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Subtype-specific NK cell-TAM
Interactions drive a novel
prognostic signature in HNSCC

Zhenyan Zhao', Xuejiao Han', Yating Hu', Yun Li, Yaodong He,
Yan Wang, Yanbing Yao, Huan Li* and Jianhua Wei*

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical
Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of
Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University,

Xi‘an, China

Background: The immune microenvironment of head and neck squamous cell
carcinoma (HNSCC) is highly complex, and the mechanisms underlying
interactions between natural killer (NK) cells and tumor-associated
macrophages (TAMs) remain unclear. This study investigates the cellular
heterogeneity, interaction patterns, and prognostic significance of NK-TAM
crosstalk through multi-omics analyses.

Methods: A total of 58 HNSCC tissue samples were analyzed. NK and TAM subsets
were identified using immunohistochemistry (CD16, CD64, CD163), single-cell
RNA sequencing (GSE139324), and public databases (TCGA-HNSC, GSE65858).
CellChat was used to infer ligand-receptor interactions, while spatial proximity was
assessed via the CSOmap algorithm and validated by immunofluorescence. A
prognostic model was constructed using LASSO Cox regression and validated in an
immunotherapy cohort (PRIEB23709, phs000452.v2.p1).

Results: High CD16/CD64 expression correlated with favorable prognosis, while
CD163 indicated poor outcomes (P < 0.05). NK cells were divided into IL32+NK
(antiviral, T cell-activating), NFKBIA+NK (ribosome-related), and STMN1+NK
(DNA repair—related) subsets. TAMs included APOE+TAM (M2-like), IL1B
+/CXCL10+TAM (M1-like), and HSP+TAM (stress-responsive). IL32+NK
interacted most strongly with APOE+TAM and CXCL10+TAM via SPP1, MIF, and
ITGB2 pathways. Spatial mapping and immunofluorescence confirmed proximity
and a positive correlation between IL32 and CXCL10 (R = 0.641, P < 0.001), and a
negative correlation with APOE (R=-0.686, P < 0.001). A 23-gene NK-TAM
interaction—related signature (CINT) effectively stratified patient risk in both
training and validation cohorts (P < 0.05) and predicted survival benefit in
immunotherapy-treated patients.

Conclusion: This study uncovers subtype-specific NK-TAM interactions in
HNSCC and introduces CINT as a robust prognostic and immunotherapy
response model, offering a new strategy for immune microenvironment—
targeted therapy.
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Introduction

Head and neck cancer (HNC) is the seventh most prevalent
cancer worldwide, with approximately 890,000 new cases and
450,000 deaths annually (1). Among HNCs, head and neck
squamous cell carcinomas (HNSCCs) are the predominant
histological subtype (2), representing over 90% of all cases. The
incidence and prevalence of HNSCC vary considerably across
different countries and regions. These disparities are primarily
linked to factors such as tobacco exposure, excessive alcohol
consumption, and human papillomavirus (HPV) infection (3, 4).
Standard treatment options for head and HNSCC currently
encompass surgery, radiotherapy, chemotherapy, immunotherapy,
or a combination of these modalities. Immunotherapy, in
particular, has gained attention as a promising therapeutic avenue
for HNSCC (5). The immune microenvironment significantly
influences the pathophysiology of the disease (6). To improve
patient prognosis and the effectiveness of immunotherapy for
HNSCC, it is crucial to conduct in-depth exploration of the
tumor immune microenvironment.

NK cells, a key component of the innate immune system, play a
vital role in eliminating virally infected, stressed, and malignant
cells. Human NK cells are classified into two subsets based on their
surface expression of CD56: CD56™8" and CD56%™, each
exhibiting distinct phenotypic traits (7). CD16 is a key functional
marker of NK cells, particularly highly expressed in the CD56%™
subset, which mediates antibody-dependent cellular cytotoxicity
(ADCC). It serves as a central target for enhancing the anti-
tumor activity of NK cells. Activation of NK cells occurs through
various molecular signals relayed by stimulatory or inhibitory
receptors found on a range of immune cells, including
macrophages, dendritic cells, eosinophils, and T cells. This
activation not only enables NK cells to execute their cytotoxic
functions but also facilitates communication and co-stimulation,
allowing them to modulate both innate and adaptive immune
responses effectively (8, 9).

TAMs are functionally categorized into classically activated M1
and alternatively activated M2 types (10). Human M1 macrophages,
marked by CD86 and CD64, act as the first line of defense against
microbial infections, exhibiting strong antigen-presenting capacity
and eliciting robust Th1 responses. M2 macrophages, characterized
by the expression of surface markers such as CD206 and CD163
(11), play a crucial role in modulating immune responses. As a
result, M2-type TAMs are frequently associated with pro-tumor
activities, whereas M1-type TAMs are linked to anti-tumor eftects
(10, 12). This functional dichotomy highlights the importance of
understanding the balance between these macrophage subsets
within the tumor microenvironment, as it influences both tumor
progression and therapeutic outcomes.

Emerging evidence highlights the complex crosstalk between
TAMs and NK cells, a critical determinant of anti-tumor immune
responses. IL-10 secreted by TAMs suppresses the local production of
IL-12, a cytokine essential for inducing a Thl response and enhancing
NK cell cytotoxicity (13). Young et al. (14) also demonstrated that
macrophages can inhibit NK cell function, showing that prostaglandin
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E2 (PGE2) released by alveolar macrophages suppressed NK cell
activity in a murine lung carcinoma model. Both M2-polarized
macrophages and TAMs inhibited NK cell CD27 expression and
cytotoxicity in a contact-dependent manner, with TGF-B being
essential for the suppressive effect of M2 macrophages. Additionally,
TAMs promoted a CD27'°™ CD11b"" exhausted NK cell phenotype
(15). However, the functional interactions between specific subsets of
NK and TAMs and their prognostic significance in the
microenvironment of HNSCC remain unclear. This study aims to
focus on the key cell interaction groups in the microenvironment of
head and neck squamous cell carcinoma, especially the NK and TAM
cell subpopulations with special status, and explore the special status
and prognostic efficacy of cell subpopulations from the perspective of
cell interaction.

Materials and methods
Patients and specimens

A total of 58 primary HNSCC specimens were collected from
the tissue bank of our affiliated hospital from 2014 to 2019. All
patients underwent radical surgical resection according to the
NCCN guidelines and did not receive chemotherapy or
radiotherapy before surgery. Follow-up was performed by
telephone interview or medical record review. Clinical
pathological parameters, including tumor stage, degree of
differentiation, smoking and drinking history, were retrieved from
medical records and follow-up data. The present study was
approved by the Medical Research Ethics Committee of The
Fourth Military Medical University.

Immunohistochemical staining

Paraffin-embedded tumor tissue samples were collected for
immunohistochemical (IHC) analysis. Primary antibodies
included rabbit polyclonal anti-CD16 (Servicebio, GB113963),
rabbit polyclonal anti-CD163 (Servicebio, GB115709), and rabbit
monoclonal anti-CD64 (Abcam, ab302901). Peroxidase-conjugated
goat anti-rabbit IgG antibodies were used as secondary antibodies.
All stained sections were independently and blindly evaluated by
two experienced pathologists. Tumor samples exhibiting positive
staining rates above the median were classified as having high
expression, while those with staining rates at or below the median
were classified as having low expression.

Data collection

FPKM expression profiles for TCGA-HNSC were downloaded
using the R package TCGADbiolinks, followed by log transformation.
Survival data and clinical information were also collected, retaining
494 tumor samples with both expression and survival information
for signature construction.
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The GEO database (https://www.ncbi.nlm.nih.gov/geo/) was
used to download bulk expression profile data from GSE65858
along with corresponding clinical information for signature
validation. The data processing standards for GEO bulk datasets
involved converting probes to symbols based on the
correspondence of each platform. Probes corresponding to
multiple genes were removed, while for multiple probes
corresponding to the same symbol, the median value was taken.

Additionally, the GSE139324 single-cell dataset for HNSCC was
downloaded from the GEO database. This dataset includes
expression profiles from 32 peripheral blood samples (26 tumor +
6 normal) and 31 tissue samples (26 tumor + 5 normal). Among
these, 31 tissue samples were selected for this project analysis,
focusing exclusively on immune cells (specifically NK cells and
TAMs) as required by the study design.

Clinical and transcriptomic data from two cohorts of tumor
patients undergoing PD-1/PD-L1 blockade therapy (PRJEB23709
and phs000452.v2.p1, Van Allen et al.) were downloaded to evaluate
the predictive efficacy of the signature in immunotherapy cohorts.
Details of the data types, actual sample sizes used in the analysis,
and their respective purposes are summarized in the Table 1.

Single-cell transcriptomic data quality
control

Quality control of the 31 single-cell samples was performed
using the R package Seurat (v4.1.0). To exclude low-quality cells and
low-expressed genes, the following thresholds were set: (1) each
gene must be expressed in at least 3 cells; (2) the number of features
per cell was restricted to between 500 and 2000, and the number of
counts per cell was set between 1000 and 7500; (3) the proportions
of mitochondrial genes and red blood cell genes in each cell were
both limited to less than 10%.

Subsequently, the NormalizeData function was used for
normalization, and the FindVariableFeatures function was
employed to identify highly variable genes based on an average
expression value (greater than 0.1 and less than 8) and dispersion
(greater than 0.5). Batch correction between samples was conducted
using the R package Harmony to avoid batch effects interfering with
downstream analyses. The data were then scaled, and
dimensionality reduction was performed using principal
component analysis (PCA), selecting the top 50 principal
components for downstream analysis. Visualization was

TABLE 1 Datasets used in this study.

Number of Tumor

Dataset ID Data Type Samples Used
TCGA-HNSC bulk 494
GSE65858 bulk 270
PRJEB23709 bulk 90
phs000452.v2.p1 bulk 41

GSE139324 scCRNA 26 tumor / 5 normal
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accomplished using the RunTSNE function, and cell clustering
was conducted using the FindClusters function. Cell types were
annotated based on the expression of known markers.

Identification of NK cell subpopulations

NK cells were extracted from tumor samples, and following
standardization, normalization, identification of highly variable
genes, batch effect correction, and PCA (with parameters
consistent with the data quality control section), the top 50
principal components were selected with a resolution set to 0.3.
Clustering and subgroup identification were performed to recognize
NK cell subpopulations. Characteristic genes for each
subpopulation were identified using the FindAllMarkers function
(with avg_log2fc > 0.25 and p_val_adj < 0.05).

Identification of TAM cell subpopulations

Myeloid cells were extracted from tumor samples, and similar
procedures of standardization, normalization, identification of
highly variable genes, batch effect correction, and PCA were
applied (with parameters consistent with the data quality control
section). The top 50 principal components were selected, and a
resolution of 0.3 was set for clustering and subgroup identification.
Based on cell type markers, four TAM subpopulations, two DC
subpopulations, and two monocyte subpopulations were identified.
Characteristic genes for each subpopulation were identified using
the FindAllMarkers function (with avg_log2fc > 0.25, p_val_adj <
0.05, and min.pct > 0.5).

Cell communication analysis

To investigate the potential interactions between NK cell
subpopulations and TAM cell subpopulations, cell communication
analysis was performed on single-cell data using the R package
CellChat. The specific steps are as follows: the CellChat object was
constructed using the create CellChat function, and cell subpopulations
were set as the default cell identifiers using the setIdent function. The
CellChatDB.human database was configured as the ligand-receptor
interaction database. Overexpressed genes were identified using the
identifyOverExpressedGenes function, and overexpressed ligand-

Purpose of Analysis

Signature construction; training set
Signature validation; validation set
Evaluation of signature predictive performance in immunotherapy cohorts

Evaluation of signature predictive performance in immunotherapy cohorts

Identification of NK cell subpopulations, TAM subpopulations, and their marker genes
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receptor interactions were identified using the identify
OverExpressedInteractions function. The gene expression data were
projected onto the protein-protein interaction (PPI) network using the
projectData function. Communication probabilities were calculated and
the CellChat network was inferred using the computeCommunProb
function. Filtering was performed with the filterCommunication
function, setting min.cells = 10 as the threshold. Cell-cell
communication was inferred at the signaling pathway level using the
computeCommunProbPathway function, and the communication
network was aggregated using aggregateNet. Subsequently, the
interaction counts among different cell groups were visualized using
the netVisual_circle function. Additionally, the network centrality scores
were calculated using netAnalysis_computeCentrality, and the
visualization of the centrality scores was conducted with the
netAnalysis_signalingRole_network function.

Immunofluorescence analysis

Immunofluorescence (IF) staining was performed on 58
paraffin-embedded HNSCC tissue sections (4 um thick) using the
tyramide signal amplification (TSA) system. Sections were
deparaffinized in xylene, rehydrated in graded ethanol, and
antigen-retrieved via microwave heating in EDTA buffer (pH 8.0).
Endogenous peroxidase was quenched with 3% H,O, for 10 min,
followed by blocking with 5% BSA or 10% goat serum for 30 min.
The slides were then incubated overnight at 4°C with primary
antibodies, including anti-APOE monoclonal antibody (66830-1-Ig,
Proteintech,1:400), anti-IL-32 polyclonal antibody (11079-1-AP,
Proteintech,1:400), and anti-CXCL10 polyclonal antibody (10937-
1-AP, Proteintech,1:500). The next day, sections were washed in
PBS and incubated with horseradish peroxidase (HRP)-conjugated
secondary antibodies, followed by TSA fluorophore development
according to the manufacturer’s instructions. Nuclear staining was
performed using 4’,6-diamidino-2-phenylindole (DAPI). For
multiplex staining, antigen retrieval and antibody incubation
steps were repeated for each target protein. After autofluorescence
quenching, slides were mounted with anti-fade medium. Images
were captured using a Nikon Eclipse C1 fluorescence microscope
and analyzed with Fiji Image] software.

Spatial organization and communication of
cells

The spatial organization of cells is closely related to various
cellular functions and behaviors, including cell-to-cell interactions.
However, scRNA-seq data typically lack such spatial information, as
cells must be separated prior to sequencing. The CSOmap
algorithm developed by Zhang Zemin’s team enables the spatial
reconstruction of gene expression using only scRNA-seq data (16).
Specifically, CSOmap can not only predict cell interactions but also
infer cellular spatial organization from scRNA-seq data, construct
spatial expression patterns of ligands and receptors, and infer
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intercellular communication information, revealing signaling
mechanisms of cell behaviors such as tumor progression,
development, and differentiation. Therefore, the CSOmap
algorithm was utilized to infer the three-dimensional proximity
and communication information between NK cell subpopulations
and TAM cell subpopulations.

Construction and validation of prognostic
biomarkers based on cellular interaction
mechanisms

Based on the characteristic genes of NK cell subpopulations, the
ssGSEA algorithm from the R package GSVA was used to calculate
the enrichment scores of each cell subpopulation for TCGA-HNSC
samples as subpopulation features. Univariate Cox regression
analysis was performed to determine the hazard ratios (HR) and
prognostic significance of the characteristics of each NK
cell subpopulation.

We integrated cell communication and spatial data to identify
TAM populations that significantly interact with prognosis-related
NK cell subpopulations (p < 0.05) and are spatially accessible. The
characteristic genes of these interacting TAM-NK cell groups were
then selected as candidate genes for further analysis.

Univariate Cox regression analysis was then used to determine the
HR and prognostic significance of the candidate genes, filtering for
genes with p < 0.05 to identify prognostic-related genes. LASSO
regression analysis (using the R package glmnet) was employed to
further select key prognostic factors. A risk score signature for
predicting patient survival was constructed by weighting the
expression of each key prognostic factor with its corresponding
LASSO regression coefficient (where “exp” represents gene
expression levels and “coef” represents LASSO regression coefficients):

Score = YL exp; X coef;

Samples were divided into high and low groups based on their
scores. Kaplan-Meier survival curves were generated for prognostic
analysis, and the log-rank test was utilized to determine the
significance of differences between the two groups, further analyzing
the correlation of these two categories with OS. The predictive
capability of the scoring system was evaluated using receiver
operating characteristic (ROC) curves, with the area under the curve
(AUC) visualized using the R package timeROC. Additionally, both
univariate and multivariate Cox analyses were conducted to explore
the independent prognostic value of the score.

GSVA (gene set variation analysis) and
functional enrichment

GSVA is a non-parametric, unsupervised method primarily
used to estimate variations in pathway and biological process
activity within samples. Gene sets from the KEGG and GOBP
sub-libraries of the MSigDB database were downloaded for GSVA
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analysis. The R packages GSVA and GSEABase were utilized to
compare functional differences among different cell subpopulations.

Statistical analysis

All in vitro experiments were independently repeated three times.
Intergroup comparisons and associations between protein expression
and clinicopathological parameters were analyzed using the > test.
Correlations between protein expression levels were assessed using
Pearson correlation analysis. Survival analyses were conducted using
the Kaplan-Meier method, with differences compared using the log-
rank test. Statistical analyses were performed using SPSS software
(version 24.0; IBM Corp., Armonk, NY, USA), and a two-tailed P
value < 0.05 was considered statistically significant.

Bioinformatics analyses were carried out using R software
(version 4.1.2). For comparisons of expression levels, invasion
rates, and other characteristics, the Wilcoxon rank-sum test was
used for two-group comparisons, while the Kruskal-Wallis test was
applied for comparisons among multiple groups. In the figures, “ns”
indicates P > 0.05, * indicates P < 0.05, ** indicates P < 0.01, ***
indicates P < 0.001, and **** indicates P < 0.0001.

10.3389/fimmu.2025.1676878

Results

Correlation between CD16, CD64 and
CD163 expressions and patient prognosis

As summarized in Table 2, CD16, CD64, and CD163 exhibited
no significant association with the evaluated clinicopathological
parameters, encompassing gender, age, smoking history, alcohol
history. CD16 and CD64 exhibit high expression in early-stage
disease and well-differentiated tumors, in contrast to CD163, which
is upregulated in advanced stages and poorly differentiated tumors.

All patients were followed until death or for a maximum of 60
months. By the end of the follow-up period, 4 patients (6.9%; 4/58)
were lost to follow-up, 29 patients (50.0%; 29/58) were alive, and 25
patients (43.1%; 25/58) had died. The overall survival rate of
patients with HNSCC was analyzed based on the expression levels
of CD16, CD64, and CD163. As shown in Figure 1, high expression
of CD16 and CD64 was significantly associated with better
prognosis in HNSCC patients (P < 0.05; Figures 1A1, A2, CI,
C2), whereas high expression of CD163 correlated with poorer
prognosis (P < 0.05; Figures 1B1, B2, E).

TABLE 2 Clinicopathological correlates of CD16, CD64, and CD163 expression.

CD16 CD64 CD163
Variables N pjioh low X P-value High Llow X* P-value High low X P-value
(n=31) (n=27) (n=30) (n=28) (n=26) (n=32)
Gender
Male 25 13 12 0.037 0.847 14 11 0.007 0.933 12 13 0.179 0.672
Female 33 18 15 16 12 14 19
Age
<50 30 16 14 0.000 0.849 15 15 0.074 0.786 12 18 0.586 0.444
>50 28 15 13 15 13 14 14
Stage
I+1I 24 17 7 4.973 0.026* 17 8 5.107 0.024* 7 17 4.060 0.044*
I + IV 34 14 20 13 21 19 15
Smoking history
Nonsmoker | 41 22 19 0.002 0.960 21 20 0.025 0.874 19 22 0.130 0.719
Smoker 17 9 8 9 8 7 10
Alcohol history
Nondrinker = 45 25 20 0.358 0.549 22 23 0.014 0.905 21 24 0.275 0.600
Drinker 13 6 7 8 5 5 8
Pathological differentiation
Well 23 17 6 6.416 0.011* 18 5 10.75 0.001* 6 17 5.142 0.020*
Moderately/
poorly 35 14 21 12 23 20 15
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Microenvironment cell landscape

After quality control of the single-cell data, a total of 60,951 cells
were retained, detecting 20,641 genes (quality control results are
shown in Supplementary Figure S1). Among these, 656 genes were
defined as highly variable genes (Figure 2A), including IGHG2,
IGHGS3, and IGHGI. The top 50 principal components (PCs) were
selected for subsequent t-SNE visualization analysis (Figure 2B), and
Harmony was used to remove batch effects between samples
(Figures 2C, D). At a resolution of 2, 32 + 5 cell clusters were
identified (Supplementary Figure S2). Cell types for each cluster were
annotated based on known markers (Figure 2E; marker expression t-
SNE distribution is shown in Supplementary Figure S2). The
identified cell populations included 11,069 B cells, 1,287 cycling
cells, 290 mast cells, 4,778 myeloid cells, 1,747 NK cells, 16,570
NKT cells, 206 plasma cells, 24,409 T cells, and 595 unknown cells
(Figure 2F; t-SNE distribution maps of the two sample groups are
shown in Supplementary Figure S3). The cell proportions in the two
sample groups were statistically analyzed (Supplementary Table S1),
revealing that the proportions of myeloid, NKT, NK, and mast cells
were higher in tumor samples compared to normal samples, while the
proportion of B cells was lower in tumor samples (Figure 2G; see
Supplementary Figure S4). Subsequently, characteristic genes for
different cell types were identified based on FindAllMarkers
(Supplementary Table S2), sorted by avg log2FC in descending
order, and filtered to retain genes expressed in at least 50% of the
target subpopulation. The top 5 characteristic genes for each cell
group included LYZ, MS4A1, GNLY, among others (Figure 2H).

10.3389/fimmu.2025.1676878

Identification of NK cell subpopulations

NK cells were extracted and re-normalized for clustering analysis,
resulting in the identification of three cell clusters (Supplementary
Figure S5A). Characteristic genes for each cluster were identified using
FindAllMarkers, and subpopulations were named based on the highly
expressed genes of each cluster (Supplementary Figure S5B;
Figure 3B). The identified subpopulations included IL32+NK
(n=904), NFKBIA+NK (n=675), and STMN1+NK (n=112;
Figure 3A), with varying proportions of cell subpopulations across
samples (Figure 3C; Supplementary Table S3). Characteristic genes for
each NK cell subpopulation were identified using FindAllMarkers
(Supplementary Table S4). The IL32+NK subpopulation exhibited
high expression of genes such as ISG15, TRAC, and ISG20, with its
characteristic genes enriched in biological processes related to
responses to viruses and exogenous stimuli, as well as T cell
activation regulation (Figure 3D; Supplementary Table S5). The
NFKBIA+NK subpopulation expressed high levels of AREG, XCLI,
and XCL2, with characteristic genes enriched in biological processes
related to cytoplasmic translation, nucleolar assembly, and
ribonucleoprotein complex biogenesis (Figure 3E; Supplementary
Table S5). The NFKBIA+NK subset exhibited concomitant elevation
of XCL1 and XCL2, chemokines critical for recruiting cDCI to bridge
innate and adaptive immunity (17), together with AREG, a factor
involved in tissue repair and immune regulation (18). This expression
profile suggests that these cells may function as an immunoregulatory
NK population specialized in coordinating antitumor immunity and
modulating the tumor microenvironment.The STMNI1+NK
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Microenvironment cell landscape. (A) scatter plot of highly variable genes; (B) ElbowPlot of principal component analysis; (C) TSNE distribution of
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expression; (F) TSNE distribution of cell types; (G) distribution ratio of sample cells; (H) bubble plot of top5 characteristic gene expression.
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NK cell subset identification. (A) UMAP distribution of cells in each subpopulation; (B) bubble chart of top5 characteristic gene expression; (C) distribution

ratio of cell subpopulations in each sample; (D—F) GOBP enrichment analysis bubble chart of characteristic genes in each subpopulation.
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FIGURE 4
Identification of myeloid cell subsets. (A) UMAP distribution of different cell

clusters; (B) Bubble diagram of marker gene expression; (C) UMAP

distribution diagram of marker gene expression; (D) UMAP distribution of cells in each subpopulation; (E) Bubble diagram of top5 characteristic gene
expression; (F) Proportion of cell subpopulation distribution in each sample; (G) Comparison of the proportion of TAM subpopulation cells in

different clinical feature groups.

subpopulation showed high expression of TYMS, DUT, and PCNA,
with characteristic genes enriched in biological processes such as DNA
replication, DNA recombination, and repair mechanisms (Figure 3F;
Supplementary Table S5). The concomitant high expression of PCNA
(a canonical marker of cell proliferation (19)), along with TYMS and
DUT (key enzymes involved in deoxyribonucleotide synthesis and
genomic fidelity (20, 21)), indicates that the STMN1+NK subset may
represents a proliferative NK cell population poised for clonal
expansion, potentially contributing to the maintenance and renewal
of NK cells within the tumor microenvironment.

Using TCGA-HNSC samples, feature scores for each NK cell
subpopulation were calculated, and samples were stratified into
high and low feature groups based on these scores. The results
indicated that the high feature group of IL32+NK was associated
with better prognosis (Supplementary Figure S6).

Identification of TAM cell subpopulations

Myeloid cells were extracted and re-normalized for clustering
analysis, resulting in the identification of 9 cell clusters at a resolution
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of 0.3 (Figure 4A). Cell types for each cluster were annotated based on
myeloid subpopulation markers and highly expressed genes
(Figures 4B, C). This analysis identified four TAM subpopulations
(APOE+TAM, IL1B+TAM, CXCL10+TAM, and HSP+TAM), two
monoocyte subpopulations (CD14+Mono and CD16+Mono), and
two dendritic cell subpopulations (cDC and LAMP3+DC; Figure 4D).
Characteristic genes for each cell subpopulation were identified using
FindAllMarkers (Supplementary Table S6). The APOE+TAM
subpopulation exhibited high expression of APOE, APOC1, C1QB,
and C1QA, with specific expression of M2 macrophage markers
MRC1, CD163, and MSR1, indicating an M2 bias. The IL1B+TAM
subpopulation showed high expression of IL1B, CCL3, and CXCLI12,
indicating an M1 bias. The CXCL10+TAM subpopulation expressed
high levels of CXCL10, ISG15, and CCL2, also indicating an M1 bias.
The HSP+TAM subpopulation exhibited high expression of HSPBI,
HSPAG6, and HSPAI1A, with no clear bias (Figure 4E). The distribution
proportions of cell subpopulations varied among samples (Figure 4F;
Supplementary Table S7). In patients aged 60 and above, the
proportion of APOE+TAM cells (within the myeloid cell
population) was significantly higher compared to those under 60.
The proportion of ILIB+TAM cells was higher in alcohol-consuming
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FIGURE 5

Cell communication analysis. (A) Receptor-ligand pairs/communication strength between different cell populations, the size of the dot represents
the corresponding cell number, the more cells the bigger the dot, the thickness of the line represents the receptor-ligand pairs/communication
strength between different cell populations, the more the number of ligands/communication strength the thicker the line, the color of the line is
consistent with the color of the signal sender; (B) signaling dominant statistical heat map, heat map of the outgoing signal contribution of each
pathway in the outgoing/incoming mode; (C) signaling dominant statistical dot map, the color of the dot represents the different cell populations,
the size of the dot is proportional to the number of ligands and receptors inferred for each cell population, the x-axis and y-axis represent the
strength of the cell population as a signal sender and receiver, respectively; (D) dot map of the outgoing signal contribution of each pathway in the
outgoing/incoming mode, the horizontal axis represents each signaling pathway, the vertical axis represents each type of cell, and the contribution
of each type of cell to the outgoing/incoming signal of a certain pathway; (E) network diagram of the signaling pathway; (F) heat map of the
receptor-ligand pairs/communication strength between IL32+NK cells and TAM cell subsets.

patients than in non-drinkers, while the proportions of CXCL10
+TAM and HSP+TAM cells showed no significant differences
across different clinical feature groups (Figure 4G).

Gene set enrichment analysis (GSEA) for KEGG and GOBP
pathways was performed on each myeloid cell subpopulation. The
pathways related to tyrosine metabolism, galactose metabolism, and
pyruvate metabolism, as well as biological processes such as
receptor-mediated endocrine signaling and organic hydroxy
compound metabolism, were significantly activated in the APOE
+TAM cells. In contrast, biological processes related to wound
healing, response to injury, and leukocyte migration were
significantly activated in ILIB+TAM cells. The CXCL10+TAM
cells exhibited significant activation of biological processes related
to the response to viruses, negative regulation of viral genome
replication, and modulation of responses to biological stimuli.
Additionally, biological processes such as protein folding,
response to temperature stimuli, and response to heat were

Frontiers in Immunology

09

significantly activated in HSP+TAM cells (Supplementary Figure
S7; Supplementary Table S8).

Characterization of NK cell interactions
with TAM cells based on ligand-receptor
interactions

To further elucidate the communication differences between
cell subpopulations, communication analysis was performed using
the CellChat package. A broad spectrum of cell communication was
observed among the various cell groups (Figures 5A-D). We
focused on the TAM subpopulations communicating with IL32
+NK cells, finding that the interactions primarily concentrated on
signaling pathways such as SPP1, MIF, and ITGB2 (Figure 5E). We
extracted the number of ligand-receptor pairs and communication
strength between IL32+NK and the four TAM subpopulations. The
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results revealed that both as signal senders and receivers, IL32+NK
cells exhibited more extensive interactions with the APOE+TAM
and CXCL10+TAM subpopulations (Figure 5F).

Validation of proximity of interactive cells
in three-dimensional space

Using CSOmap, we explored the three-dimensional spatial
proximity of NK cell subpopulations and TAM cell
subpopulations inferred from transcriptomic data (Figures 6A-C).
This analysis further confirmed the extensive interactions between
NK cell subpopulations and TAM cell subpopulations, with
particularly high proximity observed between IL32+NK and the
APOE+TAM and IL1B+TAM subpopulations (Figure 6D).

Immunofluorescence validation of protein
expression levels

To further validate the interaction between IL32+NK cells and
the APOE+ and CXCL10+TAM subpopulations, we performed
immunofluorescence analysis to assess the expression patterns of
the corresponding proteins. The results revealed a significant
positive correlation between IL32 and CXCL10 expression in the
majority of HNSCC tissue samples (P < 0.001, R = 0.641;
Figures 7A, B, E), indicating a potential cooperative relationship.
Conversely, IL32 expression was significantly negatively correlated
with APOE expression (P < 0.001, R = -0.686; Figures 7C, D, F),
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suggesting a mutually exclusive expression pattern between IL32
+NK cells and APOE+TAM.

Construction of prognostic signature
based on cell interaction mechanisms

Based on the results of cell communication and three-
dimensional spatial proximity analysis, we selected 620
characteristic genes from the APOE+TAM subpopulation that
had significant interactions with the IL32+NK subpopulation and
were spatially accessible as candidate genes. Univariate Cox
regression analysis conducted on these 620 candidate genes
revealed that 69 of them were significantly associated with the
prognosis of HNSC patients, including KDELR2, ITGB7, KDELRI,
TMED2, PDIA3, and ALG5 (Figure 8A; Supplementary Table S9).
Subsequently, LASSO-Cox regression analysis was performed on
these 69 genes. Using 10-fold cross-validation under optimal
conditions, we determined the penalty parameter (L) for the
model, identifying 23 key prognostic factors that influence patient
survival (Figures 8B-D; Supplementary Table S10). Based on the
expression levels of these 23 key prognostic factors and their
corresponding weights, we constructed a signature to evaluate the
prognosis of each patient, represented by the following formula:

Score = ITGB7 * (-0.164) + KDELR1 * (0.006) + ALG5 * (0.118)
+ ERP44 * (0.099) + BRI3 * (0.077) + TMBIMS6 * (0.311) + BCAP31
*(0.120) + ATP6VOEL * (0.119) + PLAU * (0.005) + NDUFA4 *
(0.010) + IGFLRI * (-0.175) + PSMD7 * (0.209) + PSMCI1 * (0.115)
+ NDFIP1 * (0.253) + SNX6 * (0.001) + PSMB5 * (0.020) + TCEAL4
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* (0.092) + ARLGIP1 * (0.010) + TRPV2 * (-0.017) + P4HA1 *
(0.120) + TPP1 * (0.144) + ATP2C1 * (-0.083) + IDHI * (0.012).
Using the constructed prognostic signature, we calculated the
risk scores for each patient in the training set and divided them into
high-risk and low-risk groups. Kaplan-Meier curve analysis and
log-rank tests indicated that patients in the high-risk group had a
significantly shorter OS (p < 0.05, Figure 9A). The predictive AUC
values for the samples at 1 year, 3 years, and 5 years were 0.665,
0.746, and 0.737, respectively (Figure 9B), suggesting that the score
can effectively characterize the OS of the samples. We then explored
the independence of the prognostic signature within the training
set. Cox regression models, both univariate and multivariate, were
constructed based on the prognostic signature and clinical
characteristics. The results indicated that the prognostic signature
is an independent prognostic factor (p < 0.05, Figure 9C).To assess
the reliability of the prognostic signature, we used GSE65858 as an
independent validation cohort. Patients were divided into high-risk
and low-risk groups based on the prognostic signature risk scores.
The overall survival rate of the high-risk group was also significantly
lower than that of the low-risk group (Figure 9D). The predictive
AUC values for the GSE65858 samples at 1 year, 3 years, and 5 years
were 0.623, 0.617, and 0.699, respectively (Figure 9E). Consistent
results were obtained from the Cox regression models based on the
prognostic signature and clinical characteristics, further supporting
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the notion that the prognostic signature is an independent
prognostic factor (Figure 9F).

Potential applications of the cell
interaction prognostic signature

Furthermore, we explored the predictive efficacy of the
prognostic signature for sample prognosis in the immunotherapy
cohorts PRJEB23709 and phs000452.v2.p1. Similarly, patients with
a high score had a significantly lower overall survival rate compared
to those with a low score (Figures 10A-D). Although not statistically
significant, patients in the responder group to immunotherapy had
lower scores than those in the non-responder group (Figure 10E).
The proportion of patients responding to immunotherapy was
higher in the low score group compared to the high score
group (Figure 10F).

Discussion

HNSCC is one of the most common malignant tumors,
characterized by extremely high malignancy, poor prognosis, and
a low 5-year survival rate (22). The emergence of cancer
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immunotherapy has transformed treatment models and is receiving
increasing attention (5, 23). In the HNSCC patients analyzed,
elevated expression of CD16 and CD64 in tumor tissue was
associated with improved prognosis, whereas high CD163
expression correlated with reduced five-year survival. CD16,
CD64, and CD163 are markers of NK cells and TAMs in the
tumor microenvironment, respectively. This study found that CD16
and CD64 were highly expressed in early-stage disease and well-
differentiated tumors, whereas CD163 was upregulated in late-stage
and poorly differentiated tumors. These findings suggest that NK
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cells and TAMs in the tumor immune microenvironment may be
closely associated with patient prognosis.

NK cells are a key component of the innate immune system and
serve as the first line of defense against cancer cell invasion (24). M1
macrophages, another crucial part of the innate immune system,
exhibit versatile functions. They can phagocytize and kill tumor
cells, contributing to immune defense, immune homeostasis,
immune surveillance, and antigen presentation. However, the
tumor microenvironment is primarily dominated by M2
macrophages, which suppress immune responses and promote
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FIGURE 9

Predictive efficacy of prognostic signature. Training cohort (TCGA-HNSC): (A) Kaplan—Meier survival analysis comparing high- and low-risk groups;
(B) time-dependent ROC curves at 1, 3, and 5 years; (C) univariate and multivariate Cox regression analyses of the risk score and clinical variables;
Validation cohort (GSE65858): (D) Kaplan—Meier survival analysis; (E) time-dependent ROC curves; (F) univariate and multivariate Cox regression

analyses.

tumor progression (25). Although there have been many studies on
NK cells or TAMs, research on their comprehensive effects and
potential clinical applications remains limited.

The resulting 23-gene prognostic signature, termed the NK and
TAM Composite Index (CINT), effectively stratified patients into
high- and low-risk groups across multiple cohorts. The area under
the curve (AUC) values for overall survival prediction (0.62-0.74
across time points and datasets) indicate moderate predictive
accuracy, comparable to other recently reported immune-related
prognostic models in HNSCC (26). While this performance is
encouraging for a biologically driven signature grounded in
cellular crosstalk, its clinical utility would benefit from further
refinement and validation. Although the immunotherapy cohorts
used for validation were relatively small, the consistent performance
of CINT across independent datasets (PRIEB23709 and
phs000452.v2.p1) highlights its potential generalizability and
supports the need for evaluation in larger, multi-center
immunotherapy-specific cohorts. Moreover, future studies
incorporating calibration and decision-curve analyses will be
essential to rigorously assess its net benefit relative to established
clinical parameters and prognostic tools. Importantly, the CINT
signature is uniquely grounded in the specific ligand-receptor
crosstalk between NK cells and TAM subsets, moving beyond
purely correlative associations to provide a more mechanistic
explanation of tumor microenvironment dysfunction. This
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biological foundation not only strengthens its prognostic
relevance but also offers deeper insights into actionable immune
escape pathways and potential therapeutic targets.

Our study identifies the IL32+NK-APOE+TAM axis as a
potential therapeutic target in head and HNSCC. Reprogramming
immunosuppressive APOE+TAM toward an antitumor phenotype
—for example, with CSF1R inhibitors or CD40 agonists (27, 28)—
may help restore immune surveillance. Conversely, boosting the
activity and recruitment of beneficial IL32+NK cells through IL-15
(29) superagonists or approaches that enhance IL-32 signaling
could shift the balance toward antitumor immunity. Furthermore,
emerging strategies such as chimeric antigen receptor-engineered
NK (CAR-NK) cells represent a promising avenue to enhance NK
cell cytotoxicity and persistence within the tumor
microenvironment, potentially acting synergistically with TAM-
targeted therapies to overcome immunosuppression (30, 31).

Numerous studies have highlighted the diverse roles of IL-32 in
various cancers. In some tumors, 1L-32 contributes to cancer
progression by modulating key signaling pathways, including NF-
kB, STAT3, and MAPK (32, 33). In contrast, in other cancers, IL-32
can promote tumor cell apoptosis and enhance the toxicity of NK
cells, thereby exerting an inhibitory effect on tumor growth (32-34).
One study reported that elevated expression of IL-32 is correlated
with a worse prognosis in patients with HNSCC (35). In our
research, we found that the characteristic score of the IL32+NK
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The efficacy of prognostic signature in immune data set. PRIEB23709 cohort: (A) Kaplan—Meier survival curves comparing overall survival between
high- and low-risk groups, with statistical significance assessed by the log-rank test (P < 0.05). (B) Distribution of risk scores across different
immunotherapy response groups. (C) Distribution of immunotherapy response status between high- and low-risk groups. phs000452.v2.p1 cohort:
(D) Kaplan—Meier survival curves comparing overall survival between high- and low-risk groups, with statistical significance assessed by the log-rank
test (P < 0.05). (E) Distribution of risk scores across different immunotherapy response groups. (F) Distribution of immunotherapy response status

between high- and low-risk groups.

cell subpopulation is associated with prognosis, where patients in
the high-feature group experienced better outcomes. The gene
expression profile of this subpopulation revealed that high
expression is linked to genes involved in responses to viruses and
external stimuli, as well as the regulation of T cell activation. This
suggests that IL32+NK cells may play a crucial role in immune
surveillance and regulation within the immune microenvironment
of head and neck squamous cell carcinoma. Their enhanced
ability to respond to viral and external challenges likely
enables them to more effectively recognize tumor cells, while their
role in T cell activation may bolster the overall immune
response, thereby inhibiting tumor progression and leading to
improved prognosis.

Conversely, the TAM subpopulations exhibited functional
heterogeneity, including subtypes with differing tendencies, such
as APOE+TAM (M2-like) and ILIB+TAM (MI-like). Notably,
certain TAM subpopulations showed variation in proportion
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among patients with different clinical characteristics. For instance,
the proportion of APOE+TAM cells was significantly higher in
patients aged 60 and above compared to those under 60, and the
IL1B+TAM cell proportion was greater in alcohol-consuming
patients than in non-drinkers. These findings suggest that clinical
characteristics may influence the distribution of TAM
subpopulations, which, in turn, can impact tumor progression
and patient prognosis. For instance, in elderly patients, chronic
inflammatory states accumulated over time may lead TAMs to shift
predominantly toward the M2 subtype (36, 37), potentially
increasing the risk of tumor progression. Notably, several studies
have shown that prolonged alcohol exposure activates monocytes
and macrophages, leading to an increased production of pro-
inflammatory cytokines, including TNF-o, IL-1, IL-6, and the
chemokine IL-8 (38). This may explain the higher ratio of IL1B
+TAM observed in alcohol consumers. The complex mechanisms
underlying this effect could indirectly influence tumor development
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and prognosis, warranting further investigation to confirm
these hypotheses.

The spatial organization of cells is closely linked to their
functions and behaviors, including cell-to-cell interactions. In our
study, we characterized the interactions between NK cells and TAM
cells based on ligand-receptor interactions. Using the CSOmap
algorithm, we inferred the three-dimensional accessibility and
communication information between NK cell subpopulations and
TAM cell subpopulations, demonstrating extensive interactions.
The results revealed that IL32+NK cells interacted more broadly
with APOE+TAM and CXCL10+TAM subpopulations, primarily
focusing on signaling pathways involving SPP1, MIF, and ITGB2.
Our immunofluorescence results further confirmed that IL32
expression in HNSCC was positively correlated with CXCL10
expression and negatively correlated with APOE expression.
SPP1, also known as osteopontin (OPN), is highly expressed in
various malignant tumors (39). In head and neck squamous cell
carcinoma, it binds to specific receptors, activating the PI3K/Akt
and MAPK signaling pathways. This activation promotes the
transformation of normal cells into malignant ones, enhances the
aggressive behavior of tumor-related cells, and ultimately
contributes to tissue infiltration and distant metastasis (40, 41).
Tumor cells also express high levels of MIF, which enables
malignant tumors to evade immune surveillance by inhibiting NK
cell-mediated detection and clearance (8, 42). Furthermore, MIF
promotes tumorigenesis by preventing ferroptosis in macrophages
and driving them toward an M2-like phenotype, further supporting
tumor progression (43, 44). In tumors, 2 integrin plays a key role
in cell adhesion, stromal remodeling, and signal transduction,
facilitating interactions among tumor cells and between tumor
cells and the tumor microenvironment (45). These activities
promote infiltration, angiogenesis, and tumor-specific immune
responses. Likewise, ITGB2 is closely associated with tumor
progression, contributing to cancer development, metastasis, and
invasion (46). For example, one study demonstrated that ITGB2
promotes OSCC proliferation by enhancing glycolytic activity in
cancer-associated fibroblasts (CAFs) through the PI3K/AKT/
mTOR pathway (47). In summary, prior experimental studies
have already demonstrated that TAMs can directly suppress or
reprogram NK cells via contact-dependent mechanisms and soluble
mediators, and that molecules such as MIF and SPP1 are implicated
in shaping tumor-promoting myeloid phenotypes and inhibiting
anti-tumor lymphocyte functions (15, 48, 49).

Despite the comprehensive nature of our analysis, several
limitations should be noted. The experimental validation cohort
was relatively small (n = 58) and derived from a single institution,
which may introduce selection bias, although this was partly
mitigated by validation in large public datasets. Future
multicenter prospective studies with larger cohorts are needed to
reduce bias and validate the robustness of our conclusions. The 23-
gene CINT signature, while demonstrating robust prognostic
performance, presents practical challenges for clinical translation
due to the complexity and cost of multi-gene detection. Future
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optimization should therefore focus on developing streamlined
formats, such as a reduced core-gene panel identified by machine
learning, or simplified detection platforms (e.g., NanoString,
targeted RT-qPCR, or minimal gene/protein classifiers), to
maintain comparable prognostic value while improving feasibility
in routine diagnostics. In addition, the immunotherapy validation
cohorts (n = 90 and n = 41) were modest in size, potentially limiting
the generalizability of our findings across diverse patient
populations and treatment settings, highlighting the need for
validation in larger multi-center cohorts. Finally, our
computational analyses suggested that NK cells interact with
TAMs and exhibit spatial correlation; however, the underlying
mechanisms still require functional validation. Future studies,
including co-culture and blocking experiments, will be conducted
to further confirm these NK-TAM interactions. Moreover,
although this study primarily focused on NK-TAM interactions,
we do not exclude the potential contributions of other immune cell
populations within the tumor microenvironment.
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