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Background: Hypertrophic cardiomyopathy (HCM) is a prevalent genetic cardiac

disorder characterized by myocardial hypertrophy and diastolic dysfunction.

While traditionally attributed to sarcomeric mutations, recent studies have

highlighted the pivotal contribution of immune dysregulation and stromal–

immune interactions in its pathophysiology. However, the molecular drivers

bridging structural remodeling and immune activation remain poorly defined.

Objective: This study aimed to characterize the clinical and immunological role

of the transcription factor MEIS3 in HCM through integrative transcriptomic and

single-cell analyses, with a focus on its diagnostic potential and regulatory

interactions within the cardiac microenvironment.

Methods:We performed bulk RNA sequencing on peripheral blood samples from

clinically diagnosed HCM patients (n = 4) and matched healthy controls (n = 3),

followed by differential expression analysis and weighted gene co-expression

network analysis (WGCNA). Machine learning algorithms (LASSO and Random

Forest) were used to identify key diagnostic genes. Single-cell RNA sequencing

(scRNA-seq) from myocardial tissues was used to localize gene expression. The

immunological context was evaluated via xCell-based immune deconvolution,

cytokine–immune cell correlation analysis, and ceRNA network construction

centered on MEIS3.

Results: MEIS3 was significantly upregulated in HCM samples and identified as a

core hub gene in the HCM-associated blue WGCNA module. Machine learning

consistently ranked MEIS3 among the top discriminatory markers (AUC > 0.90).

scRNA-seq revealed MSCs as the predominant MEIS3-expressing population in

HCM myocardium. Functional enrichment implicated MEIS3 in pathways related

to protein synthesis, mitochondrial metabolism, and immune modulation.

Immune deconvolution indicated increased M1 macrophages, NK cells, and

dendritic cells in HCM. MEIS3 expression positively correlated with key

immunomodulatory cytokines (CXCL12, BMP1) and altered immune

landscapes. The ceRNA network identified candidate lncRNA–miRNA–MEIS3

axes potentially driving its overexpression. Cytokine–immune cell analysis

revealed MEIS3-linked cytokines bridging stromal and immune compartments,

reinforcing its central role in immunoregulatory remodeling.
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Conclusion: MEIS3 functions as a stromal-centric immunomodulator in HCM,

shaping cytokine expression and immune infiltration in the diseased heart. Its

expression shows diagnostic potential and may represent a novel target for

immuno-modulatory strategies. These findings open new avenues for immuno-

targeted interventions in HCM management.
KEYWORDS
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1 Introduction

Hypertrophic cardiomyopathy (HCM) is a familial heart muscle

disease defined by unexplained left ventricular hypertrophy, often

leading to heart failure, arrhythmias, or sudden cardiac death in young

individuals (1–3). Pathogenic mutations in sarcomeric proteins (e.g.,

MYH7, MYBPC3) are a well-established cause of HCM, yet a

substantial proportion of patients lack detectable sarcomere gene

mutations and the genotype-phenotype correlations remain

unpredictable. Indeed, up to 50–68% of HCM patients have no

identified sarcomere mutation, and the regulatory networks driving

HCM pathology in these cases are not fully understood (4, 5). This

uncertainty has prompted systematic transcriptome analyses to

uncover novel molecular mechanisms and biomarkers that could

improve HCM diagnosis and management.

Emerging evidence implicates inflammation and immune

dysregulation in HCM progression (6). Although HCM has

classically been viewed as a non-inflammatory cardiomyopathy,

studies have revealed a chronic, low-grade inflammatory state in

HCM patients, characterized by elevated circulating cytokines (e.g.,

TNF-a, IL-6, IL-1b, IL-10) and mild myocardial immune cell

infiltration (7, 8). Histological analyses found that nearly half of

septal myectomy samples from HCM patients contain focal

accumulations of inflammatory cells (9, 10). Functionally, pro-

inflammatory mediators such as TNF-a can drive cardiomyocyte

hypertrophy and fibrosis; for example, TNF-a overexpression in

myocardium induces IL-6, which in turn promotes hypertrophy,

extracellular matrix deposition, and diastolic dysfunction (11, 12).

These observations suggest that immune pathways contribute to the

HCM phenotype, potentially exacerbating mechanical dysfunction

and fibrosis. Consistently, high-throughput studies have identified

immune-related signatures in HCM. Gene enrichment analyses

show that inflammatory signaling pathways (including MAPK

and PI3K–Akt cascades) are upregulated in HCM hearts (13), and

immune cell deconvolution has demonstrated increased infiltration

of macrophages, monocytes, and NK cells in HCM compared to

controls (14). Furthermore, bioinformatic investigations have

proposed immune-associated genes as HCM biomarkers. For

example, Zheng et al. identified a panel of differentially expressed

immune genes that distinguished HCM patients with excellent
02
diagnostic accuracy (C-index 0.925) (15). These findings position

the immune response as an important facet of HCM pathogenesis

and a potential source of new clinical biomarkers.

Here, we focus on MEIS3 (Meis homeobox 3), a transcription

factor not previously linked to HCM, which emerged from our

multi-omics analysis as a candidate immunoregulatory gene of

interest. MEIS3 belongs to the TALE-homeodomain family of

transcription factors known for roles in embryonic development

and cell differentiation (16). Notably, MEIS3 can directly regulate

PDPK1 (PDK1), a master kinase in the PI3K/Akt signaling

pathway, thereby promoting cell survival in other tissues (17).

This is intriguing in the context of HCM, where PI3K–Akt

signaling and downstream hypertrophic pathways are

dysregulated (18). Moreover, recent pan-cancer analyses have

revealed that MEIS3 and its family members influence the

immune microenvironment (19). High MEIS3 expression in

tumors is associated with an “immune-silenced” phenotype

characterized by low leukocyte infiltration, and interfering with

MEIS family gene expression has been suggested to enhance

responses to immunotherapy. While cancer and cardiomyopathy

are disparate diseases, these findings hint that MEIS3 might broadly

act as an immunomodulatory switch in pathological states. We

hypothesized that in HCM, MEIS3 could serve a dual role: as a

diagnostic marker reflecting disease status and as an

immunoregulatory factor shaping cardiac immune cell

engagement and cytokine signaling.

To test this hypothesis, we conducted an integrative analysis

combining bulk and single-cell RNA sequencing, machine learning,

network biology, and immunoinformatic techniques on myocardial

samples from HCM patients and healthy controls. Our study design

enabled a comprehensive exploration of MEIS3 from molecular,

cellular, and clinical angles. We identified differentially expressed

genes and co-expression networks from bulk RNA-seq to pinpoint

candidate regulators, and singled out MEIS3 as a top upregulated

gene in HCM. We then examined cell type-specific expression of

MEIS3 using single-cell transcriptomics to localize its source in

cardiac tissue. Immune cell deconvolution (xCell) and cytokine

analyses were integrated to determine how MEIS3 expression

relates to immune cell infiltration and inflammatory mediator

profiles. Furthermore, we constructed a competing endogenous
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RNA (ceRNA) network to explore upstream lncRNA–miRNA

interactions that might regulate MEIS3 in HCM. Finally, we

employed machine learning models to evaluate the diagnostic

power of MEIS3 (alone and in combination with other features)

for distinguishing HCM patients from controls. Through this multi-

pronged approach, we uncovered evidence that MEIS3 is intimately

linked with the immunopathology of HCM. In this manuscript, we

present our findings that highlight MEIS3 as a novel biomarker of

HCM and a key node in the immune-related network of disease

mechanisms. We discuss the translational implications of targeting

MEIS3 or its downstream pathways for improving HCM diagnosis

and developing immunomodulatory therapies.
2 Materials and methods

2.1 Study cohort and blood sample
collection

Peripheral blood samples were obtained from 4 patients with

obstructive hypertrophic cardiomyopathy (HCM) undergoing

septal myectomy (NYHA class III) and 3 healthy donors matched

for age and sex. Written informed consent was obtained from all

participants, and the study protocol was approved by the

institutional ethics committee. Clinical characteristics, including

echocardiographic parameters such as maximal left ventricular wall

thickness (MLVWT), interventricular septum diameter (IVSd), and

posterior wall thickness (LVPWd), were recorded (Table 1). None

of the HCM patients had known autoimmune or infectious diseases.
2.2 RNA extraction and bulk transcriptome
profiling

Whole blood was collected in EDTA tubes and processed for

RNA extraction using TRIzol reagent. RNA quality was confirmed

via Agilent Bioanalyzer (RIN > 7). Poly-A mRNA was enriched for

cDNA library construction and sequenced on the Illumina NovaSeq

platform (150 bp paired-end reads, ~50M reads/sample). Reads

were quality filtered (fastp) and aligned to the human genome

(GRCh38) using STAR. Gene-level counts were quantified with

featureCounts. Differential expression analysis between HCM and
Frontiers in Immunology 03
control groups was performed using DESeq2, applying FDR < 0.05

and |log2FC| > 1. GO and KEGG enrichment analyses were

conducted using the clusterProfiler package to interpret

functional significance.
2.3 Weighted gene co-expression network
analysis

We used the top 5,000 most variable genes to construct a scale-

free network in the WGCNA package (R). A soft-thresholding

power (b = 8) was chosen, and dynamic tree cutting was applied to

detect modules. Module eigengenes were correlated MLVWT. The

turquoise module, enriched for immune-related genes, showed the

strongest correlation with HCM (r = 0.94), and included MEIS3 as a

hub gene.
2.4 Functional enrichment analysis

To interpret the biological roles of the key HCM-associated

genes, we performed functional enrichment analyses on the

overlapping gene set from the DEG and WGCNA intersection.

This intersection step was designed to highlight genes that were not

only differentially expressed but also embedded within disease-

related co-expression modules, thereby increasing biological

relevance and reducing potential false positives. Enrichment

analyses were carried out using clusterProfiler in R and the

DAVID online tool for verification, covering Gene Ontology

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways, and Disease Ontology (DO) annotations.
2.5 Machine learning-based feature
selection

We applied two supervised machine learning algorithms—

LASSO regression and Random Forest classification—to

normalized RNA-seq expression matrices. LASSO logistic

regression was implemented using the glmnet package, applying

L1 regularization to select a minimal set of informative genes.

Model tuning was performed via 10-fold cross-validation to
TABLE 1 Baseline characteristics of the study subjects.

Patient_ID Group Age Sex Family_history NYHA_Class Apex(mm) LVPWd(mm) IVSd(mm) MLVWT

1 Control 34 F N I 7 6 8 8

2 Control 40 M N I 8 8 8 8

3 Control 42 M N I 8 9 9 9

4 HCM 51 M N III 11 11 14 14

5 HCM 55 F N III 12 14 16 16

6 HCM 59 M N III 13 15 16 16

7 HCM 54 M N III 13 13 15 15
fro
ntiersin.org

https://doi.org/10.3389/fimmu.2025.1675467
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2025.1675467
determine the optimal penalty parameter. Genes with non-zero

coefficients were retained as key predictors. Random Forest analysis

was conducted using the randomForest package to rank genes by

variable importance. Feature ranking was based on mean decrease

in accuracy and Gini impurity. Genes prioritized by both methods

were selected for further validation and interpretation.
2.6 Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) was performed using the

clusterProfiler package in R. Genes were ranked by log2 fold-change

values between HCM and control samples. Enrichment was

assessed against Kyoto Encyclopedia of Genes and Genomes

(KEGG) gene sets obtained from the Molecular Signatures

Database (MSigDB). Statistical significance was determined using

1,000 permutations, and enrichment scores were reported as

normalized enrichment scores (NES). Pathways were considered

enriched under the thresholds |NES| > 1, nominal p < 0.05, and false

discovery rate (FDR) < 0.25.
2.7 Gene set variation analysis

Gene Set Variation Analysis (GSVA) was conducted using the

GSVA package in R. Normalized expression data were transformed

into pathway enrichment scores for each sample using KEGG

pathway gene sets. Group-level comparisons between HCM and

controls were performed using the limma package. Statistical

significance was defined as adjusted p < 0.05.
2.8 Validation by qPCR

To validate the RNA-seq findings, the expression of the four key

genes (MEIS3, SYDE2, TRAT1, ANKRD20A1) was quantified by

qPCR in peripheral blood samples from 8 HCM patients and 8

matched healthy controls. cDNA was synthesized from RNA of

each sample using a reverse transcription kit. Gene-specific primers

were designed spanning exon-exon junctions to ensure specificity to

cDNA (primer sequences are listed in Supplementary Table S1).

qPCR was performed on a real-time PCR system using SYBR Green

detection. Each reaction was run in triplicate, and the relative

expression of target genes was calculated by the 2–DDCt method,

normalizing to a housekeeping gene (GAPDH).
2.9 Validation of hub gene expression
using external GEO datasets

To independently validate the expression patterns of the

identified hub genes, transcriptomic data were retrieved from the

Gene Expression Omnibus (GEO) database (GSE249925), which

includes myectomy samples from 97 obstructive HCM patients and

23 controls. The Raw expression data were downloaded and
Frontiers in Immunology 04
processed using the R software environment (version 4.3.1) as

standard procedure. To further assess the diagnostic performance

of these hub genes, receiver operating characteristic (ROC) curve

analyses were performed using the pROC package in R. The area

under the curve (AUC) values were calculated to quantify the

discriminatory ability.
2.10 Single-cell RNA-seq analysis

To identify MEIS3 expression at single-cell resolution, we analyzed

publicly available myocardial scRNA-seq data from Figshare (https://

doi.org/10.6084/m9.figshare.c.5777948.v2), which consists of 10

HCM patients and 2 healthy donors. The dataset was processed

using CellRanger and Seurat (v4.0). Cells with <200 genes or >10%

mitochondrial content were filtered. After normalization and

integration, clustering and UMAP dimensionality reduction were

performed. Cell types were annotated using canonical markers.

MEIS3 expression was evaluated across clusters, revealing

enrichment in fibroblast-like stromal cells in HCM myocardium.
2.11 Immune infiltration estimation with
xCell

To profile immune and stromal composition, we applied xCell

to normalized bulk RNA-seq data. xCell scores for 64 immune/

stromal cell types were compared between HCM and control

samples using Welch’s t-test. MEIS3 expression was correlated

with selected cell types using Spearman correlation. Samples with

higher MEIS3 showed increased fibroblast and smooth muscle

signatures and displayed distinct cytokine–cell score associations.
2.12 Cytokine–cell correlation analysis

We selected 24 cytokine-related genes and calculated their

Pearson correlation with xCell-derived immune/stromal scores.

Pearson correlation coefficients were calculated between the

expression of each cytokine gene and xCell-derived immune/

stromal scores. Analyses were performed in R (v4.3.1), and

p-values were adjusted for multiple testing using the Benjamini–

Hochberg method.
2.13 ceRNA network construction

To investigate post-transcriptional regulation, we predicted

MEIS3-targeting miRNAs via miRanda, TargetScan, and

Diana_microT. Upregulated lncRNAs were then screened for

miRNA response elements using the ENCORI database (via the

AGO‐Clip lncRNA prediction tool: https://rnasysu.com/encori/

agoClipRNA.php?source=lncRNA). A ceRNA network was

constructed with lncRNAs, miRNAs, and MEIS3, suggesting that

lncRNA–miRNA competition may underlie MEIS3 dysregulation.
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2.14 Statistical analysis

All statistical analyses were conducted in R v4.1.0. Group

comparisons used Welch’s t-test; correlations were evaluated using

Pearson or Spearman methods. P-values were adjusted with the

Benjamini–Hochbergmethod, and significance was defined as P < 0.05.
3 Results

3.1 Identification of differentially expressed
genes in HCM

To investigate transcriptomic alterations in hypertrophic

cardiomyopathy (HCM), we performed RNA sequencing of blood

samples from HCM patients and matched healthy controls.

Principal component analysis (PCA) clearly distinguished the

HCM samples from controls, indicating high data quality and

distinct phenotypic differences (Supplementary Figure S1A).

Sample-to-sample correlation analysis further validated strong

intra-group similarity and distinct inter-group differences,

providing additional support for robust transcriptomic

characterization (Supplementary Figure S1B). A total of 692

significant DEGs were identified using stringent criteria,

comprising 467 up-regulated and 225 down-regulated genes

(Figures 1A, B). Hierarchical clustering and heatmap visualization

further demonstrated distinct gene expression profiles segregating

clearly between HCM patients and controls, suggesting robust

transcriptomic differences related to HCM pathology (Figure 1C).
3.2 WGCNA analysis and intersection with
DEGs

To identify gene modules associated with the clinical phenotype

of HCM, weighted gene co-expression network analysis (WGCNA)

was conducted. An optimal soft-threshold power of 8 was selected

based on achieving a scale-free topology index above 0.85 and

maintaining appropriate mean connectivity (Figure 1D).

Hierarchical clustering produced multiple gene modules,

visualized as a dendrogram with color-coded assignments

(Figure 1E). The module–trait relationship heatmap highlighted

that the turquoise module was most positively associated with HCM

(r = 0.94, p < 0.001), whereas the blue module was strongly

negatively correlated (r ≈ −0.88, p < 0.001)(Figure 1F). Module

membership and gene significance analysis further underscored the

relevance of the blue module (correlation = 0.72, p < 1e-200;

Figure 1G). The eigengene adjacency heatmap confirmed robust

inter-module relationships, supporting network stability

(Supplementary Figure S1C). Finally, Venn analysis identified 233

overlapping genes between the blue module and DEGs, suggesting

potential regulatory hubs in HCM pathogenesis (Figure 1H).
Frontiers in Immunology 05
3.3 Functional enrichment analyses reveal
key biological pathways in HCM

To functionally characterize the 233 overlapping genes between

DEGs and the WGCNA blue module (Figure 1H), we performed

GO, KEGG, and DO enrichment analyses. GO terms were enriched

in processes related to protein synthesis (cytoplasmic translation,

ribosome biogenesis), mitochondrial structure (mitochondrial inner

membrane), and redox regulation (oxidoreductase activity),

indicating altered translational and metabolic states in HCM

(Figure 2A). KEGG analysis further highlighted pathways such as

thermogenesis, oxidative phosphorylation, and neurodegenerative

disease signaling, underscoring mitochondrial dysfunction and

energy imbalance as potential disease mechanisms (Figure 2B).

Chord mapping revealed core genes (e.g., NDUFB6, RPL15,

ATP5PB) involved in multiple interconnected pathways

(F i gur e 2C) .DO ana l y s i s confi rmed enr i chment in

cardiomyopathy, coronary artery disease, and myocardial

infarction, supporting the cardiovascular specificity of the

identified genes (Figure 2D). Together, these findings underscore

the biological significance of the blue module, as its enriched gene

set converges on key processes such as mitochondrial energy

metabolism, translational regulation, and cardiomyopathy-related

pathways. The integrative enrichment analysis not only reinforces

the pathological relevance of these genes in HCM but also highlights

their potential as mechanistic markers and promising therapeutic

targets for disease modulation.
3.4 Machine learning-based identification
of key genes

To further pinpoint critical genes contributing to HCM, we

employed machine learning approaches, namely Least Absolute

Shrinkage and Selection Operator (LASSO) and Random Forest

algorithms. LASSO regression with 10-fold cross-validation

determined the optimal penalty parameter, yielding a

parsimonious set of genes with non-zero coefficients,

including MEIS3, CYP7A1, ANKRD20A1, TRAT1, and SYDE2

(Figures 3A–C). MEIS3 consistently exhibited the strongest

predictive weight. Parallelly, Random Forest analysis demonstrated

stable classification error rates after ~150 trees, ranking the top genes

by mean decrease accuracy and Gini index (Figures 3D, E).

Intersection analysis of both methods identified four consistently

prioritized genes—MEIS3, SYDE2, TRAT1, and ANKRD20A1—

highlighting their reproducibility and biological relevance

(Figure 3F). To further validate their discriminative capacity, a

feedforward neural network incorporating these four genes was

trained, achieving a minimal classification error (0.00751)

(Figure 3G). Together, these findings underscore MEIS3, SYDE2,

TRAT1, and ANKRD20A1 as stable diagnostic candidates, with

MEIS3 emerging as the most prominent.
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FIGURE 1

Transcriptomic analysis and WGCNA reveal a key gene module associated with HCM. (A) Volcano plot of differentially expressed genes (DEGs)
between HCM and control samples. Each point represents a gene; red points indicate significantly upregulated genes (n = 467), blue points indicate
downregulated genes (n = 225), and grey points are non-significant. Vertical dashed lines mark the |log2 fold change| = 1 threshold; the horizontal
dashed line indicates adjusted p = 0.05. (B) Bar chart summarizing the number of upregulated (orange) and downregulated (green) DEGs.
(C) Heatmap of the top 692 DEGs, clustered by gene expression. Rows represent genes, and columns represent individual samples (CON1–3,
HCM1–4). (D) Determination of soft-thresholding power (b) for WGCNA. Left: Scale-free topology fit index (y-axis) across powers (x-axis), with b = 8
selected where R² > 0.85. Right: Mean connectivity analysis showing a decreasing trend as b increases. (E) Gene dendrogram generated from
hierarchical clustering based on topological overlap, with dynamic tree cutting identifying multiple co-expression modules (color-coded below
dendrogram). (F) Heatmap of module–trait correlations. Each cell represents the Pearson correlation coefficient between module eigengene and
HCM status, with p-values in parentheses. The MEturquoise module shows the strongest positive correlation with HCM (r = 0.85, p < 0.001).
(G) Scatter plot showing module membership vs. gene significance within the blue module. Each dot represents a gene; a strong positive correlation
(r = 0.72, p < 1e–200) indicates module robustness and relevance to HCM phenotype. (H) Venn diagram showing overlap between DEGs and blue
module genes. Among 2,826 blue module genes and 692 DEGs, 233 genes are shared (7.1%), representing potential hub candidates.
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3.5 Pathway enrichment analysis of
machine learning-derived candidate genes

We profiled pathway context for the four machine learning–

prioritized genes (MEIS3, SYDE2, TRAT1, ANKRD20A1) using

Gene Set Enrichment Analysis (GSEA) and Gene Set Variation

Analysis (GSVA) based on KEGG pathway gene sets.

GSEA results revealed that MEIS3 was enriched in pathways

related to ribosome, glycan degradation, and metabolic signaling

(Figure 4A). Similarly, SYDE2 showed positive enrichment in

calcium signaling, cardiac muscle contraction, and oxidative
Frontiers in Immunology 07
phosphorylation pathways, which are closely linked to cardiac

metabolism and excitation–contraction coupling (Figure 4B).

TRAT1 was involved in ribosome biogenesis and cardiac-related

pathways such as dilated cardiomyopathy (Figure 4C), whereas

ANKRD20A1 was associated with gene replication and cell cycle-

related processes (Figure 4D), highlighting its potential role in

transcriptional regulation in HCM.

Complementary GSVA analysis provided individual-level

pathway activity scores across samples. MEIS3 displayed

significantly increased activity in ribosome-related and

glycosaminoglycan degradation pathways, whereas immune-
FIGURE 2

Functional enrichment analysis of overlapping genes from DEGs and WGCNA blue module. (A) Gene Ontology (GO) enrichment analysis of
overlapping genes categorized into three domains: biological processes (BP), cellular components (CC), and molecular functions (MF). Dot size
represents gene count; color gradient reflects adjusted p-value. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of top
20 pathways. Notable enriched pathways include thermogenesis, oxidative phosphorylation, Huntington’s disease, Parkinson’s disease, Alzheimer’s
disease, and diabetic cardiomyopathy. (C) KEGG pathway–gene chord diagram depicting associations between enriched pathways and key genes.
Several genes (e.g., NDUFB6, NDUFA9, RPL15) appear in multiple pathways, indicating central regulatory roles in mitochondrial bioenergetics and
stress signaling. (D) Disease Ontology (DO) enrichment analysis highlighting cardiomyopathy-related terms. Significant enrichment was observed for
intrinsic cardiomyopathy, coronary artery disease, myocardial infarction, and myocarditis, indicating disease specificity of the overlapping gene set.
Dot color denotes p-value, and size indicates gene count.
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FIGURE 3

Machine learning-based identification of key diagnostic genes for hypertrophic cardiomyopathy (HCM). (A) Ten-fold cross-validation curve for the
LASSO logistic regression model used to select the optimal regularization parameter (l); the dotted line on the left indicates the l value with
minimum mean cross-validated error. (B) Coefficient paths of selected genes across varying l values; five genes retained non-zero coefficients at
the optimal l, including MEIS3, CYP7A1, ANKRD20A1, TRAT1, and SYDE2. (C) Bar plot showing the absolute coefficients of LASSO-selected genes,
with MEIS3 exhibiting the highest predictive weight. (D) Error rates of the Random Forest classifier for HCM, control, and overall samples stabilized
after ~150 trees, indicating good model convergence. (E) Feature importance scores of the top 20 genes in the Random Forest model ranked by
mean decrease in accuracy (left) and Gini index (right). (F) Venn diagram showing the intersection between LASSO and Random Forest outputs; four
overlapping genes—MEIS3, SYDE2, TRAT1, and ANKRD20A1—were identified as robust diagnostic candidates. (G) Neural network topology using
these four genes as input nodes, achieving a final error rate of 0.00751 after 20 training steps, supporting their discriminative potential in HCM
classification.
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related pathways (e.g., JAK-STAT and cytokine signaling) were

downregulated in the HCM group (Figure 4E). SYDE2 was linked to

protein folding, apoptosis, and immune signaling, showing

upregulation in metabolic stress pathways (Figure 4F). TRAT1

shared several overlapping pathways with SYDE2, while

ANKRD20A1 primarily affected DNA replication, transcription

factor activity, and systemic lupus erythematosus-related

processes (Figures 4G, H). Together, these findings support the

functional relevance of the four candidate genes in processes

spanning protein synthesis , immune regulat ion, and
Frontiers in Immunology 09
mitochondrial metabolism—pathways consistent with HCM

molecular pathology.
3.6 Clinical validation and correlation
analysis of key genes

Normalized RNA-seq data confirmed distinct expression

patterns for the four candidates: MEIS3 was significantly

upregulated in HCM, whereas SYDE2, TRAT1, and ANKRD20A1
FIGURE 4

Functional enrichment analysis of four machine learning-derived HCM marker genes. (A–D) Gene Set Enrichment Analysis (GSEA) plots for MEIS3
(A), SYDE2 (B), TRAT1 (C), and ANKRD20A1 (D) based on KEGG gene sets. Enrichment scores (ES) are shown with leading-edge subsets and
normalized enrichment scores (NES) indicated for each gene. (E–H) Gene Set Variation Analysis (GSVA) results depicting pathway-level t-values
between HCM and control groups for MEIS3 (E), SYDE2 (F), TRAT1 (G), and ANKRD20A1 (H). Red and green bars represent significantly up- or down-
regulated pathways, respectively, with gray indicating nonsignificant differences. Pathways span categories including ribosome biogenesis, cardiac
muscle contraction, glycan degradation, immune modulation, and oxidative phosphorylation.
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were reduced relative to controls (Figure 5A). ROC analyses showed

strong discrimination for all four genes in the discovery cohort, with

AUCs approaching 1.0, further substantiating their potential

diagnostic utility (Figure 5B). As an orthogonal assay, qPCR in an

independent set of peripheral blood samples replicated increased

MEIS3 and decreased SYDE2 and ANKRD20A1; TRAT1 did not

differ significantly by qPCR (Figure 5C). In an external GEO cohort

(GSE249925), ROC analysis demonstrated AUC = 1.000 for

ANKRD20A1 and TRAT1, AUC ≈ 0.930 for MEIS3, and AUC ≈

0.420 for SYDE2 (Figure 5D). These results confirm the robustness

of MEIS3, ANKRD20A1, and TRAT1 as potential diagnostic

biomarkers for HCM, while suggesting a weaker role for SYDE2.

To explore their clinical relevance, we investigated the

correlation between gene expression levels and maximal left

ventricular wall thickness (MLVWT). Among all clinical variables

recorded in Table 1 (including age, sex, NYHA classification,

ejection fraction, and interventricular septal thickness), MLVWT

was selected due to its strong pathophysiological link to myocardial

hypertrophy and remodeling. Spearman correlation analysis

showed a significant positive association between MLVWT and

MEIS3 (Spearman’s r = 0.67, p = 0.024). For SYDE2, the correlation

with MLVWT was positive but did not reach statistical significance

(Spearman’s r = 0.50, p = 0.074). Conversely, ANKRD20A1 and

TRAT1 exhibited weaker and non-significant correlations with

MLVWT, suggesting differential clinical relevance among these

key genes (Figure 5E). Finally, odds-ratio analysis indicated that

higher MEIS3 expression was associated with increased odds of

HCM(Figure 5F). Collectively, these findings nominate MEIS3,

together with ANKRD20A1 and TRAT1, as promising diagnostic

candidates; however, clinical utility will require validation in larger,

prospective cohorts and evaluation alongside standard risk markers.
3.7 Single-cell RNA-seq analysis validates
MEIS3 expression in MSCs and cell-type
specific signatures

Single-cell RNA sequencing (scRNA-seq) confirmed the

expression patterns identified in bulk analyses: MEIS3 was

significantly upregulated in HCM, while SYDE2, TRAT1, and

ANKRD20A1 were downregulated (Figures 6A, B). ROC analysis

based on scRNA-seq data demonstrated strong diagnostic

performance of MEIS3 across cell types (Figure 6C). UMAP

clustering with SingleR annotation identified major cardiac and

immune populations, including monocytes, endothelial cells,

fibroblasts, T cells, and mesenchymal stem cells (MSCs)

(Figure 6D). Notably, MSCs were expanded in HCM compared to

controls (Figure 6E), indicating potential disease-related

remodeling. Cell-type–specific differential expression showed that

MEIS3 was selectively enriched in MSCs, whereas the other three

candidate genes were broadly suppressed across multiple stromal

and immune subsets (Figure 6F). UMAP feature mapping further

confirmed MEIS3 localization within the MSC compartment

(Figure 6G). These results highlight MSCs as the principal source
Frontiers in Immunology 10
of MEIS3 in HCM and suggest its potential role in MSC-driven

remodeling processes.
3.8 MEIS3-associated cytokine landscape
in MSCs

Building on the selective upregulation of MEIS3 in MSC

populations, we profiled cytokine transcripts across MSC and

fibroblast subsets to assess potential microenvironmental effects.

Dot-plot visualization indicated dysregulation of several stromal/

angiogenic and immunoregulatory factors in HCM-derived MSCs

relative to controls, including CXCL12, VEGFA, CSF1, and BMP1,

which are implicated in angiogenesis, immune-cell recruitment, and

extracellular matrix remodeling (Figure 7A). These patterns are

consistent with a shift toward stromal activation and altered

immune signaling in HCM.

To further dissect MEIS3-associated regulatory patterns, we

performed group-wise gene correlation analyses between MEIS3

and selected cytokines in MSC/fibroblast populations. MEIS3

expression exhibited statistically detectable but very weak positive

correlations with CXCL12 (r = 0.06, p = 0.001) and BMP1 (r = 0.06,

p = 0.002), whereas these associations were absent or weaker in

controls (Figure 7B). Interestingly, VEGFA exhibited a weak

negative correlation trend with MEIS3 in HCM, potentially

reflecting a compensatory angiogenic feedback. Together with the

spatial and cell-type-specific enrichment of MEIS3 observed in

Figure 6, these results support the hypothesis that MEIS3 may

orchestrate a stromal cytokine regulatory network within MSCs.

However, given the very modest correlation coefficients and limited

sample size, these findings should be interpreted as preliminary,

reflecting subtle associations rather than strong linear relationships,

and warrant validation in larger cohorts.
3.9 MEIS3-related ceRNA regulatory
network in HCM

To investigate upstream mechanisms underlying MEIS3

dysregulation in HCM, we constructed a competing endogenous

RNA (ceRNA) network by integrating predictions from miRanda,

TargetScan, and Diana_microT. Cross-database comparison identified

three shared miRNAs predicted to target MEIS3 (Figure 8A). These

served as the basis for building a MEIS3-centered ceRNA network

incorporating lncRNAs and miRNAs (Figure 8B). The resulting

network displayed a dense regulatory architecture, suggesting that

multiple lncRNAs may act as molecular sponges to modulate MEIS3

levels by sequestering its targeting miRNAs. A Sankey diagram

(Figure 8C) highlights several candidate regulatory axes, including

AC009403.1–miR-129-5p–MEIS3 and SNHG16–miR-335-5p–MEIS3.

These findings support a model in which ceRNA-mediated post-

transcriptional regulation contributes to MEIS3 overexpression in

HCM cardiac tissue, providing potential new nodes for mechanistic

exploration and therapeutic targeting.
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FIGURE 5

Clinical validation and diagnostic evaluation of key HCM-related genes. (A) Boxplot comparing normalized RNA-seq expression levels of four
machine learning–selected genes (MEIS3, SYDE2, TRAT1, ANKRD20A1) between control and HCM groups. MEIS3 expression was significantly
upregulated in HCM, while SYDE2, TRAT1, and ANKRD20A1 were downregulated. (B) Receiver Operating Characteristic (ROC) curve analysis
demonstrated excellent classification performance for all four genes, each achieving an area under the curve (AUC) of 1.0, indicating high diagnostic
potential. (C) qRT-PCR validation in an independent cohort confirmed significantly increased expression of MEIS3 and decreased expression of
SYDE2 and ANKRD20A1 in HCM patients (n = 8) compared to controls (n = 8); TRAT1 expression did not differ significantly, suggesting transcript-
level variation not reflected at the protein-coding level. (D) ROC curve validation of hub genes in the external GEO dataset (GSE249925).
(E) Spearman correlation analysis between gene expression and maximal left ventricular wall thickness (MLVWT), a key clinical parameter of HCM
severity (as shown in Table 1), revealed significant positive correlations for MEIS3 (r = 0.67, p = 0.024) and SYDE2 (r = 0.5, p = 0.074), suggesting a
possible link with structural myocardial remodeling. ANKRD20A1 and TRAT1 showed non-significant negative trends. (F) Forest plot of odds ratio
analysis showed that MEIS3 expression was strongly associated with increased HCM risk (OR = 158.95, p = 0.017), highlighting its clinical relevance
as a robust biomarker. Other genes showed non-significant associations (p > 0.1), underscoring MEIS3 as the most reliable diagnostic candidate
among the four. * indicated P<0.05.
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FIGURE 6

Single-cell transcriptomic analysis reveals cell-type–specific expression patterns of key diagnostic genes in HCM. (A) Volcano plot showing
differentially expressed genes in scRNA-seq data comparing HCM versus control samples. MEIS3 is significantly upregulated (red), while SYDE2,
TRAT1, and ANKRD20A1 are downregulated (blue). (B) Bar graph showing log2 fold changes of the four key genes between HCM and control
samples. (C) ROC curves based on scRNA-seq expression data demonstrating excellent discriminatory performance of MEIS3 among the four genes
(AUC ≈ 1.0). (D) UMAP plot with SingleR-based cell-type annotation, depicting distinct clustering of major immune and stromal cell populations
including monocytes, T/NK cells, fibroblasts, endothelial cells, and mesenchymal stem cells (MSCs). (E) Bar plot showing cell-type composition per
sample. A noticeable increase in MSC proportion is observed in HCM samples compared to controls. (F) Dot plot of cell-type–specific differential
expression. MEIS3 is selectively upregulated in MSCs, while SYDE2, TRAT1, and ANKRD20A1 are generally downregulated in multiple cell types
including fibroblasts, macrophages, and monocytes. Dot size represents percentage of expressing cells; color denotes log2 fold change. (G) UMAP
feature plots for MEIS3, SYDE2, TRAT1, and ANKRD20A1. MEIS3 expression is predominantly localized to the MSC cluster, whereas the other three
genes show low and scattered expression across cell populations.
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3.10 MEIS3-associated immune remodeling
via stromal–cytokine interactions

We evaluated the immune–stromal milieu using xCell

deconvolution of bulk RNA-seq. Relative to controls, HCM

samples showed higher enrichment scores for fibroblasts,

endothelial cells, macrophages (M1/M2), and dendritic cells, with

lower CD8+ T cell and NK cell signals, consistent with stromal

activation and an altered immune landscape (Figure 8D).

Associations between MEIS3 expression and cell-type scores

indicated positive correlations with fibroblasts, endothelial cells,

macrophages, and aDCs in HCM (but not in controls), suggesting

disease-specific immune–stromal coupling (Figure 8E). To examine

potential cytokine mediators, we correlated MEIS3-linked cytokines

with immune/stromal scores. CXCL12, VEGFA, BMP1, and CSF1

showed cell-type–specific correlation patterns with macrophages, T

cells, and endothelial subsets (Figure 8F, Supplementary Figure S2).

Taken together, these observations are consistent with a cytokine-

mediated stromal–immune axis associated with MEIS3 in HCM.

Given that several effect sizes are modest, we interpret these findings

as hypothesis-generating; validation in larger cohorts and

functional assays will be required to determine whether MEIS3

causally modulates the cardiac immune microenvironment.
4 Discussion

In this study, we integrated bulk and single-cell transcriptomics

with computational modeling to explore a potential link between

the developmental transcription factor MEIS3 and the

immunopathology of hypertrophic cardiomyopathy. Our key
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finding is that MEIS3 is significantly upregulated in HCM hearts

and that its elevated expression is associated with distinct

immunological and clinical features of the disease. MEIS3 stood

out in our unbiased multi-omics analyses as a candidate diagnostic

biomarker (in our dataset) and as a putative immunoregulatory

switch in the HCM myocardium. To our knowledge, this is among

the first report implicating MEIS3 in HCM. Given the modest

sample size and cross-dataset integration, these observations should

be regarded as hypothesis-generating. More broadly, they add to

evidence that HCM involves mechanisms beyond sarcomeric gene

mutations (20, 21), suggesting how transcriptional regulators and

immune mechanisms may converge to drive disease progression.

Several lines of evidence from our results underscore the clinical

relevance of MEIS3 in HCM. First, MEIS3 was one of the top

differentially expressed genes in HCM, with a fold-change and

significance that suggest a robust disease association in this cohort.

This alone is notable given that prior transcriptomic studies of

HCM have not reported MEIS3, possibly because it may not reach

significance in larger heterogeneous cohorts or was simply

overlooked. The pronounced upregulation in our well-

phenotyped cohort may reflect a specific subset of HCM where

MEIS3 is important, or fundamental involvement in HCM that

warrants confirmation in larger samples. Second, our machine

learning analyses identified MEIS3 as a powerful single-gene

classifier for HCM. In our discovery dataset, the AUROC

exceeded 0.90, and in an independent myocardial cohort the

discriminatory performance remained high (AUC ~0.85), on par

with or exceeding several multi-gene signatures proposed

previously (22, 23). This suggests that measuring MEIS3 (for

instance, via PCR on endomyocardial biopsy or circulating blood

cells) could aid in HCM diagnosis or in distinguishing HCM from
FIGURE 7

Cytokine expression landscape and MEIS3-associated signaling interactions in MSCs/fibroblasts. (A) Dot plot illustrating the average expression and
log2 fold change of 40 key cytokines across 21 annotated cell types in HCM versus control conditions. Each dot represents the mean expression
percentage (dot size) and direction of differential expression (color scale: red = upregulated; blue = downregulated). Notably, MEIS3-enriched
mesenchymal stem cells (MSCs) and fibroblasts displayed pronounced dysregulation of cytokines such as BMP1, CXCL12, CSF1, and VEGFA.
(B) Group-wise correlation analyses between MEIS3 expression and representative cytokines in MSCs/fibroblasts. Spearman correlation coefficients
(r) and p-values are shown separately for control (blue) and HCM (red) groups. MEIS3 expression in HCM MSCs positively correlated with BMP1 (r =
0.06, p = 0.002) and CXCL12 (r = 0.06, p = 0.001), while an inverse association was observed with VEGFA (r = –0.04, p = 0.056). No significant
correlations were found for FAM3C or CSF1 within the HCM group. These results suggest that MEIS3 may participate in fibroblast/MSC-mediated
paracrine regulation in HCM through selective cytokine interaction.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1675467
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2025.1675467
FIGURE 8

Construction of MEIS3-related ceRNA regulatory network and immune cell infiltration landscape in HCM. (A) Venn diagram displaying the
intersection of predicted miRNAs targeting MEIS3 from three databases (miRanda, TargetScan, and Diana_microT), identifying 3 common miRNAs.
(B) ceRNA network visualization including lncRNAs, miRNAs, and MEIS3, with red triangles indicating lncRNAs, green circles indicating miRNAs, and
blue squares representing mRNAs. Regulatory edges highlight potential competing interactions. (C) Regulatory axis diagram illustrating the ceRNA
pathway of MEIS3, showing multi-layered lncRNA–miRNA–mRNA relationships. Notably, MEIS3 is positioned as a central node downstream of
multiple axes. (D) Immune cell enrichment analysis using xCell revealed significantly altered immune/stromal cell populations in HCM compared to
controls. Notably, fibroblasts, endothelial cells, macrophages M1/M2, and dendritic cells (aDCs, pDCs) displayed robust enrichment differences
(Wilcoxon test, p < 0.05). (E) MEIS3 expression exhibited statistically significant correlations with selected immune cell types in the HCM group,
especially macrophages, dendritic cells, and endothelial cells. Shaded bands represent 95% confidence intervals (Spearman correlation, p < 0.05).
(F) Correlation heatmap illustrating disease-specific associations between five representative cytokines (BMP1, CSF1, CXCL12, FAM3C, VEGFA) and
differentially enriched xCell-derived immune cell types in the HCM group. Distinct patterns were observed for cytokine–cell type relationships, with
stronger or inverse correlations in HCM, suggesting disease-specific immune remodeling.
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other causes of hypertrophy. It is particularly intriguing to consider

MEIS3 as a biomarker in genotype-negative HCM patients, where

traditional genetic testing fails to provide a diagnosis. Our work lays

the groundwork for future studies to validate MEIS3 in a larger

patient population and assess its additive value to current

diagnostic algorithms.

Consistent with prior evidence, peripheral blood transcriptomes

can partially mirror myocardial remodeling and clinical outcomes,

supporting the concept that circulating immune cells provide an

accessible—though indirect—window into cardiac disease activity

(24, 25). In the context of MEIS3, two non-exclusive models may

explain the concordance of blood- and tissue-derived signals. One is

a cardiac-intrinsic model, in which MEIS3 acts within resident

stromal cells to regulate fibrotic and immunomodulatory pathways

(26). The other is a systemic/indirect model, whereby circulating

immune cells—such as CCR2+ monocytes/macrophages—are

recruited from blood to injured myocardium and influence local

remodeling (27). As our study lacks paired blood–tissue samples, we

frame such cross-compartment inferences as hypothesis-generating

rather than confirmatory. We explicitly acknowledge this limitation

and outline next steps, including paired sampling, single-cell/spatial

localization of MEIS3 in myocardium, and prospective validation in

independent HCM cohorts. Finally, given that observed

correlations (e.g., with cytokines) are statistically significant but

very weak in magnitude, they should be regarded as biologically

tentative until replicated in larger datasets.

Beyond diagnosis, the immunological role of MEIS3 in HCM is

a working hypothesis with mechanistic implications that requires

further testing. High MEIS3 expression was linked to fibroblast

activation, altered cytokine profiles (e.g., CXCL12, VEGFA, BMP1),

and reduced immune infiltration, but the correlations were very

weak (e.g., MEIS3–CXCL12 r ≈ 0.06), indicating subtle rather than

robust effects. Similar to observations in oncology where MEIS

family members mark immune exclusion and “cold” tumors (19,

28), these findings suggest that MEIS3 may contribute to feedback

circuits that dampen inflammation while promoting fibrosis. Such

statistically significant but weak correlations are common in single-

cell data, where large cell numbers inflate significance and

heterogeneity, paracrine gradients, or non-linear dynamics can

mask stronger local interactions. Thus, the observed associations

should be regarded as preliminary indicators of complex immune–

stromal regulation rather than direct linear relationships. By

analogy—and explicitly as a hypothesis—we speculate that in

HCM, MEIS3 might contribute to an immune-modulatory

feedback loop that restrains excessive inflammation but perhaps

at the cost of promoting fibrotic remodeling. Potential mechanisms

include regulation of PDK1/Akt signaling, which influences

macrophage polarization and fibroblast survival (29), and

interactions with suppressive cytokines such as TGF-b or IL-10.

Indeed, our data showed that samples with high MEIS3 and stromal

growth factors had lower T cell and macrophage infiltration. It is

tempting to consider that MEIS3 could be driving expression of

factors that dampen immune cell recruitment or activation in the

myocardium. Although direct targets of MEIS3 in the heart are

unknown, candidates might include genes involved in chemokine
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s ignal ing or ant igen presentat ion. Future chromatin

immunoprecipitation sequencing (ChIP-seq) for MEIS3 in cardiac

cells could illuminate its gene regulatory network. Future work

using perturbation assays and ChIP-seq in cardiac stromal cells is

needed to test these hypotheses.

Our single-cell analysis further identified fibroblasts and

vascular cells as the principal sources of MEIS3 in HCM. Cardiac

fibroblasts are central players in myocardial remodeling that not

only produce but also respond to cytokines, and elevated MEIS3

may enhance their proliferative and matrix-secreting capacity while

modulating crosstalk with immune cells. For instance, CXCL12,

which we found enriched in stromal compartments, is typically

secreted by fibroblast-like cells and can recruit progenitors or

regulate T cell responses. Increased MEIS3 may therefore

promote CXCL12-dependent retention of CXCR4+ progenitors or

regulatory T cells, conferring fibroblasts with an immunoregulatory

phenotype that supports chronic low-grade inflammation in HCM.

In contrast, cardiomyocytes displayed minimal MEIS3 expression,

suggesting that any hypertrophic effects are likely mediated

indirectly through stromal intermediaries. This highlights the

importance of analyzing cell–cell interactions in HCM; what has

traditionally been viewed as a disease of cardiomyocytes may

significantly involve fibroblast-immune cell networks modulated

by factors like MEIS3.

Our ceRNA network analysis provides a preliminary hypothesis

for upstream regulation of MEIS3 in HCM. We identified specific

lncRNAs that could act as sponges for MEIS3-targeting miRNAs,

potentially explaining why MEIS3 is overexpressed. Notably, these

lncRNAs are largely uncharacterized in cardiac contexts. If

validated, they might represent novel regulatory nodes that

coordinate with MEIS3 in driving disease. It is intriguing to

consider that genetic or epigenetic changes in non-coding regions

(rather than coding mutations) might contribute to HCM in some

patients by dysregulating gene networks like the MEIS3 hub. This

aligns with a growing recognition that non-sarcomeric and

regulatory elements can influence HCM severity (30, 31).

Clinically, such lncRNAs could become therapeutic targets:

silencing a disease-promoting lncRNA might restore microRNA

activity to normal and thereby reduce MEIS3 levels and its

downstream effects.

Our findings suggest that MEIS3 may contribute to HCM

pathogenesis and hold potential clinical relevance. As a

biomarker, MEIS3 expression could assist in early detection or

risk stratification, particularly in patients with borderline

hypertrophy or a family history without known mutations.

Beyond diagnosis, MEIS3 and its regulatory network may

represent candidate therapeutic targets, an area of unmet need

given the absence of disease-modifying therapies for HCM.

Although direct inhibition of transcription factors is challenging,

indirect strategies—such as disrupting MEIS3–DNA binding or

targeting upstream regulators like lncRNAs and signaling

pathways—merit exploration. The link between MEIS3 and

PI3K–Akt signaling is especially noteworthy, as pharmacological

modulators of this pathway already exist. Nonetheless, these

therapeutic implications remain hypothesis-generating; proposals
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to repurpose anti-fibrotic or immunomodulatory agents (e.g., TGF-

b modulators, IL-1b antagonists) should be viewed as speculative

until supported by rigorous mechanistic validation. Importantly,

while high MEIS3 expression was associated with a distinct cytokine

milieu, correlation does not establish causality, underscoring the

need for functional and prospective studies to test whether MEIS3-

related pathways can be therapeutically modulated to

improve outcomes.

More broadly, this work supports the concept that HCM,

traditionally regarded as a purely genetic cardiomyopathy, also

encompasses an immunological dimension. This aligns with

recent reviews highlighting inflammation as a modifier of HCM

phenotypes (32, 33). By integrating immunology and cardiology

through the lens of MEIS3, we provide a framework for future

investigations to explore how immune cells and heart cells co-act in

HCM. As techniques like single-cell sequencing and spatial

transcriptomics become more prevalent, we anticipate that

additional factors like MEIS3 will be uncovered, further blurring

the line between classic genetic paradigms and immune-mediated

processes in cardiomyopathy. In conclusion, our work identifies

MEIS3 as a candidate player in HCM and encourages a re-

examination of HCM therapeutic strategies to include modulation

of immune and gene regulatory networks. Future priorities include

replication in external cohorts, paired blood–tissue profiling, spatial

localization, and perturbation studies to test causality. Targeting the

MEIS3-centered network might offer a two-pronged benefit:

attenuating pathological cardiac remodeling and recalibrating the

cardiac immune response, ultimately improving outcomes for

patients with this complex disease.
5 Limitation

Our findings should be interpreted in light of certain

limitations. The sample size of our study was modest (n=7),

reflecting the difficulty in obtaining myocardial tissue from HCM

patients and matched healthy controls. While this was sufficient for

our multi-omics pilot analysis, larger cohorts are needed to verify

the consistency of MEIS3 upregulation and to refine its correlation

with immune features. The extreme correlations observed (e.g.,

CXCL12 with stromal score) likely stem from low sample numbers

and should be validated with caution. Another limitation is that our

study is primarily associative. We demonstrate correlations between

MEIS3 and immune parameters, but this does not prove causation.

It remains to be experimentally shown whether MEIS3 actively

drives immune modulation in HCM or is simply a bystander. In

vitro and in vivo studies will be crucial next steps – for example,

overexpressing or knocking down MEIS3 in cardiac fibroblasts to

observe effects on cytokine production, or using a mouse model of

cardiac hypertrophy to test if MEIS3 loss-of-function alters

inflammatory cell infiltration and fibrosis. Additionally, while we

did leverage an external dataset for diagnostic validation, a

comprehensive external validation (including protein-level
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confirmation such as immunohistochemistry for MEIS3 in HCM

myocardium) is warranted. Despite these limitations, our

integrative approach provides a coherent narrative that links

MEIS3 to known HCM pathways (fibrosis, immune response)

and generates novel hypotheses.
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