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Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by
the absence of estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2) expression. It is associated with a high
risk of recurrence, metastasis, and limited therapeutic options. Tumor-
associated macrophages (TAMs) play a central role in TNBC progression by
shaping an immunosuppressive tumor microenvironment. Primarily polarized
toward an M2-like phenotype under the influence of cytokines such as IL-10 and
TGF-B, TAMs facilitate tumor growth, angiogenesis, metastasis, and immune
evasion through multiple mechanisms. This review summarizes current
understanding of TAM recruitment, polarization, and pro-tumoral functions in
TNBC, and outlines emerging therapeutic strategies aimed at depleting TAMs,
reprogramming them to an anti-tumor M1-like state, or blocking the CD47-
SIRPa. phagocytosis checkpoint. These approaches offer promising avenues for
reprogramming the TNBC microenvironment and improving clinical outcomes.
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1 Introduction

Triple-negative breast cancer (TNBC) is a clinically aggressive subtype marked by a
high propensity for recurrence and distant metastasis (1, 2). Despite standard regimens,
many patients rapidly relapse (3, 4). Recent advances have shifted the focus from tumor-
intrinsic traits to the tumor microenvironment (TME), a dynamic niche that orchestrates
cancer initiation and progression in concert with tumor cells (5-9). Among TME
components, tumor-associated macrophages (TAMs)—the most prevalent innate
immune cells—can constitute up to 71.4% of the immune infiltrate in TNBC, far
surpassing that in other malignancies (10).

TAMs are implicated across the entire course of TNBC development, from early
tumorigenesis to metastatic dissemination, and correlate with poor clinical outcomes (11-
13). In TNBC, TAMs adopt either pro-inflammatory M1 or immunosuppressive M2
phenotypes in response to cytokine cues (14). M1 macrophages enhance anti-tumor
immunity via inflammatory mediator release, antigen presentation, and tumor cell
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phagocytosis, whereas M2 macrophages facilitate tumor
progression by promoting proliferation, angiogenesis, immune
evasion, and metastatic potential (15, 16). During tumor
progression, TAMs predominantly exhibit an M2-like phenotype,
thereby facilitating TNBC initiation and advancement (17). This
review provides a comprehensive overview of the ontogeny,
recruitment mechanisms, and polarization dynamics of TAMs in
the TNBC microenvironment, and delineates their multifaceted
roles in disease progression. In addition, we summarize recent
advances in TAM-targeted therapeutic strategies aimed at
improving outcomes in TNBC patients.

2 Origin, recruitment, and polarization
of TAMs

2.1 Origin and recruitment of TAMs

Current evidence indicates that TAMs originate from two
principal sources. The first comprises bone marrow-derived
myeloid progenitors that differentiate into circulating monocytes,
which infiltrate the TME and mature into macrophages (18). The
second involves embryonic progenitors from the yolk sac or fetal
liver that give rise to tissue-resident macrophages (TRMs), which
are seeded into organs during development and sustained
independently of hematopoietic input through local proliferation
(19). Notably, both embryonically derived and monocyte-derived
TAMs have been documented in several malignancies, including
breast cancer (20). The recruitment of TAMs into the TME of
TNBC is primarily mediated by tumor-secreted growth factors and
chemokines. Colony-stimulating factor 1 (CSE-1), through binding
to its receptor CSF-1R, plays a pivotal role in the recruitment and
differentiation of peripheral blood monocytes into TAMs (21).
TNBC cells produce substantially higher levels of CSF-1 than
non-TNBC subtypes, promoting robust TAM infiltration (22, 23).
In parallel, CC chemokine ligand 2 (CCL2) drives monocyte
chemotaxis via CCR2 signaling (24), while CCL5 contributes to
TAM aggregation and enhances tumor invasion. Importantly,
CCL5-CCR3 signaling in tumor cells correlates with poor
prognosis in TNBC (25). Immunohistochemical analyses of
tumors from 40 TNBC patients further demonstrate that CCL5
production by peritumoral adipose tissue potentiates invasion and
metastasis (26). Moreover, VEGF has also been implicated in TAM
recruitment, with elevated VEGF levels in TNBC strongly
associated with increased macrophage infiltration (27).

2.2 Polarization of TAMs

Upon recruitment into the TME, TAMs acquire distinct
functional phenotypes shaped by local cues (28). Exposure to
lipopolysaccharide (LPS) and IFN-y drives macrophages toward a
classically activated, pro-inflammatory M1-like state, whereas anti-
inflammatory cytokines such as IL-10 and TGF-f promote an
alternatively activated, immunosuppressive M2-like phenotype (29).
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MIl-like TAMs exert antitumor functions via the production of
reactive oxygen species (ROS), nitrogen intermediates, and
enhaantigen presentation to T cellnced s (30). By contrast, M2-like
TAMs facilitate tumor progression by mediating tissue remodeling,
angiogenesis, and immune suppression (28). The TME promotes a
phenotypic shift from M1 to M2 polarization through sustained
exposure to IL-10, TGEF-B, and other tumor-derived factors (31).
Additionally, interactions with the extracellular matrix and neoplastic
signals further reinforce M2-skewed polarization in TAMs,
particularly in TNBC, where such phenotypes dominate the
immune landscape (32). This biased polarization underpins the
immunosuppressive and pro-tumoral roles of TAMs in TNBC
progression. Besides, cytokines activate downstream intracellular
signaling pathways that orchestrate M2 polarization. IL-10
predominantly signals through the JAK1/STAT3 axis, where
phosphorylated STAT3 translocates to the nucleus and induces the
expression of M2-associated genes such as IL-10 and arginase-1 (33,
34). Similarly, IL-4 and IL-13 activate the STAT6 pathway, which
promotes transcription of M2 markers including CD206 (35, 36). In
addition, TGF-B signaling induces M2 polarization through
activation of the PI3K/Akt and SMAD pathways, enhancing the
expression of anti-inflammatory and pro-tumoral mediators (37, 38).
Notably, activation of the PI3K/Akt axis has also been implicated in
metabolic reprogramming of TAMs toward an oxidative
phosphorylation (OXPHOS)-dominant state, further supporting
their M2-like phenotype and immunosuppressive functions (39, 40).

TNBC progression has been modeled by co-injecting RAW264.7
macrophages and 4T1 TNBC cells into murine mammary ducts (40).
During the transition from in situ carcinoma to invasive statue, this
co-injection approach resulted in suppressed expression of the M1-
associated cytokine IL-12 and elevated levels of the M2-associated
cytokine TGF-B1 (41). These immunological alterations were
accompanied by both lymphatic and pulmonary metastases (42).
Additionally, increased concentrations of MMP-8 and VEGF were
detected in peripheral blood—both recognized modulators of
macrophage polarization (43). These findings suggest that tumor-
induced M2 polarization of TAMs may operate through a reinforcing
positive feedback loop. MicroRNAs (miRNAs), a class of non-coding
single-stranded RNAs with dual oncogenic and tumor-suppressive
roles, have emerged as key regulators of TAM polarization (44, 45).
For instance, co-culturing miR-200c-overexpressing MDA-MB-231
TNBC cells with RAW264.7 macrophages enhanced expression of
M2 markers such as CD206 and IL-10, indicating a role for miR-200c
in promoting M2-like phenotypes (46). Conversely, miR-34a has
been implicated in facilitating M1 polarization. Using viral
transduction to manipulate miR-34a expression in MDA-MB-231
cells followed by co-culture with THP-1 monocytes, it was observed
that tumor cells expressing miR-34a more effectively induced M1
polarization compared to miR-34a-silenced controls (17). In addition
to miR-200c and miR-34a, other miRNAs such as miR-21 and miR-
155 have also been implicated in TAM regulation within the breast
cancer microenvironment. miR-21, commonly upregulated in breast
cancer, promotes M2 polarization by targeting PTEN and enhancing
PI3K/Akt signaling, thereby reinforcing the immunosuppressive
phenotype of TAMs (47, 48). Conversely, miR-155 facilitates M1
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polarization by inhibiting suppressor of cytokine signaling 1
(SOCS1), leading to enhanced pro-inflammatory cytokine
production and tumoricidal activity (49, 50).

3 The role of TAMs in TNBC
progression

3.1 Promotion of tumor cell proliferation

The infiltration of TAMs in the TNBC microenvironment is
tightly associated with enhanced tumor cell proliferation (51).
TAMs secrete various signaling molecules, including TGF-f,
VEGF, and IL-10, which suppress the antitumor functions of
effector T cells, thereby facilitating tumor cell growth (52, 53).
Notably, TAMs also support the maintenance and expansion of
cancer stem cells (CSCs), a subpopulation endowed with self-
renewal and tumor-initiating capacity, through a variety of
paracrine signaling pathways (54, 55). For instance, TAM-derived
IL-6 activates STAT3 signaling in TNBC cells, reinforcing stem-like
traits and contributing to chemoresistance (56). Similarly, IL-8
promotes the CSC phenotype by upregulating ALDHI, while
concurrently activating PI3K/AKT/mTOR and NF-kB signaling
cascades (57-59). Moreover, cytokine-driven activation of the
CCL2/AKT/B-catenin axis by TAMs further potentiates CSC
maintenance and tumor aggressiveness, ultimately fostering

TNBC progression and resistance to therapy (60) (Figure 1).

3.2 Induction of angiogenesis and
lymphangiogenesis

The vascular network plays a pivotal role in sustaining tumor
growth by delivering oxygen and nutrients, while also serving as a
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conduit for metastatic dissemination (61). In TNBC, TAMs drive
angiogenesis via several key mechanisms (62). First, TAMs secrete
matrix metalloproteinases (MMPs), notably MMP-7 and MMP-9,
along with cathepsins, to degrade the extracellular matrix (ECM),
thereby facilitating endothelial cell invasion and neovessel formation
(63). Second, the hypoxic tumor microenvironment polarizes
macrophages toward a pro-tumoral TAM phenotype. These cells
accumulate in hypoxic niches and upregulate hypoxia-inducible
factor-1 (HIF-1), which transcriptionally activates proangiogenic
genes such as VEGF-A (64). Third, TAMs amplify VEGF
expression through the secretion of TGF-B and TNF-q, further
enhancing neovascularization (65). Recent studies have shown that
TAM-derived VEGF promotes angiogenesis in TNBC by
upregulating prostate cancer-associated transcript 6 (PCAT6) (66).
In addition to angiogenesis, TAMs promote lymphangiogenesis, a
process critical for lymphatic metastasis (67). Tumor-induced
expression of integrin B4 in macrophages enhances their
chemotactic aggregation and adhesion to lymphatic vessels, where
they secrete TNF-B1, triggering lymphatic endothelial contraction.
These macrophages also elevate vascular permeability and disrupt
perivascular structures, collectively fostering lymphatic remodeling
and tumor cell dissemination through lymphatic routes (68).

3.3 Facilitation of metastasis

Metastasis remains the leading cause of death in patients with
TNBC, with TAMs playing a pivotal role in promoting tumor cell
invasion and dissemination (69). Through secretion of MMPs,
TAMs degrade and remodel the ECM, thereby facilitating
detachment of tumor cells from the primary site (70). A hallmark
of this invasive transition is epithelial-to-mesenchymal transition
(EMT), wherein epithelial cells acquire mesenchymal properties
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FIGURE 1

Roles of tumor-associated macrophages in triple-negative breast cancer progression.
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and heightened motility (71). TAMs induce EMT via cytokine
secretion, including TGF-f (38), TNF-a (12), and IL-4 (72).
TGEF-B, in particular, triggers EMT-associated transcriptional
programs by engaging tumor cell receptors and activating
downstream pathways (73). In TNBC, IL-8 further promotes
EMT and invasiveness through PI3K-Akt signaling (74). Beyond
soluble mediators, TAM-derived exosomes are potent effectors of
EMT and metastatic reprogramming (75). Notably, M2-like TAMs
release exosomes enriched in miR-223, which activates B-catenin
signaling and suppresses epithelial markers such as E-cadherin,
thereby enhancing cellular plasticity and invasive capacity (76, 77).
TAM-derived exosomal MMPs, particularly MMP-9, degrade ECM
components and compromise basement membrane integrity (78,
79). Within the pre-metastatic niche (PMN), these exosomes
further contribute to stromal cell recruitment, vascular leakage,
and the establishment of a supportive microenvironment for
metastatic colonization (80).

3.4 Induction of immunosuppression and
immune evasion

Immunosuppression is a fundamental prerequisite for tumor
initiation and sustained progression (81-83). In TNBC, TAMs exert
profound immunoregulatory functions that suppress anti-tumor
immunity (84). One key mechanism involves the expression of
CD80 and CD86 on TAMs, which engage cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) on T cells to block activation and cell
cycle progression, thereby promoting T cell anergy (85).
Additionally, TAMs secrete immunosuppressive cytokines such as
TGF-B and IL-10 within the TNBC microenvironment, directly
impairing the cytotoxic capacity of effector T cells and facilitating
immune evasion (86). A central axis in TAM-mediated
immunosuppression is the PD-1/PD-L1 pathway. PD-1 ligation
by PD-L1 inhibits T cell effector function, and TNBC tissues show
markedly elevated PD-L1 expression compared to other subtypes,
contributing to enhanced T cell suppression (84). Notably, TNBC
cells induce TAMs to upregulate PD-L1 via the JAK2/STAT3
pathway, which further inhibits CD8" T cell-mediated
cytotoxicity (87). Moreover, PD-1 is also expressed on TAMs
themselves, particularly those with an M2-like phenotype. High
PD-1 expression on TAMs is associated with diminished
phagocytosis and impaired anti-tumor responses. Blocking PD-1/
PD-L1 signaling not only restores macrophage function but also
suppresses tumor growth and prolongs survival in murine models
(88). In addition to PD-1/PD-L1, other immune checkpoints such
as T cell immunoglobulin and mucin-domain containing-3 (TIM-
3), lymphocyte-activation gene 3 (LAG-3), and V-domain Ig
suppressor of T cell activation (VISTA) are increasingly
recognized in TNBC immunotherapy (89-91). These molecules
are also regulated by TAMs and contribute to the suppression of T
cell activity and immune evasion. For example, TIM-3 and LAG-3
are frequently co-expressed with PD-1 on exhausted T cells in the
TNBC microenvironment, and their ligands, including galectin-9
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and MHC class II, can be upregulated by TAMs (92-94). VISTA,
predominantly expressed on myeloid cells such as TAMs, mediates
immune suppression by dampening T cell proliferation and
cytokine production (95, 96). Collectively, these findings highlight
the role of TAMs as critical regulators of immunosuppression and
immune escape in TNBC. Targeting these alternative checkpoints
alongside PD-1/PD-L1 may offer synergistic immunotherapeutic
benefits in TNBC.

4 Therapeutic strategies targeting
TAMs

4.1 Depleting TAM populations

Given the critical role of TAMs in orchestrating
immunosuppressive TME and promoting cancer progression,
substantial preclinical and clinical efforts have focused on TAM-
targeted interventions (13, 97). These strategies fall into three
principal categories: depletion of TAMs, reprogramming toward
anti-tumor phenotypes, and blockade of the CD47-SIRPo. axis (98-
100). Colony-stimulating factor 1 (CSF-1) facilitates the
recruitment of TAMs into the TME of breast cancer, where they
promote tumor invasion and metastasis. CSF-1 binds its receptor
CSF-1R to regulate macrophage survival and trafficking.
Pharmacological inhibition of CSF-1R not only reduces TAM
infiltration but also delays tumor growth and dissemination (101).
Emactuzumab (RG7155), a monoclonal antibody targeting CSF-1R,
depletes TAMs by blocking receptor activation (102). Preclinical
studies revealed that RG7155 markedly suppressed TAM levels and
enhanced T cell infiltration (103). However, a Phase I clinical trial
evaluating RG7155 in breast cancer demonstrated no significant
clinical benefit when administered alone or in combination with
paclitaxel, despite successful TAM suppression (104). These
findings highlight the necessity of thoroughly evaluating the TME
before initiating CSF-1R-targeted therapies.

Chemokines also critically regulate TAM recruitment (105).
CCL2 recruits circulating monocytes that differentiate into TAMs
via its receptor CCR2 (106). Inhibition of CCL2 has been shown to
attenuate TAM infiltration and impair cancer stem cell renewal,
thereby restraining TNBC progression (60, 107). However, abrupt
withdrawal of CCL2 blockade can trigger a rebound effect, marked by
increased TAM accumulation, enhanced metastasis, and reduced
survival in preclinical breast cancer models (108). This underscores
the limitations of monotherapy targeting CCL2 in metastatic disease
and emphasizes the importance of understanding TME composition
and antitumor dynamics. CCL5 is a key modulator of tumor growth
and metastatic dissemination, and its receptor CCR5 is frequently
overexpressed in TNBC (109). Elevated CCL5 levels correlate with
increased tumor burden following neoadjuvant chemotherapy (110),
and gene expression profiling of residual tumors reveals enrichment
of CCLS5, suggesting its role in recruiting macrophages and fostering
recurrence (111). Thus, targeting the CCL5/CCR5 axis emerges as a
promising approach to limit TAM-driven relapse in TNBC.
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4.2 Reprogramming TAMs toward an anti-
tumor phenotype

Macrophages exhibit remarkable plasticity and can dynamically
shift their phenotype in response to environmental cues.
Reprogramming TAMs from a tumor-promoting (M2-like) to an
inflammatory, tumoricidal (M1-like) phenotype offers a promising
avenue for TNBC therapy (112, 113). CD40, a member of the TNF
receptor superfamily, is expressed on antigen-presenting cells,
including macrophages and B cells (114). Engagement of CD40
by CD40L triggers the production of TNF, ROS, and nitric oxide
(NO), and promotes T cell activation and antitumor immunity
(115). In preclinical studies, CD40 agonists have successfully
reprogrammed TAMs into M1-like macrophages with enhanced
tumoricidal activity, thereby restoring immune surveillance and
delaying tumor progression (116). Additionally, Toll-like receptor
(TLR) agonists have demonstrated the capacity to re-educate
TAMs, further supporting their therapeutic potential in TNBC
(55). Notably, ATM gene deficiency in murine breast cancer cells
has been shown to facilitate macrophage repolarization from M2- to
MIl-like phenotypes within the TME, leading to reduced tumor
growth, angiogenesis, and metastatic burden (117). Another axis of
interest is the CD47-SIRPa signaling pathway. CD47, a
transmembrane protein overexpressed in many malignancies
including TNBC, is associated with immune escape and poor
prognosis (118). Its interaction with SIRPa, expressed on
macrophages, delivers a “don’t eat me” signal that suppresses
phagocytosis. This mechanism enables tumor cells to evade
immune clearance. Blocking the CD47-SIRPo. interaction
reactivates macrophage-mediated phagocytosis and enhances
anti-tumor responses. Notably, CD47-targeted agents are
currently in clinical trials, with encouraging evidence supporting
CD47 blockade as an effective strategy for suppressing TNBC
development and metastasis (119).

4.3 TAM-targeted nanoengineering
strategies

Tumor-targeted nanoparticles (NPs) offer a promising platform
for precision drug delivery due to their enhanced specificity,
penetrability, and biocompatibility, which improve intratumoral
drug accumulation while reducing systemic toxicity (120). Haney
et al. (121) demonstrated that EVs loaded with paclitaxel or
doxorubicin effectively suppressed tumor growth in vitro and in
vivo. In TNBC, where residual cancer stem cells and inflammatory
cues persist post-surgery, TAMs are preferentially recruited to tumor
margins. Leveraging this, dual-loaded R8-modified liposomes co-
encapsulating paclitaxel and resveratrol were developed for
macrophage-mediated delivery, effectively suppressing recurrence
and downregulating pro-tumor cytokines (122). Additionally,
hybrid membranes composed of macrophage and tumor cell
membranes were employed to coat DOX-loaded PLGA NPs,
markedly enhancing tumor homing and systemic stability,
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achieving a metastasis-targeting rate of 88.9% (123). Beyond
delivery efficiency, TAM-targeted nanoplatforms are increasingly
tailored to modulate the tumor immune microenvironment (124).
For instance, dextran-coated iron oxide NPs catalyze Fenton-like
reactions to generate ROS, promoting TAM polarization toward an
M1 phenotype and inhibiting metastasis (125-127). Moreover, MnO-
doped DOX nanospheres encapsulated in macrophages enable laser-
triggered release at tumor sites, locally decomposing H,O, to relieve
hypoxia while MnO reduction liberates Mn*" and DOX, amplifying
cytotoxicity through enhanced ROS production (128). Together,
these studies highlight the transformative potential of TAM-
targeted nanoengineering in overcoming drug delivery barriers,
modulating immune responses, and improving therapeutic
outcomes. Continued innovation in macrophage-based
nanotechnology offers promising translational avenues for
cancer immunotherapy.

5 Conclusion

Tumor-associated macrophages (TAMs) are key orchestrators of
triple-negative breast cancer (TNBC) progression, contributing to
immunosuppression, angiogenesis, metastasis, and therapeutic
resistance. Recent advances highlight various strategies targeting
TAMs, including depletion via CSE-1R inhibition, repolarization
toward M1-like phenotypes, blockade of the CD47-SIRPo. axis,
and macrophage-mediated nano-drug delivery. These approaches
hold substantial potential to reshape the tumor immune
microenvironment and enhance treatment responses.

However, translating TAM targeted therapies into clinical
success remains challenging. The functional heterogeneity of
TAMs, shaped by ontogeny, spatial localization, and cytokine
context, complicates precise targeting. Additionally, the dynamic
plasticity of TAM polarization hinders real time monitoring, while
the absence of robust biomarkers limits patient stratification and
treatment evaluation. Addressing these obstacles will require
integrative strategies incorporating single cell technologies, spatial
profiling, and biomarker guided trial designs to identify responsive
TNBC subgroups. Only through overcoming these translational
barriers can TAM directed interventions be effectively implemented
to improve outcomes in TNBC patients.
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