
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Wei-Wei Deng,
Wuhan University, China

REVIEWED BY

Erhui Jiang,
Wuhan University, China
Ying Gong,
Southern Medical University, China

*CORRESPONDENCE

Huan Li

cf250srfmmu@163.com

Jianhua Wei

weiyoyo@fmmu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 31 July 2025

ACCEPTED 29 September 2025
PUBLISHED 17 October 2025

CITATION

Zhao Z, Han X, Hu Y, Li Y, He Y, Wang Y,
Yao Y, Li H and Wei J (2025) Subtype-specific
NK cell-TAM interactions drive a novel
prognostic signature in HNSCC.
Front. Immunol. 16:1676878.
doi: 10.3389/fimmu.2025.1676878

COPYRIGHT

© 2025 Zhao, Han, Hu, Li, He, Wang, Yao, Li
and Wei. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 17 October 2025

DOI 10.3389/fimmu.2025.1676878
Subtype-specific NK cell-TAM
interactions drive a novel
prognostic signature in HNSCC
Zhenyan Zhao †, Xuejiao Han †, Yating Hu †, Yun Li, Yaodong He,
Yan Wang, Yanbing Yao, Huan Li* and Jianhua Wei*

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical
Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of
Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University,
Xi’an, China
Background: The immune microenvironment of head and neck squamous cell

carcinoma (HNSCC) is highly complex, and the mechanisms underlying

interactions between natural killer (NK) cells and tumor-associated

macrophages (TAMs) remain unclear. This study investigates the cellular

heterogeneity, interaction patterns, and prognostic significance of NK-TAM

crosstalk through multi-omics analyses.

Methods: A total of 58 HNSCC tissue samples were analyzed. NK and TAM subsets

were identified using immunohistochemistry (CD16, CD64, CD163), single-cell

RNA sequencing (GSE139324), and public databases (TCGA-HNSC, GSE65858).

CellChat was used to infer ligand-receptor interactions, while spatial proximity was

assessed via the CSOmap algorithm and validated by immunofluorescence. A

prognosticmodel was constructed using LASSOCox regression and validated in an

immunotherapy cohort (PRJEB23709, phs000452.v2.p1).

Results: High CD16/CD64 expression correlated with favorable prognosis, while

CD163 indicated poor outcomes (P < 0.05). NK cells were divided into IL32+NK

(antiviral, T cell–activating), NFKBIA+NK (ribosome-related), and STMN1+NK

(DNA repair–related) subsets. TAMs included APOE+TAM (M2-like), IL1B

+/CXCL10+TAM (M1-like), and HSP+TAM (stress-responsive). IL32+NK

interacted most strongly with APOE+TAM and CXCL10+TAM via SPP1, MIF, and

ITGB2 pathways. Spatial mapping and immunofluorescence confirmed proximity

and a positive correlation between IL32 and CXCL10 (R = 0.641, P < 0.001), and a

negative correlation with APOE (R=–0.686, P < 0.001). A 23-gene NK-TAM

interaction–related signature (CINT) effectively stratified patient risk in both

training and validation cohorts (P < 0.05) and predicted survival benefit in

immunotherapy-treated patients.

Conclusion: This study uncovers subtype-specific NK-TAM interactions in

HNSCC and introduces CINT as a robust prognostic and immunotherapy

response model, offering a new strategy for immune microenvironment–

targeted therapy.
KEYWORDS

head and neck squamous cell carcinoma, tumor microenvironment, NK cells, tumor-
associated macrophages, cell interaction, prognostic model
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Introduction

Head and neck cancer (HNC) is the seventh most prevalent

cancer worldwide, with approximately 890,000 new cases and

450,000 deaths annually (1). Among HNCs, head and neck

squamous cell carcinomas (HNSCCs) are the predominant

histological subtype (2), representing over 90% of all cases. The

incidence and prevalence of HNSCC vary considerably across

different countries and regions. These disparities are primarily

linked to factors such as tobacco exposure, excessive alcohol

consumption, and human papillomavirus (HPV) infection (3, 4).

Standard treatment options for head and HNSCC currently

encompass surgery, radiotherapy, chemotherapy, immunotherapy,

or a combination of these modalities. Immunotherapy, in

particular, has gained attention as a promising therapeutic avenue

for HNSCC (5). The immune microenvironment significantly

influences the pathophysiology of the disease (6). To improve

patient prognosis and the effectiveness of immunotherapy for

HNSCC, it is crucial to conduct in-depth exploration of the

tumor immune microenvironment.

NK cells, a key component of the innate immune system, play a

vital role in eliminating virally infected, stressed, and malignant

cells. Human NK cells are classified into two subsets based on their

surface expression of CD56: CD56bright and CD56dim, each

exhibiting distinct phenotypic traits (7). CD16 is a key functional

marker of NK cells, particularly highly expressed in the CD56dim

subset, which mediates antibody-dependent cellular cytotoxicity

(ADCC). It serves as a central target for enhancing the anti-

tumor activity of NK cells. Activation of NK cells occurs through

various molecular signals relayed by stimulatory or inhibitory

receptors found on a range of immune cells, including

macrophages, dendritic cells, eosinophils, and T cells. This

activation not only enables NK cells to execute their cytotoxic

functions but also facilitates communication and co-stimulation,

allowing them to modulate both innate and adaptive immune

responses effectively (8, 9).

TAMs are functionally categorized into classically activated M1

and alternatively activated M2 types (10). HumanM1macrophages,

marked by CD86 and CD64, act as the first line of defense against

microbial infections, exhibiting strong antigen-presenting capacity

and eliciting robust Th1 responses. M2 macrophages, characterized

by the expression of surface markers such as CD206 and CD163

(11), play a crucial role in modulating immune responses. As a

result, M2-type TAMs are frequently associated with pro-tumor

activities, whereas M1-type TAMs are linked to anti-tumor effects

(10, 12). This functional dichotomy highlights the importance of

understanding the balance between these macrophage subsets

within the tumor microenvironment, as it influences both tumor

progression and therapeutic outcomes.

Emerging evidence highlights the complex crosstalk between

TAMs and NK cells, a critical determinant of anti-tumor immune

responses. IL-10 secreted by TAMs suppresses the local production of

IL-12, a cytokine essential for inducing a Th1 response and enhancing

NK cell cytotoxicity (13). Young et al. (14) also demonstrated that

macrophages can inhibit NK cell function, showing that prostaglandin
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E2 (PGE2) released by alveolar macrophages suppressed NK cell

activity in a murine lung carcinoma model. Both M2-polarized

macrophages and TAMs inhibited NK cell CD27 expression and

cytotoxicity in a contact-dependent manner, with TGF-b being

essential for the suppressive effect of M2 macrophages. Additionally,

TAMs promoted a CD27low CD11bhigh exhausted NK cell phenotype

(15). However, the functional interactions between specific subsets of

NK and TAMs and their prognostic significance in the

microenvironment of HNSCC remain unclear. This study aims to

focus on the key cell interaction groups in the microenvironment of

head and neck squamous cell carcinoma, especially the NK and TAM

cell subpopulations with special status, and explore the special status

and prognostic efficacy of cell subpopulations from the perspective of

cell interaction.
Materials and methods

Patients and specimens

A total of 58 primary HNSCC specimens were collected from

the tissue bank of our affiliated hospital from 2014 to 2019. All

patients underwent radical surgical resection according to the

NCCN guidelines and did not receive chemotherapy or

radiotherapy before surgery. Follow-up was performed by

telephone interview or medical record review. Clinical

pathological parameters, including tumor stage, degree of

differentiation, smoking and drinking history, were retrieved from

medical records and follow-up data. The present study was

approved by the Medical Research Ethics Committee of The

Fourth Military Medical University.
Immunohistochemical staining

Paraffin-embedded tumor tissue samples were collected for

immunohistochemical (IHC) analysis. Primary antibodies

included rabbit polyclonal anti-CD16 (Servicebio, GB113963),

rabbit polyclonal anti-CD163 (Servicebio, GB115709), and rabbit

monoclonal anti-CD64 (Abcam, ab302901). Peroxidase-conjugated

goat anti-rabbit IgG antibodies were used as secondary antibodies.

All stained sections were independently and blindly evaluated by

two experienced pathologists. Tumor samples exhibiting positive

staining rates above the median were classified as having high

expression, while those with staining rates at or below the median

were classified as having low expression.
Data collection

FPKM expression profiles for TCGA-HNSC were downloaded

using the R package TCGAbiolinks, followed by log transformation.

Survival data and clinical information were also collected, retaining

494 tumor samples with both expression and survival information

for signature construction.
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The GEO database (https://www.ncbi.nlm.nih.gov/geo/) was

used to download bulk expression profile data from GSE65858

along with corresponding clinical information for signature

validation. The data processing standards for GEO bulk datasets

involved converting probes to symbols based on the

correspondence of each platform. Probes corresponding to

multiple genes were removed, while for multiple probes

corresponding to the same symbol, the median value was taken.

Additionally, the GSE139324 single-cell dataset for HNSCC was

downloaded from the GEO database. This dataset includes

expression profiles from 32 peripheral blood samples (26 tumor +

6 normal) and 31 tissue samples (26 tumor + 5 normal). Among

these, 31 tissue samples were selected for this project analysis,

focusing exclusively on immune cells (specifically NK cells and

TAMs) as required by the study design.

Clinical and transcriptomic data from two cohorts of tumor

patients undergoing PD-1/PD-L1 blockade therapy (PRJEB23709

and phs000452.v2.p1, Van Allen et al.) were downloaded to evaluate

the predictive efficacy of the signature in immunotherapy cohorts.

Details of the data types, actual sample sizes used in the analysis,

and their respective purposes are summarized in the Table 1.
Single-cell transcriptomic data quality
control

Quality control of the 31 single-cell samples was performed

using the R package Seurat (v4.1.0). To exclude low-quality cells and

low-expressed genes, the following thresholds were set: (1) each

gene must be expressed in at least 3 cells; (2) the number of features

per cell was restricted to between 500 and 2000, and the number of

counts per cell was set between 1000 and 7500; (3) the proportions

of mitochondrial genes and red blood cell genes in each cell were

both limited to less than 10%.

Subsequently, the NormalizeData function was used for

normalization, and the FindVariableFeatures function was

employed to identify highly variable genes based on an average

expression value (greater than 0.1 and less than 8) and dispersion

(greater than 0.5). Batch correction between samples was conducted

using the R package Harmony to avoid batch effects interfering with

downstream analyses. The data were then scaled, and

dimensionality reduction was performed using principal

component analysis (PCA), selecting the top 50 principal

components for downstream analysis. Visualization was
Frontiers in Immunology 03
accomplished using the RunTSNE function, and cell clustering

was conducted using the FindClusters function. Cell types were

annotated based on the expression of known markers.
Identification of NK cell subpopulations

NK cells were extracted from tumor samples, and following

standardization, normalization, identification of highly variable

genes, batch effect correction, and PCA (with parameters

consistent with the data quality control section), the top 50

principal components were selected with a resolution set to 0.3.

Clustering and subgroup identification were performed to recognize

NK cell subpopulations. Characteristic genes for each

subpopulation were identified using the FindAllMarkers function

(with avg_log2fc > 0.25 and p_val_adj < 0.05).
Identification of TAM cell subpopulations

Myeloid cells were extracted from tumor samples, and similar

procedures of standardization, normalization, identification of

highly variable genes, batch effect correction, and PCA were

applied (with parameters consistent with the data quality control

section). The top 50 principal components were selected, and a

resolution of 0.3 was set for clustering and subgroup identification.

Based on cell type markers, four TAM subpopulations, two DC

subpopulations, and two monocyte subpopulations were identified.

Characteristic genes for each subpopulation were identified using

the FindAllMarkers function (with avg_log2fc > 0.25, p_val_adj <

0.05, and min.pct > 0.5).
Cell communication analysis

To investigate the potential interactions between NK cell

subpopulations and TAM cell subpopulations, cell communication

analysis was performed on single-cell data using the R package

CellChat. The specific steps are as follows: the CellChat object was

constructed using the create CellChat function, and cell subpopulations

were set as the default cell identifiers using the setIdent function. The

CellChatDB.human database was configured as the ligand-receptor

interaction database. Overexpressed genes were identified using the

identifyOverExpressedGenes function, and overexpressed ligand-
TABLE 1 Datasets used in this study.

Dataset ID Data Type
Number of Tumor
Samples Used

Purpose of Analysis

TCGA-HNSC bulk 494 Signature construction; training set

GSE65858 bulk 270 Signature validation; validation set

PRJEB23709 bulk 90 Evaluation of signature predictive performance in immunotherapy cohorts

phs000452.v2.p1 bulk 41 Evaluation of signature predictive performance in immunotherapy cohorts

GSE139324 scRNA 26 tumor / 5 normal Identification of NK cell subpopulations, TAM subpopulations, and their marker genes
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receptor interactions were identified using the identify

OverExpressedInteractions function. The gene expression data were

projected onto the protein-protein interaction (PPI) network using the

projectData function. Communication probabilities were calculated and

the CellChat network was inferred using the computeCommunProb

function. Filtering was performed with the filterCommunication

function, setting min.cells = 10 as the threshold. Cell-cell

communication was inferred at the signaling pathway level using the

computeCommunProbPathway function, and the communication

network was aggregated using aggregateNet. Subsequently, the

interaction counts among different cell groups were visualized using

the netVisual_circle function. Additionally, the network centrality scores

were calculated using netAnalysis_computeCentrality, and the

visualization of the centrality scores was conducted with the

netAnalysis_signalingRole_network function.
Immunofluorescence analysis

Immunofluorescence (IF) staining was performed on 58

paraffin-embedded HNSCC tissue sections (4 mm thick) using the

tyramide signal amplification (TSA) system. Sections were

deparaffinized in xylene, rehydrated in graded ethanol, and

antigen-retrieved via microwave heating in EDTA buffer (pH 8.0).

Endogenous peroxidase was quenched with 3% H2O2 for 10 min,

followed by blocking with 5% BSA or 10% goat serum for 30 min.

The slides were then incubated overnight at 4°C with primary

antibodies, including anti-APOEmonoclonal antibody (66830-1-Ig,

Proteintech,1:400), anti-IL-32 polyclonal antibody (11079-1-AP,

Proteintech,1:400), and anti-CXCL10 polyclonal antibody (10937-

1-AP, Proteintech,1:500). The next day, sections were washed in

PBS and incubated with horseradish peroxidase (HRP)-conjugated

secondary antibodies, followed by TSA fluorophore development

according to the manufacturer’s instructions. Nuclear staining was

performed using 4′,6-diamidino-2-phenylindole (DAPI). For

multiplex staining, antigen retrieval and antibody incubation

steps were repeated for each target protein. After autofluorescence

quenching, slides were mounted with anti-fade medium. Images

were captured using a Nikon Eclipse C1 fluorescence microscope

and analyzed with Fiji ImageJ software.
Spatial organization and communication of
cells

The spatial organization of cells is closely related to various

cellular functions and behaviors, including cell-to-cell interactions.

However, scRNA-seq data typically lack such spatial information, as

cells must be separated prior to sequencing. The CSOmap

algorithm developed by Zhang Zemin’s team enables the spatial

reconstruction of gene expression using only scRNA-seq data (16).

Specifically, CSOmap can not only predict cell interactions but also

infer cellular spatial organization from scRNA-seq data, construct

spatial expression patterns of ligands and receptors, and infer
Frontiers in Immunology 04
intercellular communication information, revealing signaling

mechanisms of cell behaviors such as tumor progression,

development, and differentiation. Therefore, the CSOmap

algorithm was utilized to infer the three-dimensional proximity

and communication information between NK cell subpopulations

and TAM cell subpopulations.
Construction and validation of prognostic
biomarkers based on cellular interaction
mechanisms

Based on the characteristic genes of NK cell subpopulations, the

ssGSEA algorithm from the R package GSVA was used to calculate

the enrichment scores of each cell subpopulation for TCGA-HNSC

samples as subpopulation features. Univariate Cox regression

analysis was performed to determine the hazard ratios (HR) and

prognostic significance of the characteristics of each NK

cell subpopulation.

We integrated cell communication and spatial data to identify

TAM populations that significantly interact with prognosis-related

NK cell subpopulations (p < 0.05) and are spatially accessible. The

characteristic genes of these interacting TAM-NK cell groups were

then selected as candidate genes for further analysis.

Univariate Cox regression analysis was then used to determine the

HR and prognostic significance of the candidate genes, filtering for

genes with p < 0.05 to identify prognostic-related genes. LASSO

regression analysis (using the R package glmnet) was employed to

further select key prognostic factors. A risk score signature for

predicting patient survival was constructed by weighting the

expression of each key prognostic factor with its corresponding

LASSO regression coefficient (where “exp” represents gene

expression levels and “coef” represents LASSO regression coefficients):

Score =on
i=1expi � coefi

Samples were divided into high and low groups based on their

scores. Kaplan-Meier survival curves were generated for prognostic

analysis, and the log-rank test was utilized to determine the

significance of differences between the two groups, further analyzing

the correlation of these two categories with OS. The predictive

capability of the scoring system was evaluated using receiver

operating characteristic (ROC) curves, with the area under the curve

(AUC) visualized using the R package timeROC. Additionally, both

univariate and multivariate Cox analyses were conducted to explore

the independent prognostic value of the score.
GSVA (gene set variation analysis) and
functional enrichment

GSVA is a non-parametric, unsupervised method primarily

used to estimate variations in pathway and biological process

activity within samples. Gene sets from the KEGG and GOBP

sub-libraries of the MSigDB database were downloaded for GSVA
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analysis. The R packages GSVA and GSEABase were utilized to

compare functional differences among different cell subpopulations.
Statistical analysis

All in vitro experiments were independently repeated three times.

Intergroup comparisons and associations between protein expression

and clinicopathological parameters were analyzed using the c² test.
Correlations between protein expression levels were assessed using

Pearson correlation analysis. Survival analyses were conducted using

the Kaplan–Meier method, with differences compared using the log-

rank test. Statistical analyses were performed using SPSS software

(version 24.0; IBM Corp., Armonk, NY, USA), and a two-tailed P

value < 0.05 was considered statistically significant.

Bioinformatics analyses were carried out using R software

(version 4.1.2). For comparisons of expression levels, invasion

rates, and other characteristics, the Wilcoxon rank-sum test was

used for two-group comparisons, while the Kruskal–Wallis test was

applied for comparisons among multiple groups. In the figures, “ns”

indicates P > 0.05, * indicates P < 0.05, ** indicates P < 0.01, ***

indicates P < 0.001, and **** indicates P < 0.0001.
Frontiers in Immunology 05
Results

Correlation between CD16, CD64 and
CD163 expressions and patient prognosis

As summarized in Table 2, CD16, CD64, and CD163 exhibited

no significant association with the evaluated clinicopathological

parameters, encompassing gender, age, smoking history, alcohol

history. CD16 and CD64 exhibit high expression in early-stage

disease and well-differentiated tumors, in contrast to CD163, which

is upregulated in advanced stages and poorly differentiated tumors.

All patients were followed until death or for a maximum of 60

months. By the end of the follow-up period, 4 patients (6.9%; 4/58)

were lost to follow-up, 29 patients (50.0%; 29/58) were alive, and 25

patients (43.1%; 25/58) had died. The overall survival rate of

patients with HNSCC was analyzed based on the expression levels

of CD16, CD64, and CD163. As shown in Figure 1, high expression

of CD16 and CD64 was significantly associated with better

prognosis in HNSCC patients (P < 0.05; Figures 1A1, A2, C1,

C2), whereas high expression of CD163 correlated with poorer

prognosis (P < 0.05; Figures 1B1, B2, E).
TABLE 2 Clinicopathological correlates of CD16, CD64, and CD163 expression.

Variables N

CD16

c² P-value

CD64

c² P-value

CD163

c² P-valueHigh
(n=31)

Low
(n=27)

High
(n=30)

Low
(n=28)

High
(n=26)

Low
(n=32)

Gender

Male 25 13 12 0.037 0.847 14 11 0.007 0.933 12 13 0.179 0.672

Female 33 18 15 16 12 14 19

Age

≤50 30 16 14 0.000 0.849 15 15 0.074 0.786 12 18 0.586 0.444

>50 28 15 13 15 13 14 14

Stage

I + II 24 17 7 4.973 0.026* 17 8 5.107 0.024* 7 17 4.060 0.044*

III + IV 34 14 20 13 21 19 15

Smoking history

Nonsmoker 41 22 19 0.002 0.960 21 20 0.025 0.874 19 22 0.130 0.719

Smoker 17 9 8 9 8 7 10

Alcohol history

Nondrinker 45 25 20 0.358 0.549 22 23 0.014 0.905 21 24 0.275 0.600

Drinker 13 6 7 8 5 5 8

Pathological differentiation

Well 23 17 6 6.416 0.011* 18 5 10.75 0.001* 6 17 5.142 0.020*

Moderately/
poorly

35 14 21 12 23 20 15
fro
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Microenvironment cell landscape

After quality control of the single-cell data, a total of 60,951 cells

were retained, detecting 20,641 genes (quality control results are

shown in Supplementary Figure S1). Among these, 656 genes were

defined as highly variable genes (Figure 2A), including IGHG2,

IGHG3, and IGHG1. The top 50 principal components (PCs) were

selected for subsequent t-SNE visualization analysis (Figure 2B), and

Harmony was used to remove batch effects between samples

(Figures 2C, D). At a resolution of 2, 32 + 5 cell clusters were

identified (Supplementary Figure S2). Cell types for each cluster were

annotated based on known markers (Figure 2E; marker expression t-

SNE distribution is shown in Supplementary Figure S2). The

identified cell populations included 11,069 B cells, 1,287 cycling

cells, 290 mast cells, 4,778 myeloid cells, 1,747 NK cells, 16,570

NKT cells, 206 plasma cells, 24,409 T cells, and 595 unknown cells

(Figure 2F; t-SNE distribution maps of the two sample groups are

shown in Supplementary Figure S3). The cell proportions in the two

sample groups were statistically analyzed (Supplementary Table S1),

revealing that the proportions of myeloid, NKT, NK, and mast cells

were higher in tumor samples compared to normal samples, while the

proportion of B cells was lower in tumor samples (Figure 2G; see

Supplementary Figure S4). Subsequently, characteristic genes for

different cell types were identified based on FindAllMarkers

(Supplementary Table S2), sorted by avg_log2FC in descending

order, and filtered to retain genes expressed in at least 50% of the

target subpopulation. The top 5 characteristic genes for each cell

group included LYZ, MS4A1, GNLY, among others (Figure 2H).
Frontiers in Immunology 06
Identification of NK cell subpopulations

NK cells were extracted and re-normalized for clustering analysis,

resulting in the identification of three cell clusters (Supplementary

Figure S5A). Characteristic genes for each cluster were identified using

FindAllMarkers, and subpopulations were named based on the highly

expressed genes of each cluster (Supplementary Figure S5B;

Figure 3B). The identified subpopulations included IL32+NK

(n=904), NFKBIA+NK (n=675), and STMN1+NK (n=112;

Figure 3A), with varying proportions of cell subpopulations across

samples (Figure 3C; Supplementary Table S3). Characteristic genes for

each NK cell subpopulation were identified using FindAllMarkers

(Supplementary Table S4). The IL32+NK subpopulation exhibited

high expression of genes such as ISG15, TRAC, and ISG20, with its

characteristic genes enriched in biological processes related to

responses to viruses and exogenous stimuli, as well as T cell

activation regulation (Figure 3D; Supplementary Table S5). The

NFKBIA+NK subpopulation expressed high levels of AREG, XCL1,

and XCL2, with characteristic genes enriched in biological processes

related to cytoplasmic translation, nucleolar assembly, and

ribonucleoprotein complex biogenesis (Figure 3E; Supplementary

Table S5). The NFKBIA+NK subset exhibited concomitant elevation

of XCL1 and XCL2, chemokines critical for recruiting cDC1 to bridge

innate and adaptive immunity (17), together with AREG, a factor

involved in tissue repair and immune regulation (18). This expression

profile suggests that these cells may function as an immunoregulatory

NK population specialized in coordinating antitumor immunity and

modulating the tumor microenvironment.The STMN1+NK
FIGURE 1

Analysis of the impact of CD16, CD64, and CD163 expression on survival in HNSCC patients. (A1–C1) Representative immunohistochemical images
showing low-level expression of CD16, CD64, and CD163 in HNSCC patients; (A2–C2) Representative immunohistochemical images showing high-
level expression of CD16, CD64, and CD163 in HNSCC patients; (D, F) High-level expression of CD16 and CD64 is significantly associated with
improved overall survival in HNSCC patients (P < 0.05); (E) High-level expression of CD163 is significantly associated with poorer overall survival in
HNSCC patients (P < 0.05).
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FIGURE 2

Microenvironment cell landscape. (A) scatter plot of highly variable genes; (B) ElbowPlot of principal component analysis; (C) TSNE distribution of
sample cells before removing batch effect; (D) TSNE distribution of sample cells after removing batch effect; (E) bubble plot of marker gene
expression; (F) TSNE distribution of cell types; (G) distribution ratio of sample cells; (H) bubble plot of top5 characteristic gene expression.
FIGURE 3

NK cell subset identification. (A) UMAP distribution of cells in each subpopulation; (B) bubble chart of top5 characteristic gene expression; (C) distribution
ratio of cell subpopulations in each sample; (D–F) GOBP enrichment analysis bubble chart of characteristic genes in each subpopulation.
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subpopulation showed high expression of TYMS, DUT, and PCNA,

with characteristic genes enriched in biological processes such as DNA

replication, DNA recombination, and repair mechanisms (Figure 3F;

Supplementary Table S5). The concomitant high expression of PCNA

(a canonical marker of cell proliferation (19)), along with TYMS and

DUT (key enzymes involved in deoxyribonucleotide synthesis and

genomic fidelity (20, 21)), indicates that the STMN1+NK subset may

represents a proliferative NK cell population poised for clonal

expansion, potentially contributing to the maintenance and renewal

of NK cells within the tumor microenvironment.

Using TCGA-HNSC samples, feature scores for each NK cell

subpopulation were calculated, and samples were stratified into

high and low feature groups based on these scores. The results

indicated that the high feature group of IL32+NK was associated

with better prognosis (Supplementary Figure S6).
Identification of TAM cell subpopulations

Myeloid cells were extracted and re-normalized for clustering

analysis, resulting in the identification of 9 cell clusters at a resolution
Frontiers in Immunology 08
of 0.3 (Figure 4A). Cell types for each cluster were annotated based on

myeloid subpopulation markers and highly expressed genes

(Figures 4B, C). This analysis identified four TAM subpopulations

(APOE+TAM, IL1B+TAM, CXCL10+TAM, and HSP+TAM), two

monoocyte subpopulations (CD14+Mono and CD16+Mono), and

two dendritic cell subpopulations (cDC and LAMP3+DC; Figure 4D).

Characteristic genes for each cell subpopulation were identified using

FindAllMarkers (Supplementary Table S6). The APOE+TAM

subpopulation exhibited high expression of APOE, APOC1, C1QB,

and C1QA, with specific expression of M2 macrophage markers

MRC1, CD163, and MSR1, indicating an M2 bias. The IL1B+TAM

subpopulation showed high expression of IL1B, CCL3, and CXCL12,

indicating an M1 bias. The CXCL10+TAM subpopulation expressed

high levels of CXCL10, ISG15, and CCL2, also indicating an M1 bias.

The HSP+TAM subpopulation exhibited high expression of HSPB1,

HSPA6, andHSPA1A, with no clear bias (Figure 4E). The distribution

proportions of cell subpopulations varied among samples (Figure 4F;

Supplementary Table S7). In patients aged 60 and above, the

proportion of APOE+TAM cells (within the myeloid cell

population) was significantly higher compared to those under 60.

The proportion of IL1B+TAM cells was higher in alcohol-consuming
FIGURE 4

Identification of myeloid cell subsets. (A) UMAP distribution of different cell clusters; (B) Bubble diagram of marker gene expression; (C) UMAP
distribution diagram of marker gene expression; (D) UMAP distribution of cells in each subpopulation; (E) Bubble diagram of top5 characteristic gene
expression; (F) Proportion of cell subpopulation distribution in each sample; (G) Comparison of the proportion of TAM subpopulation cells in
different clinical feature groups.
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patients than in non-drinkers, while the proportions of CXCL10

+TAM and HSP+TAM cells showed no significant differences

across different clinical feature groups (Figure 4G).

Gene set enrichment analysis (GSEA) for KEGG and GOBP

pathways was performed on each myeloid cell subpopulation. The

pathways related to tyrosine metabolism, galactose metabolism, and

pyruvate metabolism, as well as biological processes such as

receptor-mediated endocrine signaling and organic hydroxy

compound metabolism, were significantly activated in the APOE

+TAM cells. In contrast, biological processes related to wound

healing, response to injury, and leukocyte migration were

significantly activated in IL1B+TAM cells. The CXCL10+TAM

cells exhibited significant activation of biological processes related

to the response to viruses, negative regulation of viral genome

replication, and modulation of responses to biological stimuli.

Additionally, biological processes such as protein folding,

response to temperature stimuli, and response to heat were
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significantly activated in HSP+TAM cells (Supplementary Figure

S7; Supplementary Table S8).
Characterization of NK cell interactions
with TAM cells based on ligand-receptor
interactions

To further elucidate the communication differences between

cell subpopulations, communication analysis was performed using

the CellChat package. A broad spectrum of cell communication was

observed among the various cell groups (Figures 5A-D). We

focused on the TAM subpopulations communicating with IL32

+NK cells, finding that the interactions primarily concentrated on

signaling pathways such as SPP1, MIF, and ITGB2 (Figure 5E). We

extracted the number of ligand-receptor pairs and communication

strength between IL32+NK and the four TAM subpopulations. The
FIGURE 5

Cell communication analysis. (A) Receptor-ligand pairs/communication strength between different cell populations, the size of the dot represents
the corresponding cell number, the more cells the bigger the dot, the thickness of the line represents the receptor-ligand pairs/communication
strength between different cell populations, the more the number of ligands/communication strength the thicker the line, the color of the line is
consistent with the color of the signal sender; (B) signaling dominant statistical heat map, heat map of the outgoing signal contribution of each
pathway in the outgoing/incoming mode; (C) signaling dominant statistical dot map, the color of the dot represents the different cell populations,
the size of the dot is proportional to the number of ligands and receptors inferred for each cell population, the x-axis and y-axis represent the
strength of the cell population as a signal sender and receiver, respectively; (D) dot map of the outgoing signal contribution of each pathway in the
outgoing/incoming mode, the horizontal axis represents each signaling pathway, the vertical axis represents each type of cell, and the contribution
of each type of cell to the outgoing/incoming signal of a certain pathway; (E) network diagram of the signaling pathway; (F) heat map of the
receptor-ligand pairs/communication strength between IL32+NK cells and TAM cell subsets.
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results revealed that both as signal senders and receivers, IL32+NK

cells exhibited more extensive interactions with the APOE+TAM

and CXCL10+TAM subpopulations (Figure 5F).
Validation of proximity of interactive cells
in three-dimensional space

Using CSOmap, we explored the three-dimensional spatial

proximity of NK cel l subpopulat ions and TAM cel l

subpopulations inferred from transcriptomic data (Figures 6A-C).

This analysis further confirmed the extensive interactions between

NK cell subpopulations and TAM cell subpopulations, with

particularly high proximity observed between IL32+NK and the

APOE+TAM and IL1B+TAM subpopulations (Figure 6D).
Immunofluorescence validation of protein
expression levels

To further validate the interaction between IL32+NK cells and

the APOE+ and CXCL10+TAM subpopulations, we performed

immunofluorescence analysis to assess the expression patterns of

the corresponding proteins. The results revealed a significant

positive correlation between IL32 and CXCL10 expression in the

majority of HNSCC tissue samples (P < 0.001, R = 0.641;

Figures 7A, B, E), indicating a potential cooperative relationship.

Conversely, IL32 expression was significantly negatively correlated

with APOE expression (P < 0.001, R = –0.686; Figures 7C, D, F),
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suggesting a mutually exclusive expression pattern between IL32

+NK cells and APOE+TAM.
Construction of prognostic signature
based on cell interaction mechanisms

Based on the results of cell communication and three-

dimensional spatial proximity analysis, we selected 620

characteristic genes from the APOE+TAM subpopulation that

had significant interactions with the IL32+NK subpopulation and

were spatially accessible as candidate genes. Univariate Cox

regression analysis conducted on these 620 candidate genes

revealed that 69 of them were significantly associated with the

prognosis of HNSC patients, including KDELR2, ITGB7, KDELR1,

TMED2, PDIA3, and ALG5 (Figure 8A; Supplementary Table S9).

Subsequently, LASSO-Cox regression analysis was performed on

these 69 genes. Using 10-fold cross-validation under optimal

conditions, we determined the penalty parameter (l) for the

model, identifying 23 key prognostic factors that influence patient

survival (Figures 8B-D; Supplementary Table S10). Based on the

expression levels of these 23 key prognostic factors and their

corresponding weights, we constructed a signature to evaluate the

prognosis of each patient, represented by the following formula:

Score = ITGB7 * (-0.164) + KDELR1 * (0.006) + ALG5 * (0.118)

+ ERP44 * (0.099) + BRI3 * (0.077) + TMBIM6 * (0.311) + BCAP31

* (0.120) + ATP6V0E1 * (0.119) + PLAU * (0.005) + NDUFA4 *

(0.010) + IGFLR1 * (-0.175) + PSMD7 * (0.209) + PSMC1 * (0.115)

+ NDFIP1 * (0.253) + SNX6 * (0.001) + PSMB5 * (0.020) + TCEAL4
FIGURE 6

CSOmap verifies the accessibility of cells in three-dimensional space. (A) distribution of cells in three-dimensional space; (B) distribution density of
cells on a two-dimensional plane; (C) statistical box plot of cell population distribution density; (D) heat map of accessibility of cell populations
inthree-dimensional space (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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* (0.092) + ARL6IP1 * (0.010) + TRPV2 * (-0.017) + P4HA1 *

(0.120) + TPP1 * (0.144) + ATP2C1 * (-0.083) + IDH1 * (0.012).

Using the constructed prognostic signature, we calculated the

risk scores for each patient in the training set and divided them into

high-risk and low-risk groups. Kaplan-Meier curve analysis and

log-rank tests indicated that patients in the high-risk group had a

significantly shorter OS (p < 0.05, Figure 9A). The predictive AUC

values for the samples at 1 year, 3 years, and 5 years were 0.665,

0.746, and 0.737, respectively (Figure 9B), suggesting that the score

can effectively characterize the OS of the samples. We then explored

the independence of the prognostic signature within the training

set. Cox regression models, both univariate and multivariate, were

constructed based on the prognostic signature and clinical

characteristics. The results indicated that the prognostic signature

is an independent prognostic factor (p < 0.05, Figure 9C).To assess

the reliability of the prognostic signature, we used GSE65858 as an

independent validation cohort. Patients were divided into high-risk

and low-risk groups based on the prognostic signature risk scores.

The overall survival rate of the high-risk group was also significantly

lower than that of the low-risk group (Figure 9D). The predictive

AUC values for the GSE65858 samples at 1 year, 3 years, and 5 years

were 0.623, 0.617, and 0.699, respectively (Figure 9E). Consistent

results were obtained from the Cox regression models based on the

prognostic signature and clinical characteristics, further supporting
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the notion that the prognostic signature is an independent

prognostic factor (Figure 9F).
Potential applications of the cell
interaction prognostic signature

Furthermore, we explored the predictive efficacy of the

prognostic signature for sample prognosis in the immunotherapy

cohorts PRJEB23709 and phs000452.v2.p1. Similarly, patients with

a high score had a significantly lower overall survival rate compared

to those with a low score (Figures 10A-D). Although not statistically

significant, patients in the responder group to immunotherapy had

lower scores than those in the non-responder group (Figure 10E).

The proportion of patients responding to immunotherapy was

higher in the low score group compared to the high score

group (Figure 10F).
Discussion

HNSCC is one of the most common malignant tumors,

characterized by extremely high malignancy, poor prognosis, and

a low 5-year survival rate (22). The emergence of cancer
FIGURE 7

Representative immunofluorescence images and correlation analysis. (A, B) Representative immunofluorescence images showing high-level (A) and
low-level (B) co-expression of IL32 and CXCL10; (C) Scatter plot demonstrating a significant positive correlation between IL32 and CXCL10
expression in HNSCC tissue samples. (P < 0.001, R = 0.641). (D, E) Representative immunofluorescence images showing high-level IL32 with low-
level APOE and low-level IL32 with high-level APOE; (F) Scatter plot demonstrating a significant negative correlation between IL32 and APOE
expression in HNSCC tissue samples. (P < 0.001, R = –0.686).
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immunotherapy has transformed treatment models and is receiving

increasing attention (5, 23). In the HNSCC patients analyzed,

elevated expression of CD16 and CD64 in tumor tissue was

associated with improved prognosis, whereas high CD163

expression correlated with reduced five-year survival. CD16,

CD64, and CD163 are markers of NK cells and TAMs in the

tumor microenvironment, respectively. This study found that CD16

and CD64 were highly expressed in early-stage disease and well-

differentiated tumors, whereas CD163 was upregulated in late-stage

and poorly differentiated tumors. These findings suggest that NK
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cells and TAMs in the tumor immune microenvironment may be

closely associated with patient prognosis.

NK cells are a key component of the innate immune system and

serve as the first line of defense against cancer cell invasion (24). M1

macrophages, another crucial part of the innate immune system,

exhibit versatile functions. They can phagocytize and kill tumor

cells, contributing to immune defense, immune homeostasis,

immune surveillance, and antigen presentation. However, the

tumor microenvironment is primarily dominated by M2

macrophages, which suppress immune responses and promote
FIGURE 8

Construction of prognostic signature. (A) KM survival curve of top6 prognostic genes; (B) LASSO regression independent variable change track, the
horizontal axis represents the logarithm of the independent variable Lambda, and the vertical axis represents the coefficient of the independent
variable; (C) LASSO regression confidence interval of each Lambda; (D) LASSO regression coefficient of key prognostic factors.
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tumor progression (25). Although there have been many studies on

NK cells or TAMs, research on their comprehensive effects and

potential clinical applications remains limited.

The resulting 23-gene prognostic signature, termed the NK and

TAM Composite Index (CINT), effectively stratified patients into

high- and low-risk groups across multiple cohorts. The area under

the curve (AUC) values for overall survival prediction (0.62–0.74

across time points and datasets) indicate moderate predictive

accuracy, comparable to other recently reported immune-related

prognostic models in HNSCC (26). While this performance is

encouraging for a biologically driven signature grounded in

cellular crosstalk, its clinical utility would benefit from further

refinement and validation. Although the immunotherapy cohorts

used for validation were relatively small, the consistent performance

of CINT across independent datasets (PRIEB23709 and

phs000452.v2.p1) highlights its potential generalizability and

supports the need for evaluation in larger, multi-center

immunotherapy-specific cohorts. Moreover, future studies

incorporating calibration and decision-curve analyses will be

essential to rigorously assess its net benefit relative to established

clinical parameters and prognostic tools. Importantly, the CINT

signature is uniquely grounded in the specific ligand–receptor

crosstalk between NK cells and TAM subsets, moving beyond

purely correlative associations to provide a more mechanistic

explanation of tumor microenvironment dysfunction. This
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biological foundation not only strengthens its prognostic

relevance but also offers deeper insights into actionable immune

escape pathways and potential therapeutic targets.

Our study identifies the IL32+NK–APOE+TAM axis as a

potential therapeutic target in head and HNSCC. Reprogramming

immunosuppressive APOE+TAM toward an antitumor phenotype

—for example, with CSF1R inhibitors or CD40 agonists (27, 28)—

may help restore immune surveillance. Conversely, boosting the

activity and recruitment of beneficial IL32+NK cells through IL-15

(29) superagonists or approaches that enhance IL-32 signaling

could shift the balance toward antitumor immunity. Furthermore,

emerging strategies such as chimeric antigen receptor-engineered

NK (CAR-NK) cells represent a promising avenue to enhance NK

ce l l cy to tox ic i t y and pers i s t ence wi th in the tumor

microenvironment, potentially acting synergistically with TAM-

targeted therapies to overcome immunosuppression (30, 31).

Numerous studies have highlighted the diverse roles of IL-32 in

various cancers. In some tumors, IL-32 contributes to cancer

progression by modulating key signaling pathways, including NF-

kB, STAT3, and MAPK (32, 33). In contrast, in other cancers, IL-32

can promote tumor cell apoptosis and enhance the toxicity of NK

cells, thereby exerting an inhibitory effect on tumor growth (32–34).

One study reported that elevated expression of IL-32 is correlated

with a worse prognosis in patients with HNSCC (35). In our

research, we found that the characteristic score of the IL32+NK
FIGURE 9

Predictive efficacy of prognostic signature. Training cohort (TCGA-HNSC): (A) Kaplan–Meier survival analysis comparing high- and low-risk groups;
(B) time-dependent ROC curves at 1, 3, and 5 years; (C) univariate and multivariate Cox regression analyses of the risk score and clinical variables;
Validation cohort (GSE65858): (D) Kaplan–Meier survival analysis; (E) time-dependent ROC curves; (F) univariate and multivariate Cox regression
analyses.
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cell subpopulation is associated with prognosis, where patients in

the high-feature group experienced better outcomes. The gene

expression profile of this subpopulation revealed that high

expression is linked to genes involved in responses to viruses and

external stimuli, as well as the regulation of T cell activation. This

suggests that IL32+NK cells may play a crucial role in immune

surveillance and regulation within the immune microenvironment

of head and neck squamous cell carcinoma. Their enhanced

ability to respond to viral and external challenges likely

enables them to more effectively recognize tumor cells, while their

role in T cell activation may bolster the overall immune

response, thereby inhibiting tumor progression and leading to

improved prognosis.

Conversely, the TAM subpopulations exhibited functional

heterogeneity, including subtypes with differing tendencies, such

as APOE+TAM (M2-like) and IL1B+TAM (M1-like). Notably,

certain TAM subpopulations showed variation in proportion
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among patients with different clinical characteristics. For instance,

the proportion of APOE+TAM cells was significantly higher in

patients aged 60 and above compared to those under 60, and the

IL1B+TAM cell proportion was greater in alcohol-consuming

patients than in non-drinkers. These findings suggest that clinical

characteristics may influence the distribution of TAM

subpopulations, which, in turn, can impact tumor progression

and patient prognosis. For instance, in elderly patients, chronic

inflammatory states accumulated over time may lead TAMs to shift

predominantly toward the M2 subtype (36, 37), potentially

increasing the risk of tumor progression. Notably, several studies

have shown that prolonged alcohol exposure activates monocytes

and macrophages, leading to an increased production of pro-

inflammatory cytokines, including TNF-a, IL-1, IL-6, and the

chemokine IL-8 (38). This may explain the higher ratio of IL1B

+TAM observed in alcohol consumers. The complex mechanisms

underlying this effect could indirectly influence tumor development
FIGURE 10

The efficacy of prognostic signature in immune data set. PRJEB23709 cohort: (A) Kaplan–Meier survival curves comparing overall survival between
high- and low-risk groups, with statistical significance assessed by the log-rank test (P < 0.05). (B) Distribution of risk scores across different
immunotherapy response groups. (C) Distribution of immunotherapy response status between high- and low-risk groups. phs000452.v2.p1 cohort:
(D) Kaplan–Meier survival curves comparing overall survival between high- and low-risk groups, with statistical significance assessed by the log-rank
test (P < 0.05). (E) Distribution of risk scores across different immunotherapy response groups. (F) Distribution of immunotherapy response status
between high- and low-risk groups.
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and prognosis, warranting further investigation to confirm

these hypotheses.

The spatial organization of cells is closely linked to their

functions and behaviors, including cell-to-cell interactions. In our

study, we characterized the interactions between NK cells and TAM

cells based on ligand-receptor interactions. Using the CSOmap

algorithm, we inferred the three-dimensional accessibility and

communication information between NK cell subpopulations and

TAM cell subpopulations, demonstrating extensive interactions.

The results revealed that IL32+NK cells interacted more broadly

with APOE+TAM and CXCL10+TAM subpopulations, primarily

focusing on signaling pathways involving SPP1, MIF, and ITGB2.

Our immunofluorescence results further confirmed that IL32

expression in HNSCC was positively correlated with CXCL10

expression and negatively correlated with APOE expression.

SPP1, also known as osteopontin (OPN), is highly expressed in

various malignant tumors (39). In head and neck squamous cell

carcinoma, it binds to specific receptors, activating the PI3K/Akt

and MAPK signaling pathways. This activation promotes the

transformation of normal cells into malignant ones, enhances the

aggressive behavior of tumor-related cells, and ultimately

contributes to tissue infiltration and distant metastasis (40, 41).

Tumor cells also express high levels of MIF, which enables

malignant tumors to evade immune surveillance by inhibiting NK

cell-mediated detection and clearance (8, 42). Furthermore, MIF

promotes tumorigenesis by preventing ferroptosis in macrophages

and driving them toward an M2-like phenotype, further supporting

tumor progression (43, 44). In tumors, b2 integrin plays a key role

in cell adhesion, stromal remodeling, and signal transduction,

facilitating interactions among tumor cells and between tumor

cells and the tumor microenvironment (45). These activities

promote infiltration, angiogenesis, and tumor-specific immune

responses. Likewise, ITGB2 is closely associated with tumor

progression, contributing to cancer development, metastasis, and

invasion (46). For example, one study demonstrated that ITGB2

promotes OSCC proliferation by enhancing glycolytic activity in

cancer-associated fibroblasts (CAFs) through the PI3K/AKT/

mTOR pathway (47). In summary, prior experimental studies

have already demonstrated that TAMs can directly suppress or

reprogram NK cells via contact-dependent mechanisms and soluble

mediators, and that molecules such as MIF and SPP1 are implicated

in shaping tumor-promoting myeloid phenotypes and inhibiting

anti-tumor lymphocyte functions (15, 48, 49).

Despite the comprehensive nature of our analysis, several

limitations should be noted. The experimental validation cohort

was relatively small (n = 58) and derived from a single institution,

which may introduce selection bias, although this was partly

mitigated by validation in large public datasets. Future

multicenter prospective studies with larger cohorts are needed to

reduce bias and validate the robustness of our conclusions. The 23-

gene CINT signature, while demonstrating robust prognostic

performance, presents practical challenges for clinical translation

due to the complexity and cost of multi-gene detection. Future
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optimization should therefore focus on developing streamlined

formats, such as a reduced core-gene panel identified by machine

learning, or simplified detection platforms (e.g., NanoString,

targeted RT-qPCR, or minimal gene/protein classifiers), to

maintain comparable prognostic value while improving feasibility

in routine diagnostics. In addition, the immunotherapy validation

cohorts (n = 90 and n = 41) were modest in size, potentially limiting

the generalizability of our findings across diverse patient

populations and treatment settings, highlighting the need for

validation in larger multi-center cohorts. Finally, our

computational analyses suggested that NK cells interact with

TAMs and exhibit spatial correlation; however, the underlying

mechanisms still require functional validation. Future studies,

including co-culture and blocking experiments, will be conducted

to further confirm these NK–TAM interactions. Moreover,

although this study primarily focused on NK–TAM interactions,

we do not exclude the potential contributions of other immune cell

populations within the tumor microenvironment.
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SUPPLEMENTARY FIGURE 1

GSEA enrichment analysis of myeloid cell subsets. A KEGG enrichment

analysis NES heat map of each subpopulation; B GOBP enrichment analysis
NES heat map of top5 subpopulations; C GOBP enrichment analysis rankmap

of top5 subpopulations.
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