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Cancer immunotherapy represents a major breakthrough in oncology,
particularly with immune checkpoint inhibitors (ICls) and CAR-T cell therapies.
Despite improved outcomes, challenges such as immune-related adverse events
(irAEs) and treatment resistance limit clinical use. Artificial intelligence (Al) offers
new opportunities to address these barriers, including target identification,
efficacy prediction, toxicity monitoring, and personalized treatment design.
This review highlights recent advances in Al applications for biomarker
discovery, safety evaluation, gene editing, nanotechnology, and microbiome
modulation, integrating evidence from clinical and preclinical studies. We also
discuss future directions and challenges in applying Al to cancer immunotherapy,
aiming to support further research and clinical translation.
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1 Introduction

The field of cancer treatment has undergone a significant transformation in recent
years, with immunotherapy emerging as a revolutionary approach that harnesses the body’s
immune system to combat malignancies (1). This innovative treatment modality aims to
activate and enhance the immune response against cancer cells, leading to improved patient
outcomes and survival rates. The clinical significance of immunotherapy is underscored by
its success in various cancer types, including melanoma, lung cancer, and hematological
malignancies, where it has demonstrated durable responses and long-term survival benefits
(2). However, despite these advancements, the effectiveness of immunotherapy is not
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universal, and a considerable proportion of patients do not respond
adequately (3). The heterogeneity of tumor biology and the immune
system’s complexity present significant challenges in optimizing
immunotherapeutic strategies. Understanding these dynamics is
crucial for the continued development and refinement of cancer
immunotherapy as a cornerstone of oncological care (4).

One of the primary challenges facing immunotherapy is the
variability in treatment response among patients, often referred to
as efficacy heterogeneity. Factors contributing to this variability
include the tumor microenvironment, the presence of immune
checkpoints, and the individual patient’s immune profile. For
instance, while immune checkpoint inhibitors have shown
remarkable efficacy in tumors with high mutational burdens, such
as melanoma, they have been less effective in “cold” tumors that
exhibit low immunogenicity, such as pancreatic cancer.
Additionally, immune-related adverse events (irAEs) pose a
significant concern, as they can range from mild to severe and
may lead to treatment discontinuation. These irAEs arise from the
activation of the immune system against normal tissues,
complicating the therapeutic landscape and necessitating careful
monitoring and management (5, 6).

The emergence of artificial intelligence (AI) technologies in the
healthcare sector offers promising avenues to address these
challenges in cancer immunotherapy. AI encompasses
computational methods that mimic human decision-making (7).
Machine learning (ML), the main branch of Al allows algorithms to
learn from data without explicit programming. ML can be
supervised (trained on labeled outcomes, e.g., responders vs. non-
responders) or unsupervised (finding patterns in unlabeled data,
e.g., tumor subtypes). Deep learning (DL), a subset of ML using
neural networks, is especially powerful for complex data such as
imaging and genomics. These approaches form the foundation for
AT applications in immunotherapy (Figure 1). AI has the potential
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to analyze vast datasets, including genomic, transcriptomic, and
clinical information, to identify biomarkers predictive of treatment
response. By leveraging machine learning algorithms, AI can assist
in the stratification of patients based on their likelihood of
benefiting from immunotherapy, ultimately leading to more
personalized treatment approaches (8). Furthermore, AI can
enhance the design of combination therapies, optimizing
treatment regimens that integrate immunotherapy with other
modalities, such as chemotherapy or targeted therapies, to
improve overall efficacy and minimize adverse effects (9, 10).

This review aims to systematically assess the current
applications of Al in enhancing the efficacy and safety of cancer
immunotherapy. By focusing on recent advancements and ongoing
research, we will explore how Al technologies are being integrated
into clinical practice to optimize treatment outcomes for diverse
cancer types. The discussion will encompass Al-driven predictive
models, the identification of novel therapeutic targets, and the
potential for AI to streamline clinical workflows, ultimately
paving the way for a more effective and personalized approach to
cancer immunotherapy (11, 12). Through this comprehensive
evaluation, we seek to highlight the transformative impact of AI
on the future of cancer treatment and its role in overcoming the
limitations of current immunotherapeutic strategies.

2 Al in response prediction

2.1 Application of Al in tumor neoantigen
recognition

The integration of Al into the identification of tumor
neoantigens represents a transformative advancement in cancer
immunotherapy. Neoantigens, which are unique to individual
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Overview of Al applications in cancer immunotherapy. The schematic illustrates how Al technologies, including Artificial Intelligence (Al), Machine
Learning (ML), Deep Learning (DL), and Natural Language Processing (NLP)—support four core application areas: response prediction, toxicity
prediction and management, treatment optimization, and gene editing. These applications collectively contribute to improved efficacy, enhanced

safety, and personalized therapy in clinical cancer immunotherapy.
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tumors due to somatic mutations, hold significant potential for
personalized therapeutic strategy. Machine learning approaches
rapidly screen and predict tumor-specific neoantigens, improving
vaccine design and immunotherapy protocols. These algorithms
can analyze vast datasets, including genomic, transcriptomic, and
proteomic information, to identify potential neoantigens that may
elicit a robust immune response. For instance, AI-driven models
can predict the binding affinity of mutated peptides to major
histocompatibility complex (MHC) molecules, which is crucial for
T-cell recognition and subsequent immune activation (13). This
capability reduces the time and resources needed for neoantigen
identification, streamlining personalized cancer treatment.

A notable case study exemplifying the application of Al in
neoantigen vaccine development is the design of the EVX-01
vaccine, which utilizes the PIONEER™ AI platform. This
platform was instrumental in identifying tumor-derived
neoantigens for inclusion in the vaccine formulation. In a phase I
clinical trial (NCT03715985) enrolling 12 patients with advanced
metastatic melanoma, EVX-01 was administered in combination
with anti-PD-1 therapy. Patients received six vaccinations (three
intraperitoneal followed by three intramuscular) at escalating dose
levels (500 pg, 1000 pg, and 2000 pg total peptide), with neoantigens
selected by the PIONEER AI platform and formulated with the
CcAF®09b adjuvant. The vaccine demonstrated a favorable safety
profile, with most adverse events limited to grade 1-2 reactions such
as injection-site pain, fatigue, and nausea; only two patients
experienced grade 3 immune-related events (myositis and
nephritis), attributed mainly to anti-PD-1 therapy. Importantly,
objective responses were observed in 67% of patients (6 partial
responses and 2 complete responses), with durable responses at the
highest dose level. EVX-01 induced robust vaccine-specific CD4+ T
cell responses in all patients, with CD8+ responses detected in seven
patients. Furthermore, the magnitude of T cell responses correlated
with peptide dose and PIONEER quality scores, suggesting that the
Al platform can effectively prioritize immunogenic epitopes (14).
The 48-55 day manufacturing timeline highlights how AI
accelerates personalized therapy development. The safety profile
observed in clinical trials further underscores the viability of AI-
assisted neoantigen identification in enhancing immunogenic
responses while minimizing adverse effects.

Al platforms like PIONEER™ are also pivotal in accelerating
the development of personalized vaccines by enabling the rapid
evaluation of immunogenicity and safety profiles of predicted
neoantigens. Simultaneous assessment of multiple neoantigens
enables prioritization of those most likely to elicit effective
immune responses. This capability is particularly beneficial in the
context of tumor heterogeneity, where individual tumors
may express unique antigenic profiles that require tailored
therapeutic approaches (15). Furthermore, AT’s role in analyzing
patient-specific data can lead to the identification of neoantigens
that correlate with favorable clinical outcomes, thereby
guiding the selection of the most promising candidates for
vaccine development.

However, Al-driven neoantigen recognition faces substantial
challenges (16). First, data heterogeneity undermines model
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accuracy: genomic data may be generated via different sequencing
platforms with varying error rates, while transcriptomic data often
reflects tissue-specific expression patterns that lack standardization
across studies. This inconsistency can lead to false-positive
predictions of neoantigens. Second, training dataset bias is
prevalent—most models are trained on data from Caucasian
patients with common cancers (e.g., melanoma), resulting in poor
performance when applied to underrepresented ethnic groups or
rare tumors.

In conclusion, the application of AI in the recognition and
prediction of tumor neoantigens is revolutionizing the landscape of
cancer immunotherapy. By streamlining the identification process
and enhancing the precision of personalized vaccines, Al
technologies are paving the way for more effective and tailored
treatment strategies. As ongoing research continues to refine these
AT methodologies, the potential for improved patient outcomes in
cancer therapy becomes increasingly promising (17). The
integration of Al into neoantigen discovery not only exemplifies
the convergence of computational science and oncology but also
underscores the necessity for continued innovation in the
development of personalized cancer treatments (18).

2.2 Integration of multidimensional data
for predicting immune therapy efficacy

The construction of comprehensive predictive models for the
efficacy of immunotherapy in cancer treatment necessitates the
integration of various data types, including genomic,
transcriptomic, and clinical data. Recent studies have highlighted
the significance of combining multi-omics data to enhance
predictive accuracy for patient responses to immunotherapy. For
instance, the integration of metabolic imaging metrics, such as those
obtained from multiparametric PET scans, with genomic and
transcriptomic profiles has shown promise in predicting the
efficacy of immunotherapies, including PD-1/PD-L1 inhibitors
and CAR-T cell therapies (19). This multi-faceted approach
allows for a more nuanced understanding of the tumor immune
microenvironment (TIME) and its influence on treatment
outcomes. Furthermore, machine learning algorithms have been
employed to analyze these integrated datasets, enabling the
identification of potential biomarkers associated with treatment
response. For example, a study demonstrated that specific gene
expression patterns correlated with immune cell infiltration and
treatment efficacy, thus providing a framework for developing
personalized treatment strategies (20).

AT plays a crucial role in enhancing the predictive capabilities of
these models. By employing machine learning algorithms, researchers
can analyze multi-omics data to uncover hidden patterns that may
predict patient responses to immune checkpoint inhibitors and
elucidate mechanisms of resistance. A notable application of Al in
this context is the development of necroptosis-related gene signatures
that have been shown to predict responses to immune checkpoint
inhibitors across various cancer types (20). The ability to identify and
validate these biomarkers through multi-omics integration not only
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aids in predicting treatment efficacy but also facilitates the
stratification of patients based on their likelihood of benefiting
from specific immunotherapies.

Moreover, the identification of biomarkers through machine
learning approaches has been instrumental in recognizing potential
therapeutic targets that can enhance the effectiveness of
immunotherapies. For instance, a recent study utilized integrative
multi-omics analysis to classify ovarian cancer patients into
molecular subtypes, revealing distinct immune profiles that
corresponded with differential responses to immunotherapy (21).
This underscores the potential of multi-omics integration in
personalizing cancer treatment by tailoring immunotherapy regimens
to the unique molecular characteristics of individual tumors.

In addition to genomic and transcriptomic data, the
incorporation of clinical data into predictive models is essential
for translating these findings into clinical practice. By analyzing
clinical outcomes alongside multi-omics data, researchers can
develop risk models that account for various patient-specific
factors, thereby improving the accuracy of predictions regarding
treatment efficacy. For example, a recent study constructed a multi-
omics-derived risk score in a large cohort of patients with
hepatocellular carcinoma by integrating genomic alterations,
transcriptomic expression profiles, and clinical variables. This
model effectively stratified patients into high- and low-risk groups
with distinct responses to immune checkpoint inhibitor therapy
and demonstrated significant predictive value for overall survival
(22). Such integrative approaches provide a more comprehensive
basis for guiding clinical decision-making and tailoring
immunotherapy strategies to individual patients.

Despite these advances, challenges persist. Data integration
complexity is a major hurdle: clinical data (e.g., comorbidities,
prior treatments) is often stored in unstructured formats (e.g.,
free-text electronic health records), requiring labor-intensive
preprocessing (e.g., NLP-based text extraction) to standardize
(23). Additionally, regulatory barriers limit data sharing across
institutions due to privacy laws (e.g., HIPAA in the U.S.),
reducing the size and diversity of training datasets for AT models
(24). This lack of diverse data further exacerbates model bias, as
seen in the underperformance of many response-prediction models
in elderly or non-Caucasian patients.

Despite these advances, challenges persist. Data integration
complexity is a significant barrier: clinical data is often stored in
unstructured formats, necessitating labor-intensive preprocessing
to standardize it. This lack of diverse data further exacerbates model
bias, as seen in the underperformance of many response-prediction
models in elderly or non-Caucasian patients (25).

In conclusion, the integration of multidimensional data, including
genomic, transcriptomic, and clinical information, is pivotal for
constructing robust predictive models of immunotherapy efficacy
(26). The application of AI and machine learning algorithms in
analyzing these comprehensive datasets holds the potential to
revolutionize personalized cancer treatment, enabling clinicians to
make informed decisions based on the unique molecular and clinical
profiles of their patients. Continued research in this area will
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undoubtedly enhance our understanding of the complex interplay
between the tumor microenvironment and immune responses,
ultimately leading to improved outcomes for cancer patients
undergoing immunotherapy.

2.3 Al-driven optimization of precision
immunotherapy strategies

AT technologies have significantly advanced the prediction of
immunotherapy outcomes by integrating multi-omics and clinical
datasets (27). Machine learning algorithms can identify key
biomarkers from genomic, transcriptomic, and proteomic data,
enabling more accurate patient stratification and prediction of
therapeutic response. For example, integrating tumor
microenvironment features with molecular alterations allows Al-
driven models to uncover hidden patterns that correlate with
treatment efficacy (28). These approaches not only refine patient
selection but also provide a deeper understanding of the
mechanisms underlying response variability, thereby laying the
foundation for more precise immunotherapy strategies.

Taken together, Al-driven approaches to response prediction
not only improve patient stratification but also generate insights
that can guide subsequent treatment optimization (29). These
predictive foundations set the stage for broader applications of Al
in tailoring therapeutic strategies, including dosing adjustments,
combination regimens, and clinical decision support.

3 Al in toxicity prediction and
management

3.1 prediction and monitoring of IrAEs

The prediction and monitoring of irAEs are crucial components
in the management of patients undergoing immune checkpoint
inhibitor (ICI) therapy, particularly as these therapies become
increasingly prevalent in oncology. AI models have emerged as a
significant tool in assessing the risk of severe irAEs, such as cardiac
toxicity, which can lead to life-threatening complications. For
instance, studies have shown that genetic variations, such as those
in the IL7 gene, can predict the likelihood of experiencing irAEs,
thereby enabling clinicians to stratify patients based on their risk
profiles (30). Additionally, the integration of multimodal data—
including biomarkers, imaging studies, and clinical parameters—
has been shown to enhance the predictive accuracy of these models.
For example, combining genomic data with clinical indicators can
provide a more comprehensive risk assessment for patients,
allowing for tailored monitoring strategies that align with
individual risk factors (31, 32).

The construction of early warning systems utilizing AI-driven
algorithms is also gaining traction, with several clinical applications
demonstrating their efficacy. These systems leverage real-time
patient data to identify early signs of irAEs, facilitating prompt
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intervention and potentially mitigating severe outcomes. For
instance, a predictive model developed using patient-reported
outcomes and clinical data has shown promising results in
forecasting the onset of irAEs, thereby allowing for timely
adjustments in treatment regimens (33). Moreover, the utilization
of machine learning techniques to analyze comprehensive datasets
has resulted in models that can accurately predict the occurrence of
irAEs before they manifest clinically, thus enhancing patient safety
and treatment efficacy (34).

In clinical practice, the application of these predictive models
has led to improved management of irAEs, with examples including
the use of specific biomarkers such as the neutrophil-to-lymphocyte
ratio (NLR) and eosinophil counts to forecast adverse events (35).
These biomarkers can be integrated into routine clinical
assessments, providing oncologists with actionable insights that
inform treatment decisions. Furthermore, the development of
nomograms based on clinical and laboratory data has been
proposed as a method for stratifying patients according to their
risk of developing severe irAEs, thereby enhancing the overall
management of patients undergoing immunotherapy (36).

Overall, the integration of AT and multimodal data analysis into
the prediction and monitoring of irAEs represents a significant
advancement in personalized cancer care. By identifying patients at
high risk for adverse events, clinicians can implement proactive
monitoring strategies, ultimately improving patient outcomes and
minimizing the burden of treatment-related toxicities. As research
continues to evolve in this area, the potential for AI to transform the
landscape of cancer immunotherapy through enhanced safety and
efficacy remains promising.

Recent studies have emphasized that predictive biomarkers are
pivotal for linking AI models to both treatment response and safety
monitoring in immunotherapy. Researchers have highlighted that
biomarkers such as PD-L1 expression, tumor mutational burden
(TMB), microsatellite instability (MSI), peripheral blood indices

TABLE 1 Representative Al studies on irAE prediction/identification.

Cancer type

Number of pts = Aim of the study

Al method

10.3389/fimmu.2025.1676112

including neutrophil-to-lymphocyte ratio (NLR) and lactate
dehydrogenase (LDH), circulating tumor DNA, and gut
microbiota are not only predictive of ICI efficacy but also
associated with immune-related toxicities (37). Al-driven
approaches can integrate these multidimensional biomarkers into
unified models, capturing complex non-linear associations beyond
the capacity of traditional methods. By combining genomic,
serological, and microbiome features, machine learning
frameworks enable simultaneous identification of likely
responders and early detection of patients at high risk for severe
irAEs. Furthermore, emerging deep learning strategies that
correlate radiomics and digital pathology with biomarker
signatures further bridge efficacy prediction and toxicity
monitoring, providing clinicians with actionable tools to balance
therapeutic benefit and safety in real-world practice. Several studies
have evaluated Al-based models for irAE prediction or detection in
clinical settings (Table 1).

While these studies demonstrate encouraging performance,
most are limited by small or single-center cohorts, retrospective
design, and a focus on detection rather than true prospective
prediction, underscoring the need for multicenter validation and
clinically actionable models.

3.2 Al-assisted immunotherapy adverse
effect management strategies

The integration of Al into the management of adverse effects
associated with immunotherapy represents a significant
advancement in oncology, particularly in optimizing drug dosing
and combination therapy regimens. Al can analyze vast datasets to
identify patterns that correlate with adverse reactions, enabling
healthcare providers to tailor treatment plans that minimize side
effects. For instance, machine learning algorithms can predict the

Non-small cell lung 34 Early detection of irAEs
through patient-

reported outcomes

cancer; melanoma;
genitourinary
cancers; head and
neck cancer

Machine learning
on ePRO data

Esophageal cancer; 138 Prediction of severe Elastic-net

gastroesophageal irAEs during PD-1 logistic

junction cancer; therapy using blood- regression

gastric cancer; lung based biomarkers

cancer

Lung cancer 74 Prediction of treatment Resamplin;
response and irAEs based mac]
using serum antibody learning

Reference numbers in the table correspond to the reference list provided at the end of the manuscript. irAE, immune-related adverse event; ICI, immune checkpoint inhibitor; ePRO, electronic

signatures

Conclusion Limitations References

ML models enabled Small heterogeneous (33)

near-real-time cohort; limited external

monitoring of validation.

symptoms related to

irAEs and supported

earlier clinical

intervention.

The model identified Single-center (34)

patients at higher risk of | retrospective design;

severe irAEs, facilitating external validation

proactive management. required.
g- Antibody-based ML Small sample size; (35)
hine models predicted both limited diversity;

immunotherapy requires prospective

response and risk of
irAEs, showing promise
for personalized
monitoring.

validation.

patient-reported outcomes; EHR, electronic health records; CNN, convolutional neural network; NLP, natural language processing; LLM, large language model.
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optimal dosages of immunotherapeutic agents based on patient-
specific factors, such as genetic profiles and previous treatment
responses, thereby reducing the likelihood of adverse events (38).
Moreover, Al can assist in the design of combination therapies by
evaluating the synergistic effects of various agents, which can lead to
improved efficacy while simultaneously lowering the risk of toxicity.
This approach allows for a more personalized treatment strategy,
ensuring that patients receive the most effective therapies with the
least harmful side effects, ultimately enhancing their quality of life
during treatment (38, 39).

Machine learning also plays a crucial role in the detection of
safety signals associated with immunotherapy. By continuously
monitoring patient data, AI systems can identify early warning
signs of adverse effects, facilitating prompt intervention. For
example, algorithms can analyze electronic health records,
laboratory results, and imaging studies to detect changes that may
indicate the onset of irAEs such as pneumonitis or colitis (9). This
real-time monitoring capability allows clinicians to intervene before
these events escalate, improving patient outcomes and potentially
reducing hospitalizations related to severe side effects. Furthermore,
AT can enhance the predictive accuracy of risk assessments, enabling
healthcare providers to stratify patients based on their likelihood of
experiencing irAEs. Such individualized risk assessments can guide
clinical decisions, such as the need for preemptive treatments or
closer monitoring for high-risk patients (17).

In addition to optimizing treatment regimens and enhancing
safety signal detection, AI can facilitate personalized risk
assessments that promote treatment safety in immunotherapy. By
analyzing patient demographics, genetic information, and
treatment history, Al systems can provide insights into individual
susceptibility to adverse effects. For instance, predictive models can
identify patients who may be at higher risk for specific irAEs based
on their genetic makeup or pre-existing conditions (40). This
personalized approach not only informs clinical decision-making
but also empowers patients by providing them with tailored
information regarding their treatment plans and potential risks.
Consequently, patients can engage in shared decision-making with
their healthcare providers, leading to more informed choices about
their treatment options (11).

In conclusion, Al-assisted strategies for managing adverse
effects in immunotherapy are transforming cancer care by
optimizing drug dosing, enhancing safety signal detection, and
facilitating personalized risk assessments. These advancements
not only improve treatment efficacy but also significantly enhance
patient safety and quality of life. As Al technology continues to
evolve, its integration into clinical practice will likely lead to more
effective and safer immunotherapy regimens, paving the way for a
new era in cancer treatment (41).

3.3 Clinical data-driven safety model
validation and optimization

The integration of large-scale clinical databases into AI model
training is pivotal for enhancing the safety and efficacy of cancer
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immunotherapy. These databases, which encompass diverse patient
demographics, treatment regimens, and outcomes, provide a rich
resource for training Al algorithms. By harnessing vast amounts of
clinical data, AI can identify patterns and correlations that may not
be apparent through traditional analytical methods. For instance,
Al models can analyze patient responses to various
immunotherapies, correlating specific genetic markers or tumor
characteristics with treatment outcomes, thereby allowing for more
personalized treatment approaches. The ability to leverage real-
world evidence from these databases not only aids in the initial
training of AI models but also in their continuous refinement as
new data becomes available. Furthermore, the validation of Al
models against large clinical datasets can enhance their predictive
accuracy and generalizability, ensuring that the models are robust
and applicable across different patient populations and treatment
settings. This approach aligns with the principles of precision
medicine, where treatment is tailored to the individual
characteristics of each patient, ultimately improving safety and
treatment efficacy in cancer care (39, 42).

Cross-validation and methods to enhance model generalization
are essential components in the development of Al-driven safety
models. Cross-validation techniques, such as k-fold cross-
validation, allow researchers to assess the performance of their
models by partitioning the dataset into subsets, training the model
on some subsets while validating it on others. This process helps to
mitigate overfitting, where a model performs well on training data
but poorly on unseen data. By ensuring that models are trained and
validated on diverse datasets, researchers can better evaluate their
predictive capabilities and robustness. Additionally, employing
techniques such as data augmentation, regularization, and
ensemble learning can further enhance model generalization. For
example, ensemble methods, which combine predictions from
multiple models, can improve accuracy and reliability by
leveraging the strengths of different algorithms. As AI continues
to evolve, the incorporation of advanced machine learning
techniques, including deep learning and transfer learning, will
further bolster the ability of models to adapt to new data and
maintain high performance across various clinical scenarios. This
iterative process of validation and optimization is crucial for
developing Al systems that can effectively monitor patient safety
and predict adverse events associated with immunotherapy (12).

Looking ahead, the future trends in Al for safety monitoring in
cancer immunotherapy are promising and multifaceted. As Al
technologies advance, there is a growing emphasis on developing
real-time monitoring systems that can provide immediate feedback
on patient responses to treatment. These systems could utilize
continuous data streams from wearable devices, electronic health
records, and laboratory results to detect adverse reactions or
treatment failures early. Moreover, the integration of AI with
other emerging technologies, such as genomics and proteomics,
can facilitate a more comprehensive understanding of individual
patient responses to immunotherapy. This holistic approach
enhances prediction of treatment efficacy and aids in identifying
potential safety concerns before they escalate. Furthermore, the
ethical implications of Al in clinical practice, particularly regarding
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data privacy and algorithmic bias, will necessitate ongoing dialogue
and regulatory oversight to ensure that AI applications are both
effective and equitable. As the landscape of cancer treatment
evolves, the role of Al in optimizing safety and efficacy will be
critical in shaping the future of personalized medicine (43, 44).

4 Al in optimizing treatment strategies

4.1 Al-assisted personalization of dosing
and combinations

The integration of Al into cancer immunotherapy has opened
new avenues for the development of personalized treatment
regimens tailored to the unique characteristics of individual
patients. Al algorithms can analyze vast datasets, including
genomic, transcriptomic, and proteomic information, to identify
biomarkers that predict responses to immunotherapy (45). For
instance, a multi-omics study in hepatocellular carcinoma
demonstrated that integrating genomic alterations, transcriptomic
profiles, and clinical data enabled accurate patient stratification and
prediction of response to immune checkpoint inhibitors (41).
Similar approaches in melanoma and non-small cell lung cancer
have further validated the predictive value of Al-driven models for
immunotherapy efficacy (46). Moreover, Al-driven models can
optimize treatment regimens by analyzing historical treatment
responses and outcomes, thereby enhancing the efficacy of
immunotherapy while minimizing adverse effects. This
personalized approach not only improves patient outcomes but
also addresses the challenges posed by tumor heterogeneity and the
complexity of immune responses.

In addition to response prediction, AI has been increasingly
applied to refine dosing and guide combination therapies. By
incorporating pharmacogenomic features, drug metabolism data,
and immune status, Al models can predict optimal dosing strategies
that maximize therapeutic efficacy while minimizing the risk of
toxicity. Similarly, machine learning can assess potential drug-drug
interactions and synergistic effects, enabling rational design of
combination regimens, such as immune checkpoint inhibitors
paired with chemotherapy, radiotherapy, or targeted therapies
(47). These applications provide a framework for adaptive and
patient-specific treatment optimization, representing a shift from a
one-size-fits-all model toward precision dosing and rational
combination design.

Despite their promise, Al-assisted personalization of dosing and
combinations faces practical challenges. Data integration across
multi-omics, pharmacological, and clinical sources remains
complex, and predictive accuracy often varies across cancer types
and patient populations. Furthermore, prospective validation in
large-scale clinical trials and regulatory acceptance are necessary to
translate these computational insights into routine practice (11).
Nevertheless, the convergence of AI with pharmacology and
systems biology highlights a future where treatment regimens can
be continuously optimized, improving both efficacy and safety in
cancer immunotherapy.
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4.2 Integrating Al with CRISPR-Cas9 for
precision gene editing

AT into the CRISPR-Cas9 gene editing landscape has
revolutionized the precision and safety of genetic modifications.
Al algorithms enhance the accuracy of target recognition by
analyzing vast genomic datasets, identifying optimal guide RNA
(gRNA) sequences, and predicting off-target effects. This
optimization is crucial as it directly correlates with the efficacy of
the CRISPR-Cas9 system, especially in therapeutic applications
such as CAR-T cell therapy. By leveraging machine learning
techniques, researchers can develop predictive models that assess
the likelihood of off-target cleavage, thereby minimizing unintended
genetic alterations that could lead to adverse effects or reduced
therapeutic efficacy. For instance, Al-driven tools like DeepCRISPR
and CRISTA have demonstrated significant improvements in
identifying gRNAs that not only achieve high on-target editing
efficiency but also maintain low off-target activity, thus enhancing
the overall safety profile of CRISPR applications in clinical settings
(48, 49) (Table 2).

Moreover, the reduction of off-target effects is particularly vital
in the context of CAR-T cell therapy, where the specificity of
engineered T cells against tumor antigens is paramount. Al
algorithms can analyze genomic contexts to predict potential off-
target sites, allowing for the design of gRNAs that minimize these
risks. This capability is essential for ensuring that CAR-T cells
effectively target cancer cells without inadvertently attacking
healthy tissues, which could lead to severe immunological
consequences. The application of Al in refining gRNA design and
optimizing the CRISPR-Cas9 editing process not only enhances the
therapeutic potential of CAR-T cells but also contributes to a more
robust and safer immunotherapeutic approach (49, 50).

A compelling case study illustrating the potential of AI-driven
gene editing in CAR-T therapy is the use of AI algorithms to
streamline the identification of neoantigens—tumor-specific
antigens that arise from mutations in cancer cells. By accurately
predicting these neoantigens, Al can facilitate the development
of personalized CAR-T cells that are tailored to the unique
genetic landscape of a patient’s tumor. This personalized
approach significantly improves the chances of a successful
immunotherapeutic outcome, as the engineered T cells are more
likely to recognize and eliminate cancer cells effectively. The
convergence of AI and CRISPR-Cas9 thus paves the way for
innovative applications in cancer treatment, potentially expanding
the reach of CAR-T therapies beyond hematologic malignancies to
solid tumors, which have historically been more challenging to
target (49, 51).

In conclusion, the application of Al in optimizing CRISPR-Cas9
target recognition and editing processes represents a transformative
advancement in genetic engineering. By enhancing the precision
and safety of gene editing, Al not only mitigates the risks associated
with oft-target effects but also empowers the development of
personalized immunotherapies such as CAR-T cell therapy. As
research continues to evolve in this interdisciplinary field, the
integration of AI and CRISPR technologies holds the promise of
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TABLE 2 Comparison of selected Al platforms in cancer immunotherapy.

10.3389/fimmu.2025.1676112

Application Clinical N
Platform ppucat Accuracy Speed S Strengths Limitations
domain validation
PIONEER™ | Neoantigen discovery High (validated in Rapid (48-55 days Ongoing clinical Streamlined Limited to vaccine
(Evaxion & personalized vaccine = metastatic melanoma, from sequencing to | trials (EVX-01, neoantigen development; requires
Biotech) design EVX-01 trial) vaccine) EVX-02) identification; tumor sequencing
clinically tested
DeepCRISPR | CRISPR-Cas9 target High (benchmark Fast computational | Preclinical (no Reduces off-target Lack of clinical trial
recognition & off- outperforming traditional | prediction direct clinical risk; improves gRNA evidence; dependent on
target prediction scoring methods) validation yet) design training data quality
CRISTA CRISPR off-target High (better precision in Moderate Preclinical studies = Incorporates sequence = Computational cost;
effect prediction off-target identification) + epigenetic features limited datasets
Al-integrated | Response prediction, Moderate to high (varies Moderate Retrospective Links imaging with Generalizability concerns;
Radiomics biomarker discovery by dataset) validation in immune response limited prospective
Models multiple cohorts validation

revolutionizing cancer treatment and improving patient outcomes
across various malignancies (48, 49).

(Table 2) provides a comparative overview of representative
AT platforms, highlighting differences in accuracy, speed,
and clinical validation, which may guide their application in
cancer immunotherapy.

4.3 Al in quality control and cost
optimization in immune cell manufacturing

The integration of Al into the manufacturing processes of immune
cells, particularly in the context of cancer immunotherapy, has
revolutionized quality control and cost optimization. Automated
process optimization plays a crucial role in shortening production
cycles, which is vital for ensuring timely treatment delivery. By
employing smart sensors and Al-driven algorithms, manufacturers
can monitor and adjust key parameters in real-time, effectively
responding to variations that may affect cell quality. For instance,
recent studies have demonstrated that smart sensors can track and
model data generated during the automated cell expansion process,
leading to enhanced control over critical performance indicators such
as cell quantity and viability (52). This real-time adaptability not only
streamlines production but also minimizes the risk of batch failures,
ultimately contributing to a more efficient manufacturing process.
Furthermore, machine learning techniques assist in predicting cell
quality and ensuring batch consistency, thereby reinforcing the
reliability of the final product. These advancements in quality
assurance are particularly significant given the complex nature of
immune cell therapies, which require stringent quality standards to
maximize therapeutic efficacy and patient safety.

Machine learning in predicting cell quality has profound
implications for cost reduction in CAR-T cell therapy. By
improving batch consistency and reducing the likelihood of failed
batches, manufacturers can decrease waste and lower production
costs, making these therapies more accessible to a broader patient
population. The ability to predict and ensure the quality of immune
cells not only enhances the therapeutic potential but also addresses
the economic barriers associated with advanced immunotherapies.
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As the healthcare landscape shifts towards personalized medicine, the
cost-effectiveness of CAR-T therapies becomes increasingly critical.
Research indicates that optimizing the production process through
Al can lead to significant cost savings, potentially reducing the overall
financial burden on healthcare systems and patients alike (53). This is
particularly relevant in the context of CAR-T therapies, where
production costs have historically been a barrier to widespread
clinical adoption. Using AI technologies, manufacturers can
streamline operations, enhance product quality, and ultimately
drive down costs, paving the way for broader implementation of
these life-saving therapies.

In summary, the incorporation of AI in the immune cell
manufacturing process represents a significant advancement in
both quality control and cost optimization. Automated process
optimization and machine learning-assisted quality predictions are
transforming how immune cells are produced, ensuring that high-
quality products are delivered efficiently and cost-effectively. As the
field of cancer immunotherapy continues to evolve, the role of Al
will be paramount in overcoming existing challenges and enhancing
the accessibility of these innovative treatments. The future of
immune cell therapies will likely hinge on the successful
integration of AI technologies, which promise not only to
improve patient outcomes but also to make advanced therapies
more sustainable and economically viable in the long term.

4.4 Future personalized immunotherapy
strategies combining gene editing and Al

The integration of multi-omics data guides the design of gene
editing strategies in personalized immunotherapy. By leveraging
genomic, transcriptomic, and proteomic information, researchers
can identify specific mutations and aberrations unique to individual
tumors, which can inform the selection of appropriate gene editing
targets. For instance, the CRISPR/Cas9 system has been effectively
utilized to modify genes associated with immune evasion and tumor
growth, allowing for tailored interventions that directly address the
molecular underpinnings of a patient’s cancer. The application of
multi-omics approaches not only enhances the precision of gene
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editing but also facilitates the identification of potential biomarkers
that can predict treatment responses. This personalized approach is
exemplified in studies focusing on head and neck squamous cell
carcinoma, where the integration of genetic data has led to the
development of targeted therapies that significantly improve patient
outcomes (54). Furthermore, the incorporation of epigenetic
modifications into gene editing designs can enhance the efficacy
of immunotherapeutic strategies by reprogramming the tumor
microenvironment to be more conducive to immune attack (55).
As such, the future of personalized immunotherapy will likely hinge
on the ability to synthesize diverse biological data into actionable
insights for gene editing applications.

Al-assisted dynamic treatment adjustments and long-term
efficacy monitoring represent another frontier in personalized
immunotherapy (Table 3). By utilizing machine learning
algorithms, clinicians can analyze vast datasets to predict patient
responses to specific therapies, enabling adaptive treatment
strategies that evolve based on real-time patient data. For
example, AI can help identify optimal dosing regimens and
timing for gene editing interventions, thereby maximizing
therapeutic efficacy while minimizing adverse effects.
Additionally, Al-driven predictive models can facilitate the
monitoring of long-term treatment outcomes, allowing for timely
modifications to therapy based on patient-specific responses. This is
particularly relevant in the context of immunotherapy, where the
heterogeneity of tumor responses necessitates a flexible and
responsive treatment framework. Recent advancements in Al
have demonstrated the capability to integrate clinical, genomic,
and treatment data to refine patient stratification and improve the
precision of immunotherapeutic interventions (9).

Cross-disciplinary collaborative innovations are essential for
advancing the development of precise immunotherapy. The
intersection of computational biology, genomics, and clinical
research fosters an environment where novel therapeutic strategies
can emerge. For instance, partnerships between bioinformaticians,
oncologists, and geneticists can accelerate the identification of
actionable targets for gene editing while simultaneously developing
AT models that predict treatment outcomes. Collaborative efforts in
research have already yielded promising results, such as the
development of CAR-T cell therapies enhanced by CRISPR
technology, which demonstrate improved efficacy against various
malignancies (50). Furthermore, interdisciplinary approaches that

TABLE 3 Representative Al applications in cancer immunotherapy.

Application area Al methods

Response prediction ML (random forest, SVM), DL (CNN, RNN)
Toxicity prediction ML + multimodal integration
Treatment optimization =~ ML-based dosing models, reinforcement learning
Gene editing DL models (DeepCRISPR, CRISTA)

Safety monitoring NLP, real-world evidence mining

Stratify responders vs non-responders

Predict irAEs, stratify risk groups

Optimize dosage and combinations

Improve gRNA design, minimize off-target effects

Early irAE detection, adaptive monitoring

10.3389/fimmu.2025.1676112

combine insights from immunology, bioengineering, and
nanotechnology are leading to the creation of innovative delivery
systems for gene editing tools, enhancing their precision and reducing
off-target effects (56). As the field of personalized immunotherapy
continues to evolve, fostering cross-disciplinary collaborations will be
crucial in overcoming current challenges and unlocking the full
potential of gene editing and Al in cancer treatment (Table 3).

5 Discussion

The integration of AI technologies into cancer immunotherapy
represents a transformative advancement in the field of oncology.
This review has highlighted the significant potential of AI across
various critical aspects of immunotherapy, including efficacy
prediction, safety assessment, gene editing optimization,
nanotechnology carrier design, and gut microbiome regulation.
The multifaceted role of AI not only enhances the precision of
treatment plans but also fosters the development of personalized
therapeutic strategies that are tailored to the unique genetic and
phenotypic profiles of individual patients (57).

AT synthesis of multidimensional data advances personalized
medicine by identifying biomarkers predictive of response and
adverse events. This capability is particularly crucial in
immunotherapy, where the balance between therapeutic efficacy
and the risk of immune-related adverse events is delicate (58). By
leveraging Al algorithms to analyze large datasets from clinical trials
and real-world evidence, researchers are increasingly able to refine
treatment protocols, thereby improving clinical outcomes while
minimizing potential risks (59).

At the same time, these opportunities are tempered by significant
challenges. Many current Al models are trained on genomic and
clinical datasets disproportionately derived from patients of
European ancestry, limiting generalizability to more diverse
populations and risking further inequities in healthcare.
Reproducibility also remains problematic, as algorithms often
depend on institution-specific preprocessing pipelines and lack
standardized external validation, resulting in inconsistent
performance across clinical settings. In addition, regulatory barriers
—including concerns about data privacy, model interpretability, and
the absence of clear approval pathways—continue to slow clinical
translation. As we stand on the cusp of a new era in cancer treatment,

Clinical relevance Challenges

Data heterogeneity, bias

Limited validation, generalizability
Regulatory approval, interpretability

Off-target uncertainty, ethical issues

Privacy, data-sharing barriers

Al artificial intelligence; ML, machine learning; DL, deep learning; SVM, support vector machine; CNN, convolutional neural network; RNN, recurrent neural network; irAEs, immune-related

adverse events; gRNA, guide RNA; NLP, natural language processing; EHR, electronic health records.
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addressing these limitations is essential. Robust frameworks are
needed to ensure that AI applications can accommodate the
complexity of cancer biology and the heterogeneity of patient
responses, while safeguarding patient rights and promoting
equitable access to innovative therapies. However, as we stand on
the cusp of a new era in cancer treatment, it is essential to
acknowledge the challenges that accompany the adoption of Al-
driven approaches (60). Issues surrounding data privacy, the
generalizability of models across diverse populations, and the
ethical implications of AI in healthcare must be addressed to
ensure the responsible deployment of these technologies. The
complexity of cancer biology and the heterogeneous nature of
patient responses necessitate robust frameworks that can
accommodate the nuances of Al applications while safeguarding
patient rights and ensuring equitable access to innovative therapies.

Looking ahead, the future of Al in cancer immunotherapy will
likely be characterized by increased interdisciplinary collaboration
and the integration of multi-omics data (61). By harnessing insights
from genomics, proteomics, metabolomics, and microbiomics,
researchers can develop a more comprehensive understanding of
tumor biology and the immune response. This holistic approach
will not only enhance the precision of immunotherapy but also
facilitate the identification of novel therapeutic targets and
strategies (62). However, realizing this potential will also depend
on overcoming several practical barriers. Future progress requires
access to large and diverse datasets, yet existing resources are often
fragmented and biased toward certain populations, limiting model
generalizability. The integration of sensitive genomic and clinical
data also raises privacy and security concerns, highlighting the need
for clear governance frameworks and transparent patient consent.
Furthermore, effective implementation will depend on specialized
personnel, including clinicians trained in digital health and data
scientists capable of translating complex algorithms into actionable
insights. Addressing these challenges through data-sharing
collaborations, privacy-preserving computational techniques, and
workforce training will be essential to ensure that AI can deliver on
its promise in cancer immunotherapy (63).

In summary, Al in cancer immunotherapy is an ongoing
process that holds immense promise for the future of oncology.
As we continue to navigate the complexities of this evolving
landscape, it is imperative that we foster collaboration among
clinicians, researchers, data scientists, and ethicists. Together, we
can address the existing challenges and leverage the full potential of
Al to achieve a dual enhancement of treatment efficacy and safety.
This collaborative effort will be instrumental in advancing the field
of precision tumor immunotherapy and ultimately improving
outcomes for patients battling cancer.
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