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Innate immune evasion is a critical aspect of viral infections, as it disrupts the
host's defense mechanisms.The innate immune system, as the primary defense
against pathogens, detects pathogen-associated molecular patterns (PAMPs) via
pattern recognition receptors (PRRs). This recognition triggers the production of
interferons (IFNs) and pro-inflammatory factors, initiating the antiviral immune
response. During evolution, viruses have found many ways to evade innate
immune response in order to increase the replication efficiency, transmission
ability and to establish persistent infection through co-evolution with hosts. Pigs
act as natural hosts for a variety of significant viruses, including both DNA and
RNA viruses. These viruses not only jeopardize animal health but also present a
potential risk of interspecies transmission. Among these, porcine transmissible
gastroenteritis virus (TGEV) stands out as a highly prevalent and severely
detrimental enterovirus in the global swine industry. This review aims to
comprehensively analyze the interaction between TGEV and host cells,
emphasizing the molecular underpinnings of its immune evasion strategies. In
addition, we will describe the programmed cell death types induced by TGEV,
including autophagy, apoptosis and pyroptosis. Compared with existing reviews,
this article not only provides a systematic integration of the multilayered immune
evasion mechanisms of TGEV but also, for the first time, offers a comprehensive
overview of its interactions with various forms of programmed cell death. This
perspective highlights the complex regulatory networks underlying TGEV's
adaptive evolution in the host, thereby enhancing our understanding of the
pathogenic mechanisms of porcine coronaviruses and offering novel theoretical
foundations for the development of vaccines and antiviral therapeutics.
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1 Introduction

As the first line of defense against the invasion of exogenous
pathogens, the innate immune system is characterized by rapid
recognition and broad responses (1, 2).Central to this system is the
detection of PAMPs by pattern recognition receptors (PRRs),which
initiates an immune response against infections (3, 4). In the
context of viral infections, typical PAMPs of viruses include their
nucleic acids, such as single - stranded RNA(ssRNA,including 5’
UTR, viral RNA and replication protein), double - stranded RNA
(dsRNA), and DNAThese PAMPs are recognized by different PRRs
of host cells (5, 6) (including, but not limited to, TLRs, RIG-I-like
receptors (RLRs), the ¢GAS-STING pathway and NOD-like
receptors (NLRs)) (7-9). Upon recognizing viral components,
these receptors activate downstream transcription factors IRF3/7
and NF-xB through adaptor proteins (e.g., MAVS, TRIF, MyD88,
STING), This activation process ultimately leads to the production
of type I interferons (IFN-o/f) and pro-inflammatory cytokines.
These molecules can effectively inhibit viral replication and trigger
adaptive immune responses (10-12). However, over time, viruses
have evolved diverse mechanisms to evade the innate immune
system, collectively referred to as “innate immune escape” (13, 14).
These strategies work by interfering with the recognition of viral
nucleic acids by pattern recognition receptors, preventing the
activation of adaptor proteins or key signaling pathways, and
promoting the expression of host negative regulatory factors to
suppress the immune response (15, 16). These evasion tactics are
crucial for successful viral infection, immune evasion, and also
provide the molecular basis for interspecies transmission and viral
pandemics (Figure 1).

Among diverse viruses, porcine coronaviruses—particularly
TGEV—serve as a representative model for investigating viral
immune evasion mechanisms. On one hand, TGEV shares
similarities in genomic organization and immune regulatory
strategies with other coronaviruses, such as SARS-CoV-2, thereby
providing valuable insights into the conserved mechanisms
underlying coronavirus immune escape (17). On the other hand,
as a highly pathogenic enteric virus that poses a serious threat to the
swine industry, TGEV not only impairs animal health and livestock
production but also harbors potential risks of cross-species
transmission (18).

To date, six porcine coronaviruses have been identified,
comprising four alphacoronaviruses, one betacoronavirus, and
one deltacoronavirus (19). Among them, TGEV is the earliest
discovered and most extensively investigated member of the
porcine alphacoronaviruses (20). Viral structural proteins not
only mediate essential functions in the viral life cycle, including
entry, assembly, and budding, but also play pivotal roles in
orchestrating immune evasion strategies, forming the molecular
basis by which TGEV circumvents host innate immune recognition
(21).TGEV is transmitted primarily via the fecal-oral and
respiratory routes, infecting epithelial cells of the porcine
gastrointestinal tract, particularly the villous epithelial cells of the
small intestine (21, 22). Viral replication results in epithelial cell
necrosis, villus atrophy, and mucosal damage, leading to disruption
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of the intestinal barrier. Consequently, infected piglets exhibit acute
vomiting, profuse yellow-green watery diarrhea, severe
dehydration, and malabsorption (23, 24). The disease is especially
devastating in neonatal piglets with immature immune systems, in
which rapid disease progression is associated with mortality rates as
high as 80-100% within the first 10 days of life (25). Infected pigs,
asymptomatic carriers, and animals within 10 weeks of recovery
serve as major sources of transmission. To date, pigs are recognized
as the only natural host of TGEV, with no human
infections reported.

The high pathogenicity and rapid transmission of TGEV pose a
substantial threat to the swine industry. Elucidating the molecular
mechanisms underlying TGEV immune evasion not only offers
critical insights into the general pathogenic strategies of
coronaviruses but also guides vaccine development and antiviral
drug design. Compared with other porcine alphacoronaviruses,
such as Porcine Epidemic Diarrhea Virus (PEDV), which also
causes severe diarrhea, and the recently identified SADS-CoV,
which exhibits cross-species transmission potential, TGEV
displays distinctive features in terms of pathogenicity, tissue
tropism, and immune evasion strategies. These differences offer
unique opportunities for comparing the mechanisms of
pathogenesis among porcine coronaviruses, highlighting the
importance of systematic investigation of TGEV immune evasion
in understanding coronavirus evolution, assessing interspecies
transmission risks, and advancing novel prevention and
control strategies.

2 Recognition and response of the
host’s innate immunity

The innate immune system of pigs, like that of other mammals,
relies on the recognition of PAMPs by PRRs for its functionality (26,
27). Upon invasion by enteroviruses such as TGEV, various PRRs
expressed in porcine intestinal epithelial cells and mucosa-
associated immune cells play a crucial role in detecting the
nucleic acid components of different viruses, thereby initiating an
antiviral innate immune response. Among them, the RLRs located
in the cytoplasm are key sensors for RNA virus recognition,
including Retinoic Acid-Inducible Gene I(RIG-I) and Melanoma
Differentiation-Associated Gene 5(MDAS5), which recognize 5-
triphosphate single - stranded RNA and long - chain double -
stranded RNA respectively (28, 29). TLRs located on the endosomal
membrane are also significant in virus recognition. For instance,
TLR3 detects double-stranded RNA generated during viral
replication, while TLR7/8 primarily identify single-stranded RNA,
both contributing to impeding virus replication and dissemination
(30, 31). Moreover, although the cGAS-STING pathway is primarily
involved in detecting cytoplasmic DNA, predominantly against
DNA viruses, it can be indirectly activated during RNA virus
infections by cellular damage or secondary signals, thereby
participating in innate immune modulation (32, 33).
Furthermore, in addition to their role in inflammasome assembly

and pro-inflammatory factor release, NLRs can act as co-regulators
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of PRRs signaling pathways, augmenting immune recognition and
response to viral infections (34, 35).

Upon viral infection, host cells detect viral nucleic acids via
PRRs, leading to the recruitment of specific adapter proteins (e.g.,
MAVS, TRIF, MyD88). These adapter proteins subsequently
activate the downstream signaling molecules TANK-binding
kinase 1 (TBK1) and IKKe, which phosphorylate transcription
factors IRF3 and IRF7 (36-38). This phosphorylation prompts
the dimerization and nuclear translocation of IRF3 and IRF7,
thereby initiating the transcriptional expression of type I
interferons (IFN-0/f) and type III interferons (IFN-A) (39, 40).
In the context of antiviral immunity in the intestinal mucosa, type
IIT interferons exhibit greater tissue specificity and targeting
compared to type I interferons (41). Due to the predominant
expression of its receptor (IFNLR1/IL10R2) on epithelial cells,
IFN-A enhances local antiviral defense effectively while limiting
inflammation, thereby playing a pivotal role in maintaining
intestinal immune homeostasis and controlling local viral
infections (42, 43). Subsequently, the secreted interferons bind to
their respective receptors on target cells through autocrine and
paracrine mechanisms (type I interferons bind to IFNAR1/2, and
type III interferons bind to IFNLR1/IL10R2), activating the JAK-
STAT signaling pathway and inducing the expression of numerous
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interferon-stimulated genes (ISGs) (44-46). These ISGs can impede
various stages of the viral life cycle, including viral RNA synthesis,
protein translation, and viral assembly and release, collectively
establishing an effective innate antiviral barrier (47, 48). However,
neonatal piglets under one week of age, characterized by an
immature immune system, exhibit low expression levels of PRRs
and downstream signaling molecules, limiting the efficiency of the
interferon response. Consequently, this inadequate response fails to
promptly control viral infections in the early stages, contributing
significantly to their heightened susceptibility to enteric viruses like
TGEV and the associated elevated mortality rate (49), Figure 2.

3 Interference of TGEV with host
pattern recognition receptors

3.1 Mechanistic insights into TGEV NSP-
mediated blockade of TLR/RLR signaling

TLRs and RLRs are crucial PRRs in the innate immune system,
responsible for detecting viral nucleic acids (50, 51). The single-
stranded positive-sense RNA genome of TGEV is recognized by
TLR3 and TLR7/8 localized in endosomes or by RIG-I and MDA5
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Genomic organization of TGEV and host innate immune responses. TGEV is an enveloped, positive-sense single-stranded RNA virus whose genome
is organized as 5'UTR-ORF1la—ORF1b-S—-ORF3a/3b—-E-M-N-ORF7-3'UTR. It encodes four structural proteins,namely the spike (S), envelope (E),
membrane (M), and nucleocapsid (N)—as well as several accessory proteins. In piglets less than 10 days of age, infection typically causes severe
diarrhea and is often fatal, with mortality rates reaching 80-100%. The figure also illustrates the recognition of viral RNA by host pattern recognition
receptors (TLRs, RLRs, and NLRs), along with the activation of downstream interferon signaling pathways. These pathways induce antiviral gene

expression and contribute to host defense
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Schematic representation of NLRP3 inflammasome and cGAS-STING pathway activation. This figure illustrates the activation mechanisms and
downstream effects of the NLRP3 inflammasome (on the left) and the cGAS-STING pathway (on the right), highlighting their interconnections in
innate immune responses. The left panel shows that priming signals, which are mediated by TNFR, TLR, and IL-1R upon stimulation with TNF,
PAMPs, and IL-1p, lead to NF-kB activation and NLRP3 inflammasome assembly. This assembly process involves nucleotide - binding
oligomerization domain - containing protein 2 (NOD2), muramyl dipeptide (MDP), ATP, K* efflux, and ROS, ultimately inducing caspase - 11 (CASP11)
and interferon - B (IFNB) expression, pyroptosis, and IL-1f release. The right panel illustrates cyclic GMP - AMP synthase (cGAS) binding to cytosolic
DNA to generate cGAMP, which activates STING translocation from the endoplasmic reticulum (ER)to the Golgi and subsequently triggers the
activation of interferon regulatory factor 3 (IRF3) and NF-kB, resulting in antiviral responses and pro-inflammatory cytokine production. Shared
regulatory elements include ROS and Ca?" perturbations, mitochondrial damage, and lysosomal rupture, with organelles such as lysosomes,
mitochondria, and autophagosomes contributing to inflammasome activation, pyroptosis, and cytokine synthesis.

localized in the cytoplasm to activate the downstream signaling
pathways leading to the expression of type I IFNs (IFN-o/f) and
pro-inflammatory mediators (52, 53). The transcription of these
two types of IFNs is mediated by the activation of either IRF3/7 or
NF-kB, which are pivotal for initiating antiviral immune responses
(54). To evade host immune surveillance effectively, TGEV has
developed diverse immune evasion tactics, predominantly utilizing
its NSPs to disrupt key components of the TLR and RLR signaling
pathways. This interference hampers interferon production and
innate immune activation (55, 56).

During the initial phase of TGEV infection, the viral genomic
open reading frame ORFla is translated into polyprotein ppla,
which is further extended and translated into pplab through -1
ribosomal frameshifting (57, 58). These polyproteins are later
processed by viral proteases, namely papain-like protease (PLP™)
and 3C-like protease (3CLP™), resulting in the generation of 16
non-structural proteins such as NSP1 and NSP3 (59-61). These
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proteins are pivotal in virus replication, host modulation, and
immune evasion. NSP1 is one of the earliest expressed viral
proteins and has obvious immunosuppressive functions (62). This
protein can inhibit the translation process by blocking the binding
of host mRNA to ribosomes (63) and may promote the degradation
of host mRNA through an as-yet-unclear mechanism (64, 65).
NSP1 has been shown to hinder the functional activation of IRF3 by
promoting its degradation. Normally, IRF3 is phosphorylated upon
viral infection, leading to its dimerization, nuclear translocation,
and subsequent induction of IFN and ISG expression (66, 67).
TGEV’s NSP1 disrupts the IFN- signaling pathway by targeting
various steps of the IRF3 pathway, thereby obstructing IRF3
activation, nuclear translocation, and binding to target gene
promoters, ultimately suppressing type I interferon production to
facilitate immune evasion (68, 69). Moreover, NSP1 interferes with
host mRNA transcription and translation processes, exacerbating
the inhibition of host antiviral protein synthesis and enhancing
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immune evasion (70). It also promotes virus replication by
impeding stress granule (SG) formation (71). NSP3 of TGEV is a
multifunctional protein. In addition to participating in the self-
cleavage of viral polyproteins, it also has a PLpro domain and
deubiquitinase (DUB) activity, and can target multiple host
immune signaling molecules for regulation (72, 73). PLP domain
can directly recognize and cleave TRAF3. TRAF3 is an important
adaptor protein located downstream of the MAVS in RLR signaling
pathway and is responsible for recruiting and activating TBK1 and
IKKe kinase complex (74). Once TRAF3 is cleaved, the formation of
the TBK1-IKKe complex is impaired, leading to reduced
phosphorylation of IRF3 and IRF7, thereby inhibiting the
activation of the type I interferon signaling pathway (75). This
multi-target and multi-mechanism immunosuppressive effect may
allow TGEV to effectively replicate in host cells and escape immune
clearance, Figure 3.

3.2 TGEV escapes MDAS recognition
through cap structure modification and
signal axis interference

Notably, NSPs can suppress IFN signaling activation even when
segments of viral RNA are recognized, whereas modifications of the

Common
single-
stranded virus

10.3389/fimmu.2025.1675572

cap structure further decrease the probability of detection (76, 77).
Host cells trigger the innate immune response by detecting viral
RNA’s distinct features, known as “non-self” markers (78). MDADS,
a key member of the RLRs family, primarily recognizes lengthy
dsRNA generated during viral infections or single-stranded RNA
lacking a complete 5 cap modification (79, 80). When MDA5
recognizes PAMPs of these dsRNAs, MDA5 can directly interact
with the MAVS, and then recruit and activate other downstream
signaling proteins like TBK1 and IKKe. Finally, the IRF3/7 will be
phosphorylated and their translocation to the nucleus, triggering
the expression of IFN-0/B and associated ISGs. Consequently, an
extensive antiviral immune response is initiated (81, 82), Figure 3.

To escape from the host’s innate immune attack, coronaviruses
have developed mechanisms to conceal the foreign features of their
RNA. One such mechanism involves NSP16, acting as an S-
adenosylmethionine (SAM)-dependent 2’-O-methyltransferase.
NSP16 catalyzes methylation at the 2’-hydroxyl site of the ribose
on the 5-cap structure of viral mRNA, converting the RNA cap
structure from Cap- (m’GpppN) to Cap-1 (m’GpppNm) (83, 84).
This modification mimics the cap structure of eukaryotic cell
mRNA, thereby diminishing recognition of viral RNA by host
PRRs (85). Among human coronaviruses, SARS-CoV-2 can evade
host immune responses by modifiying the RNA 5" ends of viral
RNA through the modification of the non-structural protein NSP16
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Mechanisms by which TGEV evades host PRRs-mediated innate immune responses. In uninfected cells, viral RNA is recognized by endosomal Toll-
like receptors (TLR3/TLR7) or cytoplasmic sensors such as Melanoma Differentiation - Associated Gene 5 (MDA5). This recognition triggers
downstream signaling cascades via adaptor kinases and transcription factors, ultimately leading to the production of type | interferons and pro -
inflammatory cytokines.However, during TGEV infection, viral non-structural proteins (NS) inhibit key signaling nodes by promoting protein
degradation or functional inactivation, thereby disrupting the TLR/RLR signaling pathways. This results in impaired nuclear translocation of IRF3 and
NF-kB,along with reduced cytokine expression. In addition, TGEV evades MDA5 recognition by modifying the viral RNA cap structure through 2'-O
methylation (m’GpppNm), which prevents MDA5 binding and subsequent activation of downstream signaling.
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(86). Specifically, NSP16 forms a heterodimer with NSP10 and
catalyzes 2’-O-methylation of the first ribose unit of viral mRNA,
generating a Cap-1 structure. This modification allows viral RNA to
mimic host mRNA, thereby preventing recognition by MDA5 and
inhibiting type I interferon signaling pathways (87). Viruses such as
TGEV and SARS-CoV-2 exploit NSP16-mediated 2'-O-
methylation to alter their RNA in both spatial conformation and
chemical properties, effectively “disguising” it as endogenous
molecules and escaping MDA5-mediated detection and immune
activation (88, 89). Moreover, NSP16 activity is regulated by NSP10,
with the NSP16-NSP10 complex also capable of suppressing host
protein translation (88, 90), Figure 3.

4 Disruption of intestinal barrier
function by TGEV

4.1 TGEV damages the tight junctions of
intestinal epithelium

The intestinal epithelial barrier is essential for preserving
intestinal homeostasis and preventing the trans-epithelial
infiltration of pathogens and toxins (91, 92). Tight junctions (T7s)
are pivotal for maintaining the integrity of this barrier, primarily
comprised of various cytoplasmic proteins and transmembrane
such as Zonula occludens-1 (ZO-1), Occludin, and Claudin
family proteins (93, 94). These proteins collaborate to form a
sealing belt structure between neighboring cells, restricting the
passage of luminal contents to the basolateral side and thereby
upholding the selective permeability of the barrier (95).

Prior research has demonstrated that TGEV infection disrupts
the epithelial tight junction structure significantly (96). Upon
infecting the IPEC-J2 porcine small intestinal epithelial cell line,
TGEV notably reduces the expression levels of tight junction-
related proteins, including ZO-1, Occludin, and Claudin-1.
Additionally, the localization and structural integrity of tight
junction proteins are compromised, leading to the disruption of
the belt-like junction and widening of the intercellular space (97,
98). These alterations notably compromise the barrier function
between epithelial cells (95).

Mechanistic investigations have elucidated that TGEV triggers
the upregulation of inflammatory cytokines, including TNF-a, IL
-6, and IL-8, through the activation of the p38 MAPK and NF-xB
signaling pathways, as evidenced by studies (99, 100). These
inflammatory factors indirectly impede the transcriptional activity
of tight junction proteins (96). In addition, TGEV infection was
accompanied by mitochondrial dysfunction and increased oxidative
stress, which were characterized by increased contents of ROS and
mitochondrial membrane potential (101-103). Excessive ROS can
promote the degradation of TJs proteins or abnormal localization
on the cell membrane, thereby exacerbating the barrier disruption
(104, 105).

Functional studies have demonstrated that TGEV infection
reduces transepithelial electrical resistance (TEER) and increases
the permeability of the epithelial barrier, as evidenced by enhanced
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leakage of fluorescent tracer molecules (96, 100). This heightened
barrier permeability facilitates the translocation of luminal
pathogens, such as bacteria or endotoxins, across the epithelium,
leading to potential secondary infections or systemic inflammatory
responses in the host (106). Furthermore, the compromised barrier
function facilitates local dissemination and amplification of TGEV
within the intestinal tract, thereby exacerbating disease progression
and tissue damage (21), Figure 4.

4.2 TGEV regulates the notch signaling
pathway

During TGEV infection of small intestinal epithelial cells,
elevated levels of ROS and a loss of mitochondrial membrane
potential were observed, resulting in oxidative stress (107). The
stress condition could then suppress the expression of several
important factors involved in the Notch signaling pathway,
including DIl4 and Hes5 (108, 109). This mechanism has been
demonstrated in the Paneth cell model of TGEV targeting small
intestinal crypts (90, 110). The Notch signal is essential for
regulating the balance between self-renewal and differentiation of
intestinal Lgr5" stem cells. Its inhibition can drive excessive
differentiation of stem cells into goblet cells, resulting in elevated
intestinal mucus secretion (90). This shift in differentiation and
mucus composition may promote TGEV replication and
dissemination in the small intestine. Consequently, inhibiting the
Notch signal not only fails to restrict goblet cell production but also
creates a more favorable environment for virus infection and
transmission (90), Figure 4. Notch signaling is generally
upregulated in hosts infected with viruses such as SARS-CoV-2,
COVID-19, and PDCoV (111-113). However, it remains unclear
whether the inhibition of Notch signaling observed during TGEV
infection represents a unique feature of TGEV or a common
characteristic of porcine coronaviruses. Further studies are
warranted to elucidate the specificity and underlying mechanisms
of this Notch signaling regulation.

4.3 Potential role of the gut microbiota in
TGEV immune evasion

The gut microbiota constitutes the largest and most diverse
microbial community within the host, and its metabolites, signaling
molecules, and inter-microbial interactions play pivotal roles in
maintaining immune homeostasis, preserving mucosal barrier
function, and regulating inflammatory responses (114). Recent
studies have revealed that the gut microbiota not only participates
in nutrient metabolism and mucosal integrity but also modulates
host susceptibility to viral infections and viral replication efficiency
by regulating innate immune pathways, such as interferon (IFN)
signaling. During TGEV infection, short-chain fatty acids (SCFAs)
produced by the gut microbiota, especially butyrate, have been
demonstrated to influence viral infection levels (115, 116). In the
later stages of infection, butyrate can substantially enhance TGEV
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infection in porcine small intestinal epithelial cells and porcine
testicular cells; however, this effect is not mediated through an
increase in viral attachment or entry, but rather via interference
with host antiviral immune responses.

Notably, TGEV infection is linked to a reduction in
Lactobacillus gene copy numbers and an increase in
Enterobacteriaceae gene copy numbers in porcine intestinal
mucosal samples (117).In contrast, fecal samples show elevated
relative abundances of Lactobacillus and Limosilactobacillus (118).
These discrepancies imply that TGEV infection may trigger varying
degrees of dysbiosis in the local intestinal environment compared to
the overall gut ecosystem.Furthermore, TGEV can lead to villous
atrophy and compromise intestinal immune function, inducing
epithelial-to-mesenchymal transition (EMT) and converting
epithelial cells into motile, invasion-prone mesenchymal cells
(119). Prolonged infection may further enhance the invasive
capacity of fecal Enterococcus species toward intestinal cells,
thereby altering gut microbial composition and creating
conditions favorable for secondary pathogen infections.
Collectively, these findings indicate that TGEV facilitates immune
evasion and increases host susceptibility by disrupting the intestinal
barrier and remodeling the gut microbiota.

5 Cell autophagy induced by TGEV

Autophagy is a highly conserved cellular degradation process
dependent on lysosomes, serving to eliminate damaged organelles,
misfolded proteins, and pathogens, thereby upholding cellular

Frontiers in Immunology

07

homeostasis, regulating energy metabolism, and responding to
cellular stress, immune modulation, and disease processes (120).
In the context of viral infections, autophagy is commonly seen as a
defense mechanism enabling host cells to combat foreign intruders.
By forming autophagosomes that merge with lysosomes, autophagy
can encapsulate and degrade viral particles, thereby restricting viral
replication and dissemination (121, 122). However, recent research
has demonstrated that TGEV can trigger autophagy in host cells,
leading to a significant increase in autophagosome formation.
Paradoxically, the autophagy induced by TGEV fails to effectively
eliminate the virus. Instead, it creates a favorable membrane
structure that supports viral replication and assembly, ultimately
facilitating viral propagation (123, 124). This observation indicates
that TGEV can exploit the host autophagy machinery to facilitate
crucial stages in its life cycle, underscoring a nuanced and intricate
interplay between the virus and the host autophagy system (124).
Research has shown that TGEV infection triggers robust
activation of the autophagic process in host cells. Following
infection, there is a notable increase in the number of
autophagosomes within cells, exhibiting characteristic double-
membrane structures observable via electron microscopy (123,
125, 126). Additionally, Meanwhile, there is a marked increase in
the conversion of the autophagy marker microtubule - associated
protein 1 light chain 3 (LC3) from its cytosolic form, LC3 - I, to the
membrane - bound form, LC3 - II, resulting in a significantly
elevated LC3 - II/LC3 - I ratio. This phenomenon is partly
attributed to the common strategy of coronaviruses hijacking
LC3-associated membranes to generate double-membrane vesicles
and other replication organelles, which serve as scaffolds for the
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assembly of viral replication-transcription complexes (RTCs).
However, this process predominantly relies on LC3 - I - positive
endoplasmic reticulum - derived degradation - enhancing alpha -
mannosidase - like protein 1 (EDEM1) - containing membranes
(EDEMosome - like membranes) rather than classical lipidated LC3
- II membranes, further supporting the notion of enhanced
autophagic activity (123, 127). At the molecular level, key
autophagy-related genes such as Beclin-1 are significantly
upregulated following infection (127). This may reflect a host
protective mechanism in mammals, where the suppression of
viral autophagic protein Beclin-1 titers contributes to defense
(128, 129). Targeting Beclin-1 can block autophagosome
formation and vesicle nucleation, thereby promoting viral
replication and disease progression.

However, the above-mentioned autophagic response does not
necessarily mean that the TGEV is cleared by host cells. On the
contrary, evidence suggests that the virus may exploit this process to
facilitate its replication and amplification, as shown by [Zhu
et al.,2016] (127, 130). Recent studies have identified
transmembrane protein 41B (TMEM41B) as a pivotal regulator
during TGEV infection. TMEM41B is a protein with multiple
transmembrane domains that is situated in the endoplasmic
reticulum, is recognized as a key player in regulating membrane
lipid translocation and curvature alterations, crucial for
autophagosome formation. TGEV infection leverages TMEM41B-
mediated membrane remodeling to generate double-membrane
vesicles (DMVs), serving as a spatial platform for viral replication

10.3389/fimmu.2025.1675572

and transcription. Experimental data demonstrate that depletion or
inhibition of TMEM41B significantly disrupts DMV formation,
consequently impeding effective TGEV replication in host
cells.Furthermore, several NSPs encoded by TGEV, such as NSP3,
NSP4 and NSP6, could also interact with the endoplasmic
reticulum membrane system to restructure the host cell membrane
architecture. These NSPs collaborate to recruit lipids, induce local
membrane expansion, and facilitate endoplasmic reticulum
membrane bending, promoting DMV formation to support the
assembly of the replication-transcription complex (RTC)
(126). Consequently, TGEV orchestrates an intracellular replication
niche conducive to its life cycle by finely regulating factors
associated with the host autophagy pathway and membrane
dynamics (Table 1).

6 Apoptosis induced by TGEV

Apoptosis is a type of programmed cell death that is precisely
controlled by genes and is broadly involved in many physiological
processes such as individual development, maintenance of tissue
homeostasis, and elimination of abnormal cells (131). This process
is energy-dependent and exhibits highly ordered morphological and
molecular biological characteristics (131). Apoptosis primarily
operates through two established signaling pathways: the intrinsic
pathway mediated by mitochondria and the extrinsic pathway
mediated by death receptors (132, 133).

TABLE 1 Autophagy-related molecules and their functions during TGEV infection.

Post-
infection
changes

Molecule/
Protein

Type

Main functions

The role in TGEV infection

The conversion

LC3(LC3-1/ Autophagy marker | level from LC3-1 Core molecules in the formation and Enhanced autophagic activity promotes the accumulation of
LC3-10) molecules to LC3-II is elongation of autophagosomes autophagosomes, providing a platform for TGEV replication.
elevated.
Core components Expressing an . The upregulation is conducive to the formation of
. Regulation of autophagosome N
Beclin-1 of the autophagy upward D . autophagosomes and may be hijacked by TGEV to promote
R . initiation and nucleation o
initiation complex adjustment replication.
E .
ATGS Autophagy-related xpressmﬁ an Participate in the extension and The enhanced autophagic activity after the increase is conducive to
upwar
genes/proteins a djEstment closure of autophagosome membranes the establishment of the viral membrane structure platform.
Autophagic Accumulation Conjugate ubiquitinated proteins and Accumulation in the mitochondrial fraction during the separation
SQSTM1/p62 substrates and fter infecti mediate their degradation through of components suggests the occurrence of mitophagy, which is
after infection
selective receptors LC3 specific to mitochondria.
Endoplasmi
An op asmch Participate in membrane lipid
reticulum multi- - . . .
. flipping, membrane curvature Regulating the formation of double-membrane vesicles (DMVs)
TMEM41B pass Essential factor i o .
changes, and promote the formation and the absence inhibits the replication of TGEV.
transmembrane
. of autophagosomes.
proteins
. . Coordinately induce endoplasmic reticulum membrane
X Interact with the endoplasmic i R
NSP3/NSP4/ Non-structural Expressed in ticul b d restruct remodeling, promote the formation of the double-membrane
reticulum membrane and restructure
NSP6 protein of TGEV infected cells vesicle (DMV), and provide a platform for the replication-

the membrane structure.

transcription complex (RTC).

This table summarizes the alterations and functional roles of key autophagy markers, core autophagy-related genes, selective autophagy receptors, and viral non-structural proteins in host cells
after TGEV infection.It highlights their involvement in autophagosome formation, double-membrane vesicle (DMV) biogenesis, and the assembly of the replication-transcription complex
(RTC).
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Studies have shown that infection with TGEV can trigger a
robust oxidative stress response and activate cell apoptosis. During
the peak of viral replication, host cells must generate significant
energy and biosynthetic resources to support viral proliferation,
leading to mitochondrial dysfunction and a notable increase in
intracellular ROS and mtROS accumulation (103, 127, 134).
Intestinal epithelial cells, being the primary targets of TGEV,
exhibit a strong ability to regulate oxidative stress. However,
TGEV infection results in severe mitochondrial damage in these
cells, accompanied by pronounced autophagy and mitophagy
activation. The ROS buildup induced by TGEV not only directly
harms cell structures but also induces programmed cell death by
activating the mitochondrial apoptosis pathway. Specifically, ROS-
mediated stress signals trigger p53 phosphorylation, resulting in the
movement of the pro-apoptotic protein Bax to the outer membrane
of mitochondria, increasing mitochondrial membrane permeability,
releasing cytochrome c into the cytoplasm, and subsequently
activating Caspase-9 and downstream effector molecule Caspase-
3, ultimately initiating cell apoptosis (103, 135). Notably, TGEV
infection upregulates the expression of various antioxidant-related
genes, likely as a host response to virus-induced oxidative damage
(127, 135). However, approximately 12 hours post-infection, during
active virus replication, substantial mitochondrial degradation and
increased autophagosomes are observed, indicating persistent
mitophagy activation. While mitophagy can mitigate oxidative
damage to some extent, excessive activation may exacerbate cell
apoptosis by depleting mitochondrial function (136). At the S and
G2/M phases of the host cell cycle, TGEV’s N protein facilitates the
activation of p53 and subsequently upregulates its downstream
effector p21, further promoting cell death through the intrinsic
apoptosis pathway (136). These processes eventually cause
apoptosis of porcine small intestinal epithelial cells, leading to
villi atrophy, thinning and loss of intestinal wall elasticity,
gastrointestinal bleeding, barrier function damage, and finally
severe diarrhea, which is a lethal symptom of TGEV infection (134).

7 Pyroptosis induced by TGEV

Pyroptosis is a programmed cell death mechanism that hinges
on the activation of caspase-1-like proteases and is distinguished by
pronounced inflammatory characteristics (137). This process is
primarily triggered by the cleavage and activation of Gasdermin
D (GSDMD), which subsequently facilitates the formation of
membrane pores, the release of inflammatory mediators, and
ultimately culminates in cell lysis and demise (138). Research has
demonstrated that infection of small intestinal crypt cells,
particularly Paneth cells, by the TGEV can prompt caspase-1
activation, GSDMD cleavage, and the initiation of a classical
pyroptotic cascade (139, 140).

Following infection of intestinal epithelial cells by TGEV, the
virus’s PAMPs, such as viral RNA, are recognized by inflammasome
sensors like NLRP3 within host cells (139, 141). This recognition
initiates inflammasome assembly and activates caspase-1, which
subsequently cleaves GSDMD to release its N-terminal fragment
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(GSDMD-N). GSDMD-N then integrates into the cell membrane to
form pores, disrupting membrane integrity and causing the release
of cellular contents, including the inflammatory cytokines IL-13
and IL-18 (139). This cascade not only elicits a local inflammatory
response in the intestine but also represents a pivotal mechanism
through which TGEV induces intestinal damage and pathological
alterations (141).

8 Summary and outlook

In recent decades, the evolutionary pace of coronaviruses has
notably quickened, leading to the emergence of highly pathogenic
strains like SARS-CoV, MERS-CoV, and SARS-CoV-2, which have
posed significant challenges to global public health (22). The
recurrent epidemics and outbreaks of novel coronaviruses have
reignited interest in studying the impact of TGEV, a prototypical
porcine o-coronavirus, on the swine industry and its possible
zoonotic characteristics (21, 142).

TGEV employs multilayered mechanisms to interfere with host
innate immune responses, thereby achieving effective immune
evasion. These strategies include suppression of PRRs-mediated
signaling pathways such as TLRs and RLRs to inhibit interferon
production; modification of viral RNA with a cap structure to
escape host RNA sensing; modulation of host signaling pathways
such as Notch to dampen immune responses; disruption of the
intestinal epithelial barrier and reshaping of gut microbiota to
compromise barrier function; and induction of multiple forms of
programmed cell death, including pyroptosis, apoptosis, and
autophagy, to weaken antiviral defenses. Moreover, the TGEV
genome exhibits high variability, conferring robust immune
evasion capacity and limiting the cross-protective efficacy of
existing vaccines, which contributes to unstable protection.
Although the clinical detection rate of TGEV has decreased in
recent years, this does not mean that its disappearance from natural
reservoirs (143). On the contrary, owing to its highly mutable
genome, substantial immune evasion ability, and limited cross-
protection, TGEV continues to evolve (21). One of the key
unresolved scientific questions is the precise identification of the
molecular targets of TGEV nonstructural proteins (NSPs). Given
that NSPs play pivotal roles in suppressing host innate immunity,
yet their specific targets and mechanisms remain incompletely
understood, elucidating these interactions will offer an important
theoretical foundation and potential intervention strategies for
mitigating viral immune evasion. In addition, a complex interplay
exists between enteric viruses and the host gut microbiota, which
may critically modulate viral immune evasion. Therefore, strategies
designed to minimize or prevent the disruption of gut microbial
homeostasis induced by TGEV represent a crucial direction for
future therapeutic development.Elucidating the tripartite
interactions among TGEV, the microbiota, and the host will not
only enhance our understanding of TGEV pathogenesis but also
provide theoretical foundations for the development of novel
microbiota-based interventions against TGEV. Notably, TGEV
has traditionally been considered strictly host-specific, confined to
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infecting swine species. However, increasing evidence indicates that
coronavirus host barriers are not absolute, and their cross-species
transmission potential may have been substantially underestimated
(144). Recent studies have unveiled the molecular basis of TGEV
cross-species transmission, showing that the receptor-binding
domain (RBD) of TGEV can interact with aminopeptidase N
(APN) from 17 different species, with eight demonstrating
relatively high binding efficiency. This finding underscores the
potential of TGEV for cross - species transmission, raising
concerns regarding the possibility of human infection.

Currently available TGEV vaccines, which predominantly rely
on traditional platforms, are confronted with multiple limitations,
encompass insufficient protective efficacy, restricted cross-
protection, risks of reversion to virulence, and immune
interference. Consequently, there is an urgent demand for more
advanced and effective preventive strategies. Future research
directions may include: (i) rational design of broad-spectrum
coronavirus vaccines based on conserved antigenic epitopes of
TGEV; (ii) exploration of novel mucosal adjuvants and efficient
delivery systems, coupled with genetic engineering or
pharmacological induction to enhance host antiviral effectors
(e.g., upregulating of GSDMD) to improve intracellular pathogen
clearance; and (iii) rational attenuation strategies and targeted drug
development to inhibit key viral immune evasion proteins (e.g.,
NSP1, ORF6), thereby blocking their interference with host
immune signaling.Furthermore, given the potential cross-species
transmission risk of TGEV and other coronaviruses, the
establishment of comprehensive surveillance and prevention
systems is essential. Such systems should encompass continuous
monitoring and tracing of viral recombination events, scientific
evaluation of human susceptibility, and integration of human,
animal, and environmental health management under a “One
Health” framework. This integration will enable proactive
prevention and rapid response to potential public health threats.

Future research should therefore prioritize core scientific issues,
including: (i) the immune evasion targets of nonstructural proteins
(e.g., NSP1, NSP3, ORF6); (ii) the impact of virus-microbiota
interactions on immune evasion; (iii) the cross-species
transmission potential of TGEV and its implications for human
health; and (iv) the risk of generating novel viral populations
through recombination with other porcine coronaviruses.
Addressing these questions will provide critical guidance for
vaccine development, intervention strategies, and public health
preparedness. The advancement of state-of-the-art technologies,
such as single-cell sequencing, spatial transcriptomics, proteomics,
and CRISPR screening, is enhancing the precision of constructing
TGEV infection models and target screening. This progress is
anticipated to advance translational research on antiviral drugs
and intervention strategies (145). Future optimization efforts may
involve integrating innovative adjuvant technologies, nanodelivery
systems, mucosal immunity strategies, and novel vaccines utilizing
virus-like particles (VLPs) and mRNA platforms. Additionally,
vigilance in monitoring recombination and evolution events
between TGEV and other porcine coronaviruses (e.g., PEDV,

Frontiers in Immunology

10

10.3389/fimmu.2025.1675572

PDCoV, SADS-CoV) is crucial for early detection of emerging
coronaviruses (146). Despite the reduced clinical impact of TGEV
amid frequent zoonotic diseases, its potential for ongoing
recombination and evolution poses indirect threats to human
health that cannot be disregarded (146, 147). Consequently,
comprehensive research on the mechanisms of cross-species
transmission, evolutionary dynamics, and potential public health
risks associated with porcine coronaviruses should be intensified to
enable early detection and effective management of potential
emerging zoonotic viruses.
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