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Innate immune evasion is a critical aspect of viral infections, as it disrupts the

host’s defense mechanisms.The innate immune system, as the primary defense

against pathogens, detects pathogen-associated molecular patterns (PAMPs) via

pattern recognition receptors (PRRs). This recognition triggers the production of

interferons (IFNs) and pro-inflammatory factors, initiating the antiviral immune

response. During evolution, viruses have found many ways to evade innate

immune response in order to increase the replication efficiency, transmission

ability and to establish persistent infection through co-evolution with hosts. Pigs

act as natural hosts for a variety of significant viruses, including both DNA and

RNA viruses. These viruses not only jeopardize animal health but also present a

potential risk of interspecies transmission. Among these, porcine transmissible

gastroenteritis virus (TGEV) stands out as a highly prevalent and severely

detrimental enterovirus in the global swine industry. This review aims to

comprehensively analyze the interaction between TGEV and host cells,

emphasizing the molecular underpinnings of its immune evasion strategies. In

addition, we will describe the programmed cell death types induced by TGEV,

including autophagy, apoptosis and pyroptosis. Compared with existing reviews,

this article not only provides a systematic integration of the multilayered immune

evasion mechanisms of TGEV but also, for the first time, offers a comprehensive

overview of its interactions with various forms of programmed cell death. This

perspective highlights the complex regulatory networks underlying TGEV’s

adaptive evolution in the host, thereby enhancing our understanding of the

pathogenic mechanisms of porcine coronaviruses and offering novel theoretical

foundations for the development of vaccines and antiviral therapeutics.
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1 Introduction

As the first line of defense against the invasion of exogenous

pathogens, the innate immune system is characterized by rapid

recognition and broad responses (1, 2).Central to this system is the

detection of PAMPs by pattern recognition receptors (PRRs),which

initiates an immune response against infections (3, 4). In the

context of viral infections, typical PAMPs of viruses include their

nucleic acids, such as single - stranded RNA(ssRNA,including 5’

UTR, viral RNA and replication protein), double - stranded RNA

(dsRNA), and DNAThese PAMPs are recognized by different PRRs

of host cells (5, 6) (including, but not limited to, TLRs, RIG-I-like

receptors (RLRs), the cGAS-STING pathway and NOD-like

receptors (NLRs)) (7–9). Upon recognizing viral components,

these receptors activate downstream transcription factors IRF3/7

and NF-kB through adaptor proteins (e.g., MAVS, TRIF, MyD88,

STING), This activation process ultimately leads to the production

of type I interferons (IFN-a/b) and pro-inflammatory cytokines.

These molecules can effectively inhibit viral replication and trigger

adaptive immune responses (10–12). However, over time, viruses

have evolved diverse mechanisms to evade the innate immune

system, collectively referred to as “innate immune escape” (13, 14).

These strategies work by interfering with the recognition of viral

nucleic acids by pattern recognition receptors, preventing the

activation of adaptor proteins or key signaling pathways, and

promoting the expression of host negative regulatory factors to

suppress the immune response (15, 16). These evasion tactics are

crucial for successful viral infection, immune evasion, and also

provide the molecular basis for interspecies transmission and viral

pandemics (Figure 1).

Among diverse viruses, porcine coronaviruses—particularly

TGEV—serve as a representative model for investigating viral

immune evasion mechanisms. On one hand, TGEV shares

similarities in genomic organization and immune regulatory

strategies with other coronaviruses, such as SARS-CoV-2, thereby

providing valuable insights into the conserved mechanisms

underlying coronavirus immune escape (17). On the other hand,

as a highly pathogenic enteric virus that poses a serious threat to the

swine industry, TGEV not only impairs animal health and livestock

production but also harbors potential risks of cross-species

transmission (18).

To date, six porcine coronaviruses have been identified,

comprising four alphacoronaviruses, one betacoronavirus, and

one deltacoronavirus (19). Among them, TGEV is the earliest

discovered and most extensively investigated member of the

porcine alphacoronaviruses (20). Viral structural proteins not

only mediate essential functions in the viral life cycle, including

entry, assembly, and budding, but also play pivotal roles in

orchestrating immune evasion strategies, forming the molecular

basis by which TGEV circumvents host innate immune recognition

(21).TGEV is transmitted primarily via the fecal–oral and

respiratory routes, infecting epithelial cells of the porcine

gastrointestinal tract, particularly the villous epithelial cells of the

small intestine (21, 22). Viral replication results in epithelial cell

necrosis, villus atrophy, and mucosal damage, leading to disruption
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of the intestinal barrier. Consequently, infected piglets exhibit acute

vomiting, profuse yellow-green watery diarrhea, severe

dehydration, and malabsorption (23, 24). The disease is especially

devastating in neonatal piglets with immature immune systems, in

which rapid disease progression is associated with mortality rates as

high as 80–100% within the first 10 days of life (25). Infected pigs,

asymptomatic carriers, and animals within 10 weeks of recovery

serve as major sources of transmission. To date, pigs are recognized

as the only natura l host of TGEV, with no human

infections reported.

The high pathogenicity and rapid transmission of TGEV pose a

substantial threat to the swine industry. Elucidating the molecular

mechanisms underlying TGEV immune evasion not only offers

critical insights into the general pathogenic strategies of

coronaviruses but also guides vaccine development and antiviral

drug design. Compared with other porcine alphacoronaviruses,

such as Porcine Epidemic Diarrhea Virus (PEDV), which also

causes severe diarrhea, and the recently identified SADS-CoV,

which exhibits cross-species transmission potential, TGEV

displays distinctive features in terms of pathogenicity, tissue

tropism, and immune evasion strategies. These differences offer

unique opportunities for comparing the mechanisms of

pathogenesis among porcine coronaviruses, highlighting the

importance of systematic investigation of TGEV immune evasion

in understanding coronavirus evolution, assessing interspecies

transmission risks, and advancing novel prevention and

control strategies.
2 Recognition and response of the
host’s innate immunity

The innate immune system of pigs, like that of other mammals,

relies on the recognition of PAMPs by PRRs for its functionality (26,

27). Upon invasion by enteroviruses such as TGEV, various PRRs

expressed in porcine intestinal epithelial cells and mucosa-

associated immune cells play a crucial role in detecting the

nucleic acid components of different viruses, thereby initiating an

antiviral innate immune response. Among them, the RLRs located

in the cytoplasm are key sensors for RNA virus recognition,

including Retinoic Acid-Inducible Gene I(RIG-I) and Melanoma

Differentiation-Associated Gene 5(MDA5), which recognize 5’-

triphosphate single - stranded RNA and long - chain double -

stranded RNA respectively (28, 29). TLRs located on the endosomal

membrane are also significant in virus recognition. For instance,

TLR3 detects double-stranded RNA generated during viral

replication, while TLR7/8 primarily identify single-stranded RNA,

both contributing to impeding virus replication and dissemination

(30, 31). Moreover, although the cGAS-STING pathway is primarily

involved in detecting cytoplasmic DNA, predominantly against

DNA viruses, it can be indirectly activated during RNA virus

infections by cellular damage or secondary signals, thereby

participating in innate immune modulation (32, 33).

Furthermore, in addition to their role in inflammasome assembly

and pro-inflammatory factor release, NLRs can act as co-regulators
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of PRRs signaling pathways, augmenting immune recognition and

response to viral infections (34, 35).

Upon viral infection, host cells detect viral nucleic acids via

PRRs, leading to the recruitment of specific adapter proteins (e.g.,

MAVS, TRIF, MyD88). These adapter proteins subsequently

activate the downstream signaling molecules TANK-binding

kinase 1 (TBK1) and IKKe, which phosphorylate transcription

factors IRF3 and IRF7 (36–38). This phosphorylation prompts

the dimerization and nuclear translocation of IRF3 and IRF7,

thereby initiating the transcriptional expression of type I

interferons (IFN-a/b) and type III interferons (IFN-l) (39, 40).

In the context of antiviral immunity in the intestinal mucosa, type

III interferons exhibit greater tissue specificity and targeting

compared to type I interferons (41). Due to the predominant

expression of its receptor (IFNLR1/IL10R2) on epithelial cells,

IFN-l enhances local antiviral defense effectively while limiting

inflammation, thereby playing a pivotal role in maintaining

intestinal immune homeostasis and controlling local viral

infections (42, 43). Subsequently, the secreted interferons bind to

their respective receptors on target cells through autocrine and

paracrine mechanisms (type I interferons bind to IFNAR1/2, and

type III interferons bind to IFNLR1/IL10R2), activating the JAK-

STAT signaling pathway and inducing the expression of numerous
Frontiers in Immunology 03
interferon-stimulated genes (ISGs) (44–46). These ISGs can impede

various stages of the viral life cycle, including viral RNA synthesis,

protein translation, and viral assembly and release, collectively

establishing an effective innate antiviral barrier (47, 48). However,

neonatal piglets under one week of age, characterized by an

immature immune system, exhibit low expression levels of PRRs

and downstream signaling molecules, limiting the efficiency of the

interferon response. Consequently, this inadequate response fails to

promptly control viral infections in the early stages, contributing

significantly to their heightened susceptibility to enteric viruses like

TGEV and the associated elevated mortality rate (49), Figure 2.
3 Interference of TGEV with host
pattern recognition receptors

3.1 Mechanistic insights into TGEV NSP-
mediated blockade of TLR/RLR signaling

TLRs and RLRs are crucial PRRs in the innate immune system,

responsible for detecting viral nucleic acids (50, 51). The single-

stranded positive-sense RNA genome of TGEV is recognized by

TLR3 and TLR7/8 localized in endosomes or by RIG-I and MDA5
FIGURE 1

Genomic organization of TGEV and host innate immune responses. TGEV is an enveloped, positive-sense single-stranded RNA virus whose genome
is organized as 5′UTR–ORF1a–ORF1b–S–ORF3a/3b–E–M–N–ORF7–3′UTR. It encodes four structural proteins,namely the spike (S), envelope (E),
membrane (M), and nucleocapsid (N)—as well as several accessory proteins. In piglets less than 10 days of age, infection typically causes severe
diarrhea and is often fatal, with mortality rates reaching 80–100%. The figure also illustrates the recognition of viral RNA by host pattern recognition
receptors (TLRs, RLRs, and NLRs), along with the activation of downstream interferon signaling pathways. These pathways induce antiviral gene
expression and contribute to host defense.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1675572
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1675572
localized in the cytoplasm to activate the downstream signaling

pathways leading to the expression of type I IFNs (IFN-a/b) and
pro-inflammatory mediators (52, 53). The transcription of these

two types of IFNs is mediated by the activation of either IRF3/7 or

NF-kB, which are pivotal for initiating antiviral immune responses

(54). To evade host immune surveillance effectively, TGEV has

developed diverse immune evasion tactics, predominantly utilizing

its NSPs to disrupt key components of the TLR and RLR signaling

pathways. This interference hampers interferon production and

innate immune activation (55, 56).

During the initial phase of TGEV infection, the viral genomic

open reading frame ORF1a is translated into polyprotein pp1a,

which is further extended and translated into pp1ab through -1

ribosomal frameshifting (57, 58). These polyproteins are later

processed by viral proteases, namely papain-like protease (PLpro)

and 3C-like protease (3CLpro), resulting in the generation of 16

non-structural proteins such as NSP1 and NSP3 (59–61). These
Frontiers in Immunology 04
proteins are pivotal in virus replication, host modulation, and

immune evasion. NSP1 is one of the earliest expressed viral

proteins and has obvious immunosuppressive functions (62). This

protein can inhibit the translation process by blocking the binding

of host mRNA to ribosomes (63) and may promote the degradation

of host mRNA through an as-yet-unclear mechanism (64, 65).

NSP1 has been shown to hinder the functional activation of IRF3 by

promoting its degradation. Normally, IRF3 is phosphorylated upon

viral infection, leading to its dimerization, nuclear translocation,

and subsequent induction of IFN and ISG expression (66, 67).

TGEV’s NSP1 disrupts the IFN-b signaling pathway by targeting

various steps of the IRF3 pathway, thereby obstructing IRF3

activation, nuclear translocation, and binding to target gene

promoters, ultimately suppressing type I interferon production to

facilitate immune evasion (68, 69). Moreover, NSP1 interferes with

host mRNA transcription and translation processes, exacerbating

the inhibition of host antiviral protein synthesis and enhancing
FIGURE 2

Schematic representation of NLRP3 inflammasome and cGAS-STING pathway activation. This figure illustrates the activation mechanisms and
downstream effects of the NLRP3 inflammasome (on the left) and the cGAS-STING pathway (on the right), highlighting their interconnections in
innate immune responses. The left panel shows that priming signals, which are mediated by TNFR, TLR, and IL-1R upon stimulation with TNF,
PAMPs, and IL-1b, lead to NF-kB activation and NLRP3 inflammasome assembly. This assembly process involves nucleotide - binding
oligomerization domain - containing protein 2 (NOD2), muramyl dipeptide (MDP), ATP, K+ efflux, and ROS, ultimately inducing caspase - 11 (CASP11)
and interferon - b (IFNB) expression, pyroptosis, and IL-1b release. The right panel illustrates cyclic GMP - AMP synthase (cGAS) binding to cytosolic
DNA to generate cGAMP, which activates STING translocation from the endoplasmic reticulum (ER)to the Golgi and subsequently triggers the
activation of interferon regulatory factor 3 (IRF3) and NF-kB, resulting in antiviral responses and pro-inflammatory cytokine production. Shared
regulatory elements include ROS and Ca²+ perturbations, mitochondrial damage, and lysosomal rupture, with organelles such as lysosomes,
mitochondria, and autophagosomes contributing to inflammasome activation, pyroptosis, and cytokine synthesis.
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immune evasion (70). It also promotes virus replication by

impeding stress granule (SG) formation (71). NSP3 of TGEV is a

multifunctional protein. In addition to participating in the self-

cleavage of viral polyproteins, it also has a PLpro domain and

deubiquitinase (DUB) activity, and can target multiple host

immune signaling molecules for regulation (72, 73). PLP domain

can directly recognize and cleave TRAF3. TRAF3 is an important

adaptor protein located downstream of the MAVS in RLR signaling

pathway and is responsible for recruiting and activating TBK1 and

IKKe kinase complex (74). Once TRAF3 is cleaved, the formation of

the TBK1-IKKe complex is impaired, leading to reduced

phosphorylation of IRF3 and IRF7, thereby inhibiting the

activation of the type I interferon signaling pathway (75). This

multi-target and multi-mechanism immunosuppressive effect may

allow TGEV to effectively replicate in host cells and escape immune

clearance, Figure 3.
3.2 TGEV escapes MDA5 recognition
through cap structure modification and
signal axis interference

Notably, NSPs can suppress IFN signaling activation even when

segments of viral RNA are recognized, whereas modifications of the
Frontiers in Immunology 05
cap structure further decrease the probability of detection (76, 77).

Host cells trigger the innate immune response by detecting viral

RNA’s distinct features, known as “non-self” markers (78). MDA5,

a key member of the RLRs family, primarily recognizes lengthy

dsRNA generated during viral infections or single-stranded RNA

lacking a complete 5′ cap modification (79, 80). When MDA5

recognizes PAMPs of these dsRNAs, MDA5 can directly interact

with the MAVS, and then recruit and activate other downstream

signaling proteins like TBK1 and IKKe. Finally, the IRF3/7 will be

phosphorylated and their translocation to the nucleus, triggering

the expression of IFN-a/b and associated ISGs. Consequently, an

extensive antiviral immune response is initiated (81, 82), Figure 3.

To escape from the host’s innate immune attack, coronaviruses

have developed mechanisms to conceal the foreign features of their

RNA. One such mechanism involves NSP16, acting as an S-

adenosylmethionine (SAM)-dependent 2’-O-methyltransferase.

NSP16 catalyzes methylation at the 2’-hydroxyl site of the ribose

on the 5’-cap structure of viral mRNA, converting the RNA cap

structure from Cap- (m7GpppN) to Cap-1 (m7GpppNm) (83, 84).

This modification mimics the cap structure of eukaryotic cell

mRNA, thereby diminishing recognition of viral RNA by host

PRRs (85). Among human coronaviruses, SARS-CoV-2 can evade

host immune responses by modifiying the RNA 5′ ends of viral

RNA through the modification of the non-structural protein NSP16
FIGURE 3

Mechanisms by which TGEV evades host PRRs-mediated innate immune responses. In uninfected cells, viral RNA is recognized by endosomal Toll-
like receptors (TLR3/TLR7) or cytoplasmic sensors such as Melanoma Differentiation - Associated Gene 5 (MDA5). This recognition triggers
downstream signaling cascades via adaptor kinases and transcription factors, ultimately leading to the production of type I interferons and pro -
inflammatory cytokines.However, during TGEV infection, viral non-structural proteins (NS) inhibit key signaling nodes by promoting protein
degradation or functional inactivation, thereby disrupting the TLR/RLR signaling pathways. This results in impaired nuclear translocation of IRF3 and
NF-kB,along with reduced cytokine expression. In addition, TGEV evades MDA5 recognition by modifying the viral RNA cap structure through 2’-O
methylation (m7GpppNm), which prevents MDA5 binding and subsequent activation of downstream signaling.
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(86). Specifically, NSP16 forms a heterodimer with NSP10 and

catalyzes 2′-O-methylation of the first ribose unit of viral mRNA,

generating a Cap-1 structure. This modification allows viral RNA to

mimic host mRNA, thereby preventing recognition by MDA5 and

inhibiting type I interferon signaling pathways (87). Viruses such as

TGEV and SARS-CoV-2 exploit NSP16-mediated 2′-O-

methylation to alter their RNA in both spatial conformation and

chemical properties, effectively “disguising” it as endogenous

molecules and escaping MDA5-mediated detection and immune

activation (88, 89). Moreover, NSP16 activity is regulated by NSP10,

with the NSP16–NSP10 complex also capable of suppressing host

protein translation (88, 90), Figure 3.
4 Disruption of intestinal barrier
function by TGEV

4.1 TGEV damages the tight junctions of
intestinal epithelium

The intestinal epithelial barrier is essential for preserving

intestinal homeostasis and preventing the trans-epithelial

infiltration of pathogens and toxins (91, 92). Tight junctions (TJs)

are pivotal for maintaining the integrity of this barrier, primarily

comprised of various cytoplasmic proteins and transmembrane

such as Zonula occludens-1 (ZO-1), Occludin, and Claudin

family proteins (93, 94). These proteins collaborate to form a

sealing belt structure between neighboring cells, restricting the

passage of luminal contents to the basolateral side and thereby

upholding the selective permeability of the barrier (95).

Prior research has demonstrated that TGEV infection disrupts

the epithelial tight junction structure significantly (96). Upon

infecting the IPEC-J2 porcine small intestinal epithelial cell line,

TGEV notably reduces the expression levels of tight junction-

related proteins, including ZO-1, Occludin, and Claudin-1.

Additionally, the localization and structural integrity of tight

junction proteins are compromised, leading to the disruption of

the belt-like junction and widening of the intercellular space (97,

98). These alterations notably compromise the barrier function

between epithelial cells (95).

Mechanistic investigations have elucidated that TGEV triggers

the upregulation of inflammatory cytokines, including TNF−a, IL
−6, and IL−8, through the activation of the p38 MAPK and NF-kB
signaling pathways, as evidenced by studies (99, 100). These

inflammatory factors indirectly impede the transcriptional activity

of tight junction proteins (96). In addition, TGEV infection was

accompanied by mitochondrial dysfunction and increased oxidative

stress, which were characterized by increased contents of ROS and

mitochondrial membrane potential (101–103). Excessive ROS can

promote the degradation of TJs proteins or abnormal localization

on the cell membrane, thereby exacerbating the barrier disruption

(104, 105).

Functional studies have demonstrated that TGEV infection

reduces transepithelial electrical resistance (TEER) and increases

the permeability of the epithelial barrier, as evidenced by enhanced
Frontiers in Immunology 06
leakage of fluorescent tracer molecules (96, 100). This heightened

barrier permeability facilitates the translocation of luminal

pathogens, such as bacteria or endotoxins, across the epithelium,

leading to potential secondary infections or systemic inflammatory

responses in the host (106). Furthermore, the compromised barrier

function facilitates local dissemination and amplification of TGEV

within the intestinal tract, thereby exacerbating disease progression

and tissue damage (21), Figure 4.
4.2 TGEV regulates the notch signaling
pathway

During TGEV infection of small intestinal epithelial cells,

elevated levels of ROS and a loss of mitochondrial membrane

potential were observed, resulting in oxidative stress (107). The

stress condition could then suppress the expression of several

important factors involved in the Notch signaling pathway,

including Dll4 and Hes5 (108, 109). This mechanism has been

demonstrated in the Paneth cell model of TGEV targeting small

intestinal crypts (90, 110). The Notch signal is essential for

regulating the balance between self-renewal and differentiation of

intestinal Lgr5+ stem cells. Its inhibition can drive excessive

differentiation of stem cells into goblet cells, resulting in elevated

intestinal mucus secretion (90). This shift in differentiation and

mucus composition may promote TGEV replication and

dissemination in the small intestine. Consequently, inhibiting the

Notch signal not only fails to restrict goblet cell production but also

creates a more favorable environment for virus infection and

transmission (90), Figure 4. Notch signaling is generally

upregulated in hosts infected with viruses such as SARS-CoV-2,

COVID-19, and PDCoV (111–113). However, it remains unclear

whether the inhibition of Notch signaling observed during TGEV

infection represents a unique feature of TGEV or a common

characteristic of porcine coronaviruses. Further studies are

warranted to elucidate the specificity and underlying mechanisms

of this Notch signaling regulation.
4.3 Potential role of the gut microbiota in
TGEV immune evasion

The gut microbiota constitutes the largest and most diverse

microbial community within the host, and its metabolites, signaling

molecules, and inter-microbial interactions play pivotal roles in

maintaining immune homeostasis, preserving mucosal barrier

function, and regulating inflammatory responses (114). Recent

studies have revealed that the gut microbiota not only participates

in nutrient metabolism and mucosal integrity but also modulates

host susceptibility to viral infections and viral replication efficiency

by regulating innate immune pathways, such as interferon (IFN)

signaling. During TGEV infection, short-chain fatty acids (SCFAs)

produced by the gut microbiota, especially butyrate, have been

demonstrated to influence viral infection levels (115, 116). In the

later stages of infection, butyrate can substantially enhance TGEV
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infection in porcine small intestinal epithelial cells and porcine

testicular cells; however, this effect is not mediated through an

increase in viral attachment or entry, but rather via interference

with host antiviral immune responses.

Notably, TGEV infection is linked to a reduction in

Lactobacil lus gene copy numbers and an increase in

Enterobacteriaceae gene copy numbers in porcine intestinal

mucosal samples (117).In contrast, fecal samples show elevated

relative abundances of Lactobacillus and Limosilactobacillus (118).

These discrepancies imply that TGEV infection may trigger varying

degrees of dysbiosis in the local intestinal environment compared to

the overall gut ecosystem.Furthermore, TGEV can lead to villous

atrophy and compromise intestinal immune function, inducing

epithelial-to-mesenchymal transition (EMT) and converting

epithelial cells into motile, invasion-prone mesenchymal cells

(119). Prolonged infection may further enhance the invasive

capacity of fecal Enterococcus species toward intestinal cells,

thereby altering gut microbial composition and creating

conditions favorable for secondary pathogen infections.

Collectively, these findings indicate that TGEV facilitates immune

evasion and increases host susceptibility by disrupting the intestinal

barrier and remodeling the gut microbiota.
5 Cell autophagy induced by TGEV

Autophagy is a highly conserved cellular degradation process

dependent on lysosomes, serving to eliminate damaged organelles,

misfolded proteins, and pathogens, thereby upholding cellular
Frontiers in Immunology 07
homeostasis, regulating energy metabolism, and responding to

cellular stress, immune modulation, and disease processes (120).

In the context of viral infections, autophagy is commonly seen as a

defense mechanism enabling host cells to combat foreign intruders.

By forming autophagosomes that merge with lysosomes, autophagy

can encapsulate and degrade viral particles, thereby restricting viral

replication and dissemination (121, 122). However, recent research

has demonstrated that TGEV can trigger autophagy in host cells,

leading to a significant increase in autophagosome formation.

Paradoxically, the autophagy induced by TGEV fails to effectively

eliminate the virus. Instead, it creates a favorable membrane

structure that supports viral replication and assembly, ultimately

facilitating viral propagation (123, 124). This observation indicates

that TGEV can exploit the host autophagy machinery to facilitate

crucial stages in its life cycle, underscoring a nuanced and intricate

interplay between the virus and the host autophagy system (124).

Research has shown that TGEV infection triggers robust

activation of the autophagic process in host cells. Following

infection, there is a notable increase in the number of

autophagosomes within cells, exhibiting characteristic double-

membrane structures observable via electron microscopy (123,

125, 126). Additionally, Meanwhile, there is a marked increase in

the conversion of the autophagy marker microtubule - associated

protein 1 light chain 3 (LC3) from its cytosolic form, LC3 - I, to the

membrane - bound form, LC3 - II, resulting in a significantly

elevated LC3 - II/LC3 - I ratio. This phenomenon is partly

attributed to the common strategy of coronaviruses hijacking

LC3-associated membranes to generate double-membrane vesicles

and other replication organelles, which serve as scaffolds for the
FIGURE 4

TGEV-induced disruption of intestinal barrier and modulation of Notch signaling. TGEV infection activates NF-kB and MAPK pathways, promoting
inflammatory cytokine release (TNF-a, IL-6, IL-8) and downregulating tight junction proteins (ZO-1, Occludin, Claudin-1), leading to barrier
dysfunction. Excess ROS impairs mitochondrial function, reduces TEER, and inhibits Dll4 and Hes5 expression in the Notch pathway, causing
aberrant differentiation of GI stem cells into goblet cells, which may facilitate viral replication and spread.
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assembly of viral replication–transcription complexes (RTCs).

However, this process predominantly relies on LC3 - I - positive

endoplasmic reticulum - derived degradation - enhancing alpha -

mannosidase - like protein 1 (EDEM1) - containing membranes

(EDEMosome - like membranes) rather than classical lipidated LC3

- II membranes, further supporting the notion of enhanced

autophagic activity (123, 127). At the molecular level, key

autophagy-related genes such as Beclin-1 are significantly

upregulated following infection (127). This may reflect a host

protective mechanism in mammals, where the suppression of

viral autophagic protein Beclin-1 titers contributes to defense

(128, 129). Targeting Beclin-1 can block autophagosome

formation and vesicle nucleation, thereby promoting viral

replication and disease progression.

However, the above-mentioned autophagic response does not

necessarily mean that the TGEV is cleared by host cells. On the

contrary, evidence suggests that the virus may exploit this process to

facilitate its replication and amplification, as shown by [Zhu

et al. ,2016] (127, 130). Recent studies have identified

transmembrane protein 41B (TMEM41B) as a pivotal regulator

during TGEV infection. TMEM41B is a protein with multiple

transmembrane domains that is situated in the endoplasmic

reticulum, is recognized as a key player in regulating membrane

lipid translocation and curvature alterations, crucial for

autophagosome formation. TGEV infection leverages TMEM41B-

mediated membrane remodeling to generate double-membrane

vesicles (DMVs), serving as a spatial platform for viral replication
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and transcription. Experimental data demonstrate that depletion or

inhibition of TMEM41B significantly disrupts DMV formation,

consequently impeding effective TGEV replication in host

cells.Furthermore, several NSPs encoded by TGEV, such as NSP3,

NSP4 and NSP6, could also interact with the endoplasmic

reticulum membrane system to restructure the host cell membrane

architecture. These NSPs collaborate to recruit lipids, induce local

membrane expansion, and facilitate endoplasmic reticulum

membrane bending, promoting DMV formation to support the

assembly of the replication-transcription complex (RTC)

(126). Consequently, TGEV orchestrates an intracellular replication

niche conducive to its life cycle by finely regulating factors

associated with the host autophagy pathway and membrane

dynamics (Table 1).
6 Apoptosis induced by TGEV

Apoptosis is a type of programmed cell death that is precisely

controlled by genes and is broadly involved in many physiological

processes such as individual development, maintenance of tissue

homeostasis, and elimination of abnormal cells (131). This process

is energy-dependent and exhibits highly ordered morphological and

molecular biological characteristics (131). Apoptosis primarily

operates through two established signaling pathways: the intrinsic

pathway mediated by mitochondria and the extrinsic pathway

mediated by death receptors (132, 133).
TABLE 1 Autophagy-related molecules and their functions during TGEV infection.

Molecule/
Protein

Type
Post-

infection
changes

Main functions The role in TGEV infection

LC3(LC3-I /
LC3-II)

Autophagy marker
molecules

The conversion
level from LC3-I

to LC3-II is
elevated.

Core molecules in the formation and
elongation of autophagosomes

Enhanced autophagic activity promotes the accumulation of
autophagosomes, providing a platform for TGEV replication.

Beclin-1
Core components
of the autophagy
initiation complex

Expressing an
upward

adjustment

Regulation of autophagosome
initiation and nucleation

The upregulation is conducive to the formation of
autophagosomes and may be hijacked by TGEV to promote

replication.

ATG5
Autophagy-related
genes/proteins

Expressing an
upward

adjustment

Participate in the extension and
closure of autophagosome membranes

The enhanced autophagic activity after the increase is conducive to
the establishment of the viral membrane structure platform.

SQSTM1/p62
Autophagic

substrates and
selective receptors

Accumulation
after infection

Conjugate ubiquitinated proteins and
mediate their degradation through

LC3

Accumulation in the mitochondrial fraction during the separation
of components suggests the occurrence of mitophagy, which is

specific to mitochondria.

TMEM41B

Endoplasmic
reticulum multi-

pass
transmembrane

proteins

Essential factor

Participate in membrane lipid
flipping, membrane curvature

changes, and promote the formation
of autophagosomes.

Regulating the formation of double-membrane vesicles (DMVs)
and the absence inhibits the replication of TGEV.

NSP3/NSP4/
NSP6

Non-structural
protein of TGEV

Expressed in
infected cells

Interact with the endoplasmic
reticulum membrane and restructure

the membrane structure.

Coordinately induce endoplasmic reticulum membrane
remodeling, promote the formation of the double-membrane
vesicle (DMV), and provide a platform for the replication-

transcription complex (RTC).
This table summarizes the alterations and functional roles of key autophagy markers, core autophagy-related genes, selective autophagy receptors, and viral non-structural proteins in host cells
after TGEV infection.It highlights their involvement in autophagosome formation, double-membrane vesicle (DMV) biogenesis, and the assembly of the replication–transcription complex
(RTC).
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Studies have shown that infection with TGEV can trigger a

robust oxidative stress response and activate cell apoptosis. During

the peak of viral replication, host cells must generate significant

energy and biosynthetic resources to support viral proliferation,

leading to mitochondrial dysfunction and a notable increase in

intracellular ROS and mtROS accumulation (103, 127, 134).

Intestinal epithelial cells, being the primary targets of TGEV,

exhibit a strong ability to regulate oxidative stress. However,

TGEV infection results in severe mitochondrial damage in these

cells, accompanied by pronounced autophagy and mitophagy

activation. The ROS buildup induced by TGEV not only directly

harms cell structures but also induces programmed cell death by

activating the mitochondrial apoptosis pathway. Specifically, ROS-

mediated stress signals trigger p53 phosphorylation, resulting in the

movement of the pro-apoptotic protein Bax to the outer membrane

of mitochondria, increasing mitochondrial membrane permeability,

releasing cytochrome c into the cytoplasm, and subsequently

activating Caspase-9 and downstream effector molecule Caspase-

3, ultimately initiating cell apoptosis (103, 135). Notably, TGEV

infection upregulates the expression of various antioxidant-related

genes, likely as a host response to virus-induced oxidative damage

(127, 135). However, approximately 12 hours post-infection, during

active virus replication, substantial mitochondrial degradation and

increased autophagosomes are observed, indicating persistent

mitophagy activation. While mitophagy can mitigate oxidative

damage to some extent, excessive activation may exacerbate cell

apoptosis by depleting mitochondrial function (136). At the S and

G2/M phases of the host cell cycle, TGEV’s N protein facilitates the

activation of p53 and subsequently upregulates its downstream

effector p21, further promoting cell death through the intrinsic

apoptosis pathway (136). These processes eventually cause

apoptosis of porcine small intestinal epithelial cells, leading to

villi atrophy, thinning and loss of intestinal wall elasticity,

gastrointestinal bleeding, barrier function damage, and finally

severe diarrhea, which is a lethal symptom of TGEV infection (134).
7 Pyroptosis induced by TGEV

Pyroptosis is a programmed cell death mechanism that hinges

on the activation of caspase-1-like proteases and is distinguished by

pronounced inflammatory characteristics (137). This process is

primarily triggered by the cleavage and activation of Gasdermin

D (GSDMD), which subsequently facilitates the formation of

membrane pores, the release of inflammatory mediators, and

ultimately culminates in cell lysis and demise (138). Research has

demonstrated that infection of small intestinal crypt cells,

particularly Paneth cells, by the TGEV can prompt caspase-1

activation, GSDMD cleavage, and the initiation of a classical

pyroptotic cascade (139, 140).

Following infection of intestinal epithelial cells by TGEV, the

virus’s PAMPs, such as viral RNA, are recognized by inflammasome

sensors like NLRP3 within host cells (139, 141). This recognition

initiates inflammasome assembly and activates caspase-1, which

subsequently cleaves GSDMD to release its N-terminal fragment
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(GSDMD-N). GSDMD-N then integrates into the cell membrane to

form pores, disrupting membrane integrity and causing the release

of cellular contents, including the inflammatory cytokines IL-1b
and IL-18 (139). This cascade not only elicits a local inflammatory

response in the intestine but also represents a pivotal mechanism

through which TGEV induces intestinal damage and pathological

alterations (141).
8 Summary and outlook

In recent decades, the evolutionary pace of coronaviruses has

notably quickened, leading to the emergence of highly pathogenic

strains like SARS-CoV, MERS-CoV, and SARS-CoV-2, which have

posed significant challenges to global public health (22). The

recurrent epidemics and outbreaks of novel coronaviruses have

reignited interest in studying the impact of TGEV, a prototypical

porcine a-coronavirus, on the swine industry and its possible

zoonotic characteristics (21, 142).

TGEV employs multilayered mechanisms to interfere with host

innate immune responses, thereby achieving effective immune

evasion. These strategies include suppression of PRRs-mediated

signaling pathways such as TLRs and RLRs to inhibit interferon

production; modification of viral RNA with a cap structure to

escape host RNA sensing; modulation of host signaling pathways

such as Notch to dampen immune responses; disruption of the

intestinal epithelial barrier and reshaping of gut microbiota to

compromise barrier function; and induction of multiple forms of

programmed cell death, including pyroptosis, apoptosis, and

autophagy, to weaken antiviral defenses. Moreover, the TGEV

genome exhibits high variability, conferring robust immune

evasion capacity and limiting the cross-protective efficacy of

existing vaccines, which contributes to unstable protection.

Although the clinical detection rate of TGEV has decreased in

recent years, this does not mean that its disappearance from natural

reservoirs (143). On the contrary, owing to its highly mutable

genome, substantial immune evasion ability, and limited cross-

protection, TGEV continues to evolve (21). One of the key

unresolved scientific questions is the precise identification of the

molecular targets of TGEV nonstructural proteins (NSPs). Given

that NSPs play pivotal roles in suppressing host innate immunity,

yet their specific targets and mechanisms remain incompletely

understood, elucidating these interactions will offer an important

theoretical foundation and potential intervention strategies for

mitigating viral immune evasion. In addition, a complex interplay

exists between enteric viruses and the host gut microbiota, which

may critically modulate viral immune evasion. Therefore, strategies

designed to minimize or prevent the disruption of gut microbial

homeostasis induced by TGEV represent a crucial direction for

future therapeutic development.Elucidating the tripartite

interactions among TGEV, the microbiota, and the host will not

only enhance our understanding of TGEV pathogenesis but also

provide theoretical foundations for the development of novel

microbiota-based interventions against TGEV. Notably, TGEV

has traditionally been considered strictly host-specific, confined to
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infecting swine species. However, increasing evidence indicates that

coronavirus host barriers are not absolute, and their cross-species

transmission potential may have been substantially underestimated

(144). Recent studies have unveiled the molecular basis of TGEV

cross-species transmission, showing that the receptor-binding

domain (RBD) of TGEV can interact with aminopeptidase N

(APN) from 17 different species, with eight demonstrating

relatively high binding efficiency. This finding underscores the

potential of TGEV for cross - species transmission, raising

concerns regarding the possibility of human infection.

Currently available TGEV vaccines, which predominantly rely

on traditional platforms, are confronted with multiple limitations,

encompass insufficient protective efficacy, restricted cross-

protection, risks of reversion to virulence, and immune

interference. Consequently, there is an urgent demand for more

advanced and effective preventive strategies. Future research

directions may include: (i) rational design of broad-spectrum

coronavirus vaccines based on conserved antigenic epitopes of

TGEV; (ii) exploration of novel mucosal adjuvants and efficient

delivery systems, coupled with genetic engineering or

pharmacological induction to enhance host antiviral effectors

(e.g., upregulating of GSDMD) to improve intracellular pathogen

clearance; and (iii) rational attenuation strategies and targeted drug

development to inhibit key viral immune evasion proteins (e.g.,

NSP1, ORF6), thereby blocking their interference with host

immune signaling.Furthermore, given the potential cross-species

transmission risk of TGEV and other coronaviruses, the

establishment of comprehensive surveillance and prevention

systems is essential. Such systems should encompass continuous

monitoring and tracing of viral recombination events, scientific

evaluation of human susceptibility, and integration of human,

animal, and environmental health management under a “One

Health” framework. This integration will enable proactive

prevention and rapid response to potential public health threats.

Future research should therefore prioritize core scientific issues,

including: (i) the immune evasion targets of nonstructural proteins

(e.g., NSP1, NSP3, ORF6); (ii) the impact of virus–microbiota

interactions on immune evasion; (iii) the cross-species

transmission potential of TGEV and its implications for human

health; and (iv) the risk of generating novel viral populations

through recombination with other porcine coronaviruses.

Addressing these questions will provide critical guidance for

vaccine development, intervention strategies, and public health

preparedness. The advancement of state-of-the-art technologies,

such as single-cell sequencing, spatial transcriptomics, proteomics,

and CRISPR screening, is enhancing the precision of constructing

TGEV infection models and target screening. This progress is

anticipated to advance translational research on antiviral drugs

and intervention strategies (145). Future optimization efforts may

involve integrating innovative adjuvant technologies, nanodelivery

systems, mucosal immunity strategies, and novel vaccines utilizing

virus-like particles (VLPs) and mRNA platforms. Additionally,

vigilance in monitoring recombination and evolution events

between TGEV and other porcine coronaviruses (e.g., PEDV,
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PDCoV, SADS-CoV) is crucial for early detection of emerging

coronaviruses (146). Despite the reduced clinical impact of TGEV

amid frequent zoonotic diseases, its potential for ongoing

recombination and evolution poses indirect threats to human

health that cannot be disregarded (146, 147). Consequently,

comprehensive research on the mechanisms of cross-species

transmission, evolutionary dynamics, and potential public health

risks associated with porcine coronaviruses should be intensified to

enable early detection and effective management of potential

emerging zoonotic viruses.
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