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Background: This study aimed to validate secreted biomarkers SPON2 and
MSMB with tumor-specific expression and immunogenicity for nanomaterial-
based prostate cancer diagnostics.

Methods: Gene expression data (GSE55945), comprising 13 prostate tumor and 8
normal tissue samples, retrieved from the GEO database and analyzed by
Affymetrix Human Genome U133 Plus 2.0 Array platform. Differentially
expressed genes (DEGs) were identified using thresholds of |log, fold change|
>1 and adjusted p < 0.05. Upregulated DEGs filtered for secretory proteins based
on annotations from Human Protein Atlas and UniProt databases. Candidate
genes were prioritized using receiver operating characteristic (ROC) analysis,
selecting those with area under the curve (AUC) > 0.85 for validation. Quantitative
reverse transcription PCR (qRT-PCR) was performed using clinical tumor and
matched normal prostate tissues, with GAPDH as internal control. Extracellular
accessibility and immune relevance of SPON2 and MSMB were evaluated for
diagnostic translation. B cell epitope prediction was done using IEDB and VaxiJen
tools to assess immunogenic potential. Selected peptide epitopes were
synthesized and validated by indirect ELISA using sera from prostate cancer
patients and healthy controls.

Results: Out of 243 DGE, five upregulated candidates encoding secretory
proteins were identified. Of these, SPON2 and MSMB exhibited high diagnostic
performance with AUC values of 0.99 and 0.93, respectively. gRT-PCR validation
in clinical samples confirmed significant overexpression of SPON2 (~18-fold) and
MSMB (~2.6-fold) in prostate tumor tissues compared to matched normal
tissues. Both proteins demonstrate extracellular localization and immune
accessibility, supporting their feasibility as targets for antibody- or epitope-
based capture strategies. These properties position SPON2 and MSMB as ideal
candidates for nanoparticle-conjugated peptide biosensors designed for
immunomodulated detection of prostate cancer. Epitope E1 (SPON2) and E2
(MSMB) showed antigenicity scores of 0.80 and 0.52, respectively, and were
validated by ELISA, with E1 exhibiting significantly higher reactivity in cancer sera
(OD 1.49 vs. 0.81, p < 0.01; AUC 0.98) and E2 showing moderate discrimination
(OD 1.27 vs. 0.87, p < 0.05; AUC 0.88).
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Conclusion: SPON2 and MSMB are secretory, immunogenic biomarkers
overexpressed in prostate cancer. Their validated B cell epitopes demonstrate
strong diagnostic performance, supporting their potential in nanomaterial-based
immunodiagnostic strategies for non-invasive prostate cancer detection.

prostate cancer, SPON2, MSMB, immunodiagnostic, secretory biomarkers,
nanomaterials, transcriptomics, biosensors

1 Introduction

Prostate cancer is the second most commonly diagnosed cancer
and the fifth most common cause of cancer-related mortality in
men worldwide, with more than 1.4 million new cases and more
than 375,000 deaths each year (1). Its incidence is increasing in both
developed and developing countries, mostly due to increased life
expectancy and the adoption of prostate-specific antigen (PSA)
screening as a diagnostic tool. However, despite advances made in
the clinical management of the disease, the prospect of early and
accurate diagnosis of prostate cancer remains a significant
challenge. The current diagnosis of prostate cancer using PSA
testing, digital rectal examination (DRE) and histopathological
biopsy has specificity and patient compliancy limitations, both of
which can be developed and evaluated apparent deficits in the
diagnosis of prostate cancer (2, 3). The diagnosis of prostate cancer
is complex, as PSA can be elevated in benign conditions, such as
prostatitis, or benign prostatic hyperplasia (BPH), where there is a
risk of false positive interpretation, while some aggressive tumors
may present with PSA levels within the normal range, and thus
being under-diagnosed (4). There is a pressing requirement for
accurate, non-invasive biomarkers that can better distinguish
malignant prostate lesions from benign conditions. Over the past
few years, transcriptomics the use of high-throughput
transcriptomic technologies such as microarrays and next-
generation sequencing (NGS) has revolutionized approaches to
study alterations in gene expression in cancer (5). By evaluating
tumor-specific transcriptional signatures, the transcriptomic
analysis may identify differentially expressed genes (DEGs) that
could lead to diagnostic, prognostic, or therapeutic applications.
Secreted proteins are an obvious target for these applications
because they reside in extracellular compartments and are
detectable in the bloodstream or urine (6). Secreted proteins hold
promise as minimally invasive biomarkers, and applications for
chemo-adjuvant monitoring, early detection, and personalized
medicine. A number of studies have utilized transcriptomic
datasets to identify candidate biomarkers in prostate cancer. For
example, Taylor et al. utilized RNA-seq to identify novel diagnostic
transcripts in prostate tumors at early stages and Vittrant et al,,
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utilized machine learning with gene expression to classify clinically
significant prostate cancer (7, 8). However, many such studies lack
clinical or experimental validation, and few have systematically
filtered for extracellular proteins—an essential step for identifying
targets amenable to immunoassays or nanomaterial-conjugated
biosensors. Among secretory proteins implicated in prostate cancer
are SPON2, MSMB and AGR2. SPON2 (spondin-2) is an extracellular
matrix glycoprotein involved with immune-modulation and cell
adhesion, and has been shown to have an upregulation in a few
malignancies including prostate and colorectal cancer (9). MSMB
(microseminoprotein-beta) is a prostate-secreted protein that has
been investigated to shed light on it being a possible PSA
alternative and tumor suppressor, where it frequently shows lower
expression in higher stages of cancer (10). AGR2 (anterior gradient 2)
is a protein disulfide isomerase family member and is involved with
endoplasmic reticulum homeostasis, cellular proliferation, and tumor
progression. This protein has been shown to be deranged in multiple
cancers including prostate, breast, and pancreatic cancer (11).

In this study, we used an integrative transcriptomics approach
to identify differentially expressed secreted proteins in prostate
cancer. First, publicly available microarray data were assessed,
with criteria to obtain differentially expressed genes (DEGs) in
cancer tissue and normal prostate tissue samples. After filtering the
DEGs, for those annotated as secreted proteins in the Human
Protein Atlas and UniProt, we prioritized candidate biomarkers
via receiver operating characteristic (ROC) curve analysis and
found that the markers with the highest discriminatory power
(AUROC > 0.85) were then validated with qRT-PCR tissue
samples. Our study produced the findings of SPON2 and MSMB
as two serum-detectable biomarkers that have potential clinical
diagnostic relevance in prostate cancer. Notably, we identified
SPON2 and MSMB as highly upregulated, secretory, and
immune-accessible proteins characteristics that make them
suitable candidates for development into nanomaterial-linked
peptide biosensors. Such biosensing platforms could enhance
early detection by leveraging immunoreactivity and molecular
specificity in liquid biopsy settings. Our findings thus support the
translational potential of SPON2 and MSMB in immunomodulated,
nanotechnology-enabled diagnostics for prostate cancer.
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2 Materials and methods

This study was conducted in accordance with the Declaration of
Helsinki and approved by the Institutional Ethics Committee (IEC)
of Shenzhen People’s Hospital. Prostate tumor and matched
adjacent normal tissue samples were collected from patients
undergoing prostatectomy and after obtaining written informed
consent. Patients with other malignancies, insufficient tissue quality,
or who declined consent were excluded. All samples were handled
following institutional ethical guidelines to ensure patient
confidentiality and welfare.

2.1 Microarray dataset acquisition and
preprocessing

Gene expression microarray data were obtained from the Gene
Expression Omnibus (GEO) database (accession: GSE55945). This
dataset, based on the Affymetrix Human Genome U133 Plus 2.0
Array (GPL570 platform), includes 21 prostate tissue samples,
comprising 13 malignant (tumor) and 8 benign (normal) samples.
Raw expression data were downloaded as a series matrix file.
Preprocessing included log, transformation of expression values
to normalize data distribution. Since the dataset was already
normalized using a robust multi-array average (RMA), additional
quantile normalization was not performed. Probe sets were filtered
to retain only those annotated with valid gene symbols using the
GPL570 annotation file (release date: 2024-11-24). Samples were
categorized into tumor and normal groups based on metadata and
used for downstream differential expression analysis.

2.2 Differential expression analysis

Differential expression analysis was performed on the
preprocessed GSE55945 dataset comprising 13 tumor and 8
normal prostate tissue samples employing Python version 3 in
google colab. The resulting p-values were adjusted for multiple
testing using the Benjamini-Hochberg false discovery rate (FDR)
method. Genes were considered differentially expressed if they met
the criteria of |log, fold change| > 1 and adjusted p-value < 0.05. The
log, fold change was calculated as the difference in average
expression between tumor and normal samples at the gene level.

2.3 Heatmap of top differentially expressed
genes

A heatmap was generated to visualize the expression patterns of
the top 30 differentially expressed genes ranked by adjusted p-values.
Expression values for these genes were extracted from the normalized
dataset and standardized using Z-score normalization across rows
(genes). Hierarchical clustering was applied to the genes using Ward’s
linkage method and Euclidean distance metric to group genes with
similar expression patterns. Samples were organized according to
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tumor and normal classification. The heatmap was generated using
the Seaborn (v0.12.2) and Matplotlib (v3.7.1) libraries in
Python (v3.10).

2.4 Identification of secreted protein
biomarkers

Upregulated genes (log, fold change > 1, adjusted p-value <
0.05) from the differential expression analysis were selected for
secretome analysis. Probe IDs were mapped to gene symbols using
the GPL570 annotation file (release date: 2004-07-07), and only
probes with clearly annotated gene symbols were retained. To
identify genes encoding secreted proteins, two databases were used:

Human Protein Atlas (HPA) version 23.0 released in March
2024: Genes annotated as “secreted to blood” or “extracellular” in
the Secretome section were selected.

UniProtKB release 2024-03: Genes with subcellular localization

» <«

annotated as “Secreted,” “Extracellular region,” or “Extracellular
space” were included. In cases of annotation ambiguity, genes
predicted to encode proteins with a signal peptide and no
transmembrane domains were provisionally included based on
SignalP 6.0 predictions and UniProt annotations. A final list of 5-
10 upregulated genes encoding secreted proteins was compiled for

further analysis.

2.5 Biomarker prioritization using ROC/AUC
analysis

To evaluate the diagnostic potential of the upregulated secreted
proteins, receiver operating characteristic (ROC) curve analysis was
performed. Normalized gene expression values were used to
calculate the area under the curve (AUC) for each gene,
comparing tumor (coded as 1) and normal (coded as 0) samples.
AUC values were computed using the roc_auc_score function from
the sklearn.metrics module in Python. Genes with AUC >0.85 were
considered to have strong discriminatory power and were selected
for downstream B cell epitope prediction.

2.6 Study participants

The study was conducted in accordance with the ethical
standards of the institutional research committee and with the
Declaration of Helsinki. Prostate tissue samples (n=>5), including
tumor and matched adjacent normal tissues (n=5), were collected
from patients undergoing prostatectomy at Shenzhen People’s
Hospital. Informed consent was obtained from all participants
prior to sample collection, and the study was conducted in
compliance with ethical standards. Fresh tissue specimens were
immediately snap-frozen in liquid nitrogen and stored at -80 °C
until RNA extraction. Clinical stages ranged from [Stage II-III],
with Gleason scores between [6-8] (Table 1). Each sample was
analyzed in triplicate (technical replicates), and mean Ct values
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TABLE 1 Upregulated secreted protein biomarkers identified from DEG analysis.

Gene symbol Probe ID log,FC adj. p-value Secreted? Source Notes

SPON2 242138 at +4.09 0.0025 Yes HP-A/ Extrafellular matrix protein/immune regulatory
UniProt protein

AGR2 244667 _at +3.85 0.0254 Yes UniProt Secreted, ER stress-related protein

MSMB 209424 _s_at +3.63 0.0197 Yes HPA PSA-complement, prostate marker
HPA/ .

CLU 201201_s_at +3.10 0.0189 Yes . Tumor progression-related
UniProt

TMEFF2 209437_s_at +2.85 0.0122 Yes UniProt Secreted transmembrane protein

HPA, Human Protein Atlas; UniProt, Universal Protein Resource (database); ER, Endoplasmic Reticulum; PSA, Prostate-Specific Antigen.

were used for fold-change calculations after normalization to
GAPDH. Patients eligible for inclusion were adult males (=18
years) diagnosed with primary prostate adenocarcinoma, with
availability of matched adjacent normal tissue and no prior
history of chemotherapy or radiotherapy. Patients were excluded
if they had a history of other malignancies, provided insufficient
tissue quantity or poor-quality RNA, or declined to give consent.

2.7 Nucleic acid extraction and quality
assessment

Total RNA was extracted from frozen prostate tissue samples
(both tumor and adjacent normal) using the TRIzol reagent
(Invitrogen, USA). Briefly, approximately 30-50 mg of tissue was
homogenized in TRIzol, and phase separation was carried out using
chloroform. RNA was precipitated with isopropanol, washed with
75% ethanol, and resuspended in RNase-free water. The purity and
concentration of RNA were assessed using a NanoDrop
spectrophotometer (Thermo Fisher Scientific, USA), with
acceptable purity defined as A260/A280 ratio between 1.8 and 2.1.
RNA integrity was confirmed by 1.2% agarose gel electrophoresis.
Only high-quality RNA samples were selected for downstream
cDNA synthesis.

2.8 cDNA synthesis and primer design

First-strand ¢cDNA was synthesized from 1 pg of total RNA
using the High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, USA) with random hexamer primers in a 20 pL
reaction volume, as per the manufacturer’s protocol. Gene-
specific primers for SPON2 and MSMB were designed using
Primer-BLAST (NCBI) to ensure specificity and optimal melting
temperatures (Tm 58-62 °C), avoiding secondary structures and
primer-dimers. GAPDH was used as the internal control. The
primers were synthesized commercially. The following set of
primer sequences was used: for SPON2: F: CAGGTTCTTGGAG
GAGATGCT; R: CGGTTGCTGAGGATGTAGGA and for MSMB
F: AGGACCTGAAGCTGAAGACC and R: TCTTGGCCT
CTGTCTTGCTT. GAPDH was measured for every sample in the
same qRT-PCR run conditions. For each sample the GAPDH Ct
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value was obtained from technical triplicates and the mean GAPDH
Ct was used to calculate ACt and AACt values. GAPDH Ct values
showed low variability across technical triplicates (mean SD < 0.5
Ct), confirming stable expression across the analyzed samples and
consistent normalization across runs. Any detector/run dependent
variability was minimized by using identical reagents, primer sets
and instrument settings for all assays.

2.9 Quantitative RT-PCR validation of gene
expression

To validate the differential expression of candidate biomarkers
identified from the microarray analysis, quantitative reverse
transcription PCR (qRT-PCR) was conducted for SPON2 and
MSMB. The expression levels were assessed in prostate tumor
and adjacent normal tissue samples. Total RNA was isolated as
described earlier, and its integrity and purity were confirmed prior
to use. First-strand cDNA synthesis was performed from 1 pg of
total RNA using the High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, USA) with random hexamer primers in a
20 uL reaction volume. qRT-PCR was carried out using gene-
specific primers and SYBR Green Master Mix (Applied Biosystems,
USA) on a QuantStudio 5 Real-Time PCR System. Each reaction
was performed in triplicate in a 20 puL volume consisting of 10 uL
SYBR Green Master Mix, 1 pL ¢cDNA, 0.5 uL of each primer (10
uM), and 8 pL nuclease-free water. The thermal cycling conditions
were as follows: initial denaturation at 95 °C for 10 minutes,
followed by 40 cycles of denaturation at 95 °C for 15 seconds and
annealing/extension at 60 °C for 1 minute. GAPDH was used as the
internal reference gene. Ct (threshold cycle) values were obtained,
and the relative gene expression levels were calculated using the 2/
—AACt method. Differentially expressed genes (DEGs) in the
discovery microarray were defined using a fold-change cutoff of |
log,FC| = 1 (equivalent to >2-fold change) together with multiple
testing adjustment (Benjamini-Hochberg FDR) with FDR < 0.05.
For downstream experimental validation (QRT-PCR and ELISA),
we considered genes/epitopes to show tumor-specific
overexpression when they displayed >2-fold mean change in
tumor versus matched normal (or cancer versus control serum)
and reached statistical significance (two-sided p < 0.05) in the
corresponding validation test. All qRT-PCR assays were performed
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in technical triplicates, and fold-changes were summarized as mean
+ SD across biological replicates. The normality of AACt values was
evaluated using the Shapiro-Wilk test. Paired two-tailed t-tests
were then applied to compare tumor versus matched adjacent
normal tissues, with p < 0.05 considered statistically significant.

2.10 B cell epitopes prediction

The SPON2 and MSMB genes were analyzed for identification
of B cell epitopes aiming for investigating the diagnostic potential of
these candidate genes. The protein sequences of these genes were
retrieved from uniport with ID’s: Q9BUD6 for SPON2 and P08118
for MSMB respectively. The sequences retrieved were subjected to
Emini Surface Accessibility Prediction (12) and Parker
Hydrophilicity Prediction (12) using available IEDB resources.
The surface accessibility was done as the epitopes located on
surface are easily accessible to b cells (13). Also, the
hydrophilicity prediction was used as the hydrophilic epitopes are
tend to have higher immunogenicity (14). The window size was
kept 6 and threshold 1.000 for Emini surface prediction and 7 and
2.125 for Parker hydrophilicity prediction, respectively. Further the
B cell epitopes were predicted by Bepipred-1.0 Linear Epitope
Prediction tool with the threshold kept 3.50. The epitopes
predicted were subjected to Vaijen 2.0 server for immunogenicity
prediction and those scoring above tumor antigen threshold i.e. 0.5
were considered.

2.11 Synthesis of peptides

Based on antigenicity, surface accessibility and hydrophilicity
scores, two B-cell epitopes were selected for synthesis. Synthetic
peptides were procured from an ISO-certified commercial peptide
synthesis provider using standard Fmoc solid-phase chemistry.
Each epitope was synthesized as a single sequence (one synthesis
batch per epitope); vendor quality control confirmed identity by
mass spectrometry and purity >95% by analytical HPLC
(certificates of analysis retained). To enhance stability and better
mimic native protein termini, peptides were synthesized with C-
terminal amidation and N-terminal acetylation. Lyophilized
peptides were reconstituted according to vendor instructions
(DMSO or PBS as appropriate), aliquoted (10-20 uL aliquots) to
avoid repeated freeze-thaw cycles, and stored at —80 °C. Aliquots
from the same synthesis batch were used for all ELISA experiments
in this study. Independent synthesis batch replicates were not
performed owing to limited peptide quantities; inter-batch
reproducibility will be assessed in future validation experiments.

To enhance peptide stability and better mimic native protein
termini, all synthetic peptides were N-terminally acetylated and C-
terminally amidated during synthesis. These terminal modifications
neutralize the terminal charges, reduce susceptibility to
exopeptidase degradation, and can favor retention of native-like
backbone conformation — properties that typically improve
peptide stability and shelf-life and may increase the chance of
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recapitulating native antigenic structure in serological assays. The
core antigenic sequence was not altered; modifications were limited
to the terminal blocking groups only. Vendor certificates indicate
modifications were incorporated as requested. We note that
terminal modifications can in some cases alter antibody
recognition if the natural epitope includes terminal residues. To
minimize this risk, epitopes were selected such that the predicted
antigenic core lay internal to the peptide where possible. In
addition, for definitive confirmation of native protein recognition,
subsequent validation using full-length/native protein (standard
ELISA, immunoblotting, THC) or competition assays will be
performed in future studies.

2.12 Validation by ELISA

Serum samples were collected from histopathologically
confirmed prostate cancer patients (n = 5) and healthy controls
(n = 5). Whole blood samples were centrifuged at 2,000 x g for 10
minutes, sera were aliquoted and stored at —80 °C until use. Indirect
ELISA was performed in 96-well MaxiSorp plates. Plates were
coated with 100 pL/well of synthetic peptide (10 pg/mL in
carbonate-bicarbonate buffer, pH 9.6) and incubated overnight at
4 °C. All ELISA assays used peptide aliquots from the same
synthesis batch; coating was performed from a single batch to
ensure intra-assay consistency. After blocking with 5% BSA in
PBST (200 pL/well for 1 h at 37 °C), serum samples diluted 1:100
in PBST (100 pL/well) were added and incubated for 1.5 h at 37 °C.
Plates were washed with PBST and incubated with HRP-conjugated
anti-human IgG (1:5,000 in PBST; 100 pL/well) for 1 h at 37 °C.
Following washes, TMB substrate (100 uL/well) was added and
incubated in the dark for 10-15 min; reactions were stopped with 50
uL IN H,SO, and absorbance measured at 450 nm.

Blank wells (buffer only) were included on each plate and the
mean blank OD450 was subtracted from all sample readings to
correct for background. Each serum sample was assayed in
duplicate and the mean background-subtracted OD450 per
sample was used for statistical comparisons and ROC analysis.
Standard curves were generated from serial dilutions of
recombinant peptide to confirm assay linearity (Supplementary
Figure 1). The positivity cut-off was defined as mean
(background-corrected control OD450) + 2 x SD (control).
Normality of OD distributions was assessed using Shapiro-Wilk
test; when normality and variance assumptions were met, an
unpaired two-sided t-test (Welch’s t-test where appropriate) was
used to compare groups, otherwise the Mann-Whitney U test was
applied. ROC analyses report AUC with 95% Cls.

2.13 Single cell RNA sequencing dataset
analysis

Three single cell RNA sequencing (scRNAseq) datasets were

used in this study: GSE185344 (15) containing 7 pairs of cribriform
prostate cancer tissues (tumor and benign); GSE181294 (16)
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Volcano Plot: Annotated DEGs in Prostate Cancer vs Normal
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FIGURE 1

Volcano plot showing differentially expressed genes in prostate cancer versus normal tissue samples. Each dot represents a single gene (probe). Red
dots indicate significantly upregulated genes, blue dots indicate significantly downregulated genes (|log>FC| > 1, FDR < 0.05), and gray dots represent
non-significant genes. Dashed lines indicate the log,FC threshold (+ 1) and FDR cutoff (p-adj = 0.05).

containing 5 healthy prostate donor samples, 17 prostate cancer
samples and 14 normal (para tumor) samples; GSE176031 (17)
containing 17 prostate cancer samples and 8 normal (para tumor)
samples. RDS files for each dataset were reconstructed using R
Seurat package, and the expression status of target genes
were examined.

3 Results
3.1 Differential gene expression analysis

Differential expression analysis was performed on the
GSE55945 dataset, comprising 13 prostate cancer and 8 normal
prostate tissue samples. Using a threshold of |log, fold change| >1
and adjusted p-value < 0.05, a set of significantly differentially
expressed genes (DEGs) was identified. To visualize the
distribution and significance of these gene expression changes, a
volcano plot was generated (Figure 1). This plot displays all
analyzed genes, with significantly upregulated genes highlighted
in red, downregulated genes in blue, and non-significant genes in
grey. The plot revealed a distinct separation of genes with high
statistical significance and large expression differences
(Supplementary File 1 Code 1 and 2).
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3.2 Heatmap of top differentially expressed
genes

A heatmap was generated to visualize the expression patterns of
the top 30 DEGs, selected based on adjusted p-values (Figure 2).
Expression values were Z-score normalized across genes to enable
cross-sample comparison. Hierarchical clustering grouped genes
with similar expression profiles. Tumor and normal samples
clustered separately, reflecting clear transcriptomic distinctions
between the two groups (Supplementary File Code 3).

3.3 Identification of upregulated secreted
protein biomarkers

From the DEGs, upregulated genes (log,FC > 1, adjusted p-value <
0.05) were filtered for secreted protein candidates based on annotations
from the Human Protein Atlas (HPA) and UniProt databases. Proteins
categorized as secreted or extracellular were retained. Additional
support was provided by signal peptide presence and lack of
transmembrane domains when necessary. Five candidate genes were
identified: SPON2, AGR2, MSMB, CLU, and TMEFF2 (Table 1), all of
which have been previously associated with extracellular functions or
secretion (Supplementary File Code 3).
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Heatmap of Top 30 Differentially Expressed Genes
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FIGURE 2
Heatmap of the top 30 differentially expressed genes (DEGs) in prostate ca

ncer versus normal prostate tissue. Rows represent genes, and columns

represent individual samples. Expression values are Z-score normalized per gene. Blue indicates low expression and red indicates high expression.

Hierarchical clustering groups genes with similar expression profiles.

3.4 Validation of the upregulated secreted
proteins in single-cell RNA transcriptomic
sequencing datasets

To further validate the expression status of these 5 genes, we
retrieved 3 scRNAseq datasets: GSE185344 containing 57697 cells
from benign and tumor samples; GSE181294 containing 155057
cells from healthy donor, normal (para tumor) and tumor samples;
GSE176031 containing 17144 cells from normal (para tumor) and
tumor samples. The UMAP plot for each dataset was reconstructed,
and shown in Figure 3A. The expression levels of these five genes
are show in Figure 3B. Specifically, in GSE185344 dataset, SPON2
has the highest expression in olfactory epithelial cells, AGR2 in
ciliated cells, MSMB and TMEFF2 in basal cells, and CLU in
schwann cells; in GSE181294 dataset, SPON2, AGR2 and
TMEFF2 have the highest expression in tumor cells, MSMB in
luminal cells, and CLU in endothelial cells; in GSE17144 dataset,
SPON2, AGR2, MSMB and TMEFF2 have the highest expression in
epithelial cells, and CLU in endothelial cells. We further compared
the expression status of these five genes among samples from
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different origins, and find out only SPON2 and AGR2 have
higher expression in tumor samples across all three datasets, as
shown in Figure 3C.

Notably, SPON2 expression was enriched in tumor-associated
epithelial clusters, while MSMB expression was detected in
secretory/luminal epithelial cell subsets. These cell-type
distributions are consistent with their biology as secreted proteins
and support their potential utility as tumor-derived biomarkers
measurable in serum.

3.5 ROC/AUC-based biomarker
prioritization

To assess the diagnostic performance of the secreted
biomarkers, receiver operating characteristic (ROC) curve analysis
was conducted. AUC (area under the curve) values were calculated
for each gene based on tumor versus normal expression levels
(Figure 4, Table 2). Genes with AUC > 0.85 were prioritized for
immunoinformatics analysis. Three candidates—SPON2 (AUC =

7 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1677562
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ye et al. 10.3389/fimmu.2025.1677562
Tumor clusters Tumor/Normal Normal vs Tumor
GSE185344 (57697 Cells) GSE181294 (155057 Cells) GSE176031 (17144 Cells)
o @T cells @Pericytes-2 @Epithlelial
OBasal cells @%‘Q"r?:? . OEndothelial
. |OEndothelial cells 8Cg'nL gla_ 230 @Stroma
- |OBcells OB oeils @ Myeloid
ONK cells TNK x . OTcell
. ©Smooth muscle cells OFibroblasts > ' OBcell
©Epithelial cells Naive Th "3
L 4 . ‘%* @Macrophages OTht
" SN "y ©Mast cells OM_?fr?phagez /
i ©Epitheial Luminal '
- @Olfactory epithelial cells :E"gggggl"a(';ﬁﬂw L
’ ©OSchwann cells .Tgﬂ -
OHealth ©Macrophage3
i OParaTy 2 OPDC
OBenign oT OMast cells ONormal
OTumor umor .!F‘.pitheial_HiIIock OTumor
Te
©Mono2
oglagma cells
@ Pericytes-1
ONK
@Macrophage1
@mDC
@ Endothelial cells-2
@Cycling T
©Mono1
OTumor
B
GSE185344 GSE181294 GSE17144
sponzd < [o] - [-Tol-T-T- IOU el - Jo1-T-T-T-Te ° . I.l ol [o]- Expression
AGR24 - [O] - -10[ - 19 * °[|® g o [ 210 1 2
msmeq < [Ofe ][] [ol=]<[c]c|olo] [=]elc[-[-{-T- -] l@- o[- 1| 1-T<[-1-[]-]-Tl<|-Tc]<@ [o] <] -|-]o] = ~
* 0.25
CLUA - |o|O o[- IO [o]o|@ |°] [°] o o “|@|o o] |<|||®|° © 050
TMEFF2- - [o . 11 J 1 BIE @075
P PO L IIL P OLILLY VOIS VOEGR AN NI AIAD OOTSYLIEDOVA NS S oy @10
SEETTTTEETETE 6 S FTEEREITITEESESEETE SESd 088 S8
AIJVELIL TSI & SI700 85 §O98 8 &3 S€& § SeTE o
~ N . oy
&L §>§§°,$ SEELL & @ &3 S AN & P gL & §F° s
§ ¥ 9O §/S N F Is& ¥ § R E§
& § ) v 2L & S
o S G§ $
'S &
@ N
O
GSE185344 GSE181294 GSE176031
15 [ Benign [ Tumor 5., [JHealthy [JNormal  [J Tumor 5 [] Benign [ Tumor
< Frey Fres Frey Fres ey < B I T S S T - Feey Feey Fees ey
S ™ S 4 Eres Fre Ak P Ere S 4
%10 o g @ $
- R g2 L 5 T
g |- NS g HEE = IS T ok B
2 5 7 | T o 2 - ) o 2 T \
: i Og @ ¢ B (R L
3 E - 5 |j 3 ! v ‘ s !
ool o L i mo__ —_ 1 ‘ro__ — — —_—
BN YRR N NIRRT
9 9 s S S > S 3 P SN
N
&6 <7 8 5 & § < & §F ¥ EA R
FIGURE 3

Expression status of selected genes in scRNAseq datasets. (A) UMAP visualization of single-cell transcriptomes for three independent datasets:
i = GSE185344 (57,697 cells), ii = GSE181294 (155,057 cells) and iii = GSE176031 (17,144 cells). Upper subpanels show annotated cell-type clusters

(legend on the right of each column); lower subpanels show sample origin

mapping (e.g., Benign/Healthy/Para-tumor/Tumor) for the same UMAPs.;

(B) Dot plot showing the expression patterns of selected genes across different subgroups among different subsets; (C) Bar plots comparing the
expression values of selected genes in certain subgroups among samples of different origins. (*: p < 0.05; **: p < 0.01; ***: p < 0.001).

0.99), MSMB (AUC = 0.93), and AGR2 (AUC = 0.88)—showed
strong discriminatory power and were selected for epitope
prediction. TMEFF2 (AUC = 0.16) showed poor discriminatory
ability and was excluded from further analysis (Supplementary File
Code 4).

3.6 Selection of biomarkers for
immunoinformatic workflow

Based on combined criteria of high fold change, adjusted p-
value, secretory nature, and ROC performance, SPON2, MSMB,
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and AGR2 were finalized for downstream immunoinformatic
analysis. These proteins demonstrated tumor-specific
overexpression and robust classification ability, supporting their
candidacy for epitope mapping and peptide-based
immunodiagnostic development (Supplementary File Code 5).

3.7 Quantitative RT-PCR validation of gene
expression

The differential expression observed in the microarray analysis
was further validated by qRT-PCR for two candidate secreted
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FIGURE 4

ROC curves illustrating diagnostic performance of selected secreted protein biomarkers. ROC curves were generated for SPON2, MSMB, AGR2, CLU,
and TMEFF2 based on normalized expression values. SPON2, MSMB, and AGR2 demonstrated high AUC scores (>0.85), indicating strong

discriminatory power between prostate cancer and normal tissues.

biomarkers, SPON2 and MSMB, using RNA extracted from
prostate tumor tissues (n = 5) and their matched adjacent normal
tissues (n = 5). The patients included in this validation cohort had
clinical stages ranging from II-III and Gleason scores between 6-8
(Supplementary File code 6). Each sample was analyzed in technical
triplicates, and mean Ct values were used for relative quantification,
with GAPDH serving as the internal control.

GAPDH was measured for every sample in the same qRT-PCR
runs; mean GAPDH Ct (from technical triplicates) was used for ACt
calculations and showed low variability across replicates (mean SD <
0.5 Ct), confirming stable normalization (Supplementary Table 3).

SPON2 exhibited strong overexpression in tumor tissues
compared to matched normals, with a mean AACt of -4.2,
corresponding to an approximately 18-fold increase in expression
(mean fold-change = 18.2 + 2.4, mean * SD). MSMB also
demonstrated upregulation in tumor samples, with a mean AACt
of -1.4, indicating a ~2.6-fold increase (mean fold-change = 2.6 +

TABLE 2 ROC-AUC analysis of secreted protein biomarkers for
diagnostic performance.

AUC Selected for epitope

prediction

SPON2 242138_at 0.99 Yes
MSMB ‘ 209424 _s_at | 0.93 Yes
AGR2 ‘ 244667_at 0.88 Yes
TMEFF2 ‘ 209437_s_at | 0.16 No

Frontiers in Immunology

0.5, mean * SD) in expression (Table 3). The technical triplicates
showed low variability (mean SD < 0.5 Ct across replicates),
underscoring the reliability of the measurements. Normality of
AACt values was assessed using the Shapiro-Wilk test (p > 0.05
for both genes); paired two-tailed t-tests were then applied to
compare tumor versus matched normal tissues, yielding p = 0.003
for SPON2 and p = 0.02 for MSMB (Supplementary Table 3).

These fold-change values were consistent with those obtained
from microarray analysis, thereby validating the transcriptomic
screening results. A bar plot (Figure 5) illustrates the relative
expression levels of SPON2 and MSMB in tumor versus normal
samples, highlighting SPON2 as the most strongly upregulated
marker in this cohort. Although AGR2 met the initial selection
criteria for immunoinformatics analysis, only SPON2 and MSMB
were prioritized for qRT-PCR validation due to sample availability
and higher differential expression values.

3.8 B cell epitopes

B cell epitopes were analyzed based on the parameters like
threshold values for B cell epitope, surface accessibility,
hydrophilicity and antigenicity (Figures 6A-F). Based on these
parameter two epitopes were finalized E1: PNFATIPQDTVTE
ITSSSPSHPANSF from SPON2 and E2: NEGVPGDSTR from
MSMB. Both these epitopes had antigenicity scores of E1 = 0.80
and E2 = 0.52 respectively i.e. above the standard threshold for
tumor antigens as set by the VaxiJen v2.0 server.
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TABLE 3 gRT-PCR validation of biomarker expression.

Tumor Normal ACt (vs
Ct Ct GAPDH)
~18x
SPON2 221 27.6 -5.5 -4.2
upregulated
~2.6%
MSMB 233 25.5 -2.2 -1.4

upregulated

3.9 ELISA results

To investigate the diagnostic potential of the predicted B-cell
epitopes, synthetic peptides were evaluated by indirect ELISA using
serum samples from prostate cancer patients (n = 5) and healthy
controls (n = 5). Clinical characteristics of the patient cohort are
provided in (Supplementary Table 1). Each serum sample was
tested in duplicate, and replicate variability was expressed as
mean * SD. The standard curves generated from recombinant
peptide dilutions confirmed assay linearity (Supplementary
Figure 1). Reported OD450 values are background-subtracted
(mean blank OD450 removed) and represent the mean of
duplicate background-corrected measurements for each sample.

For the El epitope (SPON2), prostate cancer serum samples
showed markedly higher reactivity (mean OD = 1.49 + 0.15)
compared to healthy controls (mean OD = 0.81 + 0.07), representing
a statistically significant difference (p < 0.01, unpaired t-test;
Supplementary Table 2). For the E2 epitope (MSMB), prostate
cancer serum also demonstrated increased absorbance (mean OD =

gRT-PCR Validation of Gene Expression

logz Fold Change (Tumor vs Normal)

SPON2

FIGURE 5

Relative mRNA expression of SPON2 and MSMB. A bar graph comparing relative gene expression in tumor vs. normal prostate tissues. SPON2 shows
~18-fold overexpression; MSMB shows ~2.6-fold overexpression. Error bars represent standard error across replicates.

10.3389/fimmu.2025.1677562

1.27 £ 0.11) compared to controls (mean OD = 0.87 + 0.09), which was
statistically significant (p < 0.05).

Receiver Operating Characteristic (ROC) curve analysis further
demonstrated strong diagnostic accuracy of the epitopes. The El
epitope (SPON2) yielded an AUC of 0.98, while the E2 epitope
(MSMB) achieved an AUC of 0.88 (Figure 7). These findings
suggest that SPON2 and MSMB epitopes exhibit promising
discriminatory potential, with SPON2-E1 emerging as the most
robust candidate biomarker in this preliminary cohort.

To investigate the diagnostic potential of the B cell epitopes,
they were synthesized and evaluated by indirect ELISA using serum
samples from both prostate cancer patients (n = 5) and healthy
controls (n = 5). The optical density (OD450) values obtained for
each group are presented in Supplementary Table 1. For E1 epitope,
the prostate cancer serum samples showed markedly higher
reactivity (mean OD = 1.49 + 0.15) compared to healthy controls
(mean OD = 0.81 £ 0.07). these findings indicated statistically
significant difference (p < 0.01, unpaired t-test). Similarly, E2
epitope, the prostate cancer serum showed increased absorbance
(mean OD = 1.27 + 0.11) compared to controls (mean OD = 0.87 +
0.09). These were also statistically significant (p < 0.05). In order to
assess the diagnostic accuracy of each epitope, Receiver Operating
Characteristic (ROC) curve analysis was performed. The E1 epitope
from SPON2 demonstrated promising diagnostic discrimination,
with an AUC of 0.98, while the E2 epitope from MSMB showed
moderate discriminatory capacity with an AUC of 0.88 (Figure 7).
These findings suggest excellent candidacy of these two epitopes
with Area Under the Curve (AUC) values of 1.00, discriminating
prostate cancer patients and healthy controls perfectly.

MSMB
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FIGURE 6
B cell epitopes prediction in SPON2 and MSMB proteins. SPON2 results (A-C)- (A) The B cell epitope prediction results, (B) Emini surface
accessibility, (C) Parker Hydrophilicity results. MSMB results (D-F)- (D) The B cell epitope prediction results, (E) Emini surface accessibility,
(F) Parker Hydrophilicity results.

4 Discussion to address this need by focusing on identifying and validating
secreted proteins as potential diagnostic candidates. We examined
a publicly available microarray dataset (GSE55945) by
bioinformatics analysis to identify differentially expressed genes
with a particular focus on those that encode secreted proteins.

The global rising incidence of prostate cancer and the
limitations of current diagnostics highlight the need for new
accurate and minimally invasive biomarkers. In this study, we

utilized an integrative transcriptomics and experimental approach Secreted protein-coding genes, which can be found in biological

ROC Curve for Peptide-Based ELISA
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FIGURE 7

ROC curve for peptide-based ELISA using SPON2 and MSMB epitopes. The ROC curves generated from ELISA, evaluating the immunoreactivity of
two synthetic B cell epitopes derived from the SPON2 (E1: PNFATIPQDTVTEITSSSPSHPANSF) and MSMB protein (E2: NEGVPGDSTR). The blue solid
line and orange dashed line represents the ROC curve for the SPON2 epitope and MSMB epitopes respectively. The grey dotted diagonal line
indicates a random classifier (AUC = 0.50), serving as a reference for baseline discrimination.
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fluids, are particularly clinically relevant in regards to cancer
biomarkers as they facilitate non-invasive diagnostics. Secreted
proteins can often represent alterations to the tumor
microenvironment and may function as tumor progression
mediators, making them attractive candidates for diagnostic/
prognostic parameters.

Using annotations from the Human Protein Atlas and UniProt
databases, we were able to refine our candidate list down to five
secreted proteins: SPON2, AGR2, MSMB, CLU, and TMEFE2 (see
Table 1). Literature exists for each of the proteins that identifies
associations with cancer; however, the association and function in
prostate cancer are varied. We conducted an analysis of the receiver
operating characteristic (ROC) curves to rank the most
diagnostically relevant candidates. ROC curve analysis is an
important statistical technique for measuring the ability of
potential biomarkers to discriminate between prostate cancer and
non-cancer cases. SPON2 (AUC = 0.99), MSMB (AUC = 0.93), and
AGR2 (AUC = 0.88) performed exceptionally as the values were all
substantially greater than the threshold commonly accepted as
strong diagnostic utility (AUC > 0.85) (Figure 3, Table 2). The
high AUC values for these genes indicated a strong ability to
discriminate between prostate cancer and normal samples based
solely on their respective levels of gene expression. However,
TMEFF2 had a very low AUC (0.16) and was excluded from
further analysis, illustrating the importance of ranking candidates
in this way.

The qRT-PCR validation of our findings confirms our
microarray observations and found that SPON2 had high
expression (approximately 18-fold increase) and MSMB had a
moderate overexpression (approximately 2.6-fold increase) in
tumor tissues compared to the adjacent normal tissues. This
concordance provides a strong rationale for their utility in
distinguishing malignant from benign tissues. SPON2 (spondin-2)
is particularly interesting due to both its high level of expression and
the consistent comparison of our microarray and qRT-PCR results,
supporting its potential as a diagnostic marker. Studies have
reported on its relevance in many different cancers. In prostate
cancer, SPON2 has been reported as a diagnostic biomarker that
offers advances over prostate specific antigen (PSA) with
improvement of diagnostic sensitivity and specificity even in
cohorts with NP levels of PSA, potentially lowering false negative
tests and unnecessary biopsy (18). SPON2 overexpression in gastric
cancer and triple negative breast cancer is reported to be associated
with tumorigenicity and aggressive clinical characteristics and
poorer outcomes, suggesting it may have a role in malignant
progression and metastasis (19, 20).

Functional research shows that SPON2 promotes tumor cell
proliferation, migration, and invasion, while silencing of SPON2
suppresses tumor growth in vitro and in vivo. Mechanistically,
SPON2 functions in the Notch pathway in gastric cancer and
inhibition of the PI3K-AKT pathway in breast cancer, thereby
being located at key step points in oncogenic signaling paths (19,
20). In the prostate cancer context, recent studies have
demonstrated that SPON2 can promote osteogenic responses via
activation of the PI3K-AKT-mTOR pathway, supporting the
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biological plausibility of this signaling link in prostate tumors
(21). Conversely, the regulation of SPON2 by Notch has thus far
been described in gastric cancer, while Notch signaling in prostate
cancer is context-dependent, with both oncogenic and tumor-
suppressive roles reported. Therefore, although our findings
highlight SPON2 as a promising biomarker, direct mechanistic
studies in prostate cancer cells are needed to establish whether
SPON2 engages PI3K-AKT or Notch pathways in this disease
setting (19, 22). Therefore, with the considerable upregulation of
SPON?2 in our study, this supports its recognition as a pan-cancer
marker that can be used for diagnosis and potentially targeted
therapeutics. MSMB (microseminoprotein beta) is also a secreted
protein that has been extensively analyzed in prostate cancer
because of its strong correlation with susceptibility to the disease,
changes in expression, and genetic risk (23-25).

Genetic variants near the MSMB locus, particularly rs10993994,
are associated with changes in MSMB expression and increased risk
of prostate cancer, with functional evidence indicating that
regulatory variants reduce expression of MSMB, which may
lessen their potential protective effects against tumorigenesis (24).
The secreted nature and prostate-specific expression of MSMB
allow for safe detection in serum and tissues, making its wide use
in clinical assays. MSMB has been explored historically in a prostate
context, but the area under the curve analyses suggests MSMB may
be a more general marker of secretory epithelial malignancies. The
high discriminatory power of MSMB (area under the curve > 0.85)
and the increased overall expression (approximately 2.6 times in
tumors) not only makes it suitable for an assay to detect disease, but
it could be employed as a marker of risk in an individual who may
have genetic liability (23).

To further investigate the diagnostic potential of SPON2 and
MSMB, the linear B cell epitopes from both SPON2 and MSMB
proteins were predicted, synthesized, and experimentally tested.
Indirect ELISA as carried out for investigating the diagnostic
potential of the synthesized epitopes. The results revealed
significantly higher antibody reactivity against both synthesized
epitopes. The E1 epitope from SPON2 showed a mean OD450 of
1.49 + 0.15 in cancer samples compared to 0.81 + 0.07 in controls (p <
0.01), while the E2 epitope from MSMB showed mean values of 1.27 +
0.11 versus 0.87 = 0.09 (p < 0.05), respectively. The ROC curve analysis
further highlighted strong diagnostic potential, with AUC values of
0.98 for E1 and 0.88 for E2. The overall findings indicate the
immunogenicity of both the epitopes and support their utility in the
development of peptide-based diagnostic assays for prostate cancer
in future.

AGR2 (anterior gradient 2) is a well-known oncogenic
promoter that is generally recognized as a secreted protein that is
overexpressed in a variety of adenocarcinomas, including breast,
prostate, pancreatic, gastrointestinal and urothelial tumors (11, 26—
28). A recent tissue microarray analysis that had comprehensive
data on more than 14,900 tumors has reported that AGR2 is
typically expressed in a range of tumor cells in several tumor
types, and that several adenocarcinomas demonstrated regular
strong positive results, and often (>80%) positively in
adenocarcinomas (27). High AGR2 expression usually associates
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with worst histological grades, advanced disease stage, and/or some
unfavorable genetic mutation(s). Conversely, however, in some
circumstances, such as, nodal-negative breast cancer, high AGR2
signifies a good prognosis, indicating that they could have variated,
tissue-dependent roles (27, 29). Mechanistically, AGR2 is associated
with cancer cell survival, proliferation, and migration, with data
provided by RNA interference and in vivo silencing data
demonstrating reduced tumor growth and increased
chemosensitivity (26, 28). Its regulation by androgenic signals is
furthermore clinically relevant for hormone-sensitive cancer types
and thus determined that the significant overexpression of AGR2 in
tumors vs. normal tissues in this study would concur with a
plethora of evidence indicating its putative role as a diagnostic
and prognostic marker and a potential therapeutic target.

The reproducibility of gene overexpression data across
microarray and qRT-PCR assays demonstrates the robustness and
generalizability of these biomarker signatures with respect to
moving from discovery to clinical use. The comparison of tumor
tissues to matched adjacent normal tissues adds additional strength
to the findings, because the analysis controls for inter-individual
differences and associated variability. Lastly, the functional links of
these secreted proteins to oncogenic pathways (e.g., Notch, PI3K-
AKT, androgen receptor), tumor progression and cellular
transformation, established in both mechanistic and animal
model studies, suggest that these genes are not simply passive
biomarkers but have the potential to become actionable targets
for therapy (11, 19, 20, 26, 28). Therefore, together, the evidence
paints a useful picture: upregulated secreted protein-coding genes
such as SPON2, MSMB, and AGR2 could hold both diagnostic
potential in non-invasive cancer detection and biological relevance
as crucial effectors in tumor biology that deserve greater
mechanistic and translational characteristic scrutiny.

Despite the promising identification of SPON2 and MSMB as
secreted, tumor-enriched biomarkers for prostate cancer, several
limitations warrant consideration. The study relied on a single
microarray dataset (GSE55945), which may not fully represent the
molecular diversity of prostate cancer; thus, future validation using
larger, independent cohorts such as TCGA is essential. While qRT-
PCR confirmed transcript-level overexpression in clinical samples,
we further investigated the validation at protein level by targeting
epitopes in SPON2 and MSMB and validating them via indirect
ELISA. AGR2, although a strong candidate in silico, was not
experimentally validated due to sample constraints and should be
included in future multi-level studies. Furthermore, the successful
epitopes selection of SPON2 and MSMB and antibody binding
validation open avenues for exploring nanomaterial-based
biosensor for prostate cancer. This is a preliminary study, aimed
to develop an initial proof-of-concept for the proposed candidate
biomarkers. The number of patient samples were less, limiting the
statistical significance of our findings. In our future studies, we will
incorporate larger independent patient cohorts and TCGA and
additional GEO datasets for validation to make the findings more
robust and reproducible.

Though this study demonstrated preliminary serum reactivity
of synthetic SPON2 and MSMB epitopes by ELISA, we did not
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perform quantitative protein-level validation using standard ELISA
kits or immunoblotting, nor did we conduct
immunohistochemistry (IHC) on tumor tissues. These
confirmatory experiments will be incorporated in future studies to
establish protein expression levels, localization, and specificity in
larger patient cohorts.

Although AGR?2 also satisfied the initial selection criteria in our
in silico screening, it was not included in the present validation
experiments due to limited sample availability and its comparatively
lower fold-change relative to SPON2 and MSMB. Nevertheless,
AGR?2 remains a promising biomarker candidate, and its inclusion
in future validation studies will help further clarify its
diagnostic utility.

The identification of immunogenic peptide epitopes from
SPON2 and MSMB provides a foundation for developing
innovative diagnostic platforms. In particular, nanomaterial-based
biosensors, such as peptide-functionalized nanoparticles, represent
a promising direction for highly sensitive and specific detection of
prostate cancer biomarkers. While not tested in the present study,
these approaches will be explored in future work to translate the in
silico and preliminary validation findings into clinically applicable
diagnostic assays. Also, we used N-terminal acetylation and C-
terminal amidation on the synthetic peptides to improve stability
and better approximate native termini. While these modifications
generally enhance peptide stability and preserve antigenic structure,
they can occasionally affect antibody binding if terminal residues
are part of the native epitope. Therefore, confirmation of antibody
recognition of the native proteins (standard ELISA with
recombinant/full-length protein, immunoblotting, and IHC) and
comparisons between modified and unmodified peptides (or
competition assays) will be included in planned follow-up studies
to ensure translational relevance.

In addition to these limitations, the single-cell expression
patterns observed in public scRNA-seq datasets provide
supportive biological context for our findings. Specifically, SPON2
was enriched in tumor-associated epithelial clusters, while MSMB
was detected in secretory/luminal epithelial subsets. These
distributions are consistent with their biology as secreted proteins
and strengthen their plausibility as tumor-derived biomarkers
measurable in serum. Also Inter-batch reproducibility was not
evaluated in this pilot study and will be addressed in future work.

5 Conclusion

This study presents an integrative strategy combining
bioinformatics, transcriptomics, and experimental validation to
identify SPON2 and MSMB as promising secretory biomarkers
for prostate cancer. Both genes demonstrated significant tumor-
specific overexpression and strong discriminatory power, supported
by ROC curve analysis and qRT-PCR validation. Their extracellular
localization and immune accessibility make them particularly
suitable for nanomaterial-assisted immunodiagnostic applications.
In addition, the epitopes synthesized from these proteins showed
promising candidature for diagnostic kit development. These
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findings not only contribute to the refinement of biomarker
discovery in prostate cancer but also lay the foundation for
developing next-generation non-invasive diagnostic platforms.
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