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for nanomaterial- based
detection strategies
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and Zhiye Fang3*†

1Department of Medical Oncology, Shenzhen People’s Hospital, The Second Clinical Medical College,
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Shenzhen, Guangdong, China, 2Center for Medical Experiments, Shenzhen Guangming District
People’s Hospital, Shenzhen, China, 3Respiratory Medicine, Shenzhen Guangming District People’s
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Background: This study aimed to validate secreted biomarkers SPON2 and

MSMB with tumor-specific expression and immunogenicity for nanomaterial-

based prostate cancer diagnostics.

Methods:Gene expression data (GSE55945), comprising 13 prostate tumor and 8

normal tissue samples, retrieved from the GEO database and analyzed by

Affymetrix Human Genome U133 Plus 2.0 Array platform. Differentially

expressed genes (DEGs) were identified using thresholds of |log2 fold change|

>1 and adjusted p < 0.05. Upregulated DEGs filtered for secretory proteins based

on annotations from Human Protein Atlas and UniProt databases. Candidate

genes were prioritized using receiver operating characteristic (ROC) analysis,

selecting those with area under the curve (AUC) > 0.85 for validation. Quantitative

reverse transcription PCR (qRT-PCR) was performed using clinical tumor and

matched normal prostate tissues, with GAPDH as internal control. Extracellular

accessibility and immune relevance of SPON2 and MSMB were evaluated for

diagnostic translation. B cell epitope prediction was done using IEDB and VaxiJen

tools to assess immunogenic potential. Selected peptide epitopes were

synthesized and validated by indirect ELISA using sera from prostate cancer

patients and healthy controls.

Results: Out of 243 DGE, five upregulated candidates encoding secretory

proteins were identified. Of these, SPON2 and MSMB exhibited high diagnostic

performance with AUC values of 0.99 and 0.93, respectively. qRT-PCR validation

in clinical samples confirmed significant overexpression of SPON2 (~18-fold) and

MSMB (~2.6-fold) in prostate tumor tissues compared to matched normal

tissues. Both proteins demonstrate extracellular localization and immune

accessibility, supporting their feasibility as targets for antibody- or epitope-

based capture strategies. These properties position SPON2 and MSMB as ideal

candidates for nanoparticle-conjugated peptide biosensors designed for

immunomodulated detection of prostate cancer. Epitope E1 (SPON2) and E2

(MSMB) showed antigenicity scores of 0.80 and 0.52, respectively, and were

validated by ELISA, with E1 exhibiting significantly higher reactivity in cancer sera

(OD 1.49 vs. 0.81, p < 0.01; AUC 0.98) and E2 showing moderate discrimination

(OD 1.27 vs. 0.87, p < 0.05; AUC 0.88).
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Conclusion: SPON2 and MSMB are secretory, immunogenic biomarkers

overexpressed in prostate cancer. Their validated B cell epitopes demonstrate

strong diagnostic performance, supporting their potential in nanomaterial-based

immunodiagnostic strategies for non-invasive prostate cancer detection.
KEYWORDS

prostate cancer, SPON2, MSMB, immunodiagnostic, secretory biomarkers,
nanomaterials, transcriptomics, biosensors
1 Introduction

Prostate cancer is the second most commonly diagnosed cancer

and the fifth most common cause of cancer-related mortality in

men worldwide, with more than 1.4 million new cases and more

than 375,000 deaths each year (1). Its incidence is increasing in both

developed and developing countries, mostly due to increased life

expectancy and the adoption of prostate-specific antigen (PSA)

screening as a diagnostic tool. However, despite advances made in

the clinical management of the disease, the prospect of early and

accurate diagnosis of prostate cancer remains a significant

challenge. The current diagnosis of prostate cancer using PSA

testing, digital rectal examination (DRE) and histopathological

biopsy has specificity and patient compliancy limitations, both of

which can be developed and evaluated apparent deficits in the

diagnosis of prostate cancer (2, 3). The diagnosis of prostate cancer

is complex, as PSA can be elevated in benign conditions, such as

prostatitis, or benign prostatic hyperplasia (BPH), where there is a

risk of false positive interpretation, while some aggressive tumors

may present with PSA levels within the normal range, and thus

being under-diagnosed (4). There is a pressing requirement for

accurate, non-invasive biomarkers that can better distinguish

malignant prostate lesions from benign conditions. Over the past

few years, transcriptomics the use of high-throughput

transcriptomic technologies such as microarrays and next-

generation sequencing (NGS) has revolutionized approaches to

study alterations in gene expression in cancer (5). By evaluating

tumor-specific transcriptional signatures, the transcriptomic

analysis may identify differentially expressed genes (DEGs) that

could lead to diagnostic, prognostic, or therapeutic applications.

Secreted proteins are an obvious target for these applications

because they reside in extracellular compartments and are

detectable in the bloodstream or urine (6). Secreted proteins hold

promise as minimally invasive biomarkers, and applications for

chemo-adjuvant monitoring, early detection, and personalized

medicine. A number of studies have utilized transcriptomic

datasets to identify candidate biomarkers in prostate cancer. For

example, Taylor et al. utilized RNA-seq to identify novel diagnostic

transcripts in prostate tumors at early stages and Vittrant et al.,
02
utilized machine learning with gene expression to classify clinically

significant prostate cancer (7, 8). However, many such studies lack

clinical or experimental validation, and few have systematically

filtered for extracellular proteins—an essential step for identifying

targets amenable to immunoassays or nanomaterial-conjugated

biosensors. Among secretory proteins implicated in prostate cancer

are SPON2,MSMB andAGR2. SPON2 (spondin-2) is an extracellular

matrix glycoprotein involved with immune-modulation and cell

adhesion, and has been shown to have an upregulation in a few

malignancies including prostate and colorectal cancer (9). MSMB

(microseminoprotein-beta) is a prostate-secreted protein that has

been investigated to shed light on it being a possible PSA

alternative and tumor suppressor, where it frequently shows lower

expression in higher stages of cancer (10). AGR2 (anterior gradient 2)

is a protein disulfide isomerase family member and is involved with

endoplasmic reticulum homeostasis, cellular proliferation, and tumor

progression. This protein has been shown to be deranged in multiple

cancers including prostate, breast, and pancreatic cancer (11).

In this study, we used an integrative transcriptomics approach

to identify differentially expressed secreted proteins in prostate

cancer. First, publicly available microarray data were assessed,

with criteria to obtain differentially expressed genes (DEGs) in

cancer tissue and normal prostate tissue samples. After filtering the

DEGs, for those annotated as secreted proteins in the Human

Protein Atlas and UniProt, we prioritized candidate biomarkers

via receiver operating characteristic (ROC) curve analysis and

found that the markers with the highest discriminatory power

(AUROC > 0.85) were then validated with qRT-PCR tissue

samples. Our study produced the findings of SPON2 and MSMB

as two serum-detectable biomarkers that have potential clinical

diagnostic relevance in prostate cancer. Notably, we identified

SPON2 and MSMB as highly upregulated, secretory, and

immune-accessible proteins characteristics that make them

suitable candidates for development into nanomaterial-linked

peptide biosensors. Such biosensing platforms could enhance

early detection by leveraging immunoreactivity and molecular

specificity in liquid biopsy settings. Our findings thus support the

translational potential of SPON2 andMSMB in immunomodulated,

nanotechnology-enabled diagnostics for prostate cancer.
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2 Materials and methods

This study was conducted in accordance with the Declaration of

Helsinki and approved by the Institutional Ethics Committee (IEC)

of Shenzhen People’s Hospital. Prostate tumor and matched

adjacent normal tissue samples were collected from patients

undergoing prostatectomy and after obtaining written informed

consent. Patients with other malignancies, insufficient tissue quality,

or who declined consent were excluded. All samples were handled

following institutional ethical guidelines to ensure patient

confidentiality and welfare.
2.1 Microarray dataset acquisition and
preprocessing

Gene expression microarray data were obtained from the Gene

Expression Omnibus (GEO) database (accession: GSE55945). This

dataset, based on the Affymetrix Human Genome U133 Plus 2.0

Array (GPL570 platform), includes 21 prostate tissue samples,

comprising 13 malignant (tumor) and 8 benign (normal) samples.

Raw expression data were downloaded as a series matrix file.

Preprocessing included log2 transformation of expression values

to normalize data distribution. Since the dataset was already

normalized using a robust multi-array average (RMA), additional

quantile normalization was not performed. Probe sets were filtered

to retain only those annotated with valid gene symbols using the

GPL570 annotation file (release date: 2024-11-24). Samples were

categorized into tumor and normal groups based on metadata and

used for downstream differential expression analysis.
2.2 Differential expression analysis

Differential expression analysis was performed on the

preprocessed GSE55945 dataset comprising 13 tumor and 8

normal prostate tissue samples employing Python version 3 in

google colab. The resulting p-values were adjusted for multiple

testing using the Benjamini–Hochberg false discovery rate (FDR)

method. Genes were considered differentially expressed if they met

the criteria of |log2 fold change| > 1 and adjusted p-value < 0.05. The

log2 fold change was calculated as the difference in average

expression between tumor and normal samples at the gene level.
2.3 Heatmap of top differentially expressed
genes

A heatmap was generated to visualize the expression patterns of

the top 30 differentially expressed genes ranked by adjusted p-values.

Expression values for these genes were extracted from the normalized

dataset and standardized using Z-score normalization across rows

(genes). Hierarchical clustering was applied to the genes usingWard’s

linkage method and Euclidean distance metric to group genes with

similar expression patterns. Samples were organized according to
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tumor and normal classification. The heatmap was generated using

the Seaborn (v0.12.2) and Matplotlib (v3.7.1) libraries in

Python (v3.10).
2.4 Identification of secreted protein
biomarkers

Upregulated genes (log2 fold change > 1, adjusted p-value <

0.05) from the differential expression analysis were selected for

secretome analysis. Probe IDs were mapped to gene symbols using

the GPL570 annotation file (release date: 2004-07-07), and only

probes with clearly annotated gene symbols were retained. To

identify genes encoding secreted proteins, two databases were used:

Human Protein Atlas (HPA) version 23.0 released in March

2024: Genes annotated as “secreted to blood” or “extracellular” in

the Secretome section were selected.

UniProtKB release 2024-03: Genes with subcellular localization

annotated as “Secreted,” “Extracellular region,” or “Extracellular

space” were included. In cases of annotation ambiguity, genes

predicted to encode proteins with a signal peptide and no

transmembrane domains were provisionally included based on

SignalP 6.0 predictions and UniProt annotations. A final list of 5–

10 upregulated genes encoding secreted proteins was compiled for

further analysis.
2.5 Biomarker prioritization using ROC/AUC
analysis

To evaluate the diagnostic potential of the upregulated secreted

proteins, receiver operating characteristic (ROC) curve analysis was

performed. Normalized gene expression values were used to

calculate the area under the curve (AUC) for each gene,

comparing tumor (coded as 1) and normal (coded as 0) samples.

AUC values were computed using the roc_auc_score function from

the sklearn.metrics module in Python. Genes with AUC >0.85 were

considered to have strong discriminatory power and were selected

for downstream B cell epitope prediction.
2.6 Study participants

The study was conducted in accordance with the ethical

standards of the institutional research committee and with the

Declaration of Helsinki. Prostate tissue samples (n=5), including

tumor and matched adjacent normal tissues (n=5), were collected

from patients undergoing prostatectomy at Shenzhen People’s

Hospital. Informed consent was obtained from all participants

prior to sample collection, and the study was conducted in

compliance with ethical standards. Fresh tissue specimens were

immediately snap-frozen in liquid nitrogen and stored at –80 °C

until RNA extraction. Clinical stages ranged from [Stage II–III],

with Gleason scores between [6–8] (Table 1). Each sample was

analyzed in triplicate (technical replicates), and mean Ct values
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were used for fold-change calculations after normalization to

GAPDH. Patients eligible for inclusion were adult males (≥18

years) diagnosed with primary prostate adenocarcinoma, with

availability of matched adjacent normal tissue and no prior

history of chemotherapy or radiotherapy. Patients were excluded

if they had a history of other malignancies, provided insufficient

tissue quantity or poor-quality RNA, or declined to give consent.
2.7 Nucleic acid extraction and quality
assessment

Total RNA was extracted from frozen prostate tissue samples

(both tumor and adjacent normal) using the TRIzol reagent

(Invitrogen, USA). Briefly, approximately 30–50 mg of tissue was

homogenized in TRIzol, and phase separation was carried out using

chloroform. RNA was precipitated with isopropanol, washed with

75% ethanol, and resuspended in RNase-free water. The purity and

concentration of RNA were assessed using a NanoDrop

spectrophotometer (Thermo Fisher Scientific, USA), with

acceptable purity defined as A260/A280 ratio between 1.8 and 2.1.

RNA integrity was confirmed by 1.2% agarose gel electrophoresis.

Only high-quality RNA samples were selected for downstream

cDNA synthesis.
2.8 cDNA synthesis and primer design

First-strand cDNA was synthesized from 1 µg of total RNA

using the High-Capacity cDNA Reverse Transcription Kit (Applied

Biosystems, USA) with random hexamer primers in a 20 µL

reaction volume, as per the manufacturer’s protocol. Gene-

specific primers for SPON2 and MSMB were designed using

Primer-BLAST (NCBI) to ensure specificity and optimal melting

temperatures (Tm 58–62 °C), avoiding secondary structures and

primer-dimers. GAPDH was used as the internal control. The

primers were synthesized commercially. The following set of

primer sequences was used: for SPON2: F: CAGGTTCTTGGAG

GAGATGCT; R: CGGTTGCTGAGGATGTAGGA and for MSMB

F: AGGACCTGAAGCTGAAGACC and R: TCTTGGCCT

CTGTCTTGCTT. GAPDH was measured for every sample in the

same qRT-PCR run conditions. For each sample the GAPDH Ct
Frontiers in Immunology 04
value was obtained from technical triplicates and the mean GAPDH

Ct was used to calculate DCt and DDCt values. GAPDH Ct values

showed low variability across technical triplicates (mean SD < 0.5

Ct), confirming stable expression across the analyzed samples and

consistent normalization across runs. Any detector/run dependent

variability was minimized by using identical reagents, primer sets

and instrument settings for all assays.
2.9 Quantitative RT-PCR validation of gene
expression

To validate the differential expression of candidate biomarkers

identified from the microarray analysis, quantitative reverse

transcription PCR (qRT-PCR) was conducted for SPON2 and

MSMB. The expression levels were assessed in prostate tumor

and adjacent normal tissue samples. Total RNA was isolated as

described earlier, and its integrity and purity were confirmed prior

to use. First-strand cDNA synthesis was performed from 1 µg of

total RNA using the High-Capacity cDNA Reverse Transcription

Kit (Applied Biosystems, USA) with random hexamer primers in a

20 mL reaction volume. qRT-PCR was carried out using gene-

specific primers and SYBR Green Master Mix (Applied Biosystems,

USA) on a QuantStudio 5 Real-Time PCR System. Each reaction

was performed in triplicate in a 20 µL volume consisting of 10 µL

SYBR Green Master Mix, 1 µL cDNA, 0.5 µL of each primer (10

µM), and 8 µL nuclease-free water. The thermal cycling conditions

were as follows: initial denaturation at 95 °C for 10 minutes,

followed by 40 cycles of denaturation at 95 °C for 15 seconds and

annealing/extension at 60 °C for 1 minute. GAPDH was used as the

internal reference gene. Ct (threshold cycle) values were obtained,

and the relative gene expression levels were calculated using the 2^

−DDCt method. Differentially expressed genes (DEGs) in the

discovery microarray were defined using a fold-change cutoff of |

log2FC| ≥ 1 (equivalent to ≥2-fold change) together with multiple

testing adjustment (Benjamini–Hochberg FDR) with FDR < 0.05.

For downstream experimental validation (qRT-PCR and ELISA),

we considered genes/epitopes to show tumor-specific

overexpression when they displayed ≥2-fold mean change in

tumor versus matched normal (or cancer versus control serum)

and reached statistical significance (two-sided p < 0.05) in the

corresponding validation test. All qRT-PCR assays were performed
TABLE 1 Upregulated secreted protein biomarkers identified from DEG analysis.

Gene symbol Probe ID log2FC adj. p-value Secreted? Source Notes

SPON2 242138_at +4.09 0.0025 Yes
HPA/
UniProt

Extracellular matrix protein/immune regulatory
protein

AGR2 244667_at +3.85 0.0254 Yes UniProt Secreted, ER stress-related protein

MSMB 209424_s_at +3.63 0.0197 Yes HPA PSA-complement, prostate marker

CLU 201201_s_at +3.10 0.0189 Yes
HPA/
UniProt

Tumor progression-related

TMEFF2 209437_s_at +2.85 0.0122 Yes UniProt Secreted transmembrane protein
HPA, Human Protein Atlas; UniProt, Universal Protein Resource (database); ER, Endoplasmic Reticulum; PSA, Prostate-Specific Antigen.
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in technical triplicates, and fold-changes were summarized as mean

± SD across biological replicates. The normality of DDCt values was
evaluated using the Shapiro–Wilk test. Paired two-tailed t-tests

were then applied to compare tumor versus matched adjacent

normal tissues, with p < 0.05 considered statistically significant.
2.10 B cell epitopes prediction

The SPON2 and MSMB genes were analyzed for identification

of B cell epitopes aiming for investigating the diagnostic potential of

these candidate genes. The protein sequences of these genes were

retrieved from uniport with ID’s: Q9BUD6 for SPON2 and P08118

for MSMB respectively. The sequences retrieved were subjected to

Emini Surface Accessibility Prediction (12) and Parker

Hydrophilicity Prediction (12) using available IEDB resources.

The surface accessibility was done as the epitopes located on

surface are easily accessible to b cells (13). Also, the

hydrophilicity prediction was used as the hydrophilic epitopes are

tend to have higher immunogenicity (14). The window size was

kept 6 and threshold 1.000 for Emini surface prediction and 7 and

2.125 for Parker hydrophilicity prediction, respectively. Further the

B cell epitopes were predicted by Bepipred-1.0 Linear Epitope

Prediction tool with the threshold kept 3.50. The epitopes

predicted were subjected to Vaijen 2.0 server for immunogenicity

prediction and those scoring above tumor antigen threshold i.e. 0.5

were considered.
2.11 Synthesis of peptides

Based on antigenicity, surface accessibility and hydrophilicity

scores, two B-cell epitopes were selected for synthesis. Synthetic

peptides were procured from an ISO-certified commercial peptide

synthesis provider using standard Fmoc solid-phase chemistry.

Each epitope was synthesized as a single sequence (one synthesis

batch per epitope); vendor quality control confirmed identity by

mass spectrometry and purity >95% by analytical HPLC

(certificates of analysis retained). To enhance stability and better

mimic native protein termini, peptides were synthesized with C-

terminal amidation and N-terminal acetylation. Lyophilized

peptides were reconstituted according to vendor instructions

(DMSO or PBS as appropriate), aliquoted (10–20 µL aliquots) to

avoid repeated freeze–thaw cycles, and stored at −80 °C. Aliquots

from the same synthesis batch were used for all ELISA experiments

in this study. Independent synthesis batch replicates were not

performed owing to limited peptide quantities; inter-batch

reproducibility will be assessed in future validation experiments.

To enhance peptide stability and better mimic native protein

termini, all synthetic peptides were N-terminally acetylated and C-

terminally amidated during synthesis. These terminal modifications

neutralize the terminal charges, reduce susceptibility to

exopeptidase degradation, and can favor retention of native-like

backbone conformation — properties that typically improve

peptide stability and shelf-life and may increase the chance of
Frontiers in Immunology 05
recapitulating native antigenic structure in serological assays. The

core antigenic sequence was not altered; modifications were limited

to the terminal blocking groups only. Vendor certificates indicate

modifications were incorporated as requested. We note that

terminal modifications can in some cases alter antibody

recognition if the natural epitope includes terminal residues. To

minimize this risk, epitopes were selected such that the predicted

antigenic core lay internal to the peptide where possible. In

addition, for definitive confirmation of native protein recognition,

subsequent validation using full-length/native protein (standard

ELISA, immunoblotting, IHC) or competition assays will be

performed in future studies.
2.12 Validation by ELISA

Serum samples were collected from histopathologically

confirmed prostate cancer patients (n = 5) and healthy controls

(n = 5). Whole blood samples were centrifuged at 2,000 × g for 10

minutes, sera were aliquoted and stored at −80 °C until use. Indirect

ELISA was performed in 96-well MaxiSorp plates. Plates were

coated with 100 µL/well of synthetic peptide (10 µg/mL in

carbonate-bicarbonate buffer, pH 9.6) and incubated overnight at

4 °C. All ELISA assays used peptide aliquots from the same

synthesis batch; coating was performed from a single batch to

ensure intra-assay consistency. After blocking with 5% BSA in

PBST (200 µL/well for 1 h at 37 °C), serum samples diluted 1:100

in PBST (100 µL/well) were added and incubated for 1.5 h at 37 °C.

Plates were washed with PBST and incubated with HRP-conjugated

anti-human IgG (1:5,000 in PBST; 100 µL/well) for 1 h at 37 °C.

Following washes, TMB substrate (100 µL/well) was added and

incubated in the dark for 10–15 min; reactions were stopped with 50

µL 1N H2SO4 and absorbance measured at 450 nm.

Blank wells (buffer only) were included on each plate and the

mean blank OD450 was subtracted from all sample readings to

correct for background. Each serum sample was assayed in

duplicate and the mean background-subtracted OD450 per

sample was used for statistical comparisons and ROC analysis.

Standard curves were generated from serial dilutions of

recombinant peptide to confirm assay linearity (Supplementary

Figure 1). The positivity cut-off was defined as mean

(background-corrected control OD450) + 2 × SD (control).

Normality of OD distributions was assessed using Shapiro–Wilk

test; when normality and variance assumptions were met, an

unpaired two-sided t-test (Welch’s t-test where appropriate) was

used to compare groups, otherwise the Mann–Whitney U test was

applied. ROC analyses report AUC with 95% CIs.
2.13 Single cell RNA sequencing dataset
analysis

Three single cell RNA sequencing (scRNAseq) datasets were

used in this study: GSE185344 (15) containing 7 pairs of cribriform

prostate cancer tissues (tumor and benign); GSE181294 (16)
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containing 5 healthy prostate donor samples, 17 prostate cancer

samples and 14 normal (para tumor) samples; GSE176031 (17)

containing 17 prostate cancer samples and 8 normal (para tumor)

samples. RDS files for each dataset were reconstructed using R

Seurat package, and the expression status of target genes

were examined.
3 Results

3.1 Differential gene expression analysis

Differential expression analysis was performed on the

GSE55945 dataset, comprising 13 prostate cancer and 8 normal

prostate tissue samples. Using a threshold of |log2 fold change| >1

and adjusted p-value < 0.05, a set of significantly differentially

expressed genes (DEGs) was identified. To visualize the

distribution and significance of these gene expression changes, a

volcano plot was generated (Figure 1). This plot displays all

analyzed genes, with significantly upregulated genes highlighted

in red, downregulated genes in blue, and non-significant genes in

grey. The plot revealed a distinct separation of genes with high

statistical significance and large expression differences

(Supplementary File 1 Code 1 and 2).
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3.2 Heatmap of top differentially expressed
genes

A heatmap was generated to visualize the expression patterns of

the top 30 DEGs, selected based on adjusted p-values (Figure 2).

Expression values were Z-score normalized across genes to enable

cross-sample comparison. Hierarchical clustering grouped genes

with similar expression profiles. Tumor and normal samples

clustered separately, reflecting clear transcriptomic distinctions

between the two groups (Supplementary File Code 3).
3.3 Identification of upregulated secreted
protein biomarkers

From the DEGs, upregulated genes (log2FC > 1, adjusted p-value <

0.05) were filtered for secreted protein candidates based on annotations

from the Human Protein Atlas (HPA) and UniProt databases. Proteins

categorized as secreted or extracellular were retained. Additional

support was provided by signal peptide presence and lack of

transmembrane domains when necessary. Five candidate genes were

identified: SPON2, AGR2, MSMB, CLU, and TMEFF2 (Table 1), all of

which have been previously associated with extracellular functions or

secretion (Supplementary File Code 3).
FIGURE 1

Volcano plot showing differentially expressed genes in prostate cancer versus normal tissue samples. Each dot represents a single gene (probe). Red
dots indicate significantly upregulated genes, blue dots indicate significantly downregulated genes (|log2FC| > 1, FDR < 0.05), and gray dots represent
non-significant genes. Dashed lines indicate the log2FC threshold (± 1) and FDR cutoff (p-adj = 0.05).
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3.4 Validation of the upregulated secreted
proteins in single-cell RNA transcriptomic
sequencing datasets

To further validate the expression status of these 5 genes, we

retrieved 3 scRNAseq datasets: GSE185344 containing 57697 cells

from benign and tumor samples; GSE181294 containing 155057

cells from healthy donor, normal (para tumor) and tumor samples;

GSE176031 containing 17144 cells from normal (para tumor) and

tumor samples. The UMAP plot for each dataset was reconstructed,

and shown in Figure 3A. The expression levels of these five genes

are show in Figure 3B. Specifically, in GSE185344 dataset, SPON2

has the highest expression in olfactory epithelial cells, AGR2 in

ciliated cells, MSMB and TMEFF2 in basal cells, and CLU in

schwann cells; in GSE181294 dataset, SPON2, AGR2 and

TMEFF2 have the highest expression in tumor cells, MSMB in

luminal cells, and CLU in endothelial cells; in GSE17144 dataset,

SPON2, AGR2, MSMB and TMEFF2 have the highest expression in

epithelial cells, and CLU in endothelial cells. We further compared

the expression status of these five genes among samples from
Frontiers in Immunology 07
different origins, and find out only SPON2 and AGR2 have

higher expression in tumor samples across all three datasets, as

shown in Figure 3C.

Notably, SPON2 expression was enriched in tumor-associated

epithelial clusters, while MSMB expression was detected in

secretory/luminal epithelial cell subsets. These cell-type

distributions are consistent with their biology as secreted proteins

and support their potential utility as tumor-derived biomarkers

measurable in serum.
3.5 ROC/AUC-based biomarker
prioritization

To assess the diagnostic performance of the secreted

biomarkers, receiver operating characteristic (ROC) curve analysis

was conducted. AUC (area under the curve) values were calculated

for each gene based on tumor versus normal expression levels

(Figure 4, Table 2). Genes with AUC > 0.85 were prioritized for

immunoinformatics analysis. Three candidates—SPON2 (AUC =
FIGURE 2

Heatmap of the top 30 differentially expressed genes (DEGs) in prostate cancer versus normal prostate tissue. Rows represent genes, and columns
represent individual samples. Expression values are Z-score normalized per gene. Blue indicates low expression and red indicates high expression.
Hierarchical clustering groups genes with similar expression profiles.
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0.99), MSMB (AUC = 0.93), and AGR2 (AUC = 0.88)—showed

strong discriminatory power and were selected for epitope

prediction. TMEFF2 (AUC = 0.16) showed poor discriminatory

ability and was excluded from further analysis (Supplementary File

Code 4).
3.6 Selection of biomarkers for
immunoinformatic workflow

Based on combined criteria of high fold change, adjusted p-

value, secretory nature, and ROC performance, SPON2, MSMB,
Frontiers in Immunology 08
and AGR2 were finalized for downstream immunoinformatic

analysis . These proteins demonstrated tumor-specific

overexpression and robust classification ability, supporting their

cand idacy for ep i tope mapping and pep t ide -ba sed

immunodiagnostic development (Supplementary File Code 5).
3.7 Quantitative RT-PCR validation of gene
expression

The differential expression observed in the microarray analysis

was further validated by qRT-PCR for two candidate secreted
FIGURE 3

Expression status of selected genes in scRNAseq datasets. (A) UMAP visualization of single-cell transcriptomes for three independent datasets:
i = GSE185344 (57,697 cells), ii = GSE181294 (155,057 cells) and iii = GSE176031 (17,144 cells). Upper subpanels show annotated cell-type clusters
(legend on the right of each column); lower subpanels show sample origin mapping (e.g., Benign/Healthy/Para-tumor/Tumor) for the same UMAPs.;
(B) Dot plot showing the expression patterns of selected genes across different subgroups among different subsets; (C) Bar plots comparing the
expression values of selected genes in certain subgroups among samples of different origins. (*: p < 0.05; **: p < 0.01; ***: p < 0.001).
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biomarkers, SPON2 and MSMB, using RNA extracted from

prostate tumor tissues (n = 5) and their matched adjacent normal

tissues (n = 5). The patients included in this validation cohort had

clinical stages ranging from II–III and Gleason scores between 6–8

(Supplementary File code 6). Each sample was analyzed in technical

triplicates, and mean Ct values were used for relative quantification,

with GAPDH serving as the internal control.

GAPDH was measured for every sample in the same qRT-PCR

runs; mean GAPDH Ct (from technical triplicates) was used for DCt
calculations and showed low variability across replicates (mean SD <

0.5 Ct), confirming stable normalization (Supplementary Table 3).

SPON2 exhibited strong overexpression in tumor tissues

compared to matched normals, with a mean DDCt of –4.2,

corresponding to an approximately 18-fold increase in expression

(mean fold-change = 18.2 ± 2.4, mean ± SD). MSMB also

demonstrated upregulation in tumor samples, with a mean DDCt
of –1.4, indicating a ~2.6-fold increase (mean fold-change = 2.6 ±
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0.5, mean ± SD) in expression (Table 3). The technical triplicates

showed low variability (mean SD < 0.5 Ct across replicates),

underscoring the reliability of the measurements. Normality of

DDCt values was assessed using the Shapiro–Wilk test (p > 0.05

for both genes); paired two-tailed t-tests were then applied to

compare tumor versus matched normal tissues, yielding p = 0.003

for SPON2 and p = 0.02 for MSMB (Supplementary Table 3).

These fold-change values were consistent with those obtained

from microarray analysis, thereby validating the transcriptomic

screening results. A bar plot (Figure 5) illustrates the relative

expression levels of SPON2 and MSMB in tumor versus normal

samples, highlighting SPON2 as the most strongly upregulated

marker in this cohort. Although AGR2 met the initial selection

criteria for immunoinformatics analysis, only SPON2 and MSMB

were prioritized for qRT-PCR validation due to sample availability

and higher differential expression values.
3.8 B cell epitopes

B cell epitopes were analyzed based on the parameters like

threshold values for B cell epitope, surface accessibility,

hydrophilicity and antigenicity (Figures 6A–F). Based on these

parameter two epitopes were finalized E1: PNFATIPQDTVTE

ITSSSPSHPANSF from SPON2 and E2: NEGVPGDSTR from

MSMB. Both these epitopes had antigenicity scores of E1 = 0.80

and E2 = 0.52 respectively i.e. above the standard threshold for

tumor antigens as set by the VaxiJen v2.0 server.
FIGURE 4

ROC curves illustrating diagnostic performance of selected secreted protein biomarkers. ROC curves were generated for SPON2, MSMB, AGR2, CLU,
and TMEFF2 based on normalized expression values. SPON2, MSMB, and AGR2 demonstrated high AUC scores (>0.85), indicating strong
discriminatory power between prostate cancer and normal tissues.
TABLE 2 ROC-AUC analysis of secreted protein biomarkers for
diagnostic performance.

Gene
symbol

Probe
ID

AUC
Selected for epitope
prediction

SPON2 242138_at 0.99 Yes

MSMB 209424_s_at 0.93 Yes

AGR2 244667_at 0.88 Yes

TMEFF2 209437_s_at 0.16 No
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3.9 ELISA results

To investigate the diagnostic potential of the predicted B-cell

epitopes, synthetic peptides were evaluated by indirect ELISA using

serum samples from prostate cancer patients (n = 5) and healthy

controls (n = 5). Clinical characteristics of the patient cohort are

provided in (Supplementary Table 1). Each serum sample was

tested in duplicate, and replicate variability was expressed as

mean ± SD. The standard curves generated from recombinant

peptide dilutions confirmed assay linearity (Supplementary

Figure 1). Reported OD450 values are background-subtracted

(mean blank OD450 removed) and represent the mean of

duplicate background-corrected measurements for each sample.

For the E1 epitope (SPON2), prostate cancer serum samples

showed markedly higher reactivity (mean OD = 1.49 ± 0.15)

compared to healthy controls (mean OD = 0.81 ± 0.07), representing

a statistically significant difference (p < 0.01, unpaired t-test;

Supplementary Table 2). For the E2 epitope (MSMB), prostate

cancer serum also demonstrated increased absorbance (mean OD =
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1.27 ± 0.11) compared to controls (mean OD = 0.87 ± 0.09), which was

statistically significant (p < 0.05).

Receiver Operating Characteristic (ROC) curve analysis further

demonstrated strong diagnostic accuracy of the epitopes. The E1

epitope (SPON2) yielded an AUC of 0.98, while the E2 epitope

(MSMB) achieved an AUC of 0.88 (Figure 7). These findings

suggest that SPON2 and MSMB epitopes exhibit promising

discriminatory potential, with SPON2-E1 emerging as the most

robust candidate biomarker in this preliminary cohort.

To investigate the diagnostic potential of the B cell epitopes,

they were synthesized and evaluated by indirect ELISA using serum

samples from both prostate cancer patients (n = 5) and healthy

controls (n = 5). The optical density (OD450) values obtained for

each group are presented in Supplementary Table 1. For E1 epitope,

the prostate cancer serum samples showed markedly higher

reactivity (mean OD = 1.49 ± 0.15) compared to healthy controls

(mean OD = 0.81 ± 0.07). these findings indicated statistically

significant difference (p < 0.01, unpaired t-test). Similarly, E2

epitope, the prostate cancer serum showed increased absorbance

(mean OD = 1.27 ± 0.11) compared to controls (mean OD = 0.87 ±

0.09). These were also statistically significant (p < 0.05). In order to

assess the diagnostic accuracy of each epitope, Receiver Operating

Characteristic (ROC) curve analysis was performed. The E1 epitope

from SPON2 demonstrated promising diagnostic discrimination,

with an AUC of 0.98, while the E2 epitope from MSMB showed

moderate discriminatory capacity with an AUC of 0.88 (Figure 7).

These findings suggest excellent candidacy of these two epitopes

with Area Under the Curve (AUC) values of 1.00, discriminating

prostate cancer patients and healthy controls perfectly.
TABLE 3 qRT-PCR validation of biomarker expression.

Gene
Tumor
Ct

Normal
Ct

DCt (vs
GAPDH)

DDCt

Fold
change
(2^
−DDCt)

SPON2 22.1 27.6 –5.5 –4.2
~18×
upregulated

MSMB 23.3 25.5 –2.2 –1.4
~2.6×
upregulated
FIGURE 5

Relative mRNA expression of SPON2 and MSMB. A bar graph comparing relative gene expression in tumor vs. normal prostate tissues. SPON2 shows
~18-fold overexpression; MSMB shows ~2.6-fold overexpression. Error bars represent standard error across replicates.
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4 Discussion

The global rising incidence of prostate cancer and the

limitations of current diagnostics highlight the need for new

accurate and minimally invasive biomarkers. In this study, we

utilized an integrative transcriptomics and experimental approach
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to address this need by focusing on identifying and validating

secreted proteins as potential diagnostic candidates. We examined

a publicly available microarray dataset (GSE55945) by

bioinformatics analysis to identify differentially expressed genes

with a particular focus on those that encode secreted proteins.

Secreted protein-coding genes, which can be found in biological
FIGURE 6

B cell epitopes prediction in SPON2 and MSMB proteins. SPON2 results (A-C)- (A) The B cell epitope prediction results, (B) Emini surface
accessibility, (C) Parker Hydrophilicity results. MSMB results (D-F)- (D) The B cell epitope prediction results, (E) Emini surface accessibility,
(F) Parker Hydrophilicity results.
FIGURE 7

ROC curve for peptide-based ELISA using SPON2 and MSMB epitopes. The ROC curves generated from ELISA, evaluating the immunoreactivity of
two synthetic B cell epitopes derived from the SPON2 (E1: PNFATIPQDTVTEITSSSPSHPANSF) and MSMB protein (E2: NEGVPGDSTR). The blue solid
line and orange dashed line represents the ROC curve for the SPON2 epitope and MSMB epitopes respectively. The grey dotted diagonal line
indicates a random classifier (AUC = 0.50), serving as a reference for baseline discrimination.
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fluids, are particularly clinically relevant in regards to cancer

biomarkers as they facilitate non-invasive diagnostics. Secreted

proteins can often represent alterations to the tumor

microenvironment and may function as tumor progression

mediators, making them attractive candidates for diagnostic/

prognostic parameters.

Using annotations from the Human Protein Atlas and UniProt

databases, we were able to refine our candidate list down to five

secreted proteins: SPON2, AGR2, MSMB, CLU, and TMEFF2 (see

Table 1). Literature exists for each of the proteins that identifies

associations with cancer; however, the association and function in

prostate cancer are varied. We conducted an analysis of the receiver

operating characteristic (ROC) curves to rank the most

diagnostically relevant candidates. ROC curve analysis is an

important statistical technique for measuring the ability of

potential biomarkers to discriminate between prostate cancer and

non-cancer cases. SPON2 (AUC = 0.99), MSMB (AUC = 0.93), and

AGR2 (AUC = 0.88) performed exceptionally as the values were all

substantially greater than the threshold commonly accepted as

strong diagnostic utility (AUC > 0.85) (Figure 3, Table 2). The

high AUC values for these genes indicated a strong ability to

discriminate between prostate cancer and normal samples based

solely on their respective levels of gene expression. However,

TMEFF2 had a very low AUC (0.16) and was excluded from

further analysis, illustrating the importance of ranking candidates

in this way.

The qRT-PCR validation of our findings confirms our

microarray observations and found that SPON2 had high

expression (approximately 18-fold increase) and MSMB had a

moderate overexpression (approximately 2.6-fold increase) in

tumor tissues compared to the adjacent normal tissues. This

concordance provides a strong rationale for their utility in

distinguishing malignant from benign tissues. SPON2 (spondin-2)

is particularly interesting due to both its high level of expression and

the consistent comparison of our microarray and qRT-PCR results,

supporting its potential as a diagnostic marker. Studies have

reported on its relevance in many different cancers. In prostate

cancer, SPON2 has been reported as a diagnostic biomarker that

offers advances over prostate specific antigen (PSA) with

improvement of diagnostic sensitivity and specificity even in

cohorts with NP levels of PSA, potentially lowering false negative

tests and unnecessary biopsy (18). SPON2 overexpression in gastric

cancer and triple negative breast cancer is reported to be associated

with tumorigenicity and aggressive clinical characteristics and

poorer outcomes, suggesting it may have a role in malignant

progression and metastasis (19, 20).

Functional research shows that SPON2 promotes tumor cell

proliferation, migration, and invasion, while silencing of SPON2

suppresses tumor growth in vitro and in vivo. Mechanistically,

SPON2 functions in the Notch pathway in gastric cancer and

inhibition of the PI3K-AKT pathway in breast cancer, thereby

being located at key step points in oncogenic signaling paths (19,

20). In the prostate cancer context, recent studies have

demonstrated that SPON2 can promote osteogenic responses via

activation of the PI3K–AKT–mTOR pathway, supporting the
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biological plausibility of this signaling link in prostate tumors

(21). Conversely, the regulation of SPON2 by Notch has thus far

been described in gastric cancer, while Notch signaling in prostate

cancer is context-dependent, with both oncogenic and tumor-

suppressive roles reported. Therefore, although our findings

highlight SPON2 as a promising biomarker, direct mechanistic

studies in prostate cancer cells are needed to establish whether

SPON2 engages PI3K–AKT or Notch pathways in this disease

setting (19, 22). Therefore, with the considerable upregulation of

SPON2 in our study, this supports its recognition as a pan-cancer

marker that can be used for diagnosis and potentially targeted

therapeutics. MSMB (microseminoprotein beta) is also a secreted

protein that has been extensively analyzed in prostate cancer

because of its strong correlation with susceptibility to the disease,

changes in expression, and genetic risk (23–25).

Genetic variants near the MSMB locus, particularly rs10993994,

are associated with changes in MSMB expression and increased risk

of prostate cancer, with functional evidence indicating that

regulatory variants reduce expression of MSMB, which may

lessen their potential protective effects against tumorigenesis (24).

The secreted nature and prostate-specific expression of MSMB

allow for safe detection in serum and tissues, making its wide use

in clinical assays. MSMB has been explored historically in a prostate

context, but the area under the curve analyses suggests MSMB may

be a more general marker of secretory epithelial malignancies. The

high discriminatory power of MSMB (area under the curve > 0.85)

and the increased overall expression (approximately 2.6 times in

tumors) not only makes it suitable for an assay to detect disease, but

it could be employed as a marker of risk in an individual who may

have genetic liability (23).

To further investigate the diagnostic potential of SPON2 and

MSMB, the linear B cell epitopes from both SPON2 and MSMB

proteins were predicted, synthesized, and experimentally tested.

Indirect ELISA as carried out for investigating the diagnostic

potential of the synthesized epitopes. The results revealed

significantly higher antibody reactivity against both synthesized

epitopes. The E1 epitope from SPON2 showed a mean OD450 of

1.49 ± 0.15 in cancer samples compared to 0.81 ± 0.07 in controls (p <

0.01), while the E2 epitope fromMSMB showed mean values of 1.27 ±

0.11 versus 0.87 ± 0.09 (p < 0.05), respectively. The ROC curve analysis

further highlighted strong diagnostic potential, with AUC values of

0.98 for E1 and 0.88 for E2. The overall findings indicate the

immunogenicity of both the epitopes and support their utility in the

development of peptide-based diagnostic assays for prostate cancer

in future.

AGR2 (anterior gradient 2) is a well-known oncogenic

promoter that is generally recognized as a secreted protein that is

overexpressed in a variety of adenocarcinomas, including breast,

prostate, pancreatic, gastrointestinal and urothelial tumors (11, 26–

28). A recent tissue microarray analysis that had comprehensive

data on more than 14,900 tumors has reported that AGR2 is

typically expressed in a range of tumor cells in several tumor

types, and that several adenocarcinomas demonstrated regular

strong positive results, and often (>80%) positively in

adenocarcinomas (27). High AGR2 expression usually associates
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with worst histological grades, advanced disease stage, and/or some

unfavorable genetic mutation(s). Conversely, however, in some

circumstances, such as, nodal-negative breast cancer, high AGR2

signifies a good prognosis, indicating that they could have variated,

tissue-dependent roles (27, 29). Mechanistically, AGR2 is associated

with cancer cell survival, proliferation, and migration, with data

provided by RNA interference and in vivo silencing data

demonstrat ing reduced tumor growth and increased

chemosensitivity (26, 28). Its regulation by androgenic signals is

furthermore clinically relevant for hormone-sensitive cancer types

and thus determined that the significant overexpression of AGR2 in

tumors vs. normal tissues in this study would concur with a

plethora of evidence indicating its putative role as a diagnostic

and prognostic marker and a potential therapeutic target.

The reproducibility of gene overexpression data across

microarray and qRT-PCR assays demonstrates the robustness and

generalizability of these biomarker signatures with respect to

moving from discovery to clinical use. The comparison of tumor

tissues to matched adjacent normal tissues adds additional strength

to the findings, because the analysis controls for inter-individual

differences and associated variability. Lastly, the functional links of

these secreted proteins to oncogenic pathways (e.g., Notch, PI3K-

AKT, androgen receptor), tumor progression and cellular

transformation, established in both mechanistic and animal

model studies, suggest that these genes are not simply passive

biomarkers but have the potential to become actionable targets

for therapy (11, 19, 20, 26, 28). Therefore, together, the evidence

paints a useful picture: upregulated secreted protein-coding genes

such as SPON2, MSMB, and AGR2 could hold both diagnostic

potential in non-invasive cancer detection and biological relevance

as crucial effectors in tumor biology that deserve greater

mechanistic and translational characteristic scrutiny.

Despite the promising identification of SPON2 and MSMB as

secreted, tumor-enriched biomarkers for prostate cancer, several

limitations warrant consideration. The study relied on a single

microarray dataset (GSE55945), which may not fully represent the

molecular diversity of prostate cancer; thus, future validation using

larger, independent cohorts such as TCGA is essential. While qRT-

PCR confirmed transcript-level overexpression in clinical samples,

we further investigated the validation at protein level by targeting

epitopes in SPON2 and MSMB and validating them via indirect

ELISA. AGR2, although a strong candidate in silico, was not

experimentally validated due to sample constraints and should be

included in future multi-level studies. Furthermore, the successful

epitopes selection of SPON2 and MSMB and antibody binding

validation open avenues for exploring nanomaterial-based

biosensor for prostate cancer. This is a preliminary study, aimed

to develop an initial proof-of-concept for the proposed candidate

biomarkers. The number of patient samples were less, limiting the

statistical significance of our findings. In our future studies, we will

incorporate larger independent patient cohorts and TCGA and

additional GEO datasets for validation to make the findings more

robust and reproducible.

Though this study demonstrated preliminary serum reactivity

of synthetic SPON2 and MSMB epitopes by ELISA, we did not
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k i t s o r i mm u n o b l o t t i n g , n o r d i d w e c o n d u c t

immunohistochemistry (IHC) on tumor tissues. These

confirmatory experiments will be incorporated in future studies to

establish protein expression levels, localization, and specificity in

larger patient cohorts.

Although AGR2 also satisfied the initial selection criteria in our

in silico screening, it was not included in the present validation

experiments due to limited sample availability and its comparatively

lower fold-change relative to SPON2 and MSMB. Nevertheless,

AGR2 remains a promising biomarker candidate, and its inclusion

in future validation studies will help further clarify its

diagnostic utility.

The identification of immunogenic peptide epitopes from

SPON2 and MSMB provides a foundation for developing

innovative diagnostic platforms. In particular, nanomaterial-based

biosensors, such as peptide-functionalized nanoparticles, represent

a promising direction for highly sensitive and specific detection of

prostate cancer biomarkers. While not tested in the present study,

these approaches will be explored in future work to translate the in

silico and preliminary validation findings into clinically applicable

diagnostic assays. Also, we used N-terminal acetylation and C-

terminal amidation on the synthetic peptides to improve stability

and better approximate native termini. While these modifications

generally enhance peptide stability and preserve antigenic structure,

they can occasionally affect antibody binding if terminal residues

are part of the native epitope. Therefore, confirmation of antibody

recognition of the native proteins (standard ELISA with

recombinant/full-length protein, immunoblotting, and IHC) and

comparisons between modified and unmodified peptides (or

competition assays) will be included in planned follow-up studies

to ensure translational relevance.

In addition to these limitations, the single-cell expression

patterns observed in public scRNA-seq datasets provide

supportive biological context for our findings. Specifically, SPON2

was enriched in tumor-associated epithelial clusters, while MSMB

was detected in secretory/luminal epithelial subsets. These

distributions are consistent with their biology as secreted proteins

and strengthen their plausibility as tumor-derived biomarkers

measurable in serum. Also Inter-batch reproducibility was not

evaluated in this pilot study and will be addressed in future work.
5 Conclusion

This study presents an integrative strategy combining

bioinformatics, transcriptomics, and experimental validation to

identify SPON2 and MSMB as promising secretory biomarkers

for prostate cancer. Both genes demonstrated significant tumor-

specific overexpression and strong discriminatory power, supported

by ROC curve analysis and qRT-PCR validation. Their extracellular

localization and immune accessibility make them particularly

suitable for nanomaterial-assisted immunodiagnostic applications.

In addition, the epitopes synthesized from these proteins showed

promising candidature for diagnostic kit development. These
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findings not only contribute to the refinement of biomarker

discovery in prostate cancer but also lay the foundation for

developing next-generation non-invasive diagnostic platforms.
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