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A novel multi-layered immune
structural model for peripheral
blood immune scoring in
cancer patients: perspective
and hypothesis
Hao Jin*

Clinical Research Management Department, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
Accurately assessing and quantifying immune competence in cancer patients

remains a major challenge in tumor immunology. Traditional intratumoral

immune profiling, such as tissue pathology and tissue-based cytometry

techniques, faces significant challenges due to difficulties in tissue sampling,

spatial heterogeneity, and technical limitations. In contrast, peripheral blood

immune profiling is a more practical and reproducible approach, providing

valuable insights into systemic immune status. This article introduces a novel

immune structural model, inspired by protein structural hierarchy, to classify

immune components into three hierarchical levels: primary, secondary, and

tertiary immune structures. We hypothesize that this model can provide a

systematic framework for constructing an immune scoring system (ISS) that

integrates multi-dimensional immune information from flow cytometry, cytokine

profiling, and immune checkpoint molecule assessments. The proposed model

offers a new way to assess immune status and could serve as a valuable tool for

clinical personalized treatment and prognostic evaluation.
KEYWORDS

peripheral blood immune profiling, immune structural model, immune scoring system,
tumor immune microenvironment, immunotherapy biomarkers
1 Introduction

The tumor immune microenvironment (TME) is an intricate and dynamic network

consisting of various cell types, signaling molecules, and cellular interactions (1). Unlike

normal tissue, the TME is characterized by a diverse and evolving composition that can

drastically influence tumor progression, immune surveillance, and therapeutic outcomes.

The complexity of the TME arises from the following factors:
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1.1 Cellular heterogeneity

The TME contains a broad spectrum of immune and non-immune

cells, each playing distinct roles in either supporting or inhibiting

tumor progression. Immune cells in the TME include cytotoxic T

lymphocytes (CTLs), regulatory T cells (Tregs), B cells, natural killer

(NK) cells, macrophages, and dendritic cells (DCs) (2). These immune

cells do not only interact with tumor cells but also with other non-

immune stromal cells like fibroblasts, endothelial cells, and the

extracellular matrix, creating a highly heterogeneous and constantly

changing microenvironment. The functional state and activation of

these immune cells are influenced by various molecular signals and

environmental factors within the TME (3).
1.2 Molecular signaling networks

In the TME, immune cells are constantly exposed to tumor-

secreted factors, such as cytokines, chemokines, and growth factors,

which profoundly shape their behavior. Tumor cells often secrete

immunosuppressive cytokines like TGF-b and IL-10, which promote

immune tolerance and inhibit anti-tumor immunity. On the other

hand, pro-inflammatory cytokines such as IL-2, IFN-g, and TNF-a are

essential for activating immune responses. The balance between these

pro-inflammatory and immunosuppressive signals plays a critical role

in determining whether the immune response in the TME will lead to

tumor control or immune evasion (4).
1.3 Immune evasion mechanisms

Tumor cells are adept at modulating the immune

microenvironment to escape immune detection. This occurs

through various mechanisms, including immune checkpoint

activation (e.g., PD-1/PD-L1, CTLA-4, LAG-3) and the

recruitment of Tregs and myeloid-derived suppressor cells

(MDSCs), which inhibit immune activation. These immune

evasion strategies are particularly evident in the case of immune

checkpoint inhibitors (ICIs), which have shown promising

therapeutic potential in certain cancers but often encounter

resistance due to complex immune suppression in the TME.

Therefore, understanding the multi-layered immune interactions

within the TME is essential for developing more effective and

personalized therapeutic approaches (5).
1.4 Tumor-stroma interaction

Beyond immune cells, the TME is influenced by various non-

immune stromal cells, including fibroblasts, endothelial cells, and

extracellular matrix components, which all contribute to the

immune and tumor microenvironment. Cancer-associated

fibroblasts (CAFs), for instance, secrete factors that modify

immune cell behavior and tumor cell survival, while endothelial

cells promote angiogenesis to supply the growing tumor with
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nutrients. These stromal components can also help in immune

evasion by physically and chemically shielding tumor cells from

immune cells or by recruiting immunosuppressive cells to the TME.
1.5 Spatio-temporal dynamics of the TME

The TME is not static but evolves dynamically over time,

especially in response to therapeutic interventions. Spatial

heterogeneity within the tumor tissue adds another layer of

complexity, as different areas of the tumor may exhibit varying

immune cell infiltrates and molecular signals. The central tumor

region may be poorly oxygenated, leading to immune suppression,

while the periphery of the tumor may exhibit higher levels of immune

cell activity. Understanding these spatial and temporal changes is

crucial for designing therapies that can target the immune system at

multiple levels, from the cellular to the molecular.
2 Tumor local immune profiling
challenges and peripheral blood
immune profiling advantages

While intratumoral immune profiling offers the most direct

assessment of local immune status, it faces significant technical and

operational challenges:
a. Sampling difficulties: Solid tumor biopsies often provide

minimal tissue samples and may not represent the entire

tumor's immune environment.

b. Spatial heterogeneity: Different regions within a tumor may

have significantly different immune profiles, and localized

profiling may not reflect the overall immune landscape of

the tumor.

c. Technical limitations: Existing technologies, such as tissue-

based cytometry techniques and immunohistochemistry,

fail to comprehensively and accurately assess immune cell

functions and interactions.
In contrast, peripheral blood immune profiling offers the

following advantages:
a. Ease of sampling: Blood collection is non-invasive, and it

can be repeated multiple times, providing an opportunity

for longitudinal monitoring.

b. High reproducibility: Peripheral blood sampling allows for

dynamic immunemonitoring, enabling real-time tracking of

changes in the immune system over the course of treatment.

c. Operational practicality: Technologies like flow cytometry

and cytokine profiling can accurately assess immune cell

types, subtypes, and their functional states in peripheral

blood, providing valuable clinical insights.
Studies have shown that immune cell populations in peripheral

blood (such as T cells, Tregs, and B cells) correlate with responses to
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immunotherapy (6–9). Especially in situations where intratumoral

immune profiling is limited, peripheral blood immune profiling

provides an important complement for evaluating therapeutic

efficacy and prognostic outcomes (10).
3 Immune structural model: inspired
by protein structural hierarchy

Proteins possess a primary structure (amino acid sequence), a

secondary structure (a-helix, b-sheet), and a tertiary structure (3D

conformation of molecules), which dictates their function through

hierarchical organization (11). Drawing inspiration from this, we

propose that immune information can also be stratified into three

hierarchical levels as shown in Figure 1:
3.1 Primary immune structure — basic
immune cell types

Peripheral blood analysis can assess basic immune cell populations,

such as CD4+ T cells and CD8+ T cells, which are central to anti-tumor

immunity. The dynamic balance between these two cell types is

essential for overall immune function. Their proportions and

numbers are fundamental indicators of immune status. Additionally,

B cells and NK cells can be included as Primary indicators.
3.2 Secondary immune structure —
subclassification of immune cell
populations

Within the primary immune compartments, further categorization

of immune cells into functional subsets provides deeper insights into

immune function:
Fron
a. CD4+ T cell subsets: Th1, Th2, Th17, Treg, etc.

b. CD8+ T cell subsets: Activated T cells (e.g., CD69+),

memory T cells (CD45RO+), naïve T cells (CD45RA+).

c. B cells and NK cells: Further subclassification into memory,

plasma, and cytotoxic/activated types.
This level of analysis provides a clearer understanding of how

immune cells contribute to effective anti-tumor responses.
3.3 Tertiary immune structure — molecular
and cytokine interactions beyond cellular
composition, immune function is regulated
by molecular interactions and cytokine
networks
a. Immune checkpoint molecules: PD-1, CTLA-4, LAG-3, etc.
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b. Cytokine environment: Pro-inflammatory cytokines

(e.g., IL-2, IFN-g), immunosuppressive cytokines (e.g., IL-

10, TGF-b).
c. Immune proteomics: Profiling peripheral blood proteins for

immune activation or suppression markers.
The integration of these three levels (primary, secondary,

tertiary) forms a comprehensive approach to quantifying immune

function and provides a systematic method for immune scoring.
4 Constructing the peripheral blood
immune scoring system

Based on the proposed immune structural model, we suggest

constructing a multi-level, weighted immune scoring system:

ISS=w1×(Primary Score)+w2×(Secondary Score)+w3×

(Tertiary Score).
a. Primary Score (PS): Based on the proportions or numbers

of CD4+ / CD8+ T cells, reflecting the foundation of

immune status.

b. Secondary Score (SS): Derived from the fine sub-

populations of CD4+ and CD8+ T cells, including

functional differentiation (e.g., Th1, Th2, Treg), activation

(e.g., CD69+), and memory T cells (CD45RO+).

c. Tertiary Score (TS): Quantifies the expression levels of

immune checkpoint molecules (e.g., PD-1, LAG-3) and

cytokines (e.g., IL-2, IFN-g, IL-10).
4.1 Weighting the scores
1. Primary Structure is the most fundamental and should

carry the largest weight, as it represents the basic immune

equilibrium between major immune cell types (e.g., T cells).

We recommend assigning a higher weight to this level, e.g.,

w1 = 0.5.

2. Secondary Structure provides more detailed functional

information and is important for evaluating immune

activation status. The weight for this level could be

moderate, e.g., w2 = 0.3.

3. Tertiary Structure provides valuable molecular insights but

is supplementary to the cellular-based scores. This level

should have a smaller weight, e.g., w3 = 0.2.
These weightings should be further optimized through clinical

validation studies, where the optimal coefficients can be determined

based on large-scale data. The methods and platforms are shown in

Table 1. The workflow and schematic diagram of flow cytometric

analysis of immune cell subsets and cytokine detection are shown

in Figure 2.
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5 Clinical and research applications

5.1 Guiding immunotherapy decisions

The ISS can help predict which patients will respond best to

immune checkpoint inhibitors (PD-1/PD-L1, CTLA-4, etc.) or

other immunotherapies.
5.2 Longitudinal immune monitoring

Tracking the ISS over time can provide insights into immune

dynamics during treatment, offering a tool for assessing immune

response and resistance.
5.3 Prognostic and risk stratification

The ISS could serve as a biomarker for predicting cancer

progression, survival rates, and overall prognosis, helping

clinicians manage treatment strategies more effectively.
5.4 Enhancing immunobiology research

The ISS offers a standardized way to integrate peripheral blood

immune data and allows for comparative studies across different

research groups, fostering a better understanding of tumor

immune environments.
Frontiers in Immunology 04
6 Innovations and limitations

6.1 Innovations
a. The immune structural model is the first to apply a three-

tiered system to classify immune status in peripheral blood,

based on functional immune cells, their subtypes, and

molecular interactions.

b. This model facilitates detailed yet practical immune

assessment using routine clinical blood samples.
6.2 Limitations
a. The model requires validation through large-scale clinical

studies to establish the most reliable biomarkers and

weightings for scoring.

b. While peripheral blood offers valuable insights, it may not

fully replicate the local immune status within the tumor

microenvironment, and the ISS should be used in

conjunction with other clinical and pathological data.
7 Discussion

7.1 Relationship to established blood-based
indices

Several simple blood-derived indices have been widely studied

as prognostic or predictive biomarkers in oncology, including the
FIGURE 1

Conceptual three-tier immune structural model for peripheral blood immune profiling and ISS. ISS, Immune Scoring System; NK cell, natural killer
cell; Th, T helper cell; Treg, regulatory T cell; Breg, regulatory B cell; IL-2, interleukin 2; IL-4, interleukin 4; IFN-g, interferon-g; TNF-a, tumor
necrosis factor-a; PD-1, programmed death 1; PD-L1, programmed death ligand 1.
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neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR),

platelet-to-lymphocyte ratio (PLR), systemic immune-

inflammation index (SII), and the lung immune prognostic index

(LIPI) (12). These indices are attractive because they can be

calculated from routine complete blood counts and have been

associated with outcomes across multiple tumor types. However,

they capture only gross features of systemic inflammation or

myeloid/lymphoid balance and do not directly represent immune

functional states, cellular subsets, or molecular checkpoint activity.

By design, the ISS proposed here complements these indices by

integrating three hierarchical layers of immune information (basic

immune cell populations, functional/phenotypic subsets, and

molecular/cytokine signals) into a composite metric that aims to

better reflect immune competence and treatment-relevant biology,

as shown in Table 2. Where simple indices (e.g., NLR, SII, LIPI)

provide rapid screening and risk stratification, ISS is intended to

provide greater mechanistic resolution and clinical granularity,

particularly for immunotherapy decision-making and longitudinal

immune monitoring.
7.2 Data-driven derivation of ISS weights
and model development

The numeric weights used in the illustrative ISS (w1, w2, w3)

are placeholders for conceptual demonstration. For clinical

implementation, we propose a data-driven derivation and

validation workflow. Candidate features will include primary

counts (e.g., absolute CD4/CD8, CD4:CD8 ratio, NK and B cell

counts), secondary phenotypes (e.g., %Treg, %memory CD8,

activation markers), and tertiary measures (e.g., PD-1 expression,

circulating cytokine concentrations). Feature selection and weight
Frontiers in Immunology 05
estimation should be performed in a derivation cohort using

penalized regression approaches (e.g., LASSO or elastic net) or

other regularized/statistical learning methods, with model tuning

performed by nested cross-validation to avoid optimistic bias.

Model performance should be evaluated using discrimination

measures (AUC for binary outcomes; C-index for time-to-event

outcomes), calibration plots, and decision curve analysis. Final

weights and the scoring algorithm must be locked before testing

in an independent validation cohort. Pre-specified clinical

endpoints for optimization and validation might include overall

survival (OS), progression-free survival (PFS), and objective

response rate (ORR); time points and censoring rules should be

pre-defined following standard reporting guidelines for prediction

modeling (e.g., TRIPOD-style recommendations).
7.3 Pre-analytical and technical
considerations

Peripheral immune profiling is sensitive to pre-analytical and

analytical variation. Prior studies have shown that blood processing

delays, tube type, temperature during transport, and processing

protocols can materially affect both cytokine measurements and

flow cytometric readouts. To improve reproducibility and to

facilitate multi-center validation, we recommend defining and

reporting minimal pre-analytical standards: (1) specify

anticoagulant/tube type for each assay; (2) record time from

venipuncture to processing and aim for processing within 2–4

hours when feasible; (3) standardize sample handling temperature

(room temperature vs refrigerated) and centrifugation protocols for

plasma/serum; (4) use standardized panels with published gating

strategies and include internal controls; and (5) include replicate
TABLE 1 Candidate features for the ISS: definitions, measurement platforms, and expected directionality.

Tier Feature (marker examples)
Measurement

platform
Unit /

readout

Expected
directionality
(example)

Primary
CD3+, CD4+, CD8+ T cell counts; CD4:CD8 ratio; CD19+ B cells;
CD56+ NK cells

CBC; flow cytometry
cells/µL; % of
lymphocytes

Low lymphocyte or high
neutrophil/platelet counts →
adverse prognosis

Secondary
CD4+ Treg (CD25+FoxP3+ or CD25+CD127^low); Th1/Th2/Th17
subsets; CD8+ memory/naïve (CD45RO/CD45RA); activation
(CD69, HLA-DR, CD38); Breg (CD19+CD24^hiCD38^hi)

Multicolor flow cytometry;
intracellular cytokine staining

% of parent
subset; MFI
(marker
expression)

High Treg% →

immunosuppression; high
activated CD8+% → favorable
immune activation

Tertiary
Immune checkpoints (PD-1, PD-L1, CTLA-4, LAG-3, TIM-3);
cytokines (IL-2, IFN-g, TNF-a, IL-6, IL-10, TGF-b); serum LDH

Flow cytometry (surface);
ELISA, Luminex, MSD
multiplex assays; clinical
chemistry

% positive cells;
pg/mL; U/L
(for LDH)

Elevated IL-10/TGF-b→
immunosuppression; elevated
IFN-g/IL-2 → immune
activation

Other
candidates

Myeloid-derived suppressor cells (CD11b+CD33+HLA-DR^low);
CRP; ESR

Flow cytometry; clinical
chemistry

cells/µL; mg/L
High MDSCs or elevated CRP/
ESR → systemic
immunosuppression
ISS, Immune Scoring System; CBC, Complete blood count; Treg, regulatory T cell; Foxp3, forkhead box P3; Th, T helper cell; HLA-DR, human leukocyte antigen DR; Breg, regulatory B cell; MFI,
mean fluorescence intensity; PD-1, programmed death 1; PD-L1, programmed death ligand 1; CTLA-4, cytotoxic T lymphocyte associated protein 4; LAG-3, lymphocyte activation gene 3; Tim-3, T cell
immunoglobulin and mucin domain containing 3; IL-2, interleukin 2; IFN-g, interferon-g; TNF-a, tumor necrosis factor-a; IL-6, interleukin 6; IL-10, interleukin 10; TGF-b, transforming growth
factor-b; LDH, lactate dehydrogenase; ELISA, enzyme linked immunosorbent assay; MSD, meso scale discovery; CRP, c-reactive protein; ESR, erythrocyte sedimentation rate; MDSCs, myeloid derived
suppressor cells;
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FIGURE 2

The workflow and schematic diagram of flow cytometric analysis of immune cell subsets and cytokine detection.
TABLE 2 Comparison of existing blood-based indices versus the proposed ISS.

Score
Formula /

components
Typical use Strengths Limitations How ISS complements

NLR Neutrophils / Lymphocytes Prognosis across cancers
Simple,
inexpensive,
routinely available

Non-specific; reflects
inflammation but not
functional immune status

ISS incorporates lymphocyte
subsets, functional differentiation,
and molecular checkpoints

PLR Platelets / Lymphocytes Prognosis, thrombosis-related risk
Simple, available
from CBC

Similar limitations as
NLR; does not capture
immune activation states

ISS adds immune phenotype and
cytokine context

SII
(Platelets × Neutrophils) /
Lymphocytes

Prognostic biomarker in multiple
cancers

Integrates three
blood count
parameters

Still reflects coarse
inflammation rather than
functional immunity

ISS provides multi-dimensional
mechanistic resolution

dNLR
Neutrophils / (Leukocytes −
Neutrophils)

Used in LIPI and ICI studies
Simple, validated in
ICI cohorts

Limited scope; lacks
molecular and subset
detail

ISS provides checkpoint and
cytokine-level information

LIPI dNLR + LDH
Prognostic index in NSCLC
patients on ICIs

Combines systemic
inflammation and
tumor burden

Specific to certain
settings; limited
mechanistic insight

ISS is generalizable, mechanistic,
and can be applied across tumor
types

ISS
(proposed)

Weighted composite of
Primary, Secondary, and
Tertiary immune structures

Predictive/prognostic biomarker,
immunotherapy decision-making,
longitudinal monitoring

Multi-layered,
mechanistically
informed,
adaptable

Requires validation; more
resource-intensive than
CBC

Complements existing indices by
offering functional and molecular
resolution
F
rontiers in Im
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ISS, immune scoring system; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; CBC, complete blood count; SII, systemic immune-inflammation index; dNLR, derived
neutrophil-to-lymphocyte ratio; LIPI, lung immune prognostic index; ICIs, immune checkpoint inhibitors; LDH, lactate dehydrogenase; NSCLC, non-small cell lung cancer;
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measures or internal reference samples for longitudinal studies.

Adopting and reporting these standards will reduce methodological

heterogeneity and improve comparability between cohorts.
7.4 Clinical covariates and confounder
control

Because peripheral immune measures are affected by clinical status

and concurrent medications, analytical models assessing ISS

performance should adjust for plausible confounders. At minimum,

we recommend collecting and adjusting for: age, sex, tumor type and

stage, tumor burden (radiographic or measurable disease), ECOG

performance status, baseline systemic inflammation markers (CRP,

ESR), recent infections, chemotherapy/immunotherapy history, and

concurrent medications known to affect immune parameters (systemic

corticosteroids, proton pump inhibitors, immunosuppressants).

Statistical approaches should include multivariable regression (Cox

proportional hazards for time-to-event endpoints) and sensitivity

analyses stratified by key factors (e.g., steroid use yes/no).

Propensity-score adjustment or inverse probability weighting may be

considered in observational cohorts where treatment allocation or

supportive medications differ between groups.
7.5 Validation strategy and proposed
clinical use cases

To establish clinical utility, ISS development should follow a

two-stage strategy: (1) derivation (training) phase and (2)

independent validation phase. In the derivation phase, candidate

features and weights will be estimated using one or more well-

annotated cohorts with pre-specified clinical endpoints (e.g., OS,

PFS, ORR). Internal validation methods (cross-validation,

bootstrap) will be used during model building to limit overfitting.

The finalized scoring algorithm must then be tested in at least one

external validation cohort from a separate institution or clinical trial

to assess generalizability; performance metrics should include

discrimination (C-index, AUC), calibration (calibration slope and

plots), and clinical net benefit (decision curve analysis). For

dynamic monitoring, time-dependent ROC analyses and joint

models or landmark analyses can be used to quantify how

longitudinal changes in ISS relate to subsequent outcomes.

Potential clinical use cases to test in validation studies include:
Fron
a. Baseline ISS as a predictive biomarker to enrich or stratify

patients for immune checkpoint inhibitors.

b. Early on-treatment ISS change as an indicator of response

vs. resistance (to guide continuation vs. switch of therapy).

c. Longitudinal ISS trajectories for relapse surveillance after

curative-intent therapy.
Sample size considerations and number-of-events rules should

follow standard practice for prediction models (e.g., ensuring

adequate events per variable during derivation). External
tiers in Immunology 07
validation is essential for assessing reproducibility and

transportability prior to clinical implementation.
8 Conclusion

The proposed immune structural model provides a novel

framework for understanding and quantifying immune function

in cancer patients using peripheral blood. By integrating immune

cell composition, functional subtypes, and molecular signals, this

model facilitates the development of a comprehensive ISS, which

could significantly impact clinical decision-making for cancer

immunotherapy and precision medicine. Future research should

focus on validating this scoring system across various cancer types

and integrating it into clinical practice.
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