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Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by

the immune-mediated destruction of pancreatic b cells, leading to absolute insulin

deficiency and chronic hyperglycemia. Traditionally, the onset of T1D has been

attributed to the interplay of genetic predisposition and environmental factors that

disrupt immune tolerance. However, growing evidence suggests that b cells are

not merely passive targets of immune attack. Instead, under conditions of

inflammatory and metabolic stress, b cells actively participate in immune

modulation by upregulating various immunologically relevant molecules,

particularly pattern recognition receptors (PRRs). These innate immune sensors

enable b cells to detect danger-associated signals and modulate local immune

responses, thereby influencing their survival and immunogenicity. In this review,

we summarize current knowledge about the expression profiles and

immunoregulatory roles of PRRs in pancreatic b cells and explore their potential

contributions to T1D pathogenesis. A deeper understanding of PRR-mediated

signaling in b cells may provide novel insights into the immunopathology of T1D

and reveal promising targets for therapeutic intervention.
KEYWORDS
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1 Introduction

Type 1 diabetes (T1D) is a paradigmatic organ-specific autoimmune disease

characterized by the immune system’s aberrant recognition and destruction of pancreatic

b cells, resulting in progressive b-cell loss and absolute insulin deficiency (1, 2). Although

T1D has a lower incidence than type 2 diabetes, it typically manifests at a younger age,

progresses more rapidly, and has shown a steady global increase in incidence in recent

decades, particularly among children and adolescents (3, 4).
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The pathogenesis of T1D is multifactorial, driven by the

interplay of genetic susceptibility (e.g., HLA-DR3-DQ2 or HLA-

DR4-DQ8 genotype), environmental triggers (such as viral

infections and gut microbiota dysbiosis), and both innate and

adaptive immune responses (5–7). Growing evidence indicates

that autoimmunity in T1D frequently precedes clinical onset and

is primarily initiated by innate immune mechanisms. Innate

immune cells, including B-1a cells, neutrophils, and plasmacytoid

dendritic cells, sequentially contribute to the early phase of disease

onset. By recognizing pathogen-associated molecular patterns

(PAMPs) and damage-associated molecular patterns (DAMPs)

released from injured or infected cells, the innate immune system

triggers local inflammatory responses, creating a proinflammatory

milieu that primes the adaptive immune system in mice (8, 9).

During this process, damaged pancreatic b cells release

autoantigens, such as insulin and glutamate decarboxylase

(GAD), which are subsequently processed and presented by

antigen-presenting cells (APCs) via major histocompatibility

complex (MHC) molecules (10). This antigen presentation

triggers the activation of autoreactive T cells and initiates a

classical immune cascade (11). As the disease progresses, adaptive

immune responses mediate the selective destruction of b cells, the

pathological hallmark of T1D. CD8+ cytotoxic T lymphocytes are

recognized as the principal effectors in b-cell destruction, whereas
the roles of CD4+ helper T cells in the human islet remain less well

defined, although they are thought to support CD8+ T-cell

cytotoxicity and promote B-cell responses (12).

T1D has traditionally been viewed as an autoimmune disease

driven by immune system dysfunction. Based on these findings,

both antigen-specific and non-antigen-specific immunotherapies,

such as oral insulin administration and Bacillus Calmette–Guérin

vaccine immunization, have been explored to induce immune

tolerance. However, these interventions have not yet achieved

satisfactory clinical efficacy (13–16). To date, the only

immunotherapy approved by the U.S. Food and Drug

Administration for T1D prevention is the CD3 monoclonal

antibody teplizumab, which can delay disease onset by

approximately two years in high-risk individuals. Nonetheless, its

long-term ability to halt disease progression remains uncertain (17).

Collectively, these observations suggest that immune dysregulation

alone may not fully explain the complex pathogenesis of T1D.

In recent years, increasing attention has been directed toward

the active role of pancreatic b cells in the pathogenesis of T1D.

Traditionally viewed as passive targets of immune attack, b cells are

now recognized as active participants in immune regulation,

particularly under inflammatory or stress conditions. Emerging

evidence indicates that b cells can upregulate a range of innate

immunity-related molecules, most notably pattern recognition

receptors (PRRs), thereby acquiring immune-sensing capabilities

(18). PRRs, including Toll-like receptors (TLRs), C-type lectin

receptors (CLRs), NOD-like receptors (NLRs), RIG-I-like

receptors (RLRs), and AIM2-like receptors (ALRs), trigger the

expression of proinflammatory cytokines and/or type I

interferons upon activation. In addition, they regulate non-

transcriptional processes such as phagocytosis, autophagy,
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cytokine maturation, and programmed cell death, orchestrating

the crosstalk between innate and adaptive immunity (19–21). The

expression of multiple PRRs has been confirmed in b cells from

both animal models and human pancreatic tissue (Table 1).

Activation of these receptors elicits antiviral and inflammatory

responses that may confer protective effects in certain contexts

but can also enhance b-cell immunogenicity, potentially initiating

or amplifying autoimmune responses under permissive conditions

(22–25). These findings underscore the importance of investigating

T1D pathogenesis through the lens of b-cell-intrinsic immunity and

PRR-mediated danger sensing, which may yield novel insights into

disease initiation and progression.

In this review, we systematically summarize the expression

profiles of PRRs in pancreatic b cells, examine how their

activation modulates b-cell function and contributes to T1D

pathogenesis, and highlight potential implications for future

mechanistic studies and therapeutic interventions.
2 Sensing bacterial danger: the role of
TLR2, TLR4, and ALPK1 in b cells

b cells express a variety of pattern recognition receptors that

detect bacterial danger signals. Toll-like receptors, especially TLR2

and TLR4, are the most extensively studied and mediate recognition

of microbial lipoproteins and lipopolysaccharides (LPS) at the cell

surface. In parallel, alpha kinase 1 (ALPK1) has recently emerged as

a cytosolic sensor of bacterial metabolites, providing a non-TLR

pathway that complements TLR-mediated recognition (Figure 1).
2.1 Overview of TLR-Mediated signaling

TLRs, a prominent class of PRRs, are essential for the innate

immune system’s capacity to detect microbial components.

Structurally, TLRs feature extracellular leucine-rich repeats (LRRs)

for ligand recognition, a transmembrane region, and a cytoplasmic

Toll/IL-1 receptor (TIR) domain for signal transduction. To date, ten

TLRs (TLR1-TLR10) have been identified in humans and twelve

(TLR1-TLR9 and TLR11-TLR13) in mice, with TLR1 through TLR9

being highly conserved across both species (26).

TLR signaling proceeds primarily through two canonical

pathways: the MyD88 (myeloid differentiation primary response

88)-dependent pathway and the TRIF (TIR-domain-containing

adapter-inducing interferon-b)-dependent pathway (27–29). Most

TLRs, except TLR3, signal via the MyD88 pathway. Uniquely, TLR4

engages both the MyD88-dependent and TRIF-dependent

pathways, the latter via the adaptor protein TRIF-related adaptor

molecule (TRAM). This dual signaling capacity enables coordinated

activation of nuclear factor kappa-light-chain-enhancer of activated

B cells (NF-kB) and interferon regulatory factor 3 (IRF3), thereby

inducing both proinflammatory and antiviral responses (27, 30).

Beyond detecting exogenous PAMPs, TLRs also recognize

endogenous DAMPs, playing a pivotal role in steri le

inflammation. DAMPs are endogenous molecules released or
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exposed by stressed, injured, or necrotic cells, acting as internal

danger signals and potent activators of innate immunity (31–33).

Building upon these core signaling mechanisms, we next examine

how TLR2 and TLR4 contribute to the recognition of bacterial and

endogenous danger signals in pancreatic b cells.
2.2 TLR2

TLR2 typically forms heterodimers with TLR1 or TLR6 to

recognize bacterial lipoproteins and peptidoglycan (PGN). In

addition to sensing PAMPs, TLR2 also recognizes endogenous

DAMPs, such as heat shock proteins (HSPs), high-mobility

group box 1 (HMGB1), and oxidized low-density lipoprotein

(OxLDL) (34, 35).

Multiple studies have confirmed the expression of TLR2 in

pancreatic b cells and related cell lines across both murine and

human systems. In mice, reverse transcription polymerase chain

reaction (RT-PCR) has detected TLR2 mRNA in primary islets

(36–38). Similarly, human b cells express TLR2 transcripts, with

significantly elevated levels observed in individuals with type 2

diabetes, suggesting a conserved role for TLR2 in b-cell stress

sensing and immune regulation (36, 38). Murine and human b-cell
lines also show consistent TLR2 mRNA expression, further

supporting its involvement in b-cell physiology and innate immune

responses (36–38).
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The functional consequences of TLR2 activation in b cells

appear to be context-dependent. Stimulation with TLR2 ligands

such as PGN induces the expression of proinflammatory cytokines,

including Tumor Necrosis Factor (TNF)-a, and Interleukin (IL)-6,

in mouse islets and suppresses insulin secretion under high-glucose

conditions, without significantly affecting b-cell viability (37). In

contrast, b cells derived from TLR2/4-deficient mice retain normal

insulin secretory responses to glucose and KCl stimulation.

Furthermore, exposure of mouse and human islets to the TLR2

agonist lipoteichoic acid (LTA) and TLR4 agonist LPS markedly

reduces b-cell proliferation under hyperglycemic conditions (38).

TLR2 has also been implicated in the pathogenesis of T1D. It

has been proposed that TLR2 senses DAMPs released during b-cell
apoptosis, thereby activating APCs and priming autoreactive T cells

(39). In the multiple low-dose streptozotocin (STZ) model, TLR2-

deficient mice exhibit delayed disease onset and progression (40).

Similarly, under specific pathogen-free conditions, TLR2 deficiency

reduces diabetes incidence in non-obese diabetic (NOD) mice;

however, this protective effect is abrogated under germ-free

conditions, highlighting a microbiota-dependent modulation of

TLR2-mediated diabetogenicity (41).

Although b cell-specific TLR2 knockout (KO) models are

currently unavailable, Bernd Krüger and colleagues employed an

ectopic islet transplantation approach to investigate the b cell-

intrinsic role of TLR2. In STZ-induced diabetic mice,

transplantation of untreated syngeneic islets under the kidney
TABLE 1 Overview of b cell-associated PRRs implicated in type 1 diabetes.

Sensing
category

PRR Location PAMPs DAMPs

Bacterial
structural ligands

TLR2 Plasma membrane Lipoprotein, PGN HSPs, HMGB1, OxLDL

TLR4 Plasma membrane LPS
HSPs, HMGB1, OxLDL, hyaluronan,

b-defensins

ALPK1 Cytosol ADP-heptose ND

Viral RNA

TLR3 Endosome dsRNA (~40–50 bp) Mitochondrial RNA

MDA5 Cytosol long dsRNA (>1 kb) Mitochondrial dsRNA

RIG-I Cytosol
Short dsRNA (<1 kb), uncapped 5′

ppp ssRNA
5’-Triphosphate self-RNA,
Mitochondrial dsRNA

Cytosolic DNA

AIM2 Cytosol Exogenous dsDNA Host dsDNA

TLR9 Endosome Unmethylated CpG DNA
Mitochondrial DNA, nuclear

self-DNA

cGAS Cytosol Viral or bacterial DNA
Mitochondrial DNA, leaked

genomic DNA

Cellular stress

NLRC5 Cytosol, Nucleus ND ND

NLRP3 Cytosol Various PAMPs
ATP, ROS, K+ efflux,
mitochondrial DNA

RAGE Plasma membrane ND
AGEs, HMGB1, S100 family proteins,

amyloid-b peptides
PRR, pattern recognition receptor; PAMP, pathogen-associated molecular pattern; DAMP, damage-associated molecular pattern; TLR, Toll-like receptor; ALPK1, alpha kinase 1; MDA5,
melanoma differentiation-associated protein 5; RIG-I, retinoic acid–inducible gene I; AIM2, absent in melanoma 2; NLRC5, NOD-like receptor family caspase recruitment domain–containing 5;
NLRP3, NOD-, LRR-, and pyrin domain–containing protein 3; PGN, peptidoglycan; LPS, lipopolysaccharide; HMGB1, high-mobility group box 1; HSP, heat shock protein; ROS, reactive oxygen
species; dsRNA, double-stranded RNA; ssRNA, single-stranded RNA; CpG-DNA, cytosine-phosphate-guanine DNA; ATP, adenosine triphosphate; cGAS, cyclic GMP-AMP Synthase; RAGE,
receptor for advanced glycation endproducts; AGEs, advanced glycation end products; ND, not determined.
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capsule restored normoglycemia. In contrast, islets pretreated with

PGN (a TLR2 agonist) failed to reverse hyperglycemia, whereas

PGN-treated TLR2-/- islets successfully normalized blood glucose

levels. These findings highlight a detrimental role for b-cell TLR2
activation in islet survival and function (37). Collectively,

these studies indicate that in mice TLR2 not only mediates

proinflammatory signaling in immune cells but also directly

contributes to b-cell dysfunction and the pathogenesis of T1D

through its expression and activation in pancreatic b cells.
2.3 TLR4

TLR4, the first functionally characterized member of the TLR

family, primarily recognizes LPS from Gram-negative bacteria and

various DAMPs, including HMGB1, HSPs, S100 proteins, oxLDL,

hyaluronan, and b-defensins (42, 43). Unlike most TLRs, TLR4

signals through both the MyD88- and TRIF-dependent pathways.
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At the plasma membrane, it engages MD-2 and CD14 to activate

NF-kB via MyD88, thereby promoting the production of

proinflammatory cytokine and chemokines. Upon endocytosis,

TLR4 recruits TRAM and TRIF, leading to IRF3 activation

and induction of type I interferons (44). Through this dual

signaling, TLR4 acts as a key regulator of innate immune and

inflammatory responses.

Expression of TLR4 mRNA and protein has been detected in

pancreatic b cells from both mice and humans, as well as in b-cell
lines (36–38, 45, 46). TLR4 expression is inducible by LPS

stimulation, suggesting transcriptional regulation under

inflammatory conditions. In NOD mice, TLR4 levels are relatively

low during the pre-diabetic stage (4–6 weeks) but increase

significantly during early disease progression (10–14 weeks),

implicating TLR4 in the pathogenesis of T1D. Although HMGB1

can bind several receptors, including TLR2, TLR4, TLR9, and the

receptor for advanced glycation endproducts (RAGE), evidence

from isolated NOD islets indicates that HMGB1 preferentially
FIGURE 1

Distinct signaling pathways of TLR2, TLR4, and ALPK1 in b cells. TLR2 forms heterodimers with either TLR1 or TLR6 to recognize bacterial
lipoproteins, triggering a MyD88-dependent NF-kB pathway that induces proinflammatory cytokines. TLR4 activates two distinct pathways: a
MyD88-dependent response at the plasma membrane and a TRIF-dependent response following endocytosis, leading to activation of both NF-kB
and IRF3 (Created in BioRender. Zheng, P (2025). https://BioRender.com/vnzzil2). ALPK1, upon detecting ADP-heptose, activates NF-kB through the
TIFA-TRAF6 axis, independently of TLRs.TLR, Toll-like receptor; ALPK1, alpha kinase 1; MyD88, myeloid differentiation primary response 88; TRIF, TIR-
domain-containing adapter-inducing interferon-b; TIFA, TRAF-interacting protein with FHA domain; TRAF, TNF receptor-associated factor; NF-kB,
nuclear factor kappa-light-chain-enhancer of activated B cells; IRF3, interferon regulatory factor 3.
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engages TLR4 on b-cell surfaces, suggesting a link between

HMGB1-TLR4 interaction and b-cell dysfunction (46).

The functional role of TLR4 in b cells remains controversial.

Many studies support a proinflammatory, deleterious role. In both

human and murine b cells, LPS-induced TLR4 activation

upregulates inflammatory cytokines and chemokines (e.g., CCL2,

TNF-a, IL-6, IL-8 and CXCL10), reduces insulin content, and

impairs b-cell viability (37, 45, 47). In vivo, syngeneic islet

transplantation restores normoglycemia in STZ-induced diabetic

mice, but LPS-pretreated islets fail to reverse hyperglycemia (47).

Suppression of TLR4 expression by carbon monoxide improves islet

graft survival in xenotransplantation models (48). In addition,

TLR4 deficiency reduces MyD88 and IRAK-1 phosphorylation,

inhibits NF-kB activation, attenuates cytokine production, and

alleviates islet inflammation in STZ-induced T1D models (49).

Conversely, some studies suggest that TLR4 deficiency may not

consistently confer protection and, under certain conditions, may

even accelerate diabetes development. In NOD mice lacking TLR4,

diabetes onset is accelerated, potentially due to altered gut

microbiota or impaired regulatory T cell (Treg) function,

suggesting an immunoregulatory role for TLR4 in maintaining

immune tolerance (41, 50, 51). Moreover, b cells from TLR4-

deficient NOD mice exhibit preserved function when exposed to

inflammatory cytokines (e.g., IFN-g, TNF-a, and IL-1b) or nitric
oxide donors (e.g., DETA-NO), indicating that TLR4 may not be

essential for mediating b-cell cytotoxicity under these

conditions (50).

In summary, TLR4 plays a complex and context-dependent role

in T1D pathogenesis. While it clearly promotes inflammation and

contributes to b-cell dysfunction under certain conditions, it may

also exert immunomodulatory functions that support immune

homeostasis. Further studies are needed to delineate the

molecular mechanisms that govern TLR4 signaling in b cells and

its dualistic role in diabetes development.
2.4 ALPK1

ALPK1 is a recently characterized cytosolic kinase of the a-
kinase family, comprising a conserved C-terminal kinase domain

and an N-terminal domain linked by a flexible region. It selectively

senses adenosine diphosphate (ADP)-heptose, a conserved

metabolite in LPS biosynthesis (52, 53). Upon ligand binding,

ALPK1 phosphorylates the adaptor protein TRAF-interacting

protein with FHA domain (TIFA), recruits TRAF6, and activates

the NF-kB pathway, leading to proinflammatory cytokine

production (54). Notably, gain-of-function mutations in ALPK1

(e.g., p.Thr237Met, p.Tyr254Cys) cause ROSAH syndrome, a rare

autoinflammatory disorder, underscoring its critical role in innate

immune signaling (55).

Expression of ALPK1 mRNA and protein has been detected in

the murine pancreatic b-cell line MIN6 (23). Inflammatory

cytokines, such as IFN-g, TNF-a, and IL-1b, significantly

upregulate ALPK1 expression, whereas STZ, varying glucose

concentrations, or ADP-heptose alone do not alter its expression,
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suggesting ALPK1’s involvement in cytokine-mediated b-cell stress
responses. Further studies show that ALPK1 activation alone does

not induce b-cell apoptosis. However, in the presence of

proinflammatory cytokines, ADP-heptose mediated ALPK1

activation markedly exacerbates b-cell death. This synergistic

effect likely results from enhanced TIFA phosphorylation and

subsequent activation of transforming growth factor-b-activated
kinase 1 (TAK1). As a key upstream kinase in the NF-kB pathway,

TAK1 promotes expression of TNF-a and Fas, as well as caspase-3

activation, ultimately amplifying apoptotic signaling (23).

Animal studies further underscore ALPK1’s role in b-cell
vulnerability. In transgenic C57BL/6 mice with systemic ALPK1

overexpression, baseline blood glucose levels remain normal;

however, following repeated low-dose STZ administration, these

mice exhibit more severe hyperglycemia and reduced insulin levels

compared to wild type (WT) controls, indicating heightened b-cell
susceptibility to damage (56). In the autoimmune diabetes model of

NOD mice, ALPK1 expression in b cells progressively increases

under chronic inflammatory stress, correlating with b-cell
dysfunction during disease progression (57). Collectively, these

findings suggest that dysregulated ALPK1 expression or activation

may contribute to inflammation-induced b-cell apoptosis and play

a pathogenic role in T1D development.
3 Sensing viral danger: the role of
TLR3, MDA5, and RIG-I in b cells

In addition to bacterial structural ligands, pancreatic b cells

encounter viral pathogens, which are detected by a distinct group of

intracellular and endosomal PRRs. This section reviews and

discusses the roles and interactions of TLR3, melanoma

differentiation-associated gene 5 (MDA5), and retinoic acid-

inducible gene(RIG-I) in pancreatic b cells (Figure 2).
3.1 TLR3

TLR3, the only TLR family member that signals exclusively

through the TRIF adaptor protein, resides in endosomal

membranes and primarily recognizes double-stranded RNA

(dsRNA) species longer than 40–50 base pairs, including viral

replication intermediates and synthetic analogs like poly(I:C).

TLR3 sensing, which is sequence-independent and driven by

recognition of the RNA sugar-phosphate backbone, activates IRF3

and NF-kB signaling cascades. This leads to the induction of type I

interferons (e.g., IFN-b), proinflammatory cytokines (e.g., IL-6,

TNF-a) and chemokines such as CXCL10 and CCL5 (58, 59).

In pancreatic b cells, however, TLR3 exhibits limited functional

activity compared to classical immune cells. Under basal conditions,

TLR3 expression is minimal (60–62). Although exogenous poly(I:C)

stimulation can upregulate TLR3 mRNA over 40-fold, it fails to

induce corresponding increases in IFN-b transcripts in the INS832/

13 b-cell line or in rat islet cells. Despite internalizing similar

amounts of poly(I:C) as macrophages, b cells demonstrate
frontiersin.org
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defective activation of the TLR3-IFN signaling axis, possibly due to

inefficient endosomal trafficking or impaired downstream signaling

(63). Further studies highlight that the cellular localization of poly(I:

C) dictates its impact on b cells. Extracellular poly(I:C) partially

activates TLR3, leading to NF-kB activation and apoptosis, whereas

intracellular delivery triggers robust b-cell death via a TLR3-

independent mechanism involving protein kinase R (PKR) (63).

This is consistent with findings that poly(I:C)-induced apoptosis

persists in TLR3-deficient mice, indicating the involvement of non-

TLR3 dsRNA-sensing pathways (64).

Functionally, TLR3 appears to play a pathogenic role in virus-

induced T1D. Poly(I:C) administration exacerbates T1D in several

mouse models (24, 64–66). In NOD mice, genetic deletion of TLR3

significantly reduces islet inflammation and lowers diabetes

incidence following coxsackievirus B4 (CVB4) infection (67, 68).

Beyond its immunologic function, TLR3 also modulates b-cell
physiology. TLR3 deficiency enhances glucose- and K+-stimulated

insulin secretion, an effect reversed by TLR3 activation (69).

Moreover, TLR3 expression increases under metabolic stressors

such as glucolipotoxicity, where it inhibits b-cell proliferation by
Frontiers in Immunology 06
suppressing cyclin D1/D2, inducing G1-phase arrest, and

contributing to b-cell mass reduction (70).
3.2 MDA5 and RIG-I

MDA5 and RIG-I are cytosolic RNA sensors belonging to

the RIG-I-like receptor (RLR) family, specialized in detecting

viral dsRNA (71). Unlike TLR3, which resides in endosomal

membranes and requires endocytosis for ligand delivery, RLRs

directly sense cytoplasmic RNA. RIG-I preferentially recognizes

short dsRNA (<1 kb) and uncapped 5’-triphosphate single-

stranded RNA (ssRNA), while MDA5 primarily detects long

dsRNA (>1 kb), particularly complex RNA networks generated

during viral replication. Upon ligand recognition, both

receptors signal through the mitochondrial antiviral signaling

protein (MAVS), activating IRF3, IRF7, and NF-kB pathways,

which induce type I interferons (IFN-a/b), chemokines (e.g.,

CCL2, CCL5 and CXCL10) and proinflammatory cytokines

(72–74).
FIGURE 2

Complementary and synergistic recognition of viral RNA by TLR3, MDA5, and RIG-I in pancreatic b cells. TLR3, situated in endosomal membranes,
detects extracellular or endocytosed dsRNA, triggering TRIF-dependent activation of NF-kB and IRF3. Within the cytosol, RIG-I and MDA5 recognize
viral RNA species of varying lengths and structures, signaling through MAVS to activate the downstream kinase TAK1. Activation of TLR3 can
upregulate expression of MDA5 and RIG-I. These pathways converge on NF-kB and IRF3, promoting the production of inflammatory cytokines as
well as type I interferons (Created in BioRender. Zheng, P. (2025) https://BioRender.com/1xxxh1c). TLR3, Toll-like receptor 3; MDA5, melanoma
differentiation-associated gene 5; RIG-I, retinoic acid-inducible gene I; TRIF, TIR-domain-containing adapter-inducing interferon-b; MAVS,
mitochondrial antiviral-signaling protein; TAK1, transforming growth factor-b-activated kinase 1; TRAF3/6, TNF receptor-associated factor 3/6; NF-kB,
nuclear factor kappa-light-chain-enhancer of activated B cells; IRF3, interferon regulatory factor 3; dsRNA, double-stranded RNA.
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Both MDA5 and RIG-I are expressed in pancreatic endocrine

cells, but with distinct expression patterns. MDA5 is significantly

upregulated in both a and b cells from patients with recent-onset or

fulminant T1D, with notably higher expression in a cells. In non-

diabetic individuals, MDA5 expression is predominantly confined

to a cells (75, 76). Interestingly, MDA5-positive but hormone-

negative cell clusters have been observed in islets from recent-onset

T1D patients, suggesting a possible involvement in b-cell
dedifferentiation or regenerative processes (75). These findings

imply that MDA5 may contribute to both b-cell destruction and

inflammation-driven epigenetic remodeling. In contrast, RIG-I is

minimally expressed in healthy or T1D control islets but is strongly

induced in b cells from patients with enterovirus-associated

fulminant T1D, indicating its role as an inducible stress sensor

activated under acute viral infection (76).

Functionally, viral infection or stimulation with dsRNA analogs

such as poly(I:C) robustly induces MDA5 and RIG-I expression,

triggering type I interferon production, chemokine release and b-
cell apoptosis. Knockdown of MDA5 or RIG-I in b cells attenuates

poly(I:C)-induced interferon and inflammatory responses, yet fails

to prevent apoptosis, suggesting that dsRNA-induced cell death

involves additional pathways beyond RLR signaling (63, 77). In

human b cells, IFN-a promotes human leukocyte antigen (HLA)

class I upregulation together with inflammatory and ER stress

responses, and synergizes with IL-1b to accelerate apoptosis (78).

Importantly, it not only increases surface HLA-I levels but also

remodels the b-cell immunopeptidome in human b cells, shifting

peptide presentation toward HLA-B–restricted ligands. This bias

facilitates activation of HLA-B–specific CD8+ T cells, consistent

with the preferential HLA-B hyperexpression observed in islets

from patients with T1D, where infiltrating cytotoxic T cells

recognizing HLA-B–restricted granule peptides have been

detected (79).

The role of MDA5 in T1D has been further explored in NOD

mice using two genetic models targeting Ifih1, the gene encoding

MDA5: a complete KO and a helicase domain 1 in-frame deletion

(DHel1) that impairs ATPase activity. The DHel1 mutation delayed

both spontaneous and coxsackievirus B3 (CVB3)-accelerated T1D

onset, accompanied by reduced type I interferon levels and

decreased infiltration of proinflammatory immune cells. In

contrast, complete MDA5 deficiency did not confer protection

and instead increased T1D incidence, particularly in males. These

findings suggest a dual role for MDA5 in T1D pathogenesis: while

partial loss-of-function may mitigate autoimmune activation and

delay disease progression, complete loss may impair immune

homeostasis and predispose to disease onset (80).
3.3 Cooperative viral RNA sensing by TLR3,
MDA5, and RIG-I in b cells

TLR3, MDA5, and RIG-I exhibit complementary mechanisms

in the detection of viral RNA. TLR3, localized to endosomal

membranes, senses exogenous dsRNA internalized via

endocytosis, making it particularly effective during the early
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stages of viral infection. In contrast, the cytoplasmic sensors

MDA5 and RIG-I detect intracellular viral RNA generated during

replication. MDA5 preferentially recognizes long dsRNA (>1 kb),

whereas RIG-I detects short dsRNA (<1 kb). Together, these

receptors form a comprehensive antiviral surveillance network

based on RNA length, structure, and subcellular localization.

TLR3 activation can also upregulate the expression of MDA5

and RIG-I via TRIF-mediated signaling, thereby amplifying

cytoplasmic antiviral responses. For instance, in rhinovirus-

infected epithelial cells, TLR3 stimulation enhances RIG-I and

MDA5 transcription (81). In dengue virus infection models, all

three receptors synergistically promote IFN-b production;

knockdown of any one receptor significantly increases viral

replication, highlighting their functional interdependence (82). A

similar mechanism appears to operate in pancreatic b cells, where

poly(I:C) fails to induce MDA5 and RIG-I expression in TLR3-

deficient islets (83).

In the context of T1D, activation of TLR3, MDA5, and RIG-I in

b cells exerts both protective and pathogenic effects. During the

initial phases of viral infection, these sensors trigger type I

interferon production and antiviral protein expression, limiting

viral replication within b cells. For example, in recent-onset T1D

patient islets, elevated MDA5 expression correlates with

Coxsackievirus capsid protein VP1 and type I IFN markers,

suggesting a role in viral containment (84). In vitro, activation of

these receptors in human islets elicits IFN responses that suppress

CVB replication and help preserve b-cell function (85). However,

this antiviral signaling can also amplify local inflammation.

Activation of any one sensor can induce the expression of others,

creating a feed-forward inflammatory loop (83). In epithelial cells

and macrophages, pre-exposure to inflammatory stimuli

exacerbates responses to secondary viral insults, such as SARS-

CoV-2, underscoring the impact of immune priming (86). In T1D,

persistent production of type I IFNs may contribute to a localized

“interferonopathy”, disrupting Treg cell function and fostering

autoimmune progression (87). Thus, while TLR3, MDA5, and

RIG-I play crucial roles in b-cell antiviral defense, their sustained
or dysregulated activation may inadvertently initiate or exacerbate

autoimmune damage in T1D.
4 Sensing DNA: the role of AIM2,
cGAS and TLR9 in b cells

Following the recognition of viral RNA, the sensing of double-

stranded DNA (dsDNA) represents another key layer of innate

immune defense in b cells, mediated primarily by absent in

melanoma 2 (AIM2) and cyclic GMP-AMP Synthase (cGAS) in

the cytosol, together with TLR9 in endosomal compartments.
4.1 AIM 2

AIM2 is a member of ALR family that detect dsDNA of host or

microbial origin. Upon ligand recognition, AIM2 forms the AIM2
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inflammasome complex, activating caspase-1 and promoting the

maturation and secretion of IL-1b and IL-18, as well as inducing

pyroptotic cell death (88, 89). While AIM2 is predominantly

expressed in hematopoietic cells, recent studies have detected low

basal expression in healthy human pancreatic islets, with marked

upregulation observed in the pancreatic tissue of individuals with

T1D. In contrast, AIM2 expression in peripheral blood

mononuclear cells remains unchanged, suggesting a tissue-specific

role in T1D-associated islet inflammation (90).

Interestingly, AIM2 may exert a protective effect in T1D. In

STZ-induced T1D mouse model, AIM2-deficient animals exhibit

increased disease susceptibility, characterized by heightened islet

inflammation, elevated blood glucose levels, and reduced

insulin secretion (91). This protective effect has been attributed to

AIM2’s role in preserving intestinal homeostasis, limiting microbial

translocation to pancreatic-draining lymph nodes, and suppressing

immune responses directed against b cells. Supporting this notion,

islet transplantation studies showed that while WT islets restored

normoglycemia in STZ-treated recipient mice, AIM2-/- islets failed

to do so and displayed elevated levels of p202—a negative regulator

of type I and type II interferon signaling (92). These findings

suggest that AIM2 may confer protection by restricting p202-

mediated immunosuppressive signaling pathways that contribute

to islet dysfunction.

In summary, AIM2 is basally expressed in pancreatic tissue and

upregulated in T1D, implicating its involvement in local immune

regulation. By maintaining gut-pancreas immune homeostasis and

modulating interferon pathways, AIM2 may serve a protective role

in islet preservation. However, the lack of b-cell specific AIM2

conditional knockout models limits mechanistic understanding of

its cell-intrinsic functions in islet immunity, highlighting the need

for further investigation.
4.2 cGAS

cGAS acts as a cytosolic DNA sensor that detects double-

stranded DNA (dsDNA) of microbial or endogenous origin. DNA

binding induces a conformational rearrangement in cGAS,

activating its enzymatic function to catalyze the production of the

cyclic dinucleotide second messenger cyclic GMP–AMP (cGAMP)

from ATP and GTP. cGAMP directly engages stimulator of

interferon genes (STING), an adaptor protein anchored in the

endoplasmic reticulum membrane, triggering its dimerization and

relocalization to perinuclear compartments. There, STING recruits

and activates TANK-binding kinase 1 (TBK1), which

phosphorylates IRF3, leading to its nuclear translocation and

induction of type I interferons. Concurrently, STING signaling

activates the NF-kB pathway, driving the expression of

proinflammatory cytokines and chemokines such as CXCL10 and

CCL5 (93, 94). Collectively, the cGAS–STING pathway represents

an important signaling axis that couples cytosolic DNA sensing to

both antiviral defense and sterile inflammatory responses.

cGAS is expressed in human and mouse pancreatic b cells as

well as in b-cell lines, and its expression is regulated by
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hyperglycemic conditions. In diabetic mouse islets and MIN6

cells exposed to high glucose, cGAS expression is markedly

upregulated (95). Functionally, cGAS exerts a negative regulatory

role in b-cell proliferation. Both global and b-cell–specific deletion
of cGAS enhance b-cell mass and improve glucose tolerance in

mice, an effect likely mediated through a STING-independent

mechanism that reduces the expression of the known b-cell
proliferation inhibitor CCAAT/Enhancer-Binding Protein Beta

(CEBPb) (95). Thus, glucose-induced upregulation of cGAS may

impair b-cell regenerative capacity and quality, thereby

contributing to the onset and progression of diabetes. Metabolic

stress and aging promote the release of mitochondrial DNA into the

cytosol of b cells, thereby activating the cGAS–STING pathway and

inducing a senescence-associated secretory phenotype (SASP)-like

inflammatory state; this process can be alleviated by small-molecule

STING inhibitors such as C176 (96).

In T1D, investigations of the cGAS–STING signaling axis

remain relatively limited. Experimental evidence shows that

treatment with a STING agonist in prediabetic NOD mice

significantly delays disease onset and reduces incidence,

potentially through enhanced indoleamine 2,3-dioxygenase (IDO)

activity in both peripheral immune tissues and pancreas (97).

Conversely, genetic deletion of STING in NOD mice accelerates

diabetes development. NOD.STING-/- mice exhibit increased

numbers of autoreactive CD8+ T cells in peripheral lymphoid

tissues, and splenocytes from these mice induce diabetes more

rapidly upon transfer into irradiated NOD recipients (98). These

findings suggest that STING deficiency enhances the pathogenicity

of immune cells and accelerates disease progression. Notably,

although STING plays a role in type I interferon production, the

accelerated diabetes observed in STING-deficient mice appears

independent of interferon induction and may instead reflect a

role of STING in controlling autoreactive T cells. Further studies

are warranted to fully elucidate the underlying mechanisms.
4.3 TLR9

TLR9, primarily localized to intracellular endosomal

compartments, recognizes unmethylated CpG motifs present in

bacterial and viral DNA, as well as, to a lesser extent, host-derived

DNA released from damaged or dying cells (26). Upon ligand

engagement, TLR9 signals through the MyD88 adaptor protein,

activating NF-kB and IRF7 pathways and inducing the production

of proinflammatory cytokines and type I interferons (IFN-a/
b) (99).

Although widely expressed in immune cells, TLR9 is also

present in pancreatic b cells. Functionally, TLR9 appears to

negatively regulate b-cell development and function. In both

NOD and C57BL/6 mouse strains, TLR9 deficiency is associated

with increased b-cell mass, improved glucose tolerance, and

enhanced insulin sensitivity (100).

In the context of T1D, genetic ablation or pharmacological

inhibition of TLR9 (e.g., via chloroquine) protects NOD mice from

disease onset (101, 102). Notably, B cell-specific deletion of TLR9 in
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NOD mice nearly abolishes T1D development and is accompanied

by an expansion of IL-10-producing regulatory B cells (103). These

findings underscore the immunomodulatory role of TLR9 in

shaping autoimmune responses. However, its precise function

within pancreatic b cells during T1D pathogenesis remains poorly

defined and warrants further investigation.
5 Sensing cellular stress: the role of
NLRs and RAGE in b cells

The human NLR family comprises approximately 22 members,

while around 34 have been identified in mice. Structurally, NLRs share

a conserved tripartite architecture: an N-terminal signaling domain

that mediates protein-protein interactions, a central nucleotide-binding

oligomerization domain responsible for ATP-dependent self-

activation, and a C-terminal LRR domain involved in ligand sensing

(104, 105). Based on their N-terminal motifs, NLRs are categorized into

several subfamilies, including NLRA, NLRB, NLRC, NLRP, and NLRX

(106, 107). NLRs are pivotal in innate immune sensing, antigen

presentation, and inflammation. In pancreatic b cells, NLRC5

(NOD-like receptor family caspase recruitment domain–containing

5) and NLRP3 (NOD-like receptor family pyrin domain-containing 3)

are the most extensively studied members.
5.1 NLRC5

NLRC5 is a master regulator of MHC-I gene transcription (108,

109). Increasing evidence suggests that NLRC5 contributes to

modulating the immune visibility of b cells. In a study analyzing

human pancreatic islets from 23 donors, NLRC5 expression was

detected in 16 individuals and found to be significantly upregulated

in b cells from T1D patients compared to healthy controls.

Functional studies demonstrated that NLRC5 knockdown in b
cells attenuates IFN-a–induced MHC-I upregulation and

decreases the transcription of multiple genes involved in antigen

processing and presentation. In addition, loss of NLRC5 limited the

generation of neoantigens arising from alternative splicing, cis-

splicing, and post-translational modifications, thereby narrowing

the b-cell immunopeptidome. This reduction in antigen diversity

was functionally relevant, as it led to suppressed activation and

cytotoxicity of autoreactive CD8+ T cells in co-culture assays. In

contrast, intact NLRC5 expression amplified b-cell antigenicity

under type I interferon stimulation, promoting enhanced HLA-I

surface density and broadening the peptide repertoire presented to

T cells. Together, these findings position NLRC5 as a pivotal

transcriptional amplifier of IFN-driven immunogenic remodeling

in pancreatic b cells (110).
5.2 NLRP3

NLRP3 is a key inflammasome component and central

mediator of sterile inflammation in b cells (111, 112). It senses
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diverse pathogen- or damage-associated signals, including bacterial

RNA, ATP, mitochondrial DNA, uric acid crystals, and advanced

glycation end products (AGEs). Under stress conditions such as

hypoxia or oxidative insult, NLRP3 expression is upregulated in b
cells, triggering inflammasome assembly. This process activates

caspase-1 through recruitment of apoptosis-associated speck-like

protein containing a CARD (ASC) and pro-caspase-1, promoting

the maturation and secretion of IL-1b and IL-18, which drive

inflammatory responses and impair b-cell viability (113–118).

NLRP3 signaling has been strongly implicated in T1D

pathogenesis. In STZ-induced diabetic mice, knockout of either

NLRP3 or ASC reduces hyperglycemia and preserves b-cell viability
(118). Similarly, NLRP3-deficient NOD mice are protected from

spontaneous T1D onset. Mechanistically, NLRP3 deletion

downregulates the expression of IRF-1-dependent chemokines

(CCL5 and CXCL10) in islets and reduces their receptors (CCR5

and CXCR3) on T cells, thereby limiting pathogenic T cell

migration into the islets (119). Moreover, transplantation of

NLRP3-deficient islets into diabetic recipients improves graft

function and glycemic control (120). Collectively, these findings

highlight the critical role of NLRP3-mediated inflammation in b-
cell injury and autoimmune progression in T1D.
5.3 RAGE

Unlike classical PRRs for PAMPs, RAGE primarily recognizes

endogenous DAMPs, such as AGEs, HMGB1, members of the S100

protein family, and b-amyloid peptide (Ab) (121). Upon activation,

RAGE initiates multiple downstream signaling cascades, including

the mitogen-activated protein kinase (MAPK), phosphoinositide 3-

kinase/protein kinase B (PI3K/Akt), and Janus kinase/signal

transducer and activator of transcription (JAK/STAT) pathways,

and robustly activates NF-kB. NF-kB not only induces the

transcription of pro-inflammatory mediators such as TNF-a, IL-
1b, IL-6, and MCP-1, but also upregulates RAGE expression

through a positive feedback loop, establishing a self-amplifying

inflammatory circuit. In parallel, RAGE stimulates Nicotinamide

Adenine Dinucleotide Phosphate Hydrogen (NADPH) oxidase

activity, promoting the generation of reactive oxygen species

(ROS) that exacerbate oxidative stress and cellular injury (122).

Importantly, RAGE does not act in isolation but displays

substantial functional synergy with TLRs. For example, in bovine

alveolar macrophages, inflammatory responses are synergistically

amplified by combined exposure to high glucose with LPS or

HMGB1 with LPS (123). Moreover, RAGE promotes the

internalization of DNA or RNA into host endosomes, thereby

enhancing NF-kB activation and increasing the sensitivity of

ssRNA-sensing TLRs (124, 125). At the receptor expression level,

RAGE and TLRs exhibit reciprocal regulation: inhibition of RAGE

decreases TLR4 expression, whereas suppression of TLR4 reduces

RAGE expression (123). Collectively, these findings demonstrate

that RAGE functions not only as a DAMP receptor directly driving

inflammation but also as a critical amplifier of inflammatory

signaling through its crosstalk with TLRs.
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RAGE is expressed in multiple cell types, including pancreatic b
cells. Studies have demonstrated that toxic precursors of human

islet amyloid polypeptide (IAPP) and glycated serum can induce

upregulation of RAGE expression in both b-cell lines and primary

islets (126, 127). In human diabetic pancreatic tissues, increased

RAGE expression in b cells is closely associated with islet amyloid

deposition. Functionally, RAGE selectively binds to toxic IAPP

intermediates and subsequently activates NADPH oxidase and

triggers inflammatory responses, which play critical roles in the

protein toxicity associated with islet amyloid deposition (126, 128).

In vitro and ex vivo studies have further confirmed that RAGE

ligands, including S100 family proteins and HMGB1, induce

oxidative stress and apoptosis in b-cell lines and isolated islets,

effects that can be attenuated by antioxidants or NADPH oxidase

inhibitors (129). Glycated serum similarly enhances b-cell
apoptosis, whereas blockade of RAGE with neutralizing

antibodies or RAGE knockdown effectively abrogates these

deleterious effects, providing direct evidence for the involvement

of RAGE in b-cell death (127). Moreover, AGEs reduce insulin

secretion by suppressing the expression of the key transcription

factor pancreatic and duodenal homeobox 1 (Pdx-1), while RAGE-

blocking antibodies restore Pdx-1 expression and insulin mRNA

levels in INS-1 cells (130).

The RAGE signaling pathway also plays a pivotal role in the

pathogenesis of T1D. Short-term administration of soluble RAGE

(sRAGE), functioning as a decoy receptor, effectively prevents or

delays the onset of diabetes, likely through expansion of Tregs in

islets, pancreatic lymph nodes, and spleen (131). In adoptive

transfer models, sRAGE treatment similarly suppresses b-cell
destruction mediated by splenocytes from diabetic mice; however,

it fails to protect against diabetes induced by transfer of activated

pathogenic BDC2.5 CD4+ T-cell clones. These findings suggest that

RAGE/ligand interactions may contribute to the differentiation of T

cells toward a mature pathogenic phenotype during later stages of

diabetes progression (132). Taken together, current evidence

indicates that RAGE contributes to T1D pathogenesis both

by mediating b-cell intrinsic stress and by modulating

immune responses.
6 Conclusion and perspectives

Recent research has increasingly focused on the role of

pancreatic b cells, which serve as the primary targets in T1D,

under inflammatory and infectious conditions. Emerging evidence

reveal that b cells are not merely passive victims of autoimmune

attack but actively contribute to disease pathogenesis by expressing

various PRRs. Upon activation, these receptors trigger the

production of proinflammatory cytokines and type I interferons,

thereby modulating b-cell function, viability, and local

immune responses.

Despite substantial progress, many mechanistic aspects of b
cell-intrinsic PRR signaling in T1D remain unresolved. First, the
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expression and activity throughout different stages of disease

progression are poorly understood. Advances in single-cell RNA

sequencing (scRNA-seq), spatial transcriptomics, and other multi-

omics technologies now offer unprecedented opportunities to

dissect b-cell molecular profiles in both spatial and temporal

dimensions. Future studies can harness these tools to

systematically map the expression landscapes and regulatory

networks of PRR families in b cells across the T1D continuum.

Such efforts may illuminate how PRR-mediated stress

responses evolve with disease and help identify stage-specific

therapeutic windows.

Second, the functional consequences of PRR activation within b
cells remain incompletely defined, partly due to the lack of b
cell-specific PRR knockout models. Developing such tissue-

restricted genetic tools will be essential for disentangling local b
cell-intrinsic effects from systemic immune responses mediated by

infiltrating leukocytes.

In addition, there is an urgent need for precision strategies to

modulate PRR activity in a context- and cell-type-specific manner.

Emerging studies on MDA5 illustrate the complexity of PRR

function: while partial loss-of-function mutations can delay T1D

onset, complete ablation may impair immune homeostasis and

exacerbate disease (83). These findings underscore the importance

of nuanced, dose- and time-sensitive modulation of PRRs, rather

than broad-spectrum inhibition, and support the development of

selective small-molecule inhibitors or biologics tailored for b-
cell protection.

Translationally, the priority is to convert b-cell PRR circuitry

into stage-specific, tissue-selective interventions that preserve

endogenous insulin secretion. Building on the findings

summarized above, it is reasonable to hypothesize that the clinical

relevance of b-cell PRRs is most pronounced in the early stages of

T1D, when b cells act as danger sensors participating in local

inflammatory cascades. Early T1D, defined as Stage 1 (multiple islet

autoantibodies with normoglycemia) and Stage 2 (multiple

autoantibodies with dysglycemia but without clinical symptoms),

is characterized by b-cell stress and early immune activation (133).

In this context, partial dampening of PRR signaling could reduce

interferon-driven stress and chemokine release, thereby delaying

immune cell infiltration and preserving b-cell resilience. Once

autoimmunity becomes T cell–dominated in new-onset or

established disease, PRR-based strategies are unlikely to serve as

stand-alone interventions but could still be explored as adjunctive,

time-limited approaches—for example, peri-infection modulation

to prevent further b-cell loss. Overall, the translational promise of

targeting b-cell PRRs resides primarily in early, stage-specific

interventions, consistent with the concept of b cells as active

danger sensors in islet autoimmunity.

In summary, PRRs in pancreatic b cells constitute a dynamic

innate immune surveillance network. Far from being passive

targets, b cells actively shape immune responses and determine

their own fate through PRR signaling. Depending on disease stage
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1677177
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tong et al. 10.3389/fimmu.2025.1677177
and microenvironmental context, PRRs may exert either protective

or pathogenic effects, reflecting their dual and context-dependent

roles. A deeper understanding of the temporal regulation, signaling

integration, and downstream functional outcomes of b cell-intrinsic

PRRs will be critical for identifying key regulatory nodes and

actionable therapeutic targets—ultimately enabling earlier

intervention and the development of precision therapies for T1D.
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79. Carré A, Samassa F, Zhou Z, Perez-Hernandez J, Lekka C, Manganaro A, et al.
Interferon-a promotes HLA-B-restricted presentation of conventional and alternative
antigens in human pancreatic b-cells. Nat Commun. (2025) 16:765. doi: 10.1038/
s41467-025-55908-9

80. Blum SI, Taylor JP, Barra JM, Burg AR, Shang Q, Qiu S. MDA5-dependent
responses contribute to autoimmune diabetes progression and hindrance. JCI Insight.
(2023) 8:e157929. doi: 10.1172/jci.insight.157929

81. Slater L, Bartlett NW, Haas JJ, Zhu J, Message SD, Walton RP. Co-ordinated role
of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial
epithelium. PloS Pathog. (2010) 6:e1001178. doi: 10.1371/journal.ppat.1001178

82. Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX. RIG-I, MDA5 and
TLR3 synergistically play an important role in restriction of dengue virus infection.
PloS Negl Trop Dis. (2011) 5:e926. doi: 10.1371/journal.pntd.0000926
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