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Background: Hypertrophic cardiomyopathy (HCM) is a prevalent genetic cardiac
disorder characterized by myocardial hypertrophy and diastolic dysfunction.
While traditionally attributed to sarcomeric mutations, recent studies have
highlighted the pivotal contribution of immune dysregulation and stromal-—
immune interactions in its pathophysiology. However, the molecular drivers
bridging structural remodeling and immune activation remain poorly defined.
Objective: This study aimed to characterize the clinical and immunological role
of the transcription factor MEIS3 in HCM through integrative transcriptomic and
single-cell analyses, with a focus on its diagnostic potential and regulatory
interactions within the cardiac microenvironment.

Methods: We performed bulk RNA sequencing on peripheral blood samples from
clinically diagnosed HCM patients (n = 4) and matched healthy controls (n = 3),
followed by differential expression analysis and weighted gene co-expression
network analysis (WGCNA). Machine learning algorithms (LASSO and Random
Forest) were used to identify key diagnostic genes. Single-cell RNA sequencing
(scRNA-seq) from myocardial tissues was used to localize gene expression. The
immunological context was evaluated via xCell-based immune deconvolution,
cytokine—immune cell correlation analysis, and ceRNA network construction
centered on MEIS3.

Results: MEIS3 was significantly upregulated in HCM samples and identified as a
core hub gene in the HCM-associated blue WGCNA module. Machine learning
consistently ranked MEIS3 among the top discriminatory markers (AUC > 0.90).
scRNA-seq revealed MSCs as the predominant MEIS3-expressing population in
HCM myocardium. Functional enrichment implicated MEIS3 in pathways related
to protein synthesis, mitochondrial metabolism, and immune modulation.
Immune deconvolution indicated increased M1 macrophages, NK cells, and
dendritic cells in HCM. MEIS3 expression positively correlated with key
immunomodulatory cytokines (CXCL12, BMP1) and altered immune
landscapes. The ceRNA network identified candidate IncRNA-miRNA-MEIS3
axes potentially driving its overexpression. Cytokine—immune cell analysis
revealed MEIS3-linked cytokines bridging stromal and immune compartments,
reinforcing its central role in immunoregulatory remodeling.
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Conclusion: MEIS3 functions as a stromal-centric immunomodulator in HCM,
shaping cytokine expression and immune infiltration in the diseased heart. Its
expression shows diagnostic potential and may represent a novel target for
immuno-modulatory strategies. These findings open new avenues for immuno-
targeted interventions in HCM management.

hypertrophic cardiomyopathy, MEIS3, biomarker, immune infiltration, transcriptomics,
single-cell RNA-seq, ceRNA network, immunoregulation

1 Introduction

Hypertrophic cardiomyopathy (HCM) is a familial heart muscle
disease defined by unexplained left ventricular hypertrophy, often
leading to heart failure, arrhythmias, or sudden cardiac death in young
individuals (1-3). Pathogenic mutations in sarcomeric proteins (e.g.,
MYH7, MYBPC3) are a well-established cause of HCM, yet a
substantial proportion of patients lack detectable sarcomere gene
mutations and the genotype-phenotype correlations remain
unpredictable. Indeed, up to 50-68% of HCM patients have no
identified sarcomere mutation, and the regulatory networks driving
HCM pathology in these cases are not fully understood (4, 5). This
uncertainty has prompted systematic transcriptome analyses to
uncover novel molecular mechanisms and biomarkers that could
improve HCM diagnosis and management.

Emerging evidence implicates inflammation and immune
dysregulation in HCM progression (6). Although HCM has
classically been viewed as a non-inflammatory cardiomyopathy,
studies have revealed a chronic, low-grade inflammatory state in
HCM patients, characterized by elevated circulating cytokines (e.g.,
TNEF-o, IL-6, IL-1f, IL-10) and mild myocardial immune cell
infiltration (7, 8). Histological analyses found that nearly half of
septal myectomy samples from HCM patients contain focal
accumulations of inflammatory cells (9, 10). Functionally, pro-
inflammatory mediators such as TNF-o can drive cardiomyocyte
hypertrophy and fibrosis; for example, TNF-o overexpression in
myocardium induces IL-6, which in turn promotes hypertrophy,
extracellular matrix deposition, and diastolic dysfunction (11, 12).
These observations suggest that immune pathways contribute to the
HCM phenotype, potentially exacerbating mechanical dysfunction
and fibrosis. Consistently, high-throughput studies have identified
immune-related signatures in HCM. Gene enrichment analyses
show that inflammatory signaling pathways (including MAPK
and PI3K-Akt cascades) are upregulated in HCM hearts (13), and
immune cell deconvolution has demonstrated increased infiltration
of macrophages, monocytes, and NK cells in HCM compared to
controls (14). Furthermore, bioinformatic investigations have
proposed immune-associated genes as HCM biomarkers. For
example, Zheng et al. identified a panel of differentially expressed
immune genes that distinguished HCM patients with excellent
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diagnostic accuracy (C-index 0.925) (15). These findings position
the immune response as an important facet of HCM pathogenesis
and a potential source of new clinical biomarkers.

Here, we focus on MEIS3 (Meis homeobox 3), a transcription
factor not previously linked to HCM, which emerged from our
multi-omics analysis as a candidate immunoregulatory gene of
interest. MEIS3 belongs to the TALE-homeodomain family of
transcription factors known for roles in embryonic development
and cell differentiation (16). Notably, MEIS3 can directly regulate
PDPK1 (PDK1), a master kinase in the PI3K/Akt signaling
pathway, thereby promoting cell survival in other tissues (17).
This is intriguing in the context of HCM, where PI3K-Akt
signaling and downstream hypertrophic pathways are
dysregulated (18). Moreover, recent pan-cancer analyses have
revealed that MEIS3 and its family members influence the
immune microenvironment (19). High MEIS3 expression in
tumors is associated with an “immune-silenced” phenotype
characterized by low leukocyte infiltration, and interfering with
MEIS family gene expression has been suggested to enhance
responses to immunotherapy. While cancer and cardiomyopathy
are disparate diseases, these findings hint that MEIS3 might broadly
act as an immunomodulatory switch in pathological states. We
hypothesized that in HCM, MEIS3 could serve a dual role: as a
diagnostic marker reflecting disease status and as an
immunoregulatory factor shaping cardiac immune cell
engagement and cytokine signaling.

To test this hypothesis, we conducted an integrative analysis
combining bulk and single-cell RNA sequencing, machine learning,
network biology, and immunoinformatic techniques on myocardial
samples from HCM patients and healthy controls. Our study design
enabled a comprehensive exploration of MEIS3 from molecular,
cellular, and clinical angles. We identified differentially expressed
genes and co-expression networks from bulk RNA-seq to pinpoint
candidate regulators, and singled out MEIS3 as a top upregulated
gene in HCM. We then examined cell type-specific expression of
MEIS3 using single-cell transcriptomics to localize its source in
cardiac tissue. Immune cell deconvolution (xCell) and cytokine
analyses were integrated to determine how MEIS3 expression
relates to immune cell infiltration and inflammatory mediator
profiles. Furthermore, we constructed a competing endogenous
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RNA (ceRNA) network to explore upstream IncRNA-miRNA
interactions that might regulate MEIS3 in HCM. Finally, we
employed machine learning models to evaluate the diagnostic
power of MEIS3 (alone and in combination with other features)
for distinguishing HCM patients from controls. Through this multi-
pronged approach, we uncovered evidence that MEIS3 is intimately
linked with the immunopathology of HCM. In this manuscript, we
present our findings that highlight MEIS3 as a novel biomarker of
HCM and a key node in the immune-related network of disease
mechanisms. We discuss the translational implications of targeting
MEIS3 or its downstream pathways for improving HCM diagnosis
and developing immunomodulatory therapies.

2 Materials and methods

2.1 Study cohort and blood sample
collection

Peripheral blood samples were obtained from 4 patients with
obstructive hypertrophic cardiomyopathy (HCM) undergoing
septal myectomy (NYHA class III) and 3 healthy donors matched
for age and sex. Written informed consent was obtained from all
participants, and the study protocol was approved by the
institutional ethics committee. Clinical characteristics, including
echocardiographic parameters such as maximal left ventricular wall
thickness (MLVWT), interventricular septum diameter (IVSd), and
posterior wall thickness (LVPWd), were recorded (Table 1). None
of the HCM patients had known autoimmune or infectious diseases.

2.2 RNA extraction and bulk transcriptome
profiling

Whole blood was collected in EDTA tubes and processed for
RNA extraction using TRIzol reagent. RNA quality was confirmed
via Agilent Bioanalyzer (RIN > 7). Poly-A mRNA was enriched for
cDNA library construction and sequenced on the Illumina NovaSeq
platform (150 bp paired-end reads, ~50M reads/sample). Reads
were quality filtered (fastp) and aligned to the human genome
(GRCh38) using STAR. Gene-level counts were quantified with
featureCounts. Differential expression analysis between HCM and

TABLE 1 Baseline characteristics of the study subjects.

10.3389/fimmu.2025.1675467

control groups was performed using DESeq2, applying FDR < 0.05
and [log,FC| > 1. GO and KEGG enrichment analyses were
conducted using the clusterProfiler package to interpret
functional significance.

2.3 Weighted gene co-expression network
analysis

We used the top 5,000 most variable genes to construct a scale-
free network in the WGCNA package (R). A soft-thresholding
power (B = 8) was chosen, and dynamic tree cutting was applied to
detect modules. Module eigengenes were correlated MLVWT. The
turquoise module, enriched for immune-related genes, showed the
strongest correlation with HCM (r = 0.94), and included MEIS3 as a
hub gene.

2.4 Functional enrichment analysis

To interpret the biological roles of the key HCM-associated
genes, we performed functional enrichment analyses on the
overlapping gene set from the DEG and WGCNA intersection.
This intersection step was designed to highlight genes that were not
only differentially expressed but also embedded within disease-
related co-expression modules, thereby increasing biological
relevance and reducing potential false positives. Enrichment
analyses were carried out using clusterProfiler in R and the
DAVID online tool for verification, covering Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, and Disease Ontology (DO) annotations.

2.5 Machine learning-based feature
selection

We applied two supervised machine learning algorithms—
LASSO regression and Random Forest classification—to
normalized RNA-seq expression matrices. LASSO logistic
regression was implemented using the glmnet package, applying
L1 regularization to select a minimal set of informative genes.
Model tuning was performed via 10-fold cross-validation to

Patient_ID Sex  Family_history NYHA_Class Apex(mm) LVPWd(mm) IVSd(mm) MLVWT
1 Control 34 F N I 7 6 8 8
2 Control 40 M N I 8 8 8 8
3 Control 42 M N I 8 9 9 9
4 HCM 51 M N 11 11 11 14 14
5 HCM 55 F N 11 12 14 16 16
6 HCM 59 N 11 13 15 16 16
7 HCM 54 N I 13 13 15 15
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determine the optimal penalty parameter. Genes with non-zero
coefficients were retained as key predictors. Random Forest analysis
was conducted using the randomForest package to rank genes by
variable importance. Feature ranking was based on mean decrease
in accuracy and Gini impurity. Genes prioritized by both methods
were selected for further validation and interpretation.

2.6 Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) was performed using the
clusterProfiler package in R. Genes were ranked by log2 fold-change
values between HCM and control samples. Enrichment was
assessed against Kyoto Encyclopedia of Genes and Genomes
(KEGG) gene sets obtained from the Molecular Signatures
Database (MSigDB). Statistical significance was determined using
1,000 permutations, and enrichment scores were reported as
normalized enrichment scores (NES). Pathways were considered
enriched under the thresholds |[NES| > 1, nominal p < 0.05, and false
discovery rate (FDR) < 0.25.

2.7 Gene set variation analysis

Gene Set Variation Analysis (GSVA) was conducted using the
GSVA package in R. Normalized expression data were transformed
into pathway enrichment scores for each sample using KEGG
pathway gene sets. Group-level comparisons between HCM and
controls were performed using the limma package. Statistical
significance was defined as adjusted p < 0.05.

2.8 Validation by qPCR

To validate the RNA-seq findings, the expression of the four key
genes (MEIS3, SYDE2, TRAT1, ANKRD20A1) was quantified by
qPCR in peripheral blood samples from 8 HCM patients and 8
matched healthy controls. cDNA was synthesized from RNA of
each sample using a reverse transcription kit. Gene-specific primers
were designed spanning exon-exon junctions to ensure specificity to
c¢DNA (primer sequences are listed in Supplementary Table S1).
qPCR was performed on a real-time PCR system using SYBR Green
detection. Each reaction was run in triplicate, and the relative
expression of target genes was calculated by the 27 method,
normalizing to a housekeeping gene (GAPDH).

2.9 Validation of hub gene expression
using external GEO datasets

To independently validate the expression patterns of the
identified hub genes, transcriptomic data were retrieved from the
Gene Expression Omnibus (GEO) database (GSE249925), which
includes myectomy samples from 97 obstructive HCM patients and
23 controls. The Raw expression data were downloaded and
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processed using the R software environment (version 4.3.1) as
standard procedure. To further assess the diagnostic performance
of these hub genes, receiver operating characteristic (ROC) curve
analyses were performed using the pROC package in R. The area
under the curve (AUC) values were calculated to quantify the
discriminatory ability.

2.10 Single-cell RNA-seq analysis

To identify MEIS3 expression at single-cell resolution, we analyzed
publicly available myocardial scRNA-seq data from Figshare (https://
doi.org/10.6084/m9.figshare.c.5777948.v2), which consists of 10
HCM patients and 2 healthy donors. The dataset was processed
using CellRanger and Seurat (v4.0). Cells with <200 genes or >10%
mitochondrial content were filtered. After normalization and
integration, clustering and UMAP dimensionality reduction were
performed. Cell types were annotated using canonical markers.
MEIS3 expression was evaluated across clusters, revealing
enrichment in fibroblast-like stromal cells in HCM myocardium.

2.11 Immune infiltration estimation with
xCell

To profile immune and stromal composition, we applied xCell
to normalized bulk RNA-seq data. xCell scores for 64 immune/
stromal cell types were compared between HCM and control
samples using Welch’s t-test. MEIS3 expression was correlated
with selected cell types using Spearman correlation. Samples with
higher MEIS3 showed increased fibroblast and smooth muscle
signatures and displayed distinct cytokine-cell score associations.

2.12 Cytokine—cell correlation analysis

We selected 24 cytokine-related genes and calculated their
Pearson correlation with xCell-derived immune/stromal scores.
Pearson correlation coefficients were calculated between the
expression of each cytokine gene and xCell-derived immune/
stromal scores. Analyses were performed in R (v4.3.1), and
p-values were adjusted for multiple testing using the Benjamini-
Hochberg method.

2.13 ceRNA network construction

To investigate post-transcriptional regulation, we predicted
MEIS3-targeting miRNAs via miRanda, TargetScan, and
Diana_microT. Upregulated IncRNAs were then screened for
miRNA response elements using the ENCORI database (via the
AGO-Clip IncRNA prediction tool: https://rnasysu.com/encori/
agoClipRNA.php?source=IncRNA). A ceRNA network was
constructed with IncRNAs, miRNAs, and MEIS3, suggesting that
IncRNA-miRNA competition may underlie MEIS3 dysregulation.
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2.14 Statistical analysis

All statistical analyses were conducted in R v4.1.0. Group
comparisons used Welch’s t-test; correlations were evaluated using
Pearson or Spearman methods. P-values were adjusted with the
Benjamini-Hochberg method, and significance was defined as P < 0.05.

3 Results

3.1 Identification of differentially expressed
genes in HCM

To investigate transcriptomic alterations in hypertrophic
cardiomyopathy (HCM), we performed RNA sequencing of blood
samples from HCM patients and matched healthy controls.
Principal component analysis (PCA) clearly distinguished the
HCM samples from controls, indicating high data quality and
distinct phenotypic differences (Supplementary Figure S1A).
Sample-to-sample correlation analysis further validated strong
intra-group similarity and distinct inter-group differences,
providing additional support for robust transcriptomic
characterization (Supplementary Figure S1B). A total of 692
significant DEGs were identified using stringent criteria,
comprising 467 up-regulated and 225 down-regulated genes
(Figures 1A, B). Hierarchical clustering and heatmap visualization
further demonstrated distinct gene expression profiles segregating
clearly between HCM patients and controls, suggesting robust
transcriptomic differences related to HCM pathology (Figure 1C).

3.2 WGCNA analysis and intersection with
DEGs

To identify gene modules associated with the clinical phenotype
of HCM, weighted gene co-expression network analysis (WGCNA)
was conducted. An optimal soft-threshold power of 8 was selected
based on achieving a scale-free topology index above 0.85 and
maintaining appropriate mean connectivity (Figure 1D).
Hierarchical clustering produced multiple gene modules,
visualized as a dendrogram with color-coded assignments
(Figure 1E). The module-trait relationship heatmap highlighted
that the turquoise module was most positively associated with HCM
(r = 0.94, p < 0.001), whereas the blue module was strongly
negatively correlated (r = —0.88, p < 0.001)(Figure 1F). Module
membership and gene significance analysis further underscored the
relevance of the blue module (correlation = 0.72, p < le-200;
Figure 1G). The eigengene adjacency heatmap confirmed robust
inter-module relationships, supporting network stability
(Supplementary Figure S1C). Finally, Venn analysis identified 233
overlapping genes between the blue module and DEGs, suggesting
potential regulatory hubs in HCM pathogenesis (Figure 1H).
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3.3 Functional enrichment analyses reveal
key biological pathways in HCM

To functionally characterize the 233 overlapping genes between
DEGs and the WGCNA blue module (Figure 1H), we performed
GO, KEGG, and DO enrichment analyses. GO terms were enriched
in processes related to protein synthesis (cytoplasmic translation,
ribosome biogenesis), mitochondrial structure (mitochondrial inner
membrane), and redox regulation (oxidoreductase activity),
indicating altered translational and metabolic states in HCM
(Figure 2A). KEGG analysis further highlighted pathways such as
thermogenesis, oxidative phosphorylation, and neurodegenerative
disease signaling, underscoring mitochondrial dysfunction and
energy imbalance as potential disease mechanisms (Figure 2B).
Chord mapping revealed core genes (e.g., NDUFB6, RPLI5,
ATP5PB) involved in multiple interconnected pathways
(Figure 2C).DO analysis confirmed enrichment in
cardiomyopathy, coronary artery disease, and myocardial
infarction, supporting the cardiovascular specificity of the
identified genes (Figure 2D). Together, these findings underscore
the biological significance of the blue module, as its enriched gene
set converges on key processes such as mitochondrial energy
metabolism, translational regulation, and cardiomyopathy-related
pathways. The integrative enrichment analysis not only reinforces
the pathological relevance of these genes in HCM but also highlights
their potential as mechanistic markers and promising therapeutic
targets for disease modulation.

3.4 Machine learning-based identification
of key genes

To further pinpoint critical genes contributing to HCM, we
employed machine learning approaches, namely Least Absolute
Shrinkage and Selection Operator (LASSO) and Random Forest
algorithms. LASSO regression with 10-fold cross-validation
determined the optimal penalty parameter, yielding a
parsimonious set of genes with non-zero coefficients,
including MEIS3, CYP7A1, ANKRD20A1, TRATI, and SYDE2
(Figures 3A-C). MEIS3 consistently exhibited the strongest
predictive weight. Parallelly, Random Forest analysis demonstrated
stable classification error rates after ~150 trees, ranking the top genes
by mean decrease accuracy and Gini index (Figures 3D, E).
Intersection analysis of both methods identified four consistently
prioritized genes—MEIS3, SYDE2, TRATI, and ANKRD20A1—
highlighting their reproducibility and biological relevance
(Figure 3F). To further validate their discriminative capacity, a
feedforward neural network incorporating these four genes was
trained, achieving a minimal classification error (0.00751)
(Figure 3G). Together, these findings underscore MEIS3, SYDE2,
TRATI, and ANKRD20AI as stable diagnostic candidates, with
MEIS3 emerging as the most prominent.
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FIGURE 1
Transcriptomic analysis and WGCNA reveal a key gene module associated with HCM. (A) Volcano plot of differentially expressed genes (DEGs)
between HCM and control samples. Each point represents a gene; red points indicate significantly upregulated genes (n = 467), blue points indicate
downregulated genes (n = 225), and grey points are non-significant. Vertical dashed lines mark the |log, fold change| = 1 threshold; the horizontal
dashed line indicates adjusted p = 0.05. (B) Bar chart summarizing the number of upregulated (orange) and downregulated (green) DEGs.
(C) Heatmap of the top 692 DEGs, clustered by gene expression. Rows represent genes, and columns represent individual samples (CON1-3,
HCM1-4). (D) Determination of soft-thresholding power (B) for WGCNA. Left: Scale-free topology fit index (y-axis) across powers (x-axis), with § = 8
selected where R? > 0.85. Right: Mean connectivity analysis showing a decreasing trend as B increases. (E) Gene dendrogram generated from
hierarchical clustering based on topological overlap, with dynamic tree cutting identifying multiple co-expression modules (color-coded below
dendrogram). (F) Heatmap of module—trait correlations. Each cell represents the Pearson correlation coefficient between module eigengene and
HCM status, with p-values in parentheses. The MEturquoise module shows the strongest positive correlation with HCM (r = 0.85, p < 0.001).
(G) Scatter plot showing module membership vs. gene significance within the blue module. Each dot represents a gene; a strong positive correlation
(r =0.72, p < 1e-200) indicates module robustness and relevance to HCM phenotype. (H) Venn diagram showing overlap between DEGs and blue
module genes. Among 2,826 blue module genes and 692 DEGs, 233 genes are shared (7.1%), representing potential hub candidates.
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Functional enrichment analysis of overlapping genes from DEGs and WGCNA blue module. (A) Gene Ontology (GO) enrichment analysis of
overlapping genes categorized into three domains: biological processes (BP), cellular components (CC), and molecular functions (MF). Dot size
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20 pathways. Notable enriched pathways include thermogenesis, oxidative phosphorylation, Huntington’s disease, Parkinson'’s disease, Alzheimer’s
disease, and diabetic cardiomyopathy. (C) KEGG pathway—gene chord diagram depicting associations between enriched pathways and key genes.
Several genes (e.g.,, NDUFB6, NDUFA9, RPL15) appear in multiple pathways, indicating central regulatory roles in mitochondrial bioenergetics and
stress signaling. (D) Disease Ontology (DO) enrichment analysis highlighting cardiomyopathy-related terms. Significant enrichment was observed for
intrinsic cardiomyopathy, coronary artery disease, myocardial infarction, and myocarditis, indicating disease specificity of the overlapping gene set.

Dot color denotes p-value, and size indicates gene count.

3.5 Pathway enrichment analysis of
machine learning-derived candidate genes

We profiled pathway context for the four machine learning-
prioritized genes (MEIS3, SYDE2, TRATI, ANKRD20AI) using
Gene Set Enrichment Analysis (GSEA) and Gene Set Variation
Analysis (GSVA) based on KEGG pathway gene sets.

GSEA results revealed that MEIS3 was enriched in pathways
related to ribosome, glycan degradation, and metabolic signaling
(Figure 4A). Similarly, SYDE2 showed positive enrichment in
calcium signaling, cardiac muscle contraction, and oxidative

Frontiers in Immunology

phosphorylation pathways, which are closely linked to cardiac
metabolism and excitation-contraction coupling (Figure 4B).
TRATI1 was involved in ribosome biogenesis and cardiac-related
pathways such as dilated cardiomyopathy (Figure 4C), whereas
ANKRD20A1 was associated with gene replication and cell cycle-
related processes (Figure 4D), highlighting its potential role in
transcriptional regulation in HCM.

Complementary GSVA analysis provided individual-level
pathway activity scores across samples. MEIS3 displayed
significantly increased activity in ribosome-related and
glycosaminoglycan degradation pathways, whereas immune-
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FIGURE 3

Machine learning-based identification of key diagnostic genes for hypertrophic cardiomyopathy (HCM). (A) Ten-fold cross-validation curve for the
LASSO logistic regression model used to select the optimal regularization parameter (A); the dotted line on the left indicates the A value with
minimum mean cross-validated error. (B) Coefficient paths of selected genes across varying A values; five genes retained non-zero coefficients at
the optimal A, including MEIS3, CYP7A1, ANKRD20A1, TRAT1, and SYDE2. (C) Bar plot showing the absolute coefficients of LASSO-selected genes,
with MEIS3 exhibiting the highest predictive weight. (D) Error rates of the Random Forest classifier for HCM, control, and overall samples stabilized
after ~150 trees, indicating good model convergence. (E) Feature importance scores of the top 20 genes in the Random Forest model ranked by
mean decrease in accuracy (left) and Gini index (right). (F) Venn diagram showing the intersection between LASSO and Random Forest outputs; four
overlapping genes—MEIS3, SYDE2, TRAT1, and ANKRD20A1—were identified as robust diagnostic candidates. (G) Neural network topology using
these four genes as input nodes, achieving a final error rate of 0.00751 after 20 training steps, supporting their discriminative potential in HCM

classification.
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tvalue of GSVA score

Functional enrichment analysis of four machine learning-derived HCM marker genes. (A—D) Gene Set Enrichment Analysis (GSEA) plots for MEIS3
(A), SYDE2 (B), TRAT1 (C), and ANKRD20A1 (D) based on KEGG gene sets. Enrichment scores (ES) are shown with leading-edge subsets and
normalized enrichment scores (NES) indicated for each gene. (E—H) Gene Set Variation Analysis (GSVA) results depicting pathway-level t-values
between HCM and control groups for MEIS3 (E), SYDE2 (F), TRATL (G), and ANKRD20AL1 (H). Red and green bars represent significantly up- or down-
regulated pathways, respectively, with gray indicating nonsignificant differences. Pathways span categories including ribosome biogenesis, cardiac
muscle contraction, glycan degradation, immune modulation, and oxidative phosphorylation.

related pathways (e.g., JAK-STAT and cytokine signaling) were
downregulated in the HCM group (Figure 4E). SYDE2 was linked to
protein folding, apoptosis, and immune signaling, showing
upregulation in metabolic stress pathways (Figure 4F). TRAT1
shared several overlapping pathways with SYDE2, while
ANKRD20A1 primarily affected DNA replication, transcription
factor activity, and systemic lupus erythematosus-related
processes (Figures 4G, H). Together, these findings support the
functional relevance of the four candidate genes in processes

spanning protein synthesis, immune regulation, and
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mitochondrial metabolism—pathways consistent with HCM

molecular pathology.
3.6 Clinical validation and correlation
analysis of key genes

Normalized RNA-seq data confirmed distinct expression

patterns for the four candidates: MEIS3 was significantly
upregulated in HCM, whereas SYDE2, TRATI, and ANKRD20A1
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were reduced relative to controls (Figure 5A). ROC analyses showed
strong discrimination for all four genes in the discovery cohort, with
AUCs approaching 1.0, further substantiating their potential
diagnostic utility (Figure 5B). As an orthogonal assay, qPCR in an
independent set of peripheral blood samples replicated increased
MEIS3 and decreased SYDE2 and ANKRD20A1; TRAT1 did not
differ significantly by qPCR (Figure 5C). In an external GEO cohort
(GSE249925), ROC analysis demonstrated AUC = 1.000 for
ANKRD20A1 and TRAT1, AUC = 0.930 for MEIS3, and AUC =
0.420 for SYDE2 (Figure 5D). These results confirm the robustness
of MEIS3, ANKRD20A1, and TRAT1 as potential diagnostic
biomarkers for HCM, while suggesting a weaker role for SYDE2.
To explore their clinical relevance, we investigated the
correlation between gene expression levels and maximal left
ventricular wall thickness (MLVWT). Among all clinical variables
recorded in Table 1 (including age, sex, NYHA classification,
ejection fraction, and interventricular septal thickness), MLVWT
was selected due to its strong pathophysiological link to myocardial
hypertrophy and remodeling. Spearman correlation analysis
showed a significant positive association between MLVWT and
MEIS3 (Spearman’s p = 0.67, p = 0.024). For SYDE?2, the correlation
with MLVWT was positive but did not reach statistical significance
(Spearman’s p = 0.50, p = 0.074). Conversely, ANKRD20A1 and
TRAT1 exhibited weaker and non-significant correlations with
MLVWT, suggesting differential clinical relevance among these
key genes (Figure 5E). Finally, odds-ratio analysis indicated that
higher MEIS3 expression was associated with increased odds of
HCM(Figure 5F). Collectively, these findings nominate MEIS3,
together with ANKRD20A1 and TRAT1, as promising diagnostic
candidates; however, clinical utility will require validation in larger,
prospective cohorts and evaluation alongside standard risk markers.

3.7 Single-cell RNA-seq analysis validates
MEIS3 expression in MSCs and cell-type
specific signatures

Single-cell RNA sequencing (scRNA-seq) confirmed the
expression patterns identified in bulk analyses: MEIS3 was
significantly upregulated in HCM, while SYDE2, TRATI1, and
ANKRD20A1 were downregulated (Figures 6A, B). ROC analysis
based on scRNA-seq data demonstrated strong diagnostic
performance of MEIS3 across cell types (Figure 6C). UMAP
clustering with SingleR annotation identified major cardiac and
immune populations, including monocytes, endothelial cells,
fibroblasts, T cells, and mesenchymal stem cells (MSCs)
(Figure 6D). Notably, MSCs were expanded in HCM compared to
controls (Figure 6E), indicating potential disease-related
remodeling. Cell-type-specific differential expression showed that
MEIS3 was selectively enriched in MSCs, whereas the other three
candidate genes were broadly suppressed across multiple stromal
and immune subsets (Figure 6F). UMAP feature mapping further
confirmed MEIS3 localization within the MSC compartment
(Figure 6G). These results highlight MSCs as the principal source
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of MEIS3 in HCM and suggest its potential role in MSC-driven
remodeling processes.

3.8 MEIS3-associated cytokine landscape
in MSCs

Building on the selective upregulation of MEIS3 in MSC
populations, we profiled cytokine transcripts across MSC and
fibroblast subsets to assess potential microenvironmental effects.
Dot-plot visualization indicated dysregulation of several stromal/
angiogenic and immunoregulatory factors in HCM-derived MSCs
relative to controls, including CXCL12, VEGFA, CSF1, and BMP1,
which are implicated in angiogenesis, immune-cell recruitment, and
extracellular matrix remodeling (Figure 7A). These patterns are
consistent with a shift toward stromal activation and altered
immune signaling in HCM.

To further dissect MEIS3-associated regulatory patterns, we
performed group-wise gene correlation analyses between MEIS3
and selected cytokines in MSC/fibroblast populations. MEIS3
expression exhibited statistically detectable but very weak positive
correlations with CXCL12 (r = 0.06, p = 0.001) and BMP1 (r = 0.06,
p = 0.002), whereas these associations were absent or weaker in
controls (Figure 7B). Interestingly, VEGFA exhibited a weak
negative correlation trend with MEIS3 in HCM, potentially
reflecting a compensatory angiogenic feedback. Together with the
spatial and cell-type-specific enrichment of MEIS3 observed in
Figure 6, these results support the hypothesis that MEIS3 may
orchestrate a stromal cytokine regulatory network within MSCs.
However, given the very modest correlation coefficients and limited
sample size, these findings should be interpreted as preliminary,
reflecting subtle associations rather than strong linear relationships,
and warrant validation in larger cohorts.

3.9 MEIS3-related ceRNA regulatory
network in HCM

To investigate upstream mechanisms underlying MEIS3
dysregulation in HCM, we constructed a competing endogenous
RNA (ceRNA) network by integrating predictions from miRanda,
TargetScan, and Diana_microT. Cross-database comparison identified
three shared miRNAs predicted to target MEIS3 (Figure 8A). These
served as the basis for building a MEIS3-centered ceRNA network
incorporating IncRNAs and miRNAs (Figure 8B). The resulting
network displayed a dense regulatory architecture, suggesting that
multiple IncRNAs may act as molecular sponges to modulate MEIS3
levels by sequestering its targeting miRNAs. A Sankey diagram
(Figure 8C) highlights several candidate regulatory axes, including
AC009403.1-miR-129-5p-MEIS3 and SNHG16-miR-335-5p-MEIS3.
These findings support a model in which ceRNA-mediated post-
transcriptional regulation contributes to MEIS3 overexpression in
HCM cardiac tissue, providing potential new nodes for mechanistic
exploration and therapeutic targeting.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1675467
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

He et al. 10.3389/fimmu.2025.1675467
ROC Curves of Key Genes D ROC Curves of Key Genes
A Expression of Core Biomarker Genes B b ]
& con & How 1
— 0.8
10- - 0754
06
£ - = z
g, S E o
3 . Gene .
g = -
== e
H == —  Somann 02
, == - T noaons o - 1000
— TRATI (AUC = 1.000
e 0001 P —— SYDE2 EAUC - 0420])
eSS SvbE2 TRATT “ANKADZOAT oho obs ) o o0 9.0 02 0.4 0.6 08 10
1- Specificiy 1- Specificity
C
MEIS3 SYDE2 TRAT1 ANKRD20A1
* * nd *
5 2.0 2.5 5
°
S 4] c i c a L c
g4 S 1.5- 520 S
2 a" 2 c o8
(4 [ o (]
2 2 37 22 2 2 1.5 22
= o = Qo = o - O
3 o * £5107 3 o 3 o
Q _ [] Q _ []
¢ ? X< €< 10 X<
2 2 v, B :
°
o®e
€ 17 2 E £ 0.5 =
0- 0.0-
Ctrl HCM Ctrl HCM Ctrl HCM Ctrl HCM
E MLVWT vs MEIS3 (spearman correlation) MLVWT vs SYDE2 (spearman correlation)
5
=067, p=0024 > [
o F
é % 1
3 K | OR = 158.95 (0.14-185139.46)
% g MEIS3 1 9 =0017
e 1
s 1
1
1
B SvDE2 .on; 0(0-267)
8 i s s 2 i =0.124 I
MLVWT (mmoliL) MLVWT (mmol/L) 1
1
1
OR = 0.03 (0-2.13)
MLVWT vs ANKRD20A1 (spearman correlation) MLYWT v TRAT! (spearman correation) TRAT1 L Jreven
1
1
ot i 100 pRegds, p-0 !
~o0st.p=0i7
< qOR =0.020-14.49)
io. 0 e ANKRD20A1 —ozt6 |
¥ o 1
- 2
] S -
2 9 1e-03 1e+01 1e+05
H 1 [ + QOdds Ratio (log scale)
s -
o5
g i s i | | | L
MLWT (mmoit) : W (o) "
FIGURE 5

Clinical validation and diagnostic evaluation of key HCM-related genes. (A) Boxplot comparing normalized RNA-seq expression levels of four
machine learning—selected genes (MEIS3, SYDE2, TRAT1, ANKRD20A1) between control and HCM groups. MEIS3 expression was significantly
upregulated in HCM, while SYDE2, TRAT1, and ANKRD20A1 were downregulated. (B) Receiver Operating Characteristic (ROC) curve analysis
demonstrated excellent classification performance for all four genes, each achieving an area under the curve (AUC) of 1.0, indicating high diagnostic
potential. (C) gRT-PCR validation in an independent cohort confirmed significantly increased expression of MEIS3 and decreased expression of
SYDE2 and ANKRD20AL in HCM patients (n = 8) compared to controls (n = 8); TRAT1 expression did not differ significantly, suggesting transcript-
level variation not reflected at the protein-coding level. (D) ROC curve validation of hub genes in the external GEO dataset (GSE249925).

(E) Spearman correlation analysis between gene expression and maximal left ventricular wall thickness (MLVWT), a key clinical parameter of HCM
severity (as shown in Table 1), revealed significant positive correlations for MEIS3 (r = 0.67, p = 0.024) and SYDE2 (r = 0.5, p = 0.074), suggesting a
possible link with structural myocardial remodeling. ANKRD20A1 and TRAT1 showed non-significant negative trends. (F) Forest plot of odds ratio
analysis showed that MEIS3 expression was strongly associated with increased HCM risk (OR = 158.95, p = 0.017), highlighting its clinical relevance
as a robust biomarker. Other genes showed non-significant associations (p > 0.1), underscoring MEIS3 as the most reliable diagnostic candidate

among the four. * indicated P<0.05.
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Single-cell transcriptomic analysis reveals cell-type—specific expression patterns of key diagnostic genes in HCM. (A) Volcano plot showing
differentially expressed genes in scRNA-seq data comparing HCM versus control samples. MEIS3 is significantly upregulated (red), while SYDE2,
TRATL, and ANKRD20A1 are downregulated (blue). (B) Bar graph showing log2 fold changes of the four key genes between HCM and control
samples. (C) ROC curves based on scRNA-seq expression data demonstrating excellent discriminatory performance of MEIS3 among the four genes
(AUC = 1.0). (D) UMAP plot with SingleR-based cell-type annotation, depicting distinct clustering of major immune and stromal cell populations
including monocytes, T/NK cells, fibroblasts, endothelial cells, and mesenchymal stem cells (MSCs). (E) Bar plot showing cell-type composition per
sample. A noticeable increase in MSC proportion is observed in HCM samples compared to controls. (F) Dot plot of cell-type—specific differential
expression. MEIS3 is selectively upregulated in MSCs, while SYDE2, TRAT1, and ANKRD20AL1 are generally downregulated in multiple cell types
including fibroblasts, macrophages, and monocytes. Dot size represents percentage of expressing cells; color denotes log2 fold change. (G) UMAP
feature plots for MEIS3, SYDE2, TRAT1, and ANKRD20A1. MEIS3 expression is predominantly localized to the MSC cluster, whereas the other three
genes show low and scattered expression across cell populations.
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log2 fold change of 40 key cytokines across 21 annotated cell types in HCM versus control conditions. Each dot represents the mean expression
percentage (dot size) and direction of differential expression (color scale: red = upregulated; blue = downregulated). Notably, MEIS3-enriched
mesenchymal stem cells (MSCs) and fibroblasts displayed pronounced dysregulation of cytokines such as BMP1, CXCL12, CSF1, and VEGFA.

(B) Group-wise correlation analyses between MEIS3 expression and representative cytokines in MSCs/fibroblasts. Spearman correlation coefficients
(r) and p-values are shown separately for control (blue) and HCM (red) groups. MEIS3 expression in HCM MSCs positively correlated with BMP1 (r =
0.06, p = 0.002) and CXCL12 (r = 0.06, p = 0.001), while an inverse association was observed with VEGFA (r = —0.04, p = 0.056). No significant
correlations were found for FAM3C or CSF1 within the HCM group. These results suggest that MEIS3 may participate in fibroblast/MSC-mediated

paracrine regulation in HCM through selective cytokine interaction.

3.10 MEIS3-associated immune remodeling
via stromal-cytokine interactions

We evaluated the immune-stromal milieu using xCell
deconvolution of bulk RNA-seq. Relative to controls, HCM
samples showed higher enrichment scores for fibroblasts,
endothelial cells, macrophages (M1/M2), and dendritic cells, with
lower CD8" T cell and NK cell signals, consistent with stromal
activation and an altered immune landscape (Figure 8D).
Associations between MEIS3 expression and cell-type scores
indicated positive correlations with fibroblasts, endothelial cells,
macrophages, and aDCs in HCM (but not in controls), suggesting
disease-specific immune-stromal coupling (Figure 8E). To examine
potential cytokine mediators, we correlated MEIS3-linked cytokines
with immune/stromal scores. CXCL12, VEGFA, BMP1, and CSF1
showed cell-type-specific correlation patterns with macrophages, T
cells, and endothelial subsets (Figure 8F, Supplementary Figure S2).
Taken together, these observations are consistent with a cytokine-
mediated stromal-immune axis associated with MEIS3 in HCM.
Given that several effect sizes are modest, we interpret these findings
as hypothesis-generating; validation in larger cohorts and
functional assays will be required to determine whether MEIS3
causally modulates the cardiac immune microenvironment.

4 Discussion

In this study, we integrated bulk and single-cell transcriptomics
with computational modeling to explore a potential link between
the developmental transcription factor MEIS3 and the
immunopathology of hypertrophic cardiomyopathy. Our key
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finding is that MEIS3 is significantly upregulated in HCM hearts
and that its elevated expression is associated with distinct
immunological and clinical features of the disease. MEIS3 stood
out in our unbiased multi-omics analyses as a candidate diagnostic
biomarker (in our dataset) and as a putative immunoregulatory
switch in the HCM myocardium. To our knowledge, this is among
the first report implicating MEIS3 in HCM. Given the modest
sample size and cross-dataset integration, these observations should
be regarded as hypothesis-generating. More broadly, they add to
evidence that HCM involves mechanisms beyond sarcomeric gene
mutations (20, 21), suggesting how transcriptional regulators and
immune mechanisms may converge to drive disease progression.
Several lines of evidence from our results underscore the clinical
relevance of MEIS3 in HCM. First, MEIS3 was one of the top
differentially expressed genes in HCM, with a fold-change and
significance that suggest a robust disease association in this cohort.
This alone is notable given that prior transcriptomic studies of
HCM have not reported MEIS3, possibly because it may not reach
significance in larger heterogeneous cohorts or was simply
overlooked. The pronounced upregulation in our well-
phenotyped cohort may reflect a specific subset of HCM where
MEIS3 is important, or fundamental involvement in HCM that
warrants confirmation in larger samples. Second, our machine
learning analyses identified MEIS3 as a powerful single-gene
classifier for HCM. In our discovery dataset, the AUROC
exceeded 0.90, and in an independent myocardial cohort the
discriminatory performance remained high (AUC ~0.85), on par
with or exceeding several multi-gene signatures proposed
previously (22, 23). This suggests that measuring MEIS3 (for
instance, via PCR on endomyocardial biopsy or circulating blood
cells) could aid in HCM diagnosis or in distinguishing HCM from
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FIGURE 8

Construction of MEIS3-related ceRNA regulatory network and immune cell infiltration landscape in HCM. (A) Venn diagram displaying the
intersection of predicted miRNAs targeting MEIS3 from three databases (miRanda, TargetScan, and Diana_microT), identifying 3 common miRNAs.
(B) ceRNA network visualization including IncRNAs, miRNAs, and MEIS3, with red triangles indicating IncRNAs, green circles indicating miRNAs, and
blue squares representing mRNAs. Regulatory edges highlight potential competing interactions. (C) Regulatory axis diagram illustrating the ceRNA
pathway of MEIS3, showing multi-layered IncRNA-miRNA-mRNA relationships. Notably, MEIS3 is positioned as a central node downstream of
multiple axes. (D) Immune cell enrichment analysis using xCell revealed significantly altered immune/stromal cell populations in HCM compared to
controls. Notably, fibroblasts, endothelial cells, macrophages M1/M2, and dendritic cells (aDCs, pDCs) displayed robust enrichment differences
(Wilcoxon test, p < 0.05). (E) MEIS3 expression exhibited statistically significant correlations with selected immune cell types in the HCM group,
especially macrophages, dendritic cells, and endothelial cells. Shaded bands represent 95% confidence intervals (Spearman correlation, p < 0.05).
(F) Correlation heatmap illustrating disease-specific associations between five representative cytokines (BMP1, CSF1, CXCL12, FAM3C, VEGFA) and
differentially enriched xCell-derived immune cell types in the HCM group. Distinct patterns were observed for cytokine—cell type relationships, with
stronger or inverse correlations in HCM, suggesting disease-specific immune remodeling.
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other causes of hypertrophy. It is particularly intriguing to consider
MEIS3 as a biomarker in genotype-negative HCM patients, where
traditional genetic testing fails to provide a diagnosis. Our work lays
the groundwork for future studies to validate MEIS3 in a larger
patient population and assess its additive value to current
diagnostic algorithms.

Consistent with prior evidence, peripheral blood transcriptomes
can partially mirror myocardial remodeling and clinical outcomes,
supporting the concept that circulating immune cells provide an
accessible—though indirect—window into cardiac disease activity
(24, 25). In the context of MEIS3, two non-exclusive models may
explain the concordance of blood- and tissue-derived signals. One is
a cardiac-intrinsic model, in which MEIS3 acts within resident
stromal cells to regulate fibrotic and immunomodulatory pathways
(26). The other is a systemic/indirect model, whereby circulating
immune cells—such as CCR2" monocytes/macrophages—are
recruited from blood to injured myocardium and influence local
remodeling (27). As our study lacks paired blood-tissue samples, we
frame such cross-compartment inferences as hypothesis-generating
rather than confirmatory. We explicitly acknowledge this limitation
and outline next steps, including paired sampling, single-cell/spatial
localization of MEIS3 in myocardium, and prospective validation in
independent HCM cohorts. Finally, given that observed
correlations (e.g., with cytokines) are statistically significant but
very weak in magnitude, they should be regarded as biologically
tentative until replicated in larger datasets.

Beyond diagnosis, the immunological role of MEIS3 in HCM is
a working hypothesis with mechanistic implications that requires
further testing. High MEIS3 expression was linked to fibroblast
activation, altered cytokine profiles (e.g., CXCL12, VEGFA, BMP1),
and reduced immune infiltration, but the correlations were very
weak (e.g., MEIS3-CXCLI2 r = 0.06), indicating subtle rather than
robust effects. Similar to observations in oncology where MEIS
family members mark immune exclusion and “cold” tumors (19,
28), these findings suggest that MEIS3 may contribute to feedback
circuits that dampen inflammation while promoting fibrosis. Such
statistically significant but weak correlations are common in single-
cell data, where large cell numbers inflate significance and
heterogeneity, paracrine gradients, or non-linear dynamics can
mask stronger local interactions. Thus, the observed associations
should be regarded as preliminary indicators of complex immune-
stromal regulation rather than direct linear relationships. By
analogy—and explicitly as a hypothesis—we speculate that in
HCM, MEIS3 might contribute to an immune-modulatory
feedback loop that restrains excessive inflammation but perhaps
at the cost of promoting fibrotic remodeling. Potential mechanisms
include regulation of PDK1/Akt signaling, which influences
macrophage polarization and fibroblast survival (29), and
interactions with suppressive cytokines such as TGF-§3 or IL-10.
Indeed, our data showed that samples with high MEIS3 and stromal
growth factors had lower T cell and macrophage infiltration. It is
tempting to consider that MEIS3 could be driving expression of
factors that dampen immune cell recruitment or activation in the
myocardium. Although direct targets of MEIS3 in the heart are
unknown, candidates might include genes involved in chemokine
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signaling or antigen presentation. Future chromatin
immunoprecipitation sequencing (ChIP-seq) for MEIS3 in cardiac
cells could illuminate its gene regulatory network. Future work
using perturbation assays and ChIP-seq in cardiac stromal cells is
needed to test these hypotheses.

Our single-cell analysis further identified fibroblasts and
vascular cells as the principal sources of MEIS3 in HCM. Cardiac
fibroblasts are central players in myocardial remodeling that not
only produce but also respond to cytokines, and elevated MEIS3
may enhance their proliferative and matrix-secreting capacity while
modulating crosstalk with immune cells. For instance, CXCL12,
which we found enriched in stromal compartments, is typically
secreted by fibroblast-like cells and can recruit progenitors or
regulate T cell responses. Increased MEIS3 may therefore
promote CXCL12-dependent retention of CXCR4" progenitors or
regulatory T cells, conferring fibroblasts with an immunoregulatory
phenotype that supports chronic low-grade inflammation in HCM.
In contrast, cardiomyocytes displayed minimal MEIS3 expression,
suggesting that any hypertrophic effects are likely mediated
indirectly through stromal intermediaries. This highlights the
importance of analyzing cell-cell interactions in HCM; what has
traditionally been viewed as a disease of cardiomyocytes may
significantly involve fibroblast-immune cell networks modulated
by factors like MEIS3.

Our ceRNA network analysis provides a preliminary hypothesis
for upstream regulation of MEIS3 in HCM. We identified specific
IncRNAs that could act as sponges for MEIS3-targeting miRNAs,
potentially explaining why MEIS3 is overexpressed. Notably, these
IncRNAs are largely uncharacterized in cardiac contexts. If
validated, they might represent novel regulatory nodes that
coordinate with MEIS3 in driving disease. It is intriguing to
consider that genetic or epigenetic changes in non-coding regions
(rather than coding mutations) might contribute to HCM in some
patients by dysregulating gene networks like the MEIS3 hub. This
aligns with a growing recognition that non-sarcomeric and
regulatory elements can influence HCM severity (30, 31).
Clinically, such IncRNAs could become therapeutic targets:
silencing a disease-promoting IncRNA might restore microRNA
activity to normal and thereby reduce MEIS3 levels and its
downstream effects.

Our findings suggest that MEIS3 may contribute to HCM
pathogenesis and hold potential clinical relevance. As a
biomarker, MEIS3 expression could assist in early detection or
risk stratification, particularly in patients with borderline
hypertrophy or a family history without known mutations.
Beyond diagnosis, MEIS3 and its regulatory network may
represent candidate therapeutic targets, an area of unmet need
given the absence of disease-modifying therapies for HCM.
Although direct inhibition of transcription factors is challenging,
indirect strategies—such as disrupting MEIS3-DNA binding or
targeting upstream regulators like IncRNAs and signaling
pathways—merit exploration. The link between MEIS3 and
PI3K-Akt signaling is especially noteworthy, as pharmacological
modulators of this pathway already exist. Nonetheless, these
therapeutic implications remain hypothesis-generating; proposals
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to repurpose anti-fibrotic or immunomodulatory agents (e.g., TGF-
B modulators, IL-1B antagonists) should be viewed as speculative
until supported by rigorous mechanistic validation. Importantly,
while high MEIS3 expression was associated with a distinct cytokine
milieu, correlation does not establish causality, underscoring the
need for functional and prospective studies to test whether MEIS3-
related pathways can be therapeutically modulated to
improve outcomes.

More broadly, this work supports the concept that HCM,
traditionally regarded as a purely genetic cardiomyopathy, also
encompasses an immunological dimension. This aligns with
recent reviews highlighting inflammation as a modifier of HCM
phenotypes (32, 33). By integrating immunology and cardiology
through the lens of MEIS3, we provide a framework for future
investigations to explore how immune cells and heart cells co-act in
HCM. As techniques like single-cell sequencing and spatial
transcriptomics become more prevalent, we anticipate that
additional factors like MEIS3 will be uncovered, further blurring
the line between classic genetic paradigms and immune-mediated
processes in cardiomyopathy. In conclusion, our work identifies
MEIS3 as a candidate player in HCM and encourages a re-
examination of HCM therapeutic strategies to include modulation
of immune and gene regulatory networks. Future priorities include
replication in external cohorts, paired blood-tissue profiling, spatial
localization, and perturbation studies to test causality. Targeting the
MEIS3-centered network might offer a two-pronged benefit:
attenuating pathological cardiac remodeling and recalibrating the
cardiac immune response, ultimately improving outcomes for
patients with this complex disease.

5 Limitation

Our findings should be interpreted in light of certain
limitations. The sample size of our study was modest (n=7),
reflecting the difficulty in obtaining myocardial tissue from HCM
patients and matched healthy controls. While this was sufficient for
our multi-omics pilot analysis, larger cohorts are needed to verify
the consistency of MEIS3 upregulation and to refine its correlation
with immune features. The extreme correlations observed (e.g.,
CXCL12 with stromal score) likely stem from low sample numbers
and should be validated with caution. Another limitation is that our
study is primarily associative. We demonstrate correlations between
MEIS3 and immune parameters, but this does not prove causation.
It remains to be experimentally shown whether MEIS3 actively
drives immune modulation in HCM or is simply a bystander. In
vitro and in vivo studies will be crucial next steps - for example,
overexpressing or knocking down MEIS3 in cardiac fibroblasts to
observe effects on cytokine production, or using a mouse model of
cardiac hypertrophy to test if MEIS3 loss-of-function alters
inflammatory cell infiltration and fibrosis. Additionally, while we
did leverage an external dataset for diagnostic validation, a
comprehensive external validation (including protein-level
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confirmation such as immunohistochemistry for MEIS3 in HCM
myocardium) is warranted. Despite these limitations, our
integrative approach provides a coherent narrative that links
MEIS3 to known HCM pathways (fibrosis, immune response)
and generates novel hypotheses.
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