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Objective: With the aim of clarifying the therapeutic mechanisms of the
American Ginseng-Achyranthes bidentata (AG&A) herbal pair in primary
Sjégren’s syndrome (pSS), this study employs an integrated approach
combining network pharmacology, molecular docking, molecular dynamics
simulations, and animal experiments.

Methods: Network pharmacology & LC-MS/MS was utilized to identify the active
components and potential targets of AGA. Molecular docking and dynamics
simulations were performed to evaluate binding affinity and complex stability
with key targets. Animal experiments using non-obese diabetic (NOD) mice were
conducted to validate symptom improvement by critical active components.
Results: Network pharmacology identified baicalin and quercetin as key active
components. Molecular docking revealed strong binding affinities (binding
energy < -8.0 kcal/mol) between these compounds and apoptosis-related
proteins, BAX and CASP3. Molecular dynamics simulations confirmed the
stability of these complexes. Animal experiments demonstrated that baicalin
can significantly reduce inflammatory cytokines of IL-18, TNF-o., IFN-a, and IFN-
B,CXCL-10 (p < 0.05), decrease mtDNA release, and downregulate cGAS-STING
pathway-related proteins including cGAS, STING, CASP3, ZBP1, TBK1, p-STING,
p-TBKY, IRF3, p-IRF3 and BAX.
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Conclusion: The critical components baicalin and quercetin from AG&A,
particularly in aqueous extracts, exhibit therapeutic efficacy against pSS. This
study provides experimental evidence for their action mechanism through
modulating the mtDNA-cGAS-STING pathway. While highlighting their
therapeutic potential, additional in vivo and clinical studies are warranted to
validate these findings.

network pharmacology, molecular docking, cGAS-STING pathway, mtDNA,

Sjogren’s syndrome

1 Introduction

Sjogren’s syndrome (SS) is a chronic autoimmune disorder
characterized by the involvement of exocrine glands, particularly
the salivary and lacrimal glands, leading to common clinical
symptoms such as dry mouth and eyes (1). With the prevalence
ranging from 0.29% to 0.77%, SS has exhibited an increasing trend
observed in recent years (2). This condition predominantly affects
women over the age of 40, with a male-to-female incidence ratio of
approximately 1:9 (3). Patients with SS are at a higher risk for
complications and multisystem damage, with about 30% to 40%
experiencing extra-glandular manifestations such as interstitial lung
disease and hematologic issues. Additionally, recent studies indicate
that SS patients have an elevated risk of developing other tumors
compared to the healthy population (4).

Over the years, individuals with SS have been burdened by the
disease, leading to a reduced quality of life, yet treatment remains
mainly symptomatically and empirically managed, with no
biologically or chemically synthesized antirheumatic agents
available to modify the disease process (5). Hence, it is urgently
needed to identify effective preventive and therapeutic strategies for
SS, which holds substantial clinical and socioeconomic significance.

The pathogenesis of SS is multifactorial, involving genetic,
environmental, hormonal, and immune elements (6). Although
research utilizing genome-wide association studies, epigenomics,
transcriptomics, and metabolomics has been extensively conducted
(7), the complete mechanisms underlying the disease remain
elusive. Current treatments in modern medicine tend to focus on
localized symptoms, with artificial fluid replacement therapies
commonly used to alleviate dryness. However, these interventions
often yield suboptimal results (8), and there are significant
challenges in systemic treatment and disease progression
management, compounded by safety concerns. Consequently,
many patients suffer from persistent clinical symptoms that are
not adequately managed.

Hydroxychloroquine (HCQ) is the most frequently prescribed
immunomodulatory agent for pSS, primarily acting through
interfering Toll-like receptor (TLR) signaling and inhibiting type I
interferon (IFN) pathway. Although HCQ demonstrates clinical
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efficacy in reducing disease activity and is extensively used in
clinical treatment, its therapeutic effectiveness in pSS remains
incompletely characterized. In addition, current evidence
regarding HCQ’s efficacy in pSS patients shows conflicting results.
Hence, it is imperative to identify alternative therapeutic agents for
treatment (9).

In prior studies, the efficacy of American Ginseng and
Achyranthes (AG&A) in treating SS has been highlighted (10,
11). Therefore, the present study aims to explore the mechanisms
by which AG&A exerts its therapeutic effects in SS treatment
through network pharmacology, LC-MS/MS and molecular
docking methodologies, and validate the enrichment results of
network pharmacology through in vivo experiments in NOD mice.

2 Methods
2.1 Network pharmacology

2.1.1 Composition of PEs and SS target
acquisition

We identified the chemical compositions of the effective
pharmacological extracts (PEs) using the methods outlined above.
The key active ingredients in the remaining PEs were screened via
the Traditional Chinese Medicine Systems Pharmacology (TCMSP)
database (12), with oral bioavailability (OB) = 30% and drug-
likeness (DL) >0.18 the criteria. The SMILES format for these
components was collected from the PubChem database (13).
Ingredient targets, defined as active ingredients with a probability
greater than zero, were obtained from the Swiss Target Prediction
database, and any duplicate targets were subsequently
removed (14).

2.1.2 Analysis of PE components and SS targets
Targets associated with SS were sourced from the GeneCards
(15) and Online Mendelian Inheritance in Man (OMIM)) (16)
databases. The intersection of SS-related targets with the identified
targets was considered as potential therapeutic targets. Then, we
utilized Cytoscape 3.9.1 software to construct the network linking
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active ingredients, potential targets, and the disease associated with
effective PEs for SS treatment.

2.1.3 Construction of the protein—protein
interaction network

All targets related to PEs and SS were entered into the STRING
database (17) to construct the PPI network. The minimum
interaction score was set to above 0.9, with free nodes hidden and
all other settings left as default.

2.1.4 GO and KEGG enrichment analysis

To further elucidate the mechanisms of the key targets of the
effective PEs in treating SS, these targets were analyzed using the
DAVID database (18).

2.1.5 LC-MS/MS analysis of American ginseng and
achyranthes components

An aliquot (150 pL) of the herbal formula sample was mixed with
150 pL of 70% methanol (containing internal standards, 2 pg/mL).
The mixture was vortexed for 1 min, ultrasonically extracted in an
ice-water bath for 60 min, and centrifuged at 12,000 rpm (4°C) for 10
min. The supernatant (200 pL) was transferred to an LC-MS vial and
then separated on an ACQUITY UPLC HSS T3 column (100 mm X
2.1 mm, 1.8 um; Waters) at 45°C for subsequent analysis. Mobile
phases consisted of (A) water with 0.1% formic acid and (B)
acetonitrile. The gradient elution was: 0-2 min, 5% B; 2-8 min, 5-
50% B; 8-10 min, 50-80% B; 10-14 min, 80-100% B; hold until 15
min; return to initial conditions at 15.1 min. The flow rate was set to
0.35 mL/min with a 2-pL injection volume. The analysis was
conducted using a Thermo Orbitrap QE HF mass spectrometer
equipped with a heated electrospray ionization (HESI) source. Data
were acquired in data-dependent acquisition (DDA) mode,
alternating between full MS scans (resolution: 60,000; m/z range:
100-1500) and MS/MS scans of the top 8 ions (resolution: 15,000).
For the key parameters, raw data were processed using XCMS
software (v4.5.1) for peak detection, alignment, and integration.
Components were identified by matching against the proprietary
LuMet-TCM database (>5,000 herbal standards) with the following
criteria: Extracted ion chromatograms (EIC) and annotated MS/MS
spectra were generated for verification. Compounds with a total
identification score >40 were retained for analysis.

2.2 Molecular docking and molecular
dynamic simulation

2.2.1 Molecular docking

The 3D structure files of the target protein were retrieved from
the RCSB Protein Data Bank (19). Structural preparation for
molecular docking was performed using AutoDockTools 1.5.7.

2.2.2 Molecular dynamics simulation

The molecular dynamics simulations were conducted utilizing
Gromacs (20), under static conditions at a temperature of 310 K and
an atmospheric pressure of 1 bar. For preprocessing small
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molecules, the potential data were incorporated into the topology
files of the molecular dynamics system (21). The Amber99sb-ildn
force field was employed, with water molecules modeled using the
Tip3p water model as the solvent.

2.3 Laboratory animal and groups

In this study, NOD mice [a well-established Sjogren’s syndrome
animal model documented in scientific literature (22)] were used as
the disease model and C57BL/6 mice as the healthy control group
(6-10weeks, males, Beijing Beiyou Biotechnology Co., Ltd). We
randomly divided them into six groups (n=10 per group), with oral
gavage applied for all drug administration.

Specifically, they were Normal control group (C57BL/6 mice),
Disease model group (untreated NOD mice), Positive control group
(Hydroxychloroquine Sulfate, 6.5 mg/kg/day), Baicalin treatment
group (100 mg/kg/day), Quercetin treatment group (100 mg/kg/
day), and Herb group (0.1625 g/mL herbal preparation, 16 mL/kg/
day). The herbal medicine for oral gavage was prepared by
Guang’anmen Hospital in accordance with standard clinical
protocols. Animals had free access to feed and water. The room
was maintained at a temperature of 23 + 2°C and a relative humidity
of approximately 45%, with a 12-hour light/dark cycle. A one-week
acclimatization period preceded the experiment. Water intake was
measured gravimetrically over 24h; resting saliva flow was
measured: saliva pooled for 1 min was aspirated and volume
recorded (mL/min). All therapeutic interventions were
administered at equivalent volumes and concentrations through
appropriate administration routes. The experimental protocol-
maintained consistency in dosage formulation and administration
methods across all treatment groups to ensure comparability.
Baicalin and quercetin dosages were referenced from the
literature and were identified by the additional WB experiment
(Supplementary Material 1) (23, 24); the herbal dosage was derived
from preliminary clinical data (9).

2.4 Transmission electron microscopy
observation

Three submandibular gland specimens (1mm?®) were collected
and immersed immediately in 2.5% glutaraldehyde/PBS. They were
then rinsed with PBS, post-fixed in osmium tetroxide, dehydrated
through ethanol/acetone gradients, and infiltrated with epoxy resin
overnight. After that, they were embedded, sectioned stained and
finally examined using Transmission electron microscopy (TEM).

2.5 Elisa

Tissue lysates or serum samples were analyzed for TNF-o,, IFN-B,
CXCL10, IL-1B, IL-16, IFN-0;, ATP and NAD*/NADH concentrations
using a commercially available sandwich ELISA kit (RXW202412M,
RUXIN BIOTECH, QUANZHOU, CHINA; RXW203063M, RUXIN
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BIOTECH, QUANZHOU, CHINA; RXW203064M, RUXIN
BIOTECH, QUANZHOU, CHINA; RXW203106M,
RUXIN BIOTECH, QUANZHOU, CHINA; RXW203124M, RUXIN
BIOTECH, QUANZHOU, CHINA; RXW202930M, RUXIN
BIOTECH, QUANZHOU, CHINA; INSSH-0089, INSELISA,
HUANGSHI, CHINA; INSSH-0028, INSELISA, HUANGSH]I,
CHINA) according to the manufacturer’s instructions. Absorbance
was measured at 450 nm using a microplate reader, and concentrations
were interpolated from a standard curve.

2.6 Western blotting and RT-PCR

The Western blotting & RT-PCR experimental procedure is
consistent with our previous study (25). In the present study, we
used: sting: immniway T5488, 1:1000; cGAS: immniway YM8509,
1:5000; TBK1: immniway YMS8322, 1:5000; ZBP1: immniway
YN2476, 1:1000; BAX: Proteintch 50599-2-1G, 1:50000; Caspase-3:
CST 96628, 1:1000; GAPDH: Servicebio GB11002, 1;1000; IRF3:
immniway YM8227, 1:1000;p-IRF3: immniway YP0326, 1:1000; p-
STING: immniway YP1518, 1:1000; p-TBKI1: immniway
YM8674, 1:2000.

Tissues were collected by centrifugation at 600 x g for 5 min,
washed with PBS, and repelleted by centrifugation (5 min, 600 x g).
The pellet was resuspended in cytosol extraction buffer and
incubated on ice for 10 min. Cell disruption was performed using
a Dounce tissue grinder, followed by centrifugation at 700 xg for 10
min to pellet nuclei and intact cells. The supernatant was
transferred and subjected to centrifugation at 10,000 g for 30 min.
The resulting supernatant was discarded, and the pellet (enriched
mitochondria) was resuspended in fresh cytosol extraction buffer,
then re-centrifuged at 10,000 g for 30 min to further purify
mitochondrial fractions. The final mitochondrial pellet was
resuspended in mitochondrial lysis buffer and incubated for 10
min. An enzyme mix was added to the lysate and incubated for 60
min, followed by ethanol addition and a 10-min incubation.
Mitochondrial DNA was recovered by centrifugation (5 min),
with the resultant pellet retained as purified mtDNA. Primer
sequence: CCCCATATTAAACCCGAATGATA;
TAGGCTTCGTTGCTTTGAGGTA.

2.7 Immunofluorescence

Tissue sections were subjected to immunofluorescence staining
using primary antibodies against BAX, cGAS and STING, followed
by appropriate Alexa Fluor-conjugated secondary antibodies and
DAPI counterstain. Slides were mounted and imaged at 200x
magnification using a SlideViewer2.5 scanner, ensuring that tissue
filled the field of view and background illumination was consistent
across all samples. For each section, three representative fields were
quantitatively analyzed. Using image analysis software, the
integrated density (IntDen) and positive pixel area (Area) for
green, red, pink, and co-localization signals were measured in
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pixels. The mean fluorescence intensity (MFI) for each channel
was calculated as MFI = IntDen/Area.

3 Results
3.1 Network pharmacology and analysis

We conducted a comprehensive retrieval of pSS (primary
Sjogren’s syndrome) -related targets, yielding a total of 564
targets from the GeneCards database and the OMIM database,
with a relevance score greater than 3.41. Following database
calibration, the pSS targets identified in the PEs target libraries
were imported into the Venny 2.1 tool to generate a Venn diagram,
which resulted in an identification of 106 common targets
associated with pSS, visually represented in the Venn diagram
(Figure la). The active ingredients from PEs and their
corresponding targets were imported into Cytoscape 3.9.1 to
construct a comprehensive drug-active ingredient-target network.
In this network, nodes represent targets, with node size
proportional to the degree of connectivity: larger nodes indicate
targets with more biological functions and enhanced significance
(Figure 1b). Removing irrelevant nodes, the network diagram was
generated. Based on LC-MS/MS identification (Figure 2,
Supplementary Material 2), baicalin and quercetin were selected
as the active compounds. Through network pharmacology analysis,
several key targets were identified (degree>6), including ESRI,
PPARG, CASP3, CA2, and BAX. Additionally, the analysis
highlighted critical active ingredients (degree>18), such as
quercetin, baicalin, beta-sitosterol, and wogonin, which play
significant roles in the therapeutic effects of PEs. To elucidate the
interactions between PEs and pSS targets, the intersection targets
were imported into the STRING database to construct a PPI
network, thus highlighting the most critical genes within the PPI
network that may significantly influence pSS. The results revealed a
network comprising 83 nodes and 196 edges among the 106
overlapping proteins, with an average node degree of 4.77. This
indicated a strong correlation among the targets, with a confidence
score of > 0.9, suggesting robust interactions within the network
(Figure 1c). The 106 intersection targets were then submitted to the
DAVID database for GO and KEGG enrichment analysis, with the
top 10 GO entries across the three categories—BP, MF, and CC—
identified and illustrated in Figure 1d, and the top 10 KEGG
pathways associated with these targets screened and presented in
Figure le. These analyses provided insights into the biological roles
and pathways that the common targets may influence in the context
of SS.

3.2 Molecular docking and molecular
dynamics simulations

Molecular docking was conducted using the key genes and PEs

identified in section 3.1 as active ingredients and targets. The
docking & molecular dynamics simulations results (Figure 3)
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demonstrated that the selected targets exhibited strong binding
affinities with the core active ingredients. This finding further
validated the reliability of the network pharmacology analysis,
confirming the potential interactions between the active
components and their respective targets in the therapeutic context
of SS.

While BAX and Caspase-3 (CASP3) were identified as critical
targets for AG&A in pSS treatment (binding energy < -8.5 kcal/mol)
through network pharmacology and molecular docking, their
biological roles extend beyond apoptosis regulation. As a key
mediator of mitochondrial outer membrane permeabilization
(MOMP), BAX facilitates mitochondrial DNA (mtDNA) release
into the cytosol during cellular stress. Concurrently, CASP3—
traditionally associated with apoptosis execution—has recently
been implicated in modulating innate immune responses via
cleavage of cGAS to suppress interferon production (26).
Crucially, cytosolic mtDNA acts as a potent ligand for cGAS,
initiating the cGAS-STING signaling cascade that drives type I
interferon (IFN-I) inflammation—a hallmark of pSS pathogenesis.
Given that IFN-I signature correlates with pSS disease severity and
glandular dysfunction, we hypothesized that AG&A’s modulation
of BAX/CASP3 may functionally intersect with the mtDNA-cGAS-
STING axis to resolve immunopathology. Therefore, to elucidate
the holistic mechanism underlying AG&A’s efficacy, we
experimentally validated its impact on mtDNA leakage, cGAS-
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STING activation, and downstream inflammatory cascades in
submandibular glands.

3.3 AG&A ameliorates submandibular gland
dysfunction in Sjogren’s syndrome models

AG&A and its key components can significantly improve
submandibular gland function in NOD model mice, manifested
through enhanced salivary flow rate, reduced water consumption,
and histopathological restoration. Specifically, NOD mice exhibited
reduction in salivary flow rate compared to normal controls
(p<0.001), while pharmacological intervention with AG&A and its
active compounds restored salivary secretion to 70-80% of
physiological levels (Figure 4a). Concomitant with xerostomia,
model mice demonstrated increase in daily water intake (p<0.01)
(Figure 4b). Histopathological examination revealed Figure 4c: The
normal control group exhibited intact salivary gland architecture with
no pathological changes such as acinar degeneration, necrosis, or
inflammatory cell infiltration in the stroma. In contrast, the model
group showed multifocal, dense inflammatory cell infiltration within
the submandibular glands, forming lymphoid follicle-like structures,
with mild acinar atrophy observed in surrounding areas. Relative to
the model group, all treatment groups demonstrated varying degrees
of pathological improvement: The herb group exhibited the most
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Effects of AG&A and its active compounds ameliorates submandibular gland dysfunction. (a) Salivary flow rate. (=3 per group, Two-way anova was
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significant amelioration, followed by the baicalin group which
presented only minor vacuolar degeneration in acini, and the
quercetin group and positive control group showed the mildest
changes, with scant inflammatory cell infiltration between acini and
slight vacuolar degeneration.

3.4 AGE&A ameliorates mitochondrial
function in submandibular glands of
Sjégren’s syndrome model mice

Experimental results demonstrated that compared to the
normal control group, NOD model mice exhibited significant
mitochondrial dysfunction in submandibular glands,
characterized by a reduction in ATP synthesis (p<0.01), a 1.8-fold
increase in cytoplasmic mtDNA copies, and an abnormal elevation
in NAD+/NADH ratio. Trough pharmacological interventions,
these abnormalities were effectively reversed: cytoplasmic mtDNA
overamplification was suppressed, ATP levels recovered to normal
values, and the NAD+/NADH ratio normalized to physiological
ranges (Figure 5A), indicating substantial restoration of
mitochondrial energy metabolism.

These findings were then corroborated through TEM
ultrastructural analysis, demonstrated by classical mitochondrial
pathologies in acinar cells of SS model mice. Specifically,
mitochondria exhibited swelling, and also showed cristae
fragmentation or complete loss of mitochondrial structure, as well
as vacuolar degeneration. Post treatment, all groups except the
quercetin group demonstrated marked morphological recovery,
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with the most pronounced restoration observed in the herb
group (Figure 5B).

3.5 AG8&A corrects mitochondrial
dysfunction via cGAS/STING signaling to
ameliorate immune microenvironment in
submandibular glands

Mechanistically, mitochondrial dysfunction in submandibular
glands of NOD model mice triggers pathological leakage of mtDNA
into the cytosol through mitochondrial permeability transition
pores, thereby activating the cytosolic DNA-sensing cGAS-STING
signaling axis. This activation initiates a proinflammatory cascade
characterized by upregulated type I interferons (IFN-o/f) and
inflammasome-related mediators.

Western blot analysis confirmed significant dysregulation of
key pathway components: Model mice exhibited marked
upregulation of BAX, cGAS, STING, ZBP1, TBKI1, p-STING,
IRF3, p-IRF3, p-TBK1 and CASP3 compared to normal controls
(P<0.05 for all). This hyperactivation was differentially suppressed
by pharmacological interventions: Baicalin & herb Group showed
most pronounced reductions (P<0.05) (Figures 6, 7) across all
targets, and Quercetin Group demonstrated marginal efficacy
(P>0.05). Notably, the therapeutic hierarchy (AG&A/baicalin >
positive control > quercetin) aligned precisely with functional
recovery patterns observed in salivary flow restoration &
histopathological improvements (Section 3.3) and mitochondrial
protection (Section 3.4). These biochemical alterations substantiate
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Analysis of AG&A ameliorates mitochondrial function in submandibular gland tissue. (A) Concentrations of ATP and NAD"/NADH ratio measured by
ELISA, and relative mitochondrial DNA (mtDNA) copy number determined by RT-PCR. (ATP and NAD*/NADH: n=5 per group, mtDNA:: n=10 per
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Representative TEM images depicting mitochondrial ultrastructure in submandibular. Scale bars = 500 nm.

AG&A’s dual mechanism: protecting mitochondria to prevent
mtDNA leakage and modulating cGAS/STING axis to resolve
interferon-driven inflammation, thus synergistically restoring
glandular immune homeostasis.

4 Discussion

It is recognized that the treatment with traditional Chinese
medicine (TCM) is effective for SS. Clinical treatment has shown
that the application of TCM in SS management can significantly
alleviate symptoms, slow disease progression, and maintain safety.
Therefore, a deeper exploration of its therapeutic mechanisms was
conducted to. provide a new foundation for the further clinical
application of TCM in SS treatment.

Previous studies have indicated that American ginseng can
counteract mitochondrial dysfunction (MDF) and apoptosis
induced by oxidative and inflammatory damage through
inhibiting calcium (Ca®*) influx, thereby maintaining cellular
homeostasis (27). Additionally, it has been proved that
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achyranthes bidentata possesses antioxidant properties, thus being
helpful to protect mitochondrial ultrastructure (28). Recent
research shows that the cGAS-STING pathway likely contributes
to the pathogenesis of autoimmune diseases, including desiccation
syndrome. Furthermore, the abnormal leakage of mtDNA due to
mitochondrial damage has been recognized as a critical mechanism
for activating the cGAS-STING pathway. Thus, the present study
explored how AG&A regulates the mtDNA-cGAS-STING signaling
axis, aiming to correct MDF and regulate the metabolic
reprogramming of immune cells to prevent immunoinflammatory
alterations. This regulation may further impact the immune
microenvironment of the submandibular gland, which supports
the notion that Bidentate Achyranthes and American Ginseng
represent an effective therapeutic intervention for SS, highlighting
its significant research value.

The superior therapeutic outcomes of the whole herb AG&A
formulation compared to high-dose baicalin or quercetin
monotherapy—particularly in mitochondrial ultrastructural
restoration and cGAS-STING pathway suppression—indicate
multifaceted synergism. This likely arises from pharmacokinetic
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AG&A corrects mitochondrial dysfunction via cGAS-STING signaling to ameliorate immune microenvironment. (A) Western blot analysis of BAX, cGAS, STING, p-STING, ZBP1, TBK1, p-TBK1, IRF3, p-IRF3 and
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enhancement, target diversification, and pathway crosstalk
amplification. In contrast, quercetin’s marginal efficacy stems
from extensive first-pass metabolism, and context-dependent
activity, and its weak CASP3 binding further limits apoptosis
regulation and mitochondrial rescue.

As baicalin and quercetin are flavonoids, we included virtual
screening data for other AG&A flavonoids (Supplementary
Material 3). Notably, our results revealed two constituents
within the mixture, Trifolirhizin and Rottlerin, which demonstrated
superior binding affinity compared to Baicalin (previously identified
by Network Pharmacology). Besides, Wang, D (29). proved that
Rottlerin can inhibit cGAS-STING signaling pathway in mice.
Furthermore, both Trifolirhizin and Rottlerin have been
independently documented in other studies as potent inhibitors of
mitophagy (30). This strongly suggests that these two compounds
may be the key synergistic substances responsible for the enhanced
efficacy observed in the herb, compared with baicalin alone.

The submandibular gland is the organ most commonly affected
in SS, with an abnormal immune microenvironment in the gland
being the primary cause of dry mouth due to decreased secretory
function. In this altered immune microenvironment, the epithelial
cells of the submandibular gland can directly activate CD4+ T cells
by expressing major histocompatibility complex class II (MHC-II),
co-stimulatory molecules (CD80 and CD86), and intercellular
adhesion molecule-1 (ICAM-1) under inflammatory stimuli.
Furthermore, these activated epithelial cells enhance the immune
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response through elevated expression of chemokines such as
CXCL12 and CXCL13, as well as pro-inflammatory cytokines
including IL-1, IL-6, and BAF, thereby driving the inflammatory
response. In autoimmune diseases, an uncontrolled inflammatory
response often prompt the immune system to attack and destroy
healthy cells and tissues, a cascade commonly associated with MDF
(31). Research indicates that the pathogenesis of SS is linked to
changes in the immune microenvironment of the submandibular
gland, which closely correlates with MDF and immune
inflammation (32). MDF will result in the release of damage-
associated molecular patterns (DAMPs), including mitochondrial
DNA (mtDNA), into the cytoplasm. This release then further
activates pattern-recognition receptors (PRRs), thus stimulating
signaling pathways, including the cGAS/STING pathway. DAMPs
can activate PRRs and initiate signaling cascades such as the NLRP3
inflammasome, TLRY9, and ZBPI1,
inflammatory immune response.

ultimately triggering an

Recent studies demonstrate that abnormal leakage of mtDNA
can activate several key innate immune response pathways,
particularly the cGAS-STING signaling pathway, whose activators
play crucial roles in cellular immunity. Prolonged immune
dysregulation can lead to various pathological immune responses,
disrupting the immune microenvironment and the body’s
homeostasis under mitochondrial stress conditions. Specifically,
when mitochondria are stressed, mtDNA may be released into
the cytoplasm through mechanisms such as BAX/BAK-dependent
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mitochondrial outer membrane permeabilization (MOMP) or the
mitochondrial permeability transition pore (mPTP). Once in the
cytoplasm, mtDNA readily binds to cGAS, activating the
downstream STING signaling pathway, which generates type I
interferon (IFN) and triggers inflammatory responses. Under
normal physiological conditions, caspases effectively inhibit
mtDNA-induced ¢cGAS-STING activation by cleaving cGAS and
IRF3, thereby preventing the production of IFN and subsequent
inflammatory responses. However, during immune inflammation,
apoptosis-mediated caspases may lose their enzymatic activity,
leading to an intensified IFN response. This abnormal activation
of the mtDNA-cGAS-STING signaling axis results in the
overexpression of IFN and various inflammation-related genes
(33). Moreover, the activated ZBP1 interacts with TBK1, thus
promoting the phosphorylation of IRF3 and further enhancing
the production of type I IFN. Also, ZBP1 can activate the NF-kB
signaling pathway through TBKI. This intricate interplay
underscores the significance of the mtDNA-cGAS-STING
signaling axis in mediating immune responses and highlights
potential therapeutic targets for managing autoimmune
conditions like SS.

5 Conclusion

Novel technologies and methods have brought unprecedented
opportunities for the research of traditional medicine (34-36). In this
study, we identified AG&A as a potential effective herbal combination
based on the preliminary clinical data. Through LC-MS/MS and
network pharmacology analysis, we determined the potential active
components and targets, and thus identified baicalin and quercetin as
potential active substances, and BAX and CASP3 as potential effective
targets. The promising binding performance of these small molecules
with the potential targets was confirmed by molecular docking and
molecular dynamics simulations. Additionally, we selected the most
relevant ¢cGAS-STING pathway for in vivo animal experiments,
providing multi-level evidence of baicalin’s therapeutic efficacy,
including histopathological examination, mitochondrial function
assessment, pathway activation, and local immune
microenvironment analysis. Notably, this study also found that the
efficacy of the herbal mixture was comparable to high dose baicalin,
and even better in certain aspects, such as mitochondrial function
protection. Although further exploration was limited by space
constraints, this suggests that other substances in the AG&A
combination may act as potential mitochondrial protectors or
exhibit broader drug effects. Besides, this study focuses only on
small clinical doses, necessitating further research on
different dosages.
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