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Cancer immunotherapy represents a major breakthrough in oncology,

particularly with immune checkpoint inhibitors (ICIs) and CAR-T cell therapies.

Despite improved outcomes, challenges such as immune-related adverse events

(irAEs) and treatment resistance limit clinical use. Artificial intelligence (AI) offers

new opportunities to address these barriers, including target identification,

efficacy prediction, toxicity monitoring, and personalized treatment design.

This review highlights recent advances in AI applications for biomarker

discovery, safety evaluation, gene editing, nanotechnology, and microbiome

modulation, integrating evidence from clinical and preclinical studies. We also

discuss future directions and challenges in applying AI to cancer immunotherapy,

aiming to support further research and clinical translation.
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1 Introduction

The field of cancer treatment has undergone a significant transformation in recent

years, with immunotherapy emerging as a revolutionary approach that harnesses the body’s

immune system to combat malignancies (1). This innovative treatment modality aims to

activate and enhance the immune response against cancer cells, leading to improved patient

outcomes and survival rates. The clinical significance of immunotherapy is underscored by

its success in various cancer types, including melanoma, lung cancer, and hematological

malignancies, where it has demonstrated durable responses and long-term survival benefits

(2). However, despite these advancements, the effectiveness of immunotherapy is not
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universal, and a considerable proportion of patients do not respond

adequately (3). The heterogeneity of tumor biology and the immune

system’s complexity present significant challenges in optimizing

immunotherapeutic strategies. Understanding these dynamics is

crucial for the continued development and refinement of cancer

immunotherapy as a cornerstone of oncological care (4).

One of the primary challenges facing immunotherapy is the

variability in treatment response among patients, often referred to

as efficacy heterogeneity. Factors contributing to this variability

include the tumor microenvironment, the presence of immune

checkpoints, and the individual patient’s immune profile. For

instance, while immune checkpoint inhibitors have shown

remarkable efficacy in tumors with high mutational burdens, such

as melanoma, they have been less effective in “cold” tumors that

exhibit low immunogenicity, such as pancreatic cancer.

Additionally, immune-related adverse events (irAEs) pose a

significant concern, as they can range from mild to severe and

may lead to treatment discontinuation. These irAEs arise from the

activation of the immune system against normal tissues,

complicating the therapeutic landscape and necessitating careful

monitoring and management (5, 6).

The emergence of artificial intelligence (AI) technologies in the

healthcare sector offers promising avenues to address these

challenges in cancer immunotherapy. AI encompasses

computational methods that mimic human decision-making (7).

Machine learning (ML), the main branch of AI, allows algorithms to

learn from data without explicit programming. ML can be

supervised (trained on labeled outcomes, e.g., responders vs. non-

responders) or unsupervised (finding patterns in unlabeled data,

e.g., tumor subtypes). Deep learning (DL), a subset of ML using

neural networks, is especially powerful for complex data such as

imaging and genomics. These approaches form the foundation for

AI applications in immunotherapy (Figure 1). AI has the potential
Frontiers in Immunology 02
to analyze vast datasets, including genomic, transcriptomic, and

clinical information, to identify biomarkers predictive of treatment

response. By leveraging machine learning algorithms, AI can assist

in the stratification of patients based on their likelihood of

benefiting from immunotherapy, ultimately leading to more

personalized treatment approaches (8). Furthermore, AI can

enhance the design of combination therapies, optimizing

treatment regimens that integrate immunotherapy with other

modalities, such as chemotherapy or targeted therapies, to

improve overall efficacy and minimize adverse effects (9, 10).

This review aims to systematically assess the current

applications of AI in enhancing the efficacy and safety of cancer

immunotherapy. By focusing on recent advancements and ongoing

research, we will explore how AI technologies are being integrated

into clinical practice to optimize treatment outcomes for diverse

cancer types. The discussion will encompass AI-driven predictive

models, the identification of novel therapeutic targets, and the

potential for AI to streamline clinical workflows, ultimately

paving the way for a more effective and personalized approach to

cancer immunotherapy (11, 12). Through this comprehensive

evaluation, we seek to highlight the transformative impact of AI

on the future of cancer treatment and its role in overcoming the

limitations of current immunotherapeutic strategies.
2 AI in response prediction

2.1 Application of AI in tumor neoantigen
recognition

The integration of AI into the identification of tumor

neoantigens represents a transformative advancement in cancer

immunotherapy. Neoantigens, which are unique to individual
FIGURE 1

Overview of AI applications in cancer immunotherapy. The schematic illustrates how AI technologies, including Artificial Intelligence (AI), Machine
Learning (ML), Deep Learning (DL), and Natural Language Processing (NLP)—support four core application areas: response prediction, toxicity
prediction and management, treatment optimization, and gene editing. These applications collectively contribute to improved efficacy, enhanced
safety, and personalized therapy in clinical cancer immunotherapy.
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tumors due to somatic mutations, hold significant potential for

personalized therapeutic strategy. Machine learning approaches

rapidly screen and predict tumor-specific neoantigens, improving

vaccine design and immunotherapy protocols. These algorithms

can analyze vast datasets, including genomic, transcriptomic, and

proteomic information, to identify potential neoantigens that may

elicit a robust immune response. For instance, AI-driven models

can predict the binding affinity of mutated peptides to major

histocompatibility complex (MHC) molecules, which is crucial for

T-cell recognition and subsequent immune activation (13). This

capability reduces the time and resources needed for neoantigen

identification, streamlining personalized cancer treatment.

A notable case study exemplifying the application of AI in

neoantigen vaccine development is the design of the EVX-01

vaccine, which utilizes the PIONEER™ AI platform. This

platform was instrumental in identifying tumor-derived

neoantigens for inclusion in the vaccine formulation. In a phase I

clinical trial (NCT03715985) enrolling 12 patients with advanced

metastatic melanoma, EVX-01 was administered in combination

with anti-PD-1 therapy. Patients received six vaccinations (three

intraperitoneal followed by three intramuscular) at escalating dose

levels (500 µg, 1000 µg, and 2000 µg total peptide), with neoantigens

selected by the PIONEER AI platform and formulated with the

CAF®09b adjuvant. The vaccine demonstrated a favorable safety

profile, with most adverse events limited to grade 1–2 reactions such

as injection-site pain, fatigue, and nausea; only two patients

experienced grade 3 immune-related events (myositis and

nephritis), attributed mainly to anti-PD-1 therapy. Importantly,

objective responses were observed in 67% of patients (6 partial

responses and 2 complete responses), with durable responses at the

highest dose level. EVX-01 induced robust vaccine-specific CD4+ T

cell responses in all patients, with CD8+ responses detected in seven

patients. Furthermore, the magnitude of T cell responses correlated

with peptide dose and PIONEER quality scores, suggesting that the

AI platform can effectively prioritize immunogenic epitopes (14).

The 48–55 day manufacturing timeline highlights how AI

accelerates personalized therapy development. The safety profile

observed in clinical trials further underscores the viability of AI-

assisted neoantigen identification in enhancing immunogenic

responses while minimizing adverse effects.

AI platforms like PIONEER™ are also pivotal in accelerating

the development of personalized vaccines by enabling the rapid

evaluation of immunogenicity and safety profiles of predicted

neoantigens. Simultaneous assessment of multiple neoantigens

enables prioritization of those most likely to elicit effective

immune responses. This capability is particularly beneficial in the

context of tumor heterogeneity, where individual tumors

may express unique antigenic profiles that require tailored

therapeutic approaches (15). Furthermore, AI’s role in analyzing

patient-specific data can lead to the identification of neoantigens

that correlate with favorable clinical outcomes, thereby

guiding the selection of the most promising candidates for

vaccine development.

However, AI-driven neoantigen recognition faces substantial

challenges (16). First, data heterogeneity undermines model
Frontiers in Immunology 03
accuracy: genomic data may be generated via different sequencing

platforms with varying error rates, while transcriptomic data often

reflects tissue-specific expression patterns that lack standardization

across studies. This inconsistency can lead to false-positive

predictions of neoantigens. Second, training dataset bias is

prevalent—most models are trained on data from Caucasian

patients with common cancers (e.g., melanoma), resulting in poor

performance when applied to underrepresented ethnic groups or

rare tumors.

In conclusion, the application of AI in the recognition and

prediction of tumor neoantigens is revolutionizing the landscape of

cancer immunotherapy. By streamlining the identification process

and enhancing the precision of personalized vaccines, AI

technologies are paving the way for more effective and tailored

treatment strategies. As ongoing research continues to refine these

AI methodologies, the potential for improved patient outcomes in

cancer therapy becomes increasingly promising (17). The

integration of AI into neoantigen discovery not only exemplifies

the convergence of computational science and oncology but also

underscores the necessity for continued innovation in the

development of personalized cancer treatments (18).
2.2 Integration of multidimensional data
for predicting immune therapy efficacy

The construction of comprehensive predictive models for the

efficacy of immunotherapy in cancer treatment necessitates the

integration of various data types, including genomic,

transcriptomic, and clinical data. Recent studies have highlighted

the significance of combining multi-omics data to enhance

predictive accuracy for patient responses to immunotherapy. For

instance, the integration of metabolic imaging metrics, such as those

obtained from multiparametric PET scans, with genomic and

transcriptomic profiles has shown promise in predicting the

efficacy of immunotherapies, including PD-1/PD-L1 inhibitors

and CAR-T cell therapies (19). This multi-faceted approach

allows for a more nuanced understanding of the tumor immune

microenvironment (TIME) and its influence on treatment

outcomes. Furthermore, machine learning algorithms have been

employed to analyze these integrated datasets, enabling the

identification of potential biomarkers associated with treatment

response. For example, a study demonstrated that specific gene

expression patterns correlated with immune cell infiltration and

treatment efficacy, thus providing a framework for developing

personalized treatment strategies (20).

AI plays a crucial role in enhancing the predictive capabilities of

these models. By employingmachine learning algorithms, researchers

can analyze multi-omics data to uncover hidden patterns that may

predict patient responses to immune checkpoint inhibitors and

elucidate mechanisms of resistance. A notable application of AI in

this context is the development of necroptosis-related gene signatures

that have been shown to predict responses to immune checkpoint

inhibitors across various cancer types (20). The ability to identify and

validate these biomarkers through multi-omics integration not only
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aids in predicting treatment efficacy but also facilitates the

stratification of patients based on their likelihood of benefiting

from specific immunotherapies.

Moreover, the identification of biomarkers through machine

learning approaches has been instrumental in recognizing potential

therapeutic targets that can enhance the effectiveness of

immunotherapies. For instance, a recent study utilized integrative

multi-omics analysis to classify ovarian cancer patients into

molecular subtypes, revealing distinct immune profiles that

corresponded with differential responses to immunotherapy (21).

This underscores the potential of multi-omics integration in

personalizing cancer treatment by tailoring immunotherapy regimens

to the unique molecular characteristics of individual tumors.

In addition to genomic and transcriptomic data, the

incorporation of clinical data into predictive models is essential

for translating these findings into clinical practice. By analyzing

clinical outcomes alongside multi-omics data, researchers can

develop risk models that account for various patient-specific

factors, thereby improving the accuracy of predictions regarding

treatment efficacy. For example, a recent study constructed a multi-

omics-derived risk score in a large cohort of patients with

hepatocellular carcinoma by integrating genomic alterations,

transcriptomic expression profiles, and clinical variables. This

model effectively stratified patients into high- and low-risk groups

with distinct responses to immune checkpoint inhibitor therapy

and demonstrated significant predictive value for overall survival

(22). Such integrative approaches provide a more comprehensive

basis for guiding clinical decision-making and tailoring

immunotherapy strategies to individual patients.

Despite these advances, challenges persist. Data integration

complexity is a major hurdle: clinical data (e.g., comorbidities,

prior treatments) is often stored in unstructured formats (e.g.,

free-text electronic health records), requiring labor-intensive

preprocessing (e.g., NLP-based text extraction) to standardize

(23). Additionally, regulatory barriers limit data sharing across

institutions due to privacy laws (e.g., HIPAA in the U.S.),

reducing the size and diversity of training datasets for AI models

(24). This lack of diverse data further exacerbates model bias, as

seen in the underperformance of many response-prediction models

in elderly or non-Caucasian patients.

Despite these advances, challenges persist. Data integration

complexity is a significant barrier: clinical data is often stored in

unstructured formats, necessitating labor-intensive preprocessing

to standardize it. This lack of diverse data further exacerbates model

bias, as seen in the underperformance of many response-prediction

models in elderly or non-Caucasian patients (25).

In conclusion, the integration of multidimensional data, including

genomic, transcriptomic, and clinical information, is pivotal for

constructing robust predictive models of immunotherapy efficacy

(26). The application of AI and machine learning algorithms in

analyzing these comprehensive datasets holds the potential to

revolutionize personalized cancer treatment, enabling clinicians to

make informed decisions based on the unique molecular and clinical

profiles of their patients. Continued research in this area will
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undoubtedly enhance our understanding of the complex interplay

between the tumor microenvironment and immune responses,

ultimately leading to improved outcomes for cancer patients

undergoing immunotherapy.
2.3 AI-driven optimization of precision
immunotherapy strategies

AI technologies have significantly advanced the prediction of

immunotherapy outcomes by integrating multi-omics and clinical

datasets (27). Machine learning algorithms can identify key

biomarkers from genomic, transcriptomic, and proteomic data,

enabling more accurate patient stratification and prediction of

therapeutic response. For example, integrating tumor

microenvironment features with molecular alterations allows AI-

driven models to uncover hidden patterns that correlate with

treatment efficacy (28). These approaches not only refine patient

selection but also provide a deeper understanding of the

mechanisms underlying response variability, thereby laying the

foundation for more precise immunotherapy strategies.

Taken together, AI-driven approaches to response prediction

not only improve patient stratification but also generate insights

that can guide subsequent treatment optimization (29). These

predictive foundations set the stage for broader applications of AI

in tailoring therapeutic strategies, including dosing adjustments,

combination regimens, and clinical decision support.
3 AI in toxicity prediction and
management

3.1 prediction and monitoring of IrAEs

The prediction and monitoring of irAEs are crucial components

in the management of patients undergoing immune checkpoint

inhibitor (ICI) therapy, particularly as these therapies become

increasingly prevalent in oncology. AI models have emerged as a

significant tool in assessing the risk of severe irAEs, such as cardiac

toxicity, which can lead to life-threatening complications. For

instance, studies have shown that genetic variations, such as those

in the IL7 gene, can predict the likelihood of experiencing irAEs,

thereby enabling clinicians to stratify patients based on their risk

profiles (30). Additionally, the integration of multimodal data—

including biomarkers, imaging studies, and clinical parameters—

has been shown to enhance the predictive accuracy of these models.

For example, combining genomic data with clinical indicators can

provide a more comprehensive risk assessment for patients,

allowing for tailored monitoring strategies that align with

individual risk factors (31, 32).

The construction of early warning systems utilizing AI-driven

algorithms is also gaining traction, with several clinical applications

demonstrating their efficacy. These systems leverage real-time

patient data to identify early signs of irAEs, facilitating prompt
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intervention and potentially mitigating severe outcomes. For

instance, a predictive model developed using patient-reported

outcomes and clinical data has shown promising results in

forecasting the onset of irAEs, thereby allowing for timely

adjustments in treatment regimens (33). Moreover, the utilization

of machine learning techniques to analyze comprehensive datasets

has resulted in models that can accurately predict the occurrence of

irAEs before they manifest clinically, thus enhancing patient safety

and treatment efficacy (34).

In clinical practice, the application of these predictive models

has led to improved management of irAEs, with examples including

the use of specific biomarkers such as the neutrophil-to-lymphocyte

ratio (NLR) and eosinophil counts to forecast adverse events (35).

These biomarkers can be integrated into routine clinical

assessments, providing oncologists with actionable insights that

inform treatment decisions. Furthermore, the development of

nomograms based on clinical and laboratory data has been

proposed as a method for stratifying patients according to their

risk of developing severe irAEs, thereby enhancing the overall

management of patients undergoing immunotherapy (36).

Overall, the integration of AI and multimodal data analysis into

the prediction and monitoring of irAEs represents a significant

advancement in personalized cancer care. By identifying patients at

high risk for adverse events, clinicians can implement proactive

monitoring strategies, ultimately improving patient outcomes and

minimizing the burden of treatment-related toxicities. As research

continues to evolve in this area, the potential for AI to transform the

landscape of cancer immunotherapy through enhanced safety and

efficacy remains promising.

Recent studies have emphasized that predictive biomarkers are

pivotal for linking AI models to both treatment response and safety

monitoring in immunotherapy. Researchers have highlighted that

biomarkers such as PD-L1 expression, tumor mutational burden

(TMB), microsatellite instability (MSI), peripheral blood indices
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dehydrogenase (LDH), circulating tumor DNA, and gut

microbiota are not only predictive of ICI efficacy but also

associated with immune-related toxicities (37). AI-driven

approaches can integrate these multidimensional biomarkers into

unified models, capturing complex non-linear associations beyond

the capacity of traditional methods. By combining genomic,

serological, and microbiome features, machine learning

frameworks enable simultaneous identification of likely

responders and early detection of patients at high risk for severe

irAEs. Furthermore, emerging deep learning strategies that

correlate radiomics and digital pathology with biomarker

signatures further bridge efficacy prediction and toxicity

monitoring, providing clinicians with actionable tools to balance

therapeutic benefit and safety in real-world practice. Several studies

have evaluated AI-based models for irAE prediction or detection in

clinical settings (Table 1).

While these studies demonstrate encouraging performance,

most are limited by small or single-center cohorts, retrospective

design, and a focus on detection rather than true prospective

prediction, underscoring the need for multicenter validation and

clinically actionable models.
3.2 AI-assisted immunotherapy adverse
effect management strategies

The integration of AI into the management of adverse effects

associated with immunotherapy represents a significant

advancement in oncology, particularly in optimizing drug dosing

and combination therapy regimens. AI can analyze vast datasets to

identify patterns that correlate with adverse reactions, enabling

healthcare providers to tailor treatment plans that minimize side

effects. For instance, machine learning algorithms can predict the
TABLE 1 Representative AI studies on irAE prediction/identification.

Cancer type Number of pts Aim of the study AI method Conclusion Limitations References

Non-small cell lung
cancer; melanoma;
genitourinary
cancers; head and
neck cancer

34 Early detection of irAEs
through patient-
reported outcomes

Machine learning
on ePRO data

ML models enabled
near-real-time
monitoring of
symptoms related to
irAEs and supported
earlier clinical
intervention.

Small heterogeneous
cohort; limited external
validation.

(33)

Esophageal cancer;
gastroesophageal
junction cancer;
gastric cancer; lung
cancer

138 Prediction of severe
irAEs during PD-1
therapy using blood-
based biomarkers

Elastic-net
logistic
regression

The model identified
patients at higher risk of
severe irAEs, facilitating
proactive management.

Single-center
retrospective design;
external validation
required.

(34)

Lung cancer 74 Prediction of treatment
response and irAEs
using serum antibody
signatures

Resampling-
based machine
learning

Antibody-based ML
models predicted both
immunotherapy
response and risk of
irAEs, showing promise
for personalized
monitoring.

Small sample size;
limited diversity;
requires prospective
validation.

(35)
Reference numbers in the table correspond to the reference list provided at the end of the manuscript. irAE, immune-related adverse event; ICI, immune checkpoint inhibitor; ePRO, electronic
patient-reported outcomes; EHR, electronic health records; CNN, convolutional neural network; NLP, natural language processing; LLM, large language model.
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optimal dosages of immunotherapeutic agents based on patient-

specific factors, such as genetic profiles and previous treatment

responses, thereby reducing the likelihood of adverse events (38).

Moreover, AI can assist in the design of combination therapies by

evaluating the synergistic effects of various agents, which can lead to

improved efficacy while simultaneously lowering the risk of toxicity.

This approach allows for a more personalized treatment strategy,

ensuring that patients receive the most effective therapies with the

least harmful side effects, ultimately enhancing their quality of life

during treatment (38, 39).

Machine learning also plays a crucial role in the detection of

safety signals associated with immunotherapy. By continuously

monitoring patient data, AI systems can identify early warning

signs of adverse effects, facilitating prompt intervention. For

example, algorithms can analyze electronic health records,

laboratory results, and imaging studies to detect changes that may

indicate the onset of irAEs such as pneumonitis or colitis (9). This

real-time monitoring capability allows clinicians to intervene before

these events escalate, improving patient outcomes and potentially

reducing hospitalizations related to severe side effects. Furthermore,

AI can enhance the predictive accuracy of risk assessments, enabling

healthcare providers to stratify patients based on their likelihood of

experiencing irAEs. Such individualized risk assessments can guide

clinical decisions, such as the need for preemptive treatments or

closer monitoring for high-risk patients (17).

In addition to optimizing treatment regimens and enhancing

safety signal detection, AI can facilitate personalized risk

assessments that promote treatment safety in immunotherapy. By

analyzing patient demographics, genetic information, and

treatment history, AI systems can provide insights into individual

susceptibility to adverse effects. For instance, predictive models can

identify patients who may be at higher risk for specific irAEs based

on their genetic makeup or pre-existing conditions (40). This

personalized approach not only informs clinical decision-making

but also empowers patients by providing them with tailored

information regarding their treatment plans and potential risks.

Consequently, patients can engage in shared decision-making with

their healthcare providers, leading to more informed choices about

their treatment options (11).

In conclusion, AI-assisted strategies for managing adverse

effects in immunotherapy are transforming cancer care by

optimizing drug dosing, enhancing safety signal detection, and

facilitating personalized risk assessments. These advancements

not only improve treatment efficacy but also significantly enhance

patient safety and quality of life. As AI technology continues to

evolve, its integration into clinical practice will likely lead to more

effective and safer immunotherapy regimens, paving the way for a

new era in cancer treatment (41).
3.3 Clinical data-driven safety model
validation and optimization

The integration of large-scale clinical databases into AI model

training is pivotal for enhancing the safety and efficacy of cancer
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immunotherapy. These databases, which encompass diverse patient

demographics, treatment regimens, and outcomes, provide a rich

resource for training AI algorithms. By harnessing vast amounts of

clinical data, AI can identify patterns and correlations that may not

be apparent through traditional analytical methods. For instance,

AI models can analyze pat ient responses to various

immunotherapies, correlating specific genetic markers or tumor

characteristics with treatment outcomes, thereby allowing for more

personalized treatment approaches. The ability to leverage real-

world evidence from these databases not only aids in the initial

training of AI models but also in their continuous refinement as

new data becomes available. Furthermore, the validation of AI

models against large clinical datasets can enhance their predictive

accuracy and generalizability, ensuring that the models are robust

and applicable across different patient populations and treatment

settings. This approach aligns with the principles of precision

medicine, where treatment is tailored to the individual

characteristics of each patient, ultimately improving safety and

treatment efficacy in cancer care (39, 42).

Cross-validation and methods to enhance model generalization

are essential components in the development of AI-driven safety

models. Cross-validation techniques, such as k-fold cross-

validation, allow researchers to assess the performance of their

models by partitioning the dataset into subsets, training the model

on some subsets while validating it on others. This process helps to

mitigate overfitting, where a model performs well on training data

but poorly on unseen data. By ensuring that models are trained and

validated on diverse datasets, researchers can better evaluate their

predictive capabilities and robustness. Additionally, employing

techniques such as data augmentation, regularization, and

ensemble learning can further enhance model generalization. For

example, ensemble methods, which combine predictions from

multiple models, can improve accuracy and reliability by

leveraging the strengths of different algorithms. As AI continues

to evolve, the incorporation of advanced machine learning

techniques, including deep learning and transfer learning, will

further bolster the ability of models to adapt to new data and

maintain high performance across various clinical scenarios. This

iterative process of validation and optimization is crucial for

developing AI systems that can effectively monitor patient safety

and predict adverse events associated with immunotherapy (12).

Looking ahead, the future trends in AI for safety monitoring in

cancer immunotherapy are promising and multifaceted. As AI

technologies advance, there is a growing emphasis on developing

real-time monitoring systems that can provide immediate feedback

on patient responses to treatment. These systems could utilize

continuous data streams from wearable devices, electronic health

records, and laboratory results to detect adverse reactions or

treatment failures early. Moreover, the integration of AI with

other emerging technologies, such as genomics and proteomics,

can facilitate a more comprehensive understanding of individual

patient responses to immunotherapy. This holistic approach

enhances prediction of treatment efficacy and aids in identifying

potential safety concerns before they escalate. Furthermore, the

ethical implications of AI in clinical practice, particularly regarding
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data privacy and algorithmic bias, will necessitate ongoing dialogue

and regulatory oversight to ensure that AI applications are both

effective and equitable. As the landscape of cancer treatment

evolves, the role of AI in optimizing safety and efficacy will be

critical in shaping the future of personalized medicine (43, 44).
4 AI in optimizing treatment strategies

4.1 AI-assisted personalization of dosing
and combinations

The integration of AI into cancer immunotherapy has opened

new avenues for the development of personalized treatment

regimens tailored to the unique characteristics of individual

patients. AI algorithms can analyze vast datasets, including

genomic, transcriptomic, and proteomic information, to identify

biomarkers that predict responses to immunotherapy (45). For

instance, a multi-omics study in hepatocellular carcinoma

demonstrated that integrating genomic alterations, transcriptomic

profiles, and clinical data enabled accurate patient stratification and

prediction of response to immune checkpoint inhibitors (41).

Similar approaches in melanoma and non-small cell lung cancer

have further validated the predictive value of AI-driven models for

immunotherapy efficacy (46). Moreover, AI-driven models can

optimize treatment regimens by analyzing historical treatment

responses and outcomes, thereby enhancing the efficacy of

immunotherapy while minimizing adverse effects. This

personalized approach not only improves patient outcomes but

also addresses the challenges posed by tumor heterogeneity and the

complexity of immune responses.

In addition to response prediction, AI has been increasingly

applied to refine dosing and guide combination therapies. By

incorporating pharmacogenomic features, drug metabolism data,

and immune status, AI models can predict optimal dosing strategies

that maximize therapeutic efficacy while minimizing the risk of

toxicity. Similarly, machine learning can assess potential drug-drug

interactions and synergistic effects, enabling rational design of

combination regimens, such as immune checkpoint inhibitors

paired with chemotherapy, radiotherapy, or targeted therapies

(47). These applications provide a framework for adaptive and

patient-specific treatment optimization, representing a shift from a

one-size-fits-all model toward precision dosing and rational

combination design.

Despite their promise, AI-assisted personalization of dosing and

combinations faces practical challenges. Data integration across

multi-omics, pharmacological, and clinical sources remains

complex, and predictive accuracy often varies across cancer types

and patient populations. Furthermore, prospective validation in

large-scale clinical trials and regulatory acceptance are necessary to

translate these computational insights into routine practice (11).

Nevertheless, the convergence of AI with pharmacology and

systems biology highlights a future where treatment regimens can

be continuously optimized, improving both efficacy and safety in

cancer immunotherapy.
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4.2 Integrating AI with CRISPR-Cas9 for
precision gene editing

AI into the CRISPR-Cas9 gene editing landscape has

revolutionized the precision and safety of genetic modifications.

AI algorithms enhance the accuracy of target recognition by

analyzing vast genomic datasets, identifying optimal guide RNA

(gRNA) sequences, and predicting off-target effects. This

optimization is crucial as it directly correlates with the efficacy of

the CRISPR-Cas9 system, especially in therapeutic applications

such as CAR-T cell therapy. By leveraging machine learning

techniques, researchers can develop predictive models that assess

the likelihood of off-target cleavage, thereby minimizing unintended

genetic alterations that could lead to adverse effects or reduced

therapeutic efficacy. For instance, AI-driven tools like DeepCRISPR

and CRISTA have demonstrated significant improvements in

identifying gRNAs that not only achieve high on-target editing

efficiency but also maintain low off-target activity, thus enhancing

the overall safety profile of CRISPR applications in clinical settings

(48, 49) (Table 2).

Moreover, the reduction of off-target effects is particularly vital

in the context of CAR-T cell therapy, where the specificity of

engineered T cells against tumor antigens is paramount. AI

algorithms can analyze genomic contexts to predict potential off-

target sites, allowing for the design of gRNAs that minimize these

risks. This capability is essential for ensuring that CAR-T cells

effectively target cancer cells without inadvertently attacking

healthy tissues, which could lead to severe immunological

consequences. The application of AI in refining gRNA design and

optimizing the CRISPR-Cas9 editing process not only enhances the

therapeutic potential of CAR-T cells but also contributes to a more

robust and safer immunotherapeutic approach (49, 50).

A compelling case study illustrating the potential of AI-driven

gene editing in CAR-T therapy is the use of AI algorithms to

streamline the identification of neoantigens—tumor-specific

antigens that arise from mutations in cancer cells. By accurately

predicting these neoantigens, AI can facilitate the development

of personalized CAR-T cells that are tailored to the unique

genetic landscape of a patient’s tumor. This personalized

approach significantly improves the chances of a successful

immunotherapeutic outcome, as the engineered T cells are more

likely to recognize and eliminate cancer cells effectively. The

convergence of AI and CRISPR-Cas9 thus paves the way for

innovative applications in cancer treatment, potentially expanding

the reach of CAR-T therapies beyond hematologic malignancies to

solid tumors, which have historically been more challenging to

target (49, 51).

In conclusion, the application of AI in optimizing CRISPR-Cas9

target recognition and editing processes represents a transformative

advancement in genetic engineering. By enhancing the precision

and safety of gene editing, AI not only mitigates the risks associated

with off-target effects but also empowers the development of

personalized immunotherapies such as CAR-T cell therapy. As

research continues to evolve in this interdisciplinary field, the

integration of AI and CRISPR technologies holds the promise of
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revolutionizing cancer treatment and improving patient outcomes

across various malignancies (48, 49).

(Table 2) provides a comparative overview of representative

AI platforms, highlighting differences in accuracy, speed,

and clinical validation, which may guide their application in

cancer immunotherapy.
4.3 AI in quality control and cost
optimization in immune cell manufacturing

The integration of AI into the manufacturing processes of immune

cells, particularly in the context of cancer immunotherapy, has

revolutionized quality control and cost optimization. Automated

process optimization plays a crucial role in shortening production

cycles, which is vital for ensuring timely treatment delivery. By

employing smart sensors and AI-driven algorithms, manufacturers

can monitor and adjust key parameters in real-time, effectively

responding to variations that may affect cell quality. For instance,

recent studies have demonstrated that smart sensors can track and

model data generated during the automated cell expansion process,

leading to enhanced control over critical performance indicators such

as cell quantity and viability (52). This real-time adaptability not only

streamlines production but also minimizes the risk of batch failures,

ultimately contributing to a more efficient manufacturing process.

Furthermore, machine learning techniques assist in predicting cell

quality and ensuring batch consistency, thereby reinforcing the

reliability of the final product. These advancements in quality

assurance are particularly significant given the complex nature of

immune cell therapies, which require stringent quality standards to

maximize therapeutic efficacy and patient safety.

Machine learning in predicting cell quality has profound

implications for cost reduction in CAR-T cell therapy. By

improving batch consistency and reducing the likelihood of failed

batches, manufacturers can decrease waste and lower production

costs, making these therapies more accessible to a broader patient

population. The ability to predict and ensure the quality of immune

cells not only enhances the therapeutic potential but also addresses

the economic barriers associated with advanced immunotherapies.
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As the healthcare landscape shifts towards personalized medicine, the

cost-effectiveness of CAR-T therapies becomes increasingly critical.

Research indicates that optimizing the production process through

AI can lead to significant cost savings, potentially reducing the overall

financial burden on healthcare systems and patients alike (53). This is

particularly relevant in the context of CAR-T therapies, where

production costs have historically been a barrier to widespread

clinical adoption. Using AI technologies, manufacturers can

streamline operations, enhance product quality, and ultimately

drive down costs, paving the way for broader implementation of

these life-saving therapies.

In summary, the incorporation of AI in the immune cell

manufacturing process represents a significant advancement in

both quality control and cost optimization. Automated process

optimization and machine learning-assisted quality predictions are

transforming how immune cells are produced, ensuring that high-

quality products are delivered efficiently and cost-effectively. As the

field of cancer immunotherapy continues to evolve, the role of AI

will be paramount in overcoming existing challenges and enhancing

the accessibility of these innovative treatments. The future of

immune cell therapies will likely hinge on the successful

integration of AI technologies, which promise not only to

improve patient outcomes but also to make advanced therapies

more sustainable and economically viable in the long term.
4.4 Future personalized immunotherapy
strategies combining gene editing and AI

The integration of multi-omics data guides the design of gene

editing strategies in personalized immunotherapy. By leveraging

genomic, transcriptomic, and proteomic information, researchers

can identify specific mutations and aberrations unique to individual

tumors, which can inform the selection of appropriate gene editing

targets. For instance, the CRISPR/Cas9 system has been effectively

utilized to modify genes associated with immune evasion and tumor

growth, allowing for tailored interventions that directly address the

molecular underpinnings of a patient’s cancer. The application of

multi-omics approaches not only enhances the precision of gene
TABLE 2 Comparison of selected AI platforms in cancer immunotherapy.

Platform
Application
domain

Accuracy Speed
Clinical

validation
Strengths Limitations

PIONEER™
(Evaxion
Biotech)

Neoantigen discovery
& personalized vaccine
design

High (validated in
metastatic melanoma,
EVX-01 trial)

Rapid (48–55 days
from sequencing to
vaccine)

Ongoing clinical
trials (EVX-01,
EVX-02)

Streamlined
neoantigen
identification;
clinically tested

Limited to vaccine
development; requires
tumor sequencing

DeepCRISPR CRISPR-Cas9 target
recognition & off-
target prediction

High (benchmark
outperforming traditional
scoring methods)

Fast computational
prediction

Preclinical (no
direct clinical
validation yet)

Reduces off-target
risk; improves gRNA
design

Lack of clinical trial
evidence; dependent on
training data quality

CRISTA CRISPR off-target
effect prediction

High (better precision in
off-target identification)

Moderate Preclinical studies Incorporates sequence
+ epigenetic features

Computational cost;
limited datasets

AI-integrated
Radiomics
Models

Response prediction,
biomarker discovery

Moderate to high (varies
by dataset)

Moderate Retrospective
validation in
multiple cohorts

Links imaging with
immune response

Generalizability concerns;
limited prospective
validation
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editing but also facilitates the identification of potential biomarkers

that can predict treatment responses. This personalized approach is

exemplified in studies focusing on head and neck squamous cell

carcinoma, where the integration of genetic data has led to the

development of targeted therapies that significantly improve patient

outcomes (54). Furthermore, the incorporation of epigenetic

modifications into gene editing designs can enhance the efficacy

of immunotherapeutic strategies by reprogramming the tumor

microenvironment to be more conducive to immune attack (55).

As such, the future of personalized immunotherapy will likely hinge

on the ability to synthesize diverse biological data into actionable

insights for gene editing applications.

AI-assisted dynamic treatment adjustments and long-term

efficacy monitoring represent another frontier in personalized

immunotherapy (Table 3). By utilizing machine learning

algorithms, clinicians can analyze vast datasets to predict patient

responses to specific therapies, enabling adaptive treatment

strategies that evolve based on real-time patient data. For

example, AI can help identify optimal dosing regimens and

timing for gene editing interventions, thereby maximizing

therapeutic efficacy while minimizing adverse effects .

Additionally, AI-driven predictive models can facilitate the

monitoring of long-term treatment outcomes, allowing for timely

modifications to therapy based on patient-specific responses. This is

particularly relevant in the context of immunotherapy, where the

heterogeneity of tumor responses necessitates a flexible and

responsive treatment framework. Recent advancements in AI

have demonstrated the capability to integrate clinical, genomic,

and treatment data to refine patient stratification and improve the

precision of immunotherapeutic interventions (9).

Cross-disciplinary collaborative innovations are essential for

advancing the development of precise immunotherapy. The

intersection of computational biology, genomics, and clinical

research fosters an environment where novel therapeutic strategies

can emerge. For instance, partnerships between bioinformaticians,

oncologists, and geneticists can accelerate the identification of

actionable targets for gene editing while simultaneously developing

AI models that predict treatment outcomes. Collaborative efforts in

research have already yielded promising results, such as the

development of CAR-T cell therapies enhanced by CRISPR

technology, which demonstrate improved efficacy against various

malignancies (50). Furthermore, interdisciplinary approaches that
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combine insights from immunology, bioengineering, and

nanotechnology are leading to the creation of innovative delivery

systems for gene editing tools, enhancing their precision and reducing

off-target effects (56). As the field of personalized immunotherapy

continues to evolve, fostering cross-disciplinary collaborations will be

crucial in overcoming current challenges and unlocking the full

potential of gene editing and AI in cancer treatment (Table 3).
5 Discussion

The integration of AI technologies into cancer immunotherapy

represents a transformative advancement in the field of oncology.

This review has highlighted the significant potential of AI across

various critical aspects of immunotherapy, including efficacy

prediction, safety assessment, gene editing optimization,

nanotechnology carrier design, and gut microbiome regulation.

The multifaceted role of AI not only enhances the precision of

treatment plans but also fosters the development of personalized

therapeutic strategies that are tailored to the unique genetic and

phenotypic profiles of individual patients (57).

AI synthesis of multidimensional data advances personalized

medicine by identifying biomarkers predictive of response and

adverse events. This capability is particularly crucial in

immunotherapy, where the balance between therapeutic efficacy

and the risk of immune-related adverse events is delicate (58). By

leveraging AI algorithms to analyze large datasets from clinical trials

and real-world evidence, researchers are increasingly able to refine

treatment protocols, thereby improving clinical outcomes while

minimizing potential risks (59).

At the same time, these opportunities are tempered by significant

challenges. Many current AI models are trained on genomic and

clinical datasets disproportionately derived from patients of

European ancestry, limiting generalizability to more diverse

populations and risking further inequities in healthcare.

Reproducibility also remains problematic, as algorithms often

depend on institution-specific preprocessing pipelines and lack

standardized external validation, resulting in inconsistent

performance across clinical settings. In addition, regulatory barriers

—including concerns about data privacy, model interpretability, and

the absence of clear approval pathways—continue to slow clinical

translation. As we stand on the cusp of a new era in cancer treatment,
TABLE 3 Representative AI applications in cancer immunotherapy.

Application area AI methods Clinical relevance Challenges

Response prediction ML (random forest, SVM), DL (CNN, RNN) Stratify responders vs non-responders Data heterogeneity, bias

Toxicity prediction ML + multimodal integration Predict irAEs, stratify risk groups Limited validation, generalizability

Treatment optimization ML-based dosing models, reinforcement learning Optimize dosage and combinations Regulatory approval, interpretability

Gene editing DL models (DeepCRISPR, CRISTA) Improve gRNA design, minimize off-target effects Off-target uncertainty, ethical issues

Safety monitoring NLP, real-world evidence mining Early irAE detection, adaptive monitoring Privacy, data-sharing barriers
AI, artificial intelligence; ML, machine learning; DL, deep learning; SVM, support vector machine; CNN, convolutional neural network; RNN, recurrent neural network; irAEs, immune-related
adverse events; gRNA, guide RNA; NLP, natural language processing; EHR, electronic health records.
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addressing these limitations is essential. Robust frameworks are

needed to ensure that AI applications can accommodate the

complexity of cancer biology and the heterogeneity of patient

responses, while safeguarding patient rights and promoting

equitable access to innovative therapies. However, as we stand on

the cusp of a new era in cancer treatment, it is essential to

acknowledge the challenges that accompany the adoption of AI-

driven approaches (60). Issues surrounding data privacy, the

generalizability of models across diverse populations, and the

ethical implications of AI in healthcare must be addressed to

ensure the responsible deployment of these technologies. The

complexity of cancer biology and the heterogeneous nature of

patient responses necessitate robust frameworks that can

accommodate the nuances of AI applications while safeguarding

patient rights and ensuring equitable access to innovative therapies.

Looking ahead, the future of AI in cancer immunotherapy will

likely be characterized by increased interdisciplinary collaboration

and the integration of multi-omics data (61). By harnessing insights

from genomics, proteomics, metabolomics, and microbiomics,

researchers can develop a more comprehensive understanding of

tumor biology and the immune response. This holistic approach

will not only enhance the precision of immunotherapy but also

facilitate the identification of novel therapeutic targets and

strategies (62). However, realizing this potential will also depend

on overcoming several practical barriers. Future progress requires

access to large and diverse datasets, yet existing resources are often

fragmented and biased toward certain populations, limiting model

generalizability. The integration of sensitive genomic and clinical

data also raises privacy and security concerns, highlighting the need

for clear governance frameworks and transparent patient consent.

Furthermore, effective implementation will depend on specialized

personnel, including clinicians trained in digital health and data

scientists capable of translating complex algorithms into actionable

insights. Addressing these challenges through data-sharing

collaborations, privacy-preserving computational techniques, and

workforce training will be essential to ensure that AI can deliver on

its promise in cancer immunotherapy (63).

In summary, AI in cancer immunotherapy is an ongoing

process that holds immense promise for the future of oncology.

As we continue to navigate the complexities of this evolving

landscape, it is imperative that we foster collaboration among

clinicians, researchers, data scientists, and ethicists. Together, we

can address the existing challenges and leverage the full potential of

AI to achieve a dual enhancement of treatment efficacy and safety.

This collaborative effort will be instrumental in advancing the field

of precision tumor immunotherapy and ultimately improving

outcomes for patients battling cancer.
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