LAG-3) and the
recruitment of Tregs and myeloid-derived suppressor cells
(MDSCs), which inhibit immune activation. These immune
evasion strategies are particularly evident in the case of immune
checkpoint inhibitors (ICIs), which have shown promising
therapeutic potential in certain cancers but often encounter
resistance due to complex immune suppression in the TME.
Therefore, understanding the multi-layered immune interactions
within the TME is essential for developing more effective and
personalized therapeutic approaches (5).

1.4 Tumor-stroma interaction

Beyond immune cells, the TME is influenced by various non-
immune stromal cells, including fibroblasts, endothelial cells, and
extracellular matrix components, which all contribute to the
immune and tumor microenvironment. Cancer-associated
fibroblasts (CAFs), for instance, secrete factors that modify
immune cell behavior and tumor cell survival, while endothelial
cells promote angiogenesis to supply the growing tumor with
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nutrients. These stromal components can also help in immune
evasion by physically and chemically shielding tumor cells from
immune cells or by recruiting immunosuppressive cells to the TME.

1.5 Spatio-temporal dynamics of the TME

The TME is not static but evolves dynamically over time,
especially in response to therapeutic interventions. Spatial
heterogeneity within the tumor tissue adds another layer of
complexity, as different areas of the tumor may exhibit varying
immune cell infiltrates and molecular signals. The central tumor
region may be poorly oxygenated, leading to immune suppression,
while the periphery of the tumor may exhibit higher levels of immune
cell activity. Understanding these spatial and temporal changes is
crucial for designing therapies that can target the immune system at
multiple levels, from the cellular to the molecular.

2 Tumor local immune profiling
challenges and peripheral blood
immune profiling advantages

While intratumoral immune profiling offers the most direct
assessment of local immune status, it faces significant technical and
operational challenges:

a. Sampling difficulties: Solid tumor biopsies often provide
minimal tissue samples and may not represent the entire
tumor's immune environment.

b. Spatial heterogeneity: Different regions within a tumor may
have significantly different immune profiles, and localized
profiling may not reflect the overall immune landscape of
the tumor.

c. Technical limitations: Existing technologies, such as tissue-
based cytometry techniques and immunohistochemistry,
fail to comprehensively and accurately assess immune cell
functions and interactions.

In contrast, peripheral blood immune profiling offers the
following advantages:

a. Ease of sampling: Blood collection is non-invasive, and it
can be repeated multiple times, providing an opportunity
for longitudinal monitoring.

b. High reproducibility: Peripheral blood sampling allows for
dynamic immune monitoring, enabling real-time tracking of
changes in the immune system over the course of treatment.

c. Operational practicality: Technologies like flow cytometry
and cytokine profiling can accurately assess immune cell
types, subtypes, and their functional states in peripheral
blood, providing valuable clinical insights.

Studies have shown that immune cell populations in peripheral
blood (such as T cells, Tregs, and B cells) correlate with responses to
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immunotherapy (6-9). Especially in situations where intratumoral
immune profiling is limited, peripheral blood immune profiling
provides an important complement for evaluating therapeutic
efficacy and prognostic outcomes (10).

3 Immune structural model: inspired
by protein structural hierarchy

Proteins possess a primary structure (amino acid sequence), a
secondary structure (ot-helix, B-sheet), and a tertiary structure (3D
conformation of molecules), which dictates their function through
hierarchical organization (11). Drawing inspiration from this, we
propose that immune information can also be stratified into three
hierarchical levels as shown in Figure 1:

3.1 Primary immune structure — basic
immune cell types

Peripheral blood analysis can assess basic immune cell populations,
such as CD4+ T cells and CD8+ T cells, which are central to anti-tumor
immunity. The dynamic balance between these two cell types is
essential for overall immune function. Their proportions and
numbers are fundamental indicators of immune status. Additionally,
B cells and NK cells can be included as Primary indicators.

3.2 Secondary immune structure —
subclassification of immune cell
populations

Within the primary immune compartments, further categorization
of immune cells into functional subsets provides deeper insights into
immune function:

a. CD4+ T cell subsets: Thl, Th2, Th17, Treg, etc.

b. CD8+ T cell subsets: Activated T cells (e.g., CD69+),
memory T cells (CD45RO+), naive T cells (CD45RA+).

c. B cells and NK cells: Further subclassification into memory,
plasma, and cytotoxic/activated types.

This level of analysis provides a clearer understanding of how
immune cells contribute to effective anti-tumor responses.

3.3 Tertiary immune structure — molecular
and cytokine interactions beyond cellular
composition, immune function is regulated
by molecular interactions and cytokine
networks

a. Immune checkpoint molecules: PD-1, CTLA-4, LAG-3, etc.

Frontiers in Immunology

10.3389/fimmu.2025.1675411

b. Cytokine environment: Pro-inflammatory cytokines
(e.g., IL-2, IFN-y), immunosuppressive cytokines (e.g., IL-
10, TGE-B).

¢. Immune proteomics: Profiling peripheral blood proteins for
immune activation or suppression markers.

The integration of these three levels (primary, secondary,
tertiary) forms a comprehensive approach to quantifying immune
function and provides a systematic method for immune scoring.

4 Constructing the peripheral blood
immune scoring system

Based on the proposed immune structural model, we suggest
constructing a multi-level, weighted immune scoring system:

ISS=wlx(Primary Score)+w2x(Secondary Score)+w3x
(Tertiary Score).

a. Primary Score (PS): Based on the proportions or numbers
of CD4+ / CD8+ T cells, reflecting the foundation of
immune status.

b. Secondary Score (SS): Derived from the fine sub-
populations of CD4+ and CD8+ T cells, including
functional differentiation (e.g., Thl, Th2, Treg), activation
(e.g., CD69+), and memory T cells (CD45RO+).

c. Tertiary Score (TS): Quantifies the expression levels of
immune checkpoint molecules (e.g., PD-1, LAG-3) and
cytokines (e.g., IL-2, IFN-y, IL-10).

4.1 Weighting the scores

1. Primary Structure is the most fundamental and should
carry the largest weight, as it represents the basic immune
equilibrium between major immune cell types (e.g., T cells).
We recommend assigning a higher weight to this level, e.g.,
wl =0.5.

2. Secondary Structure provides more detailed functional
information and is important for evaluating immune
activation status. The weight for this level could be
moderate, e.g., w2 = 0.3.

3. Tertiary Structure provides valuable molecular insights but
is supplementary to the cellular-based scores. This level
should have a smaller weight, e.g., w3 = 0.2.

These weightings should be further optimized through clinical
validation studies, where the optimal coefficients can be determined
based on large-scale data. The methods and platforms are shown in
Table 1. The workflow and schematic diagram of flow cytometric
analysis of immune cell subsets and cytokine detection are shown
in Figure 2.
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FIGURE 1

Conceptual three-tier immune structural model for peripheral blood immune profiling and ISS. ISS, Immune Scoring System; NK cell, natural killer
cell; Th, T helper cell; Treg, regulatory T cell; Breg, regulatory B cell; IL-2, interleukin 2; IL-4, interleukin 4; IFN-y, interferon-y; TNF-o, tumor
necrosis factor-o; PD-1, programmed death 1; PD-L1, programmed death ligand 1.

5 Clinical and research applications
5.1 Guiding immunotherapy decisions

The ISS can help predict which patients will respond best to
immune checkpoint inhibitors (PD-1/PD-L1, CTLA-4, etc.) or
other immunotherapies.
5.2 Longitudinal immune monitoring

Tracking the ISS over time can provide insights into immune

dynamics during treatment, offering a tool for assessing immune
response and resistance.

5.3 Prognostic and risk stratification

The ISS could serve as a biomarker for predicting cancer
progression, survival rates, and overall prognosis, helping
clinicians manage treatment strategies more effectively.

5.4 Enhancing immunobiology research

The ISS offers a standardized way to integrate peripheral blood
immune data and allows for comparative studies across different
research groups, fostering a better understanding of tumor
immune environments.

Frontiers in Immunology

6 Innovations and limitations
6.1 Innovations

a. The immune structural model is the first to apply a three-
tiered system to classify immune status in peripheral blood,
based on functional immune cells, their subtypes, and
molecular interactions.

b. This model facilitates detailed yet practical immune
assessment using routine clinical blood samples.

6.2 Limitations

a. The model requires validation through large-scale clinical
studies to establish the most reliable biomarkers and
weightings for scoring.

b. While peripheral blood offers valuable insights, it may not
fully replicate the local immune status within the tumor
microenvironment, and the ISS should be used in
conjunction with other clinical and pathological data.

7 Discussion

7.1 Relationship to established blood-based
indices

Several simple blood-derived indices have been widely studied
as prognostic or predictive biomarkers in oncology, including the
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TABLE 1 Candidate features for the ISS: definitions, measurement platforms, and expected directionality.

Feature (marker examples)

Measurement
platform

Unit /
readout

10.3389/fimmu.2025.1675411

Expected
directionality

CD3+, CD4+, CD8+ T cell counts; CD4:CDS8 ratio; CD19+ B cells;

P
MY CDs6+ NK cells
CD4+ Treg (CD25+FoxP3+ or CD25+CD127Alow); Th1/Th2/Th17
Secondary | subsets; CD8+ memory/naive (CD45RO/CD45RA); activation
(CD69, HLA-DR, CD38); Breg (CD19+CD24/hiCD38hi)
Tertia Immune checkpoints (PD-1, PD-L1, CTLA-4, LAG-3, TIM-3);
il cytokines (IL-2, IFN-y, TNF-o,, IL-6, IL-10, TGF-B); serum LDH
Other Myeloid-derived suppressor cells (CD11b+CD33+HLA-DRAlow);
candidates = CRP; ESR

CBG; flow cytometry

Multicolor flow cytometry;
intracellular cytokine staining

Flow cytometry (surface);
ELISA, Luminex, MSD
multiplex assays; clinical
chemistry

Flow cytometry; clinical
chemistry

cells/uL; % of
lymphocytes

% of parent
subset; MFI
(marker

expression)

% positive cells;
pg/mL; U/L
(for LDH)

cells/uL; mg/L

(example)

Low lymphocyte or high
neutrophil/platelet counts —
adverse prognosis

High Treg% —
immunosuppression; high
activated CD8+% — favorable
immune activation

Elevated IL-10/TGF-B—
immunosuppression; elevated
IFN-y/IL-2 — immune
activation

High MDSCs or elevated CRP/
ESR — systemic
immunosuppression

ISS, Immune Scoring System; CBC, Complete blood count; Treg, regulatory T cell; Foxp3, forkhead box P3; Th, T helper cell; HLA-DR, human leukocyte antigen DR; Breg, regulatory B cell; MFI,
mean fluorescence intensity; PD-1, programmed death 1; PD-L1, programmed death ligand 1; CTLA-4, cytotoxic T lymphocyte associated protein 4; LAG-3, lymphocyte activation gene 3; Tim-3, T cell
immunoglobulin and mucin domain containing 3; IL-2, interleukin 2; IFN-y, interferon-y; TNF-t, tumor necrosis factor-o; IL-6, interleukin 6; IL-10, interleukin 10; TGF-B, transforming growth
factor-f; LDH, lactate dehydrogenase; ELISA, enzyme linked immunosorbent assay; MSD, meso scale discovery; CRP, c-reactive protein; ESR, erythrocyte sedimentation rate; MDSCs, myeloid derived

suppressor cells;

neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR),
platelet-to-lymphocyte ratio (PLR), systemic immune-
inflammation index (SII), and the lung immune prognostic index
(LIPI) (12). These indices are attractive because they can be
calculated from routine complete blood counts and have been
associated with outcomes across multiple tumor types. However,
they capture only gross features of systemic inflammation or
myeloid/lymphoid balance and do not directly represent immune
functional states, cellular subsets, or molecular checkpoint activity.
By design, the ISS proposed here complements these indices by
integrating three hierarchical layers of immune information (basic
immune cell populations, functional/phenotypic subsets, and
molecular/cytokine signals) into a composite metric that aims to
better reflect immune competence and treatment-relevant biology,
as shown in Table 2. Where simple indices (e.g., NLR, SII, LIPI)
provide rapid screening and risk stratification, ISS is intended to
provide greater mechanistic resolution and clinical granularity,
particularly for immunotherapy decision-making and longitudinal
immune monitoring.

7.2 Data-driven derivation of ISS weights
and model development

The numeric weights used in the illustrative ISS (w1, w2, w3)
are placeholders for conceptual demonstration. For clinical
implementation, we propose a data-driven derivation and
validation workflow. Candidate features will include primary
counts (e.g., absolute CD4/CD8, CD4:CD8 ratio, NK and B cell
counts), secondary phenotypes (e.g., %Treg, %memory CDS,
activation markers), and tertiary measures (e.g., PD-1 expression,
circulating cytokine concentrations). Feature selection and weight
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estimation should be performed in a derivation cohort using
penalized regression approaches (e.g., LASSO or elastic net) or
other regularized/statistical learning methods, with model tuning
performed by nested cross-validation to avoid optimistic bias.
Model performance should be evaluated using discrimination
measures (AUC for binary outcomes; C-index for time-to-event
outcomes), calibration plots, and decision curve analysis. Final
weights and the scoring algorithm must be locked before testing
in an independent validation cohort. Pre-specified clinical
endpoints for optimization and validation might include overall
survival (OS), progression-free survival (PFS), and objective
response rate (ORR); time points and censoring rules should be
pre-defined following standard reporting guidelines for prediction
modeling (e.g., TRIPOD-style recommendations).

7.3 Pre-analytical and technical
considerations

Peripheral immune profiling is sensitive to pre-analytical and
analytical variation. Prior studies have shown that blood processing
delays, tube type, temperature during transport, and processing
protocols can materially affect both cytokine measurements and
flow cytometric readouts. To improve reproducibility and to
facilitate multi-center validation, we recommend defining and
reporting minimal pre-analytical standards: (1) specify
anticoagulant/tube type for each assay; (2) record time from
venipuncture to processing and aim for processing within 2-4
hours when feasible; (3) standardize sample handling temperature
(room temperature vs refrigerated) and centrifugation protocols for
plasma/serum; (4) use standardized panels with published gating
strategies and include internal controls; and (5) include replicate
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FIGURE 2

The workflow and schematic diagram of flow cytometric analysis of immune cell subsets and cytokine detection.

TABLE 2 Comparison of existing blood-based indices versus the proposed ISS.

Formula /

Typical use Strengths Limitations How ISS complements
components yp 9 P
Simple, Non-specific; reflects ISS incorporates lymphocyte
NLR Neutrophils / Lymphocytes Prognosis across cancers inexpensive, inflammation but not subsets, functional differentiation,
routinely available functional immune status | and molecular checkpoints
Similar limitations as
Simple, availabl ISS adds i hy d
PLR Platelets / Lymphocytes Prognosis, thrombosis-related risk f::)nnlj zBagal able NLR; does n'ot (.:apture cytoal‘(in: :::::::e phenotype an
immune activation states
Int tes th Still reflect:
(Platelets x Neutrophils) / Prognostic biomarker in multiple Tiegrates tiree . refiec AS coarse ISS provides multi-dimensional
SII blood count inflammation rather than L .
Lymphocytes cancers . . X mechanistic resolution
parameters functional immunity
Limited scope; lacks . .
Neutrophils / (Leuke - Simple, validated i ISS des checkpoint and
dNLR eutrop l s / (Leukocytes Used in LIPI and ICI studies mple, vaiidated molecular and subset p1j0v1 e c.ec P 01n' an
Neutrophils) ICI cohorts detail cytokine-level information
. . Combines systemic | Specific to certain ISS is generalizable, mechanistic,
P tic ind NSCLC
LIPI dNLR + LDH ro.gnos e ndexin inflammation and settings; limited and can be applied across tumor
patients on ICIs T
tumor burden mechanistic insight types
. . L L Multi-layered, . e e
1SS Weighted composite of Predictive/prognostic biomarker, imechanisticall Requires validation; more = Complements existing indices by
isti
(proposed) Primary, Secondary, and immunotherapy decision-making, informed s resource-intensive than offering functional and molecular
Prop Tertiary immune structures | longitudinal monitoring ’ CBC resolution
adaptable

ISS, immune scoring system; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; CBC, complete blood count; SII, systemic immune-inflammation index; dNLR, derived
neutrophil-to-lymphocyte ratio; LIPI, lung immune prognostic index; ICIs, immune checkpoint inhibitors; LDH, lactate dehydrogenase; NSCLC, non-small cell lung cancer;
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measures or internal reference samples for longitudinal studies.
Adopting and reporting these standards will reduce methodological
heterogeneity and improve comparability between cohorts.

7.4 Clinical covariates and confounder
control

Because peripheral immune measures are affected by clinical status
and concurrent medications, analytical models assessing ISS
performance should adjust for plausible confounders. At minimum,
we recommend collecting and adjusting for: age, sex, tumor type and
stage, tumor burden (radiographic or measurable disease), ECOG
performance status, baseline systemic inflammation markers (CRP,
ESR), recent infections, chemotherapy/immunotherapy history, and
concurrent medications known to affect immune parameters (systemic
corticosteroids, proton pump inhibitors, immunosuppressants).
Statistical approaches should include multivariable regression (Cox
proportional hazards for time-to-event endpoints) and sensitivity
analyses stratified by key factors (e.g., steroid use yes/no).
Propensity-score adjustment or inverse probability weighting may be
considered in observational cohorts where treatment allocation or
supportive medications differ between groups.

7.5 Validation strategy and proposed
clinical use cases

To establish clinical utility, ISS development should follow a
two-stage strategy: (1) derivation (training) phase and (2)
independent validation phase. In the derivation phase, candidate
features and weights will be estimated using one or more well-
annotated cohorts with pre-specified clinical endpoints (e.g., OS,
PFS, ORR). Internal validation methods (cross-validation,
bootstrap) will be used during model building to limit overfitting.
The finalized scoring algorithm must then be tested in at least one
external validation cohort from a separate institution or clinical trial
to assess generalizability; performance metrics should include
discrimination (C-index, AUC), calibration (calibration slope and
plots), and clinical net benefit (decision curve analysis). For
dynamic monitoring, time-dependent ROC analyses and joint
models or landmark analyses can be used to quantify how
longitudinal changes in ISS relate to subsequent outcomes.

Potential clinical use cases to test in validation studies include:

a. Baseline ISS as a predictive biomarker to enrich or stratify
patients for immune checkpoint inhibitors.

b. Early on-treatment ISS change as an indicator of response
vs. resistance (to guide continuation vs. switch of therapy).

c. Longitudinal ISS trajectories for relapse surveillance after
curative-intent therapy.

Sample size considerations and number-of-events rules should

follow standard practice for prediction models (e.g., ensuring
adequate events per variable during derivation). External

Frontiers in Immunology

10.3389/fimmu.2025.1675411

validation is essential for assessing reproducibility and
transportability prior to clinical implementation.

8 Conclusion

The proposed immune structural model provides a novel
framework for understanding and quantifying immune function
in cancer patients using peripheral blood. By integrating immune
cell composition, functional subtypes, and molecular signals, this
model facilitates the development of a comprehensive ISS, which
could significantly impact clinical decision-making for cancer
immunotherapy and precision medicine. Future research should
focus on validating this scoring system across various cancer types
and integrating it into clinical practice.
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