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Macrophages are ubiquitously distributed across tissues, playing pivotal roles in

maintaining homeostasis under physiological conditions and modulating disease

progression in pathological contexts. Although the classic M1/M2 classification of

macrophage polarization provides a useful framework, it significantly

oversimplifies the plasticity and heterogeneity of these cells. Recent advances

that combine lineage tracing with multi-omic profiling have unveiled new

insights into macrophage functional specification. In this mini-review, we

examine how ontogeny, environmental cues, and genetic as well as epigenetic

factors converge to drive macrophage plasticity through epigenetic

reprogramming. Additionally, we highlight cutting-edge in situ profiling

techniques that facilitate the study of macrophages within their native tissue

microenvironment. A deeper understanding of macrophage plasticity promises

to elucidate fundamental regulatory mechanisms and uncover novel therapeutic

targets, paving the way for transformative disease treatments.
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Introduction

Macrophages stand out among mammalian cells for their extraordinary functional and

phenotypic diversity, reflected in their specialized identities across different tissues (1–3). In

the brain, these immune cells are termed microglia due to their glial-like morphology (4),

while in the liver they are known as Kupffer cells—named after their discoverer, Karl

Wilhelm von Kupffer (5). Bone-resident macrophages (osteoclasts) similarly exhibit unique

specialization for bone resorption (6). Despite their tissue-specific adaptations, all

macrophages share core characteristics: expression of markers like CD68, IBA-1, and F4/

80 (mouse-specific), and phagocytic activity critical for maintaining tissue homeostasis.

Beyond their functional versatility, macrophages are unique in their developmental

origins. Unlike most immune cells, they can arise from embryonic progenitors independent

of bone marrow hematopoiesis (7, 8). These embryonic-derived populations self-renew

with minimal contribution from circulating monocytes under steady-state conditions.

However, during injury or inflammation, monocytes infiltrate tissues and differentiate into
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functional macrophages—a plasticity rigorously demonstrated

through murine lineage-tracing studies (9). Remarkably,

macrophages retain plasticity even after terminal differentiation,

as demonstrated by their ability to undergo environmental

reprogramming. Striking evidence reveals that intratracheally

administered macrophages can acquire alveolar macrophage-like

characteristics upon lung engraftment (10), underscoring their

extraordinary capacity to adapt to new tissue microenvironments.

The M1/M2 macrophage definition - developed through in vitro

cytokine treatments to model distinct differentiation pathways - has

served as a foundational framework for understanding macrophage

polarization (11). However, this binary classification fails to capture

the complexity of in vivo conditions, where dynamic cell-cell

interactions and multifaceted microenvironmental cues converge

(12). In this mini-review, we explore three critical dimensions: (1)

the coordinated regulation of macrophage specification by ontogenetic

and environmental factors, (2) the genetic and epigenetic mechanisms

governing their plasticity, and (3) innovative in situ tools enabling

their study in native contexts. By synthesizing these perspectives, we

seek to stimulate new research directions in macrophage biology and

advance therapeutic development.
Macrophage specification through
nature and nurture factors

The relative contributions of ontogeny (“nature”) versus

environmental cues (“nurture”) to macrophage specification have

long been debated, with evidence supporting both perspectives (13,

14). Environmental dominance is exemplified by studies showing that

mouse peritoneal macrophages transplanted into alveolar air spaces

upregulate alveolar macrophage-specific genes. Similarly, in Kupffer-

cell-ablated livers, repopulating monocyte-derived macrophages

adopt a gene expression profile largely convergent with resident

Kupffer cells (15, 16). However, these monocyte-derived cells fail to

express Timd4, a conserved Kupffer cell identity marker, revealing

ontogenetic constraints (17). Likewise, hematopoietic stem cell-

derived progenitors that repopulate the brain after microglia

depletion do not express Sall1, even after extended periods, further

underscoring the indispensable role of lineage-specific factors absent

in bone marrow-derived precursors (18–20).

The key to distinguish the ontogeny effect from the

environmental signals is to identify cis-acting regulatory DNA

sequences, which can be either proximal promoter elements or

more distal enhancers, and trans-acting regulatory proteins, which

can be a signal transduction protein in response to

environmental cues.

Given that macrophages from different mouse strains exhibit

distinct polarization patterns, researchers have leveraged strain-

specific single nucleotide polymorphisms (SNPs) as a form of in

vivo mutagenesis screening (13). Notably, PU.1 and C/EBPa—two

lineage-determining transcription factors (LDTFs) in macrophages

—display strain-specific binding patterns at regulatory regions.

These differential binding events correlate with altered expression
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of nearby genes, implicating cis-regulatory elements in shaping

macrophage phenotypes. With the advent of CRISPR-based

genome editing, it is now feasible to directly interrogate the

functional role of these cis-regulatory elements by deleting or

modifying transcription factor binding motifs. Strikingly, deletion

of a super-enhancer that interacts with the promoter of Sall1 (a

microglia-specific LDTF) abolishes Sall1 expression specifically in

microglia and severely impairs their responsiveness to the TGFb–
SMAD signaling axis (21).

The significance of environmental or niche factors extends

beyond acute depletion models of resident macrophages to

inflammatory diseases like hepatitis and cancer. While

inflammatory signals primarily recruit blood monocytes, they also

induce profound epigenetic reprogramming in macrophages,

driving their phenotypic and functional plasticity. Notably, these

environmental trans-regulatory proteins act in concert with LDTFs.

For instance, in metabolic dysfunction-associated steatohepatitis,

the nuclear receptor LXRa (encoded by the Kupffer cell identity

gene Nr1h3) cooperates with ATF3 to upregulate Trem2 and Cd9

expression, shifting Kupffer cells toward a monocyte-derived

macrophage-like state (22).

Critically, neither ontogeny nor environmental cues operate in

isolation. Instead, their integration enables macrophages to

maintain tissue homeostasis while adapting to external stimuli

(Figure 1). LDTFs serve as pivotal mediators that bridge

ontogenetic programming and environmental responses, thereby

defining macrophage functional specialization. Identifying context-

specific LDTFs in physiological and pathological settings is

essential. Moreover, mapping their DNA binding sites (cis-

regulatory elements) and interacting nuclear partners (trans-

regulatory proteins) will provide mechanistic insights into this

dynamic process.
Genetic and epigenetic factors drive
macrophage plasticity

Tumors primarily accumulate mutations in malignant cells to

sustain uncontrolled growth, but somatic mutations also occur in

non-malignant cells, particularly in age-related conditions. When

these mutations arise in hematopoietic stem and progenitor cells

(HSPCs), they result in Clonal Hematopoiesis of Indeterminate

Potential (CHIP) (23). Notably, about 75% of CHIP variants affect

one of three epigenetic regulators: DNMT3A (involved in de novo

DNA CpG methylation), TET2 (a key mediator of DNA

demethylation and histone deacetylase recruitment), and ASXL1

(a component of the Polycomb Repressive Complex 2 that

facilitates H3K27 trimethylation). CHIP has been associated with

various pathologies, including kidney injury, diabetes,

cardiovascular disease, and cancer. For instance, a recent clinical

study of 421 non-small cell lung cancer patients revealed that 42%

harbored CHIP mutations. Intriguingly, TET2 mutations in CHIP

were linked not only to increased tumor-associated macrophages

but also to their enhanced immunosuppressive phenotype (24).
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Thus, loss-of-function mutations in these genes appear to release

epigenetic repression, driving macrophage plasticity and bridging

genetic alterations with epigenetic dysregulation.

Beyond CHIP-mediated plasticity, metabolic reprogramming

serves as another critical regulator of macrophage functional

adaptation (25). The connection between cellular metabolism and

macrophage polarization is well-established, particularly in the

context of M1/M2 paradigms. Reactive nitrogen and oxygen

species, for instance, are known to drive M1 polarization (26). In

tumor microenvironments, macrophages emerge as the

predominant glucose consumers, fueling both glycolytic and

tricarboxylic acid (TCA) cycle activity. Notably, TCA cycle

intermediates function as key epigenetic modulators: succinate

and fumarate regulate DNA methylation (by altering 5-mC/5-

hmC ratios) and histone methylation (particularly at H3K9,

H3K27, and H3K36), while acetyl-CoA directly modulates histone

acetylation states (27). These metabolic-epigenetic intersections

provide a mechanistic basis for how environmental cues can

shape macrophage plasticity.

The epigenetic reprogramming—including chromatin

remodeling and histone modifications—plays a pivotal role in

cellular adaptability (28, 29). For gene expression to initiate,

enhancer and promoter regions must first become accessible, a

challenge when these regions are tightly packed as heterochromatin.

Chromatin remodelers regulate nucleosome positioning and

decompaction, enabling transcription factor binding. This process

is closely tied to post-translational modifications of histone tails,

such as acetylation, methylation, and phosphorylation. For

example, H3K27ac marks transcriptionally active regions, whereas

H3K27me3 promotes heterochromatin formation and

gene silencing.
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Our recent work reveals that the bivalent H3K27 modification

(acetylation vs. trimethylation) is mutually exclusive and critically

regulates the phenotypic plasticity of Kupffer cells in liver

malignancies, including metastasis and hepatocellular carcinoma

(30, 31). In healthy liver tissue, H3K27ac maintains the expression

of Kupffer cell identity genes (Timd4, Clec4f, Id3). However, upon

tumor infiltration, H3K27me3 replaces H3K27ac at these loci, while

H3K27ac shifts to immunosuppressive gene enhancers (e.g., Spp1,

Trem2), reprogramming Kupffer cells from anti-tumor to pro-

tumor effectors. Notably, Spp1 and Trem2 exhibit open

chromatin even in normal Kupffer cells, suggesting that histone

modification switching serves as a rapid epigenetic reprogramming

mechanism to drive functional plasticity. However, how lineage-

specific factors cooperate with environmental factors to drive

epigenetic reprogramming remains unclear and warrants

further investigation.
In situ tools for probing macrophage
plasticity

Traditional studies of macrophage plasticity have relied on in

vitro differentiation models, where bone marrow-derived cells are

cultured with macrophage colony-stimulating factor (M-CSF) and

other cytokines to induce macrophage polarization (32). These

models have proven particularly valuable in elucidating the

phenomenon of trained immunity, a process whereby innate

immune cells develop enhanced responsiveness to secondary

stimuli through epigenetic reprogramming (evidenced by

characteristic histone modifications and chromatin accessibility

alterations) and metabolic rewiring (33). While in vitro epigenetic
FIGURE 1

LDTF-niche factor interplay drives macrophage plasticity through epigenetic regulation. (A) Conceptual framework. Macrophage phenotype is
primarily determined by its transcriptome, which emerges from the integrated effects of ontogenetic programming and environmental signals.
Ontogenetic factors include lineage-determining transcription factors (LDTFs) and their cognate DNA regulatory elements, while environmental
inputs comprise signaling cascades that cooperate with LDTFs to modulate gene expression. Identification of key LDTFs, their genomic binding
motifs, and interacting co-factors will provide critical insights into the molecular mechanisms governing macrophage plasticity. (B, C) Niche-
mediated reprogramming mechanisms. Environmental cues modulate macrophage function through two distinct pathways: (B) Direct epigenetic
reprogramming of tissue-resident macrophages via niche-derived signaling molecules, or (C) Recruitment and differentiation of monocyte-derived
inflammatory macrophages that primarily respond to niche signals rather than ontogenetic impriting.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1676953
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2025.1676953
profiling of cultured macrophages has provided mechanistic

insights into trained immunity, these models oversimplify the

complex tissue milieu, where multiple signals act in concert to

shape macrophage function.

Another common approach involves enzymatic tissue

dissociation, followed by macrophage labeling with fluorescent

antibodies and fluorescence-activated cell sorting (FACS).

However, both mechanical/enzymatic digestion and FACS impose

cellular stress, potentially altering macrophage states and

introducing artifacts into functional profiling.

To overcome these limitations, in situ methods—which analyze

cells within their native tissue environment—have emerged as a

powerful alternative (Figure 2). The core principle involves pre-

labeling cellular components (e.g., nuclei, RNA, or proteins) before

tissue disruption, followed by molecule-based enrichment rather

than whole-cell isolation. This strategy preserves physiological

context while enabling precise characterization of macrophage

identity and activity.

For in situ nuclear profiling of specific cell populations,

researchers can employ two distinct NuTRAP mouse models that

fluorescently label either nuclear membranes or histones (34).

These tools enable comprehensive epigenetic characterization

through chromatin accessibility assays (ATAC-seq), histone

modification profiling (CUT&Tag), and transcription factor

binding analysis (CUT&RUN). Following rapid tissue lysis, the

isolated nuclei are fixed with formalin to maintain native epigenetic

states. The fluorescently labeled nuclei can then undergo

fluorescence-activated cell sorting (FACS) to achieve cell-specific

resolution for downstream epigenetic analyses (35).
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For RNA pre-labeling, two primary methods are available:

incorporation of thiouracil ribonucleotides into newly synthesized

RNA or immunoprecipitation of ribosomes bound to actively

translated mRNA. In the first approach, the uracil analog 4-

thiouracil is converted to thio-uridine monophosphate (thio-

UMP) by a parasite-derived uracil phosphoribosyltransferase

(UPRT) and incorporated into nascent RNA (36). By engineering

mice to express UPRT in a cell-specific manner, 4-thiouracil

incorporation can be restricted to target cell populations (37).

The labeled RNA can then be isolated through biotinylation or

alkylation-based capture methods. The second approach is more

straightforward, utilizing cell-specific expression of GFP-tagged

ribosomes (translational ribosome affinity purification) (38). GFP

immunoprecipitation enables enrichment of actively translated

mRNAs associated with these ribosomes, providing a direct

method to profile cell-specific translational activity.

Studying protein-protein interactions (PPIs) presents significant

challenges, particularly in vivo, where many interactions are transient

or weak. To address this, researchers have engineered mutant biotin

ligases with rapid labeling kinetics, including TurboID, which has

been adapted for use in mouse brain studies (39, 40). In this model,

TurboID expression is restricted to astrocytes, enabling cell-specific

biotinylation of proteins within these cells. Following tissue lysis,

biotinylated proteins can be purified via immunoprecipitation for

downstream analysis. Importantly, this approach can be extended to

investigate macrophage specification by targeting TurboID

expression to endogenous macrophage lineage factors (41), thereby

enabling precise profiling of macrophage-specific PPIs in their

native context.
FIGURE 2

An overview of in situ multi-omic profiling. In situ profiling enables cell-specific molecular labeling through tissue-specific expression of engineered
proteins. For RNA profiling, uracil phosphoribosyltransferase (UPRT) incorporates thiouracil (thio-U) into nascent RNA, which can then be enriched
via either immunoprecipitation (IP) or iodoacetamide (IAA) alkylation, the latter inducing T->C and A->G mutations in thio-U-labeled transcripts.
Alternatively, EGFP-tagged ribosomes allow Cre+ cell mRNA isolation through GFP immunoprecipitation. For nuclear profiling, fluorescent labeling
of nuclear membrane or histone proteins permits fluorescence-activated nuclear sorting (FANS) to purify nuclei from specific cell populations,
facilitating downstream epigenetic analyses.
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Discussion

Understandingmacrophage plasticity and heterogeneity is essential

for developing targeted therapies for diverse diseases. While the

traditional M1/M2 classification has provided a foundational

framework, it fails to capture the multidimensional and dynamic

nature of macrophage functional states. In this mini-review, we

highlight the critical importance of considering ontogenetic

imprinting when interpreting macrophage functionality, as evidenced

by the functional disparities between embryonic-derived and

monocyte-repopulated macrophages during tissue homeostasis.

Conversely, in disease contexts, particularly inflammatory conditions,

niche factors drive environmental reprogramming that either directly

alters tissue-resident macrophages or promotes monocyte recruitment

and differentiation within inflamed tissues. Importantly, neither

ontogenetic programming nor environmental cues operate in

isolation; rather, their interplay shapes macrophage behavior through

dynamic epigenetic mechanisms. Emerging evidence underscores the

pivotal role of enhancer landscape reprogramming in this process, with

characterization of these epigenetic modifications offering novel

insights into macrophage regulation (42).

We propose that integrating lineage information with epigenetic

profiling offers a more comprehensive approach to deciphering

macrophage function. Current methods like single-cell RNA

sequencing (scRNA-seq), whether performed with or without

fluorescence-activated cell sorting (FACS), generate valuable data

but require extensive tissue processing. These procedures disrupt the

native microenvironment and induce cellular stress, potentially

obscuring critical stromal influences on macrophage behavior.

To overcome these limitations, we advocate for the

complementary use of emerging in situ techniques. These state-

of-the-art tools enable macrophage investigation within their native

tissue context, preserving crucial cellular interactions and

microenvironmental cues. Their application promises to yield

novel insights into macrophage biology while overcoming the

artifacts associated with traditional isolation methods.
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