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Background: Oral squamous cell carcinoma (OSCC) is one of the most common
malignant tumors in the head and neck region, with a complex molecular
mechanism that has not yet been fully elucidated. This study aims to identify
key genes closely associated with the development and progression of OSCC
through integrative multi-omics data analysis and to explore the potential roles
of these genes in protein phosphorylation regulation and the immune
microenvironment, providing new insights for precision diagnosis and treatment.
Methods: The study integrated data from National Center for Biotechnology
Information (NCBI) and National Institutes of Health (NIH) sources, combining
differential expression gene analysis and co-expression network construction to
identify candidate genes significantly associated with phosphorylation status. Key
genes were further screened, and molecular subtyping of samples was
performed based on gene expression patterns. Additionally, the association
between key genes and immune microenvironment characteristics was
evaluated, and Mendelian randomization (MR) was employed to investigate the
impact of genetic variants on disease risk.

Results: The analysis revealed multiple significantly differentially expressed
genes, primarily enriched in pathways related to cell cycle regulation, signal
transduction, and metabolism. Five key genes—BMP2, FN1, INHBA, MMP9, and
THY1l—were ultimately identified. These genes exhibited subtype-specific
expression patterns across different molecular subtypes and were closely
associated with immune cell infiltration levels. Furthermore, functional
validation demonstrated that FN1 was significantly linked to OSCC occurrence
at the genetic level.

Conclusion: This study identified key genes and molecular subtypes associated
with OSCC, highlighting their potential links to protein phosphorylation and the
immune microenvironment. Among these, FN1 may serve as a potential risk gene
and a candidate biomarker, providing novel insights into the molecular
mechanisms of OSCC.

oral squamous cell carcinoma, FN1, multi-omics analysis, immune microenvironment,
molecular subtyping
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1 Introduction

Oral Squamous Cell Carcinoma (OSCC) is the most common
malignant tumor in the head and neck region and ranks sixth in
terms of incidence among malignant tumors worldwide (1). It is
estimated that in 2020, approximately 400,000 people worldwide
were affected by oral epithelial cancer, resulting in about 178,000
deaths. This disease ranks 16th among global cancer incidence and
mortality rates (2, 3). Among oral specialty diseases, OSCC
accounts for over 90% of all oral malignant tumors. The 5-year
survival rate of Chinese patients is only 50-60% (4, 5). In addition,
the prevalence of OSCC varies significantly around the world: it is
the most common type of cancer in Southeast Asian countries,
while it ranks 16th in Finland (6). This global disparity in
prevalence rates is mainly attributed to the varying degrees of
exposure among populations to carcinogenic risk factors such as
tobacco, including smoking and smokeless tobacco products (7). In
addition, alcohol exposure, betel nut chewing habits, HPV infection
and gene mutations are all important pathogenic factors of OSCC
(8). OSCC is a multi-stage disease that usually progresses from the
initial normal mucosa to a potential malignant disease in the oral
cavity, and eventually becomes invasive carcinoma (9). In the early
stage, the patient presents with persistent oral ulcers, white and red
spot lesions and local pain. In the late stage, it is often accompanied
by lymph node metastasis in the neck. OSCC is often diagnosed
only when the disease has progressed to an advanced stage, which
results in a lower five-year survival rate for affected patients (10).
Although surgery remains the main treatment for OSCC, there is
still controversy over the surgical management of cervical lymph
nodes in patients, especially on whether to intervene in the
contralateral neck (11). Although targeted drugs and immune
checkpoint inhibitors have been applied in clinical practice, their
overall response rates remain relatively low (12, 13). This
therapeutic predicament mainly stems from the high
heterogeneity of tumors, the suppression of the immune
microenvironment and the drug resistance mechanism (14).
Therefore, in-depth analysis of the molecular regulatory
mechanism of OSCC, especially the epigenetic modification
network such as protein phosphorylation, has an urgent need to
improve the prognosis of patients.

Protein phosphorylation is a key post-translational
modification of proteins, which regulates the function of proteins
by adding a phosphate group to a specific amino acid on the protein
molecule, such as serine, threonine or tyrosine (15). This process
plays a crucial role in cellular signal transduction as it can alter the
activity, localization, stability of proteins and their interactions with
other molecules (16). In cancer biology, dysregulation of protein
phosphorylation is regarded as one of the significant factors leading
to tumorigenesis and development (17, 18). Many studies have
shown that in various types of cancer, the activities of protein
kinases and phosphatases in certain signaling pathways have
undergone significant changes (19). For instance, the abnormal
activation of classic oncogenic signaling pathways such as EGFR/
RAS/RAF/MEK/ERK and PI3K/AKT/mTOR is usually closely
related to changes in protein phosphorylation levels (20). The
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overactivity of these pathways can promote cell proliferation,
inhibit apoptosis, enhance invasiveness and metastasis ability, and
contribute to the development of the tumor microenvironment,
thereby advancing the cancer process (21, 22).

In this study, by integrating multi-source gene expression data,
the key phosphorylation molecular pathways and candidate genes
closely related to the occurrence and development of OSCC were
systematically identified. By integrating functional enrichment
analysis with molecular feature mining, we identified multiple
core factors with potential regulatory roles in tumor progression
and revealed their biological significance in the immune
microenvironment. Based on the heterogeneity analysis of gene
expression patterns, we classified the patients into subgroups with
different molecular characteristics, suggesting their potential value
in disease classification and individualized treatment. The research
results provide a theoretical basis for in-depth exploration of the
phosphorylation molecular mechanism of OSCC and the
development of new intervention targets.

2 Materials and methods
2.1 Data acquisition and preprocessing

The bulk RNA sequencing data of OSCC and their
corresponding clinical data — GSE9844 (12 Normal tissue vs 26
Tumor tissue), GSE30784 (45 Normal tissue vs 167 Tumor tissue),
GSE74530 (6 Normal tissue vs 6 Tumor tissue), GSE78060 (4
Normal tissue vs 26 Tumor tissue), and GSE138206 (18 Tumor
tissue) are from the National Center for Biotechnology Information
(NCBI). Additionally, we have downloaded OSCC data from the
National Institutes of Health (NIH). Records of patients with
missing information were excluded. The sequencing data was
converted into Transcripts Per Million (TPM) format for
subsequent analysis. If the data distribution is highly scattered, a
log2 transformation of the expression matrix was performed.

This study focuses on the analysis of phosphorylation-related
genes in OSCC. The relevant gene sets are from: GOBP_
CARBOHYDRATE_PHOSPHORYLATION.v2025.1.Hs.gmt,
GOBP_DEPHOSPHORYLATION.v2025.1.Hs.gmt, GOBP_
LIPID_PHOSPHORYLATION.v2025.1.Hs.gmt, GOBP_
OXIDATIVE_PHOSPHORYLATION.v2025.1.Hs.gmt,
GOBP_PHOSPHOLIPID_DEPHOSPHORYLATION.v2025.
1.Hs.gmt, GOBP_PHOSPHORYLATION.v2025.1.Hs.gmt,
GOBP_REGULATION_OF_PHOSPHORYLATION.v2025.
1.Hs.gmt. We take the intersection of these gene lists and include
the intersected genes for further analysis.

2.2 Differential gene expression analysis
and weighted gene co-expression network
analysis analysis

Differential gene expression (DEG) analysis was performed on
NIH and NCBI datasets using the criteria of P < 0.05 and
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[log2FoldChange| > 1. Results were visualized with volcano plots,
highlighting significantly up- and down-regulated genes.

For WGCNA, phosphorylation-related scores were first
calculated for each sample based on the intersected
phosphorylation-related gene set. A weighted gene co-expression
network was then constructed using the WGCNA R package. The
optimal soft-threshold power (B = 5) was selected based on scale-
free topology criteria and mean connectivity, ensuring the resulting
network approximated a scale-free topology while maintaining
sufficient connectivity among genes. Gene modules were
identified using hierarchical clustering and the dynamic tree cut
algorithm, with minimum module size set to 30 genes. Modules
showing significant correlation with phosphorylation-related scores
(Pearson correlation, |R| > 0.2, P < 0.05) were selected for
subsequent analyses, consistent with standard WGCNA
procedures (23). Module-trait relationships were visualized using
a module-feature heatmap.

2.3 Intersection genes and their biological
function analysis

We use the “Venn” package to create Venn diagrams, taking the
intersection of the differential genes from the NCBI data, the differential
genes from the NIH data, the genes from the WGCNA-selected
modules, and the phosphorylation-related genes. Based on the
intersected genes, we conduct biological function analysis, including
Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis using the “clusterProfiler”
package, and visualize the results with bar charts. Additionally, we
use wilcox.test to calculate the expression differences of the intersected
genes between the tumor and normal groups in both the NIH and
NCBI databases, and display the differential analysis results of the
intersected genes using box plots from the “ggpubr” package.

2.4 Comprehensive analysis of key gene
selection using machine learning methods

To ensure the reliability of the results, we applied three machine
learning methods—Least Absolute Shrinkage and Selection
Operator (LASSO) regression, Support Vector Machine (SVM),
and Random Forest—to comprehensively screen candidate genes
for key gene identification. The following R packages were used

» <

during the analysis: “randomForest,” “xgboost,” and “caret.” In the
LASSO analysis, the optimal regularization parameter A was
determined through k-fold cross-validation. To balance the
model’s predictive accuracy and complexity, we selected Amin as
the regularization parameter for the final model and used it for gene
selection. In the SVM, we selected the points with the highest
accuracy, smallest error, and fewest features for gene screening. In
the Random Forest, we selected genes with an importance greater
than 3 for further analysis. For the screening results from the three
methods, we used a Venn diagram to take the intersection,
identifying several key genes.
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2.5 SHapley Additive exPlanations-based
model interpretation and validation

/For the NIH and NCBI source data, we first randomly divided the
data into training and validation sets in a 7:3 ratio. Subsequently, we
performed SHAP analysis on the models built using the three machine
learning methods to assess the contribution of each feature to the
prediction results. The following R packages were used in the analysis:

ggplot2,
the SHAP values of the key genes, we assessed the relative importance

» « »

“kernelshap, ranger,” and “shapviz.” Specifically, based on
of the key genes in the model’s prediction results and visualized them
using a variable importance heatmap. Additionally, we revealed the
interdependencies and potential complex interactions of different key
genes in the model prediction using variable dependence plots. We also
used variable accumulation attribution waterfall charts to visually
display the cumulative contribution of each key gene to the model’s
prediction results. Furthermore, we evaluated the model performance
under different machine learning methods in both the training and
validation sets using four metrics: Area Under the Curve (AUC),
Recall, Precision, and F1_Score, and selected the method with the best
performance for further analysis.

2.6 Molecular subtype analysis based on
non-negative matrix factorization
clustering

Unsupervised clustering was performed on key gene expression
data using the Non-negative Matrix Factorization (NMF)
algorithm. The optimal number of clusters was determined based
on the cophenetic correlation coefficient and residual sum of
squares (RSS), which are widely used metrics to assess NMF
cluster stability (24). Two molecular subtypes (C1 and C2) were
chosen, balancing cluster stability and biological interpretability.

Differential expression analysis of key genes among the
subtypes was conducted using the “limma” R package. Immune
infiltration of 28 immune cell types across subtypes was quantified
and visualized using boxplots generated with the “ggpubr” package.
Gene Set Variation Analysis (GSVA) was applied to examine
pathway activation differences between subtypes. Finally,
Principal Component Analysis (PCA) was performed to validate
the discriminative power of the identified subtypes across datasets.

2.7 Immune microenvironment features
and correlation analysis of key genes with
immune cells

To assess immune cell infiltration, we applied single-sample
Gene Set Enrichment Analysis (ssGSEA) to quantify the relative
abundance of 28 immune cell types. The corresponding immune
cell-specific gene signatures were obtained from the C7
(immunologic signatures) collection of the Molecular Signatures
Database (MSigDB, v7.5.1). After completing the overall immune
microenvironment assessment, we focused on the key genes
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identified and explored their potential correlations with various
immune cells in the tumor patient population. For the correlation
analysis, we primarily used the “limma” and “ggplot2” software
packages for statistical analysis and graphical visualization.

2.8 Mendelian randomization analysis

To investigate the potential impact of genetic variation on OSCC,
we conducted a systematic study using MR analysis. All analyses were
performed using the “TwoSampleMR” package in R, with strict settings
for linkage disequilibrium (LD) pruning: P-value threshold of 5x10°%,
r* = 0.001, and an F-statistic greater than 10 to ensure the validity and
independence of the selected instrumental variables.

In this study, we used OSCC data from the Finnish Biobank as the
outcome variable, and the exposure factors were based on
the expression quantitative trait loci (eQTL) of the key genes in the
blood. After performing LD pruning, only a few genes retained valid
Single Nucleotide Polymorphism (SNP) sites, which were used for
subsequent analysis.

Our analysis first used a forest plot to clearly demonstrate the effect
size and direction of each SNP site on OSCC outcomes. Then, scatter
plots were used to further analyze the relationships between SNPs,
exposure factors, and their effects on the outcome variable. Five
mainstream MR methods (Inverse variance weighted, MR Egger,
Simple mode, Weighted median, and Weighted mode) were used for
robustness testing, ensuring the reliability of the analysis results. To
further verify the stability of the analysis and detect potential
heterogeneity or bias, we performed a leave-one-out sensitivity
analysis. Additionally, funnel plots were applied to assess the
symmetry of instrumental variables, providing a preliminary
judgment of the risk of publication bias. Finally, a comprehensive
MR analysis was conducted on the FN1 gene to explore its association
with OSCC.

2.9 Clinical sample collection and
preparation

Tumor and paired normal tissues were collected from fifteen
OSCC patients during surgeries at Tianjin Medical University
General Hospital between May 2019 and April 2024. Normal tissues
were obtained from areas at least 3 cm away from the tumor margins.
Following surgical excision, tissue samples were immediately snap-
frozen in liquid nitrogen and stored at —80°C to preserve RNA integrity
for subsequent molecular analyses. Ethical approval for the study was
obtained from the Institutional Review Board (IRB) of Tianjin Medical
University General Hospital, and written informed consent was
provided by all patients prior to tissue collection.

2.10 Cell culture and siRNA transfection

Human oral squamous cell carcinoma (OSCC) cell lines (OKF5,
FaDu, SCC-9, SCC-25, HSC-3, and HSC-2) were used in this study.

Frontiers in Immunology

10.3389/fimmu.2025.1677807

Cells were cultured in DMEM medium supplemented with 10%
fetal bovine serum (FBS) at 37°C in a 5% CO, incubator, with
regular changes of fresh medium. Subsequently, small interfering
RNA (siRNA) was used to transfect OSCC cells to knock down the
expression of the FN1 gene. The experimental group was
transfected with siRNA specific to FN1 (si-FN1), while the
control group was transfected with non-specific control siRNA
(si-NC). The transfection was performed according to the
instructions of the Lipofectamine 3000 reagent, and subsequent
experiments were conducted 48 hours after transfection.

2.11 qPCR detection of FN1 mRNA
expression

Total RNA was extracted from cells using Trizol reagent and
reverse transcribed into cDNA according to the instructions of the
reverse transcription kit. Using the cDNA as a template, qPCR
reactions were performed with specific primers. The reaction
conditions were as follows: initial denaturation at 95°C for 5
minutes, followed by 40 cycles of denaturation at 95°C for 15
seconds and annealing at 60°C for 30 seconds. GAPDH was used as
an internal reference, and the relative expression level of FN1 was
calculated using the 2"AACt method.

2.12 Transwell assay for cell migration and
invasion

Under 4°C conditions, Matrigel was diluted in serum-free
medium (1:8), and 50-60uL was evenly applied to the upper
surface of the bottom membrane of the Transwell chamber,
followed by incubation at 37°C for 1-3 hours. After incubation,
excess liquid was removed, and 100uL of serum-free medium was
added for hydration at 37°C for 30 minutes. Cells were starved for
12-24 hours, resuspended in serum-free medium, and adjusted to a
density of 5x10°/mL. 100uL of cell suspension was added to the
upper chamber, while 600uL of medium containing 10% FBS was
added to the lower chamber, and the cells were cultured for 12-48
hours. Subsequently, the cells that had migrated through were
detected. Five random fields were selected under the microscope
for counting, and Image] software was used for quantitative analysis.

2.13 Western blot detection of apoptosis-
and EMT-Related proteins

Cells were lysed with RIPA lysis buffer to extract total protein,
and the protein concentration was determined using the BCA
protein concentration determination kit according to the
instructions. The protein samples were separated by SDS-PAGE,
transferred to PVDF membranes, and the membranes were blocked
with 5% skim milk for 1 hour. The membranes were then incubated
with primary antibodies (FN1, cleaved caspase-3, Bcl-2, E-cadherin,
Vimentin, B-actin) at 4°C overnight, followed by incubation with

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1677807
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zeng et al.

secondary antibodies for 1 hour at room temperature. The proteins
were visualized using ECL chemiluminescence, and the band
densities were analyzed using Image] software. Additionally, cell
apoptosis was detected using the Annexin V-FITC/PI double
staining kit. Transfected cells were collected and stained with
Annexin V-FITC and PI according to the kit instructions, and the
apoptosis rate was determined using flow cytometry.

2.14 Statistical analysis

All statistical analyses were conducted using R software (version
4.1.3). In Receiver Operating Characteristic (ROC) analysis, an
AUC greater than 0.6 was considered to have good diagnostic
efficacy. Correlation analysis, unless otherwise specified, used
Pearson correlation methods. A P -value less than 0.05 was
considered statistically significant (*P<0.05; **P<0.01; **P<0.001;
Ho0t PL().0001).

3 Results
3.1 DEG analysis and WGCNA analysis

First, for the NIH source data, DEG analysis revealed 1,809
downregulated genes (e.g., FAM3D, OTC, GPD1L, GPR12, MAL)
and 2,410 upregulated genes (e.g., IL11, FIBCD1, CSAG3, HOXA13,
RXFP3, LHX9, GUCA1C) (Figure 1A). For the NCBI source data, the
volcano plot showed 760 downregulated genes (e.g., PADII,
ANKRD20A11P, MLLT4-AS1, MYZAP, HLF, GPDIL, PAQRS,
FAM214A, CAB39L, MAMDC2) and 785 upregulated genes (e.g.,
COL4A1, COL4A2, CDH3, CEBPB, MYO1B, PLAUR, SERPINHI,
WDR66, COL1A1, COL5A2, COLGALT1, HOMER3, ADAMTS2,
IL36G, IL24) (Figure 1B). Next, we conducted WGCNA. Based on
Scale independence and Mean connectivity, we selected 3 = 5 as the
optimal soft threshold, where R* = 0.85, and the network displayed
good scale-free properties and moderate sparsity (Figure 1C). Using the
WGCNA co-expression network, we successfully identified 3 modules
(Figure 1D). The module feature heatmap showed that MEblue and
MEturquoise were highly correlated with phosphorylation-related
scores (Figure 1E). Therefore, we included the genes from these two
modules in subsequent analysis.

3.2 Intersection genes and their biological
function analysis

/Using the “Venn” package, we took the intersection of the
differential genes from NCBI, NIH, WGCNA module genes, and
phosphorylation-related genes, successfully identifying 40 intersection
genes (Figure 2A). We then performed enrichment analysis on these 40
intersection genes. GO analysis revealed that they were significantly
enriched in pathways related to cell division (Spindle, Spindle midzone,
Intercellular bridge), signal transduction (Protein kinase complex,
Regulation of protein serine/threonine kinase activity, Negative
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regulation of phosphorylation, Negative regulation of protein
phosphorylation, Transmembrane receptor protein serine/threonine
kinase binding), and metabolic regulation (Negative regulation of
phosphate metabolic process, Negative regulation of phosphorus
metabolic process). KEGG analysis indicated that they were mainly
enriched in pathways related to immune and inflammatory responses
(Cytokine-cytokine receptor interaction, IL-17 signaling pathway,
TGF-beta signaling pathway), cancer progression (MicroRNAs in
cancer, p53 signaling pathway, Transcriptional misregulation in
cancer, Prostate cancer), and metabolic and endocrine regulation
(Non-alcoholic fatty liver disease, Lipid and atherosclerosis, Fluid
shear stress and atherosclerosis) (P<0.05, Figures 2B, C). Finally, box
plots demonstrated the gene expression differences of the 40 genes in
different databases. These genes showed significant differences between
the two groups in both data sources. Specifically, in the NIH source
data, the expression level of LTF was significantly higher in the Normal
group compared to the Tumor group, whereas genes such as HMGA2
and FN1 were expressed at higher levels in the Tumor group
(Figure 2D). In the NCBI source data, LTF was also significantly
overexpressed in the Control group, while genes such as BMP2 and
CDKN2A showed higher expression levels in the Tumor group
(P<0.001, Figure 2E).

3.3 Comprehensive analysis of key genes
selected by machine learning methods

To identify key candidate genes, we applied three complementary
machine learning methods: LASSO regression, SVM, and RF. First,
LASSO regression, based on the regularization path and 10-fold cross-
validation, selected 19 significant genes (Figure 3A). Next, SVM was
applied, and when the number of features was set to 25, the model
achieved its highest accuracy of 0.958 (Figures 3B, C), resulting in 25
candidate genes. Finally, Random Forest analysis was performed, and
12 genes with importance scores greater than 3 were retained, with
INHBA exhibiting the highest importance score (Figures 3D, E). To
integrate results from the three methods, we constructed a Venn
diagram, which revealed that five genes—BMP2, FN1, INHBA,
MMP9, and THY1—were consistently selected across all approaches.
These five genes were considered key genes and were used for
subsequent analyses, ensuring robustness and reliability in the
screening strategy.

3.4 SHAP-based model explanation and
validation in different datasets

We first applied SHAP in the NCBI source data to obtain SHAP
values for the 5 key genes, with INHBA showing the highest
importance and FN1 showing relatively low importance (Figure 4A).
The variable importance honeycomb plot further validated this
conclusion (Figure 4B). We then found that as the expression level
of a key gene increased, its contribution to the model’s prediction
became more stable and significant, especially when multiple key genes
were highly expressed at the same time. This revealed the complex
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FIGURE 1

Differentially expressed genes (DEG) analysis and weighted gene co-expression network analysis (WGCNA). (A) The volcano plot shows DEGs of Oral
squamous cell carcinoma (OSCC) in National Institutes of Health (NIH) data. P<0.05 and |log2FoldChange|>1 were identified as significant DEGs. The
downregulated genes (Down) = 1809, upregulated genes (Up) = 2410. (B) The volcano plot shows DEGs of OSCC in National Center for
Biotechnology Information (NCBI) data. P<0.05 and |log2FoldChange|>1 were identified as significant DEGs. The downregulated genes (Down) =
760, upregulated genes (Up) = 785. (C) Determination of the optimal soft threshold power for constructing a scale-free network. (Left) Scale
independence analysis. (Right) Mean connectivity analysis. (D) Network heatmap plot of selected genes. (E) Module characteristic heatmap showing
the correlation between module features and phosphorylation-related scores.

interaction mechanism of key genes in model prediction (Figure 4C).
Furthermore, we visualized the cumulative contribution of the 5 key
genes to the model’s prediction results using the variable accumulation
attribution waterfall plot. It can be seen that INHBA had the most
significant negative contribution, while other genes had relatively
smaller contributions, and BMP2 had a positive effect (Figure 4D).
Additionally, we evaluated the model’s performance under different
machine learning methods using AUC, Recall, Precision, and F1_Score.
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The evaluation results showed that RF performed excellently in these
indicators’ ROC results, indicating that it could provide stable and
efficient prediction capabilities (Figures 4E, F).

Next, we conducted the same analysis on the NIH source data to
verify the reliability of the selected key genes. By comparing SHAP
values and the variable importance honeycomb plot, we found that
MMP9 and INHBA had good importance, consistent with the
NCBI source data results (Figures 5A, B). The variable
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Intersection genes and their biological function analysis. (A) Venn diagram showing the intersection of differential genes from NCBI (n=260 tumor vs.
73 normal), NIH (n=241 tumor vs. 57 normal), WGCNA module genes significantly correlated with phosphorylation-related scores (|R|>0.2, P<0.05),
and phosphorylation-related genes, resulting in 40 overlapping genes. (B) Gene Ontology (GO) enrichment analysis of the 40 intersection genes.
The top enriched biological processes, cellular components, and molecular functions are shown. Adjusted P values (Benjamini-Hochberg correction)
<0.05 were considered significant. Enrichment scores represent -logl0(adjusted P value). (C) KEGG pathway enrichment analysis of the 40
intersection genes. Only pathways with adjusted P < 0.05 are displayed; enrichment scores are shown as -log10(adjusted P value). (D) Boxplots
comparing expression levels of the 40 intersection genes between tumor and normal samples in the NIH dataset (tumor n=241, normal n=57).
Statistical significance was assessed using Wilcoxon rank-sum test; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (E) Boxplots comparing
expression levels of the 40 intersection genes between tumor and normal samples in the NCBI dataset (tumor n=260, normal n=73). Statistical

analysis as in (D).

dependence plot also displayed the relationship and interaction
between the expression levels of the core genes and their SHAP
values for model prediction contribution. Similarly, the SHAP
values of INHBA and THY1 showed a significant correlation with
their respective expression levels, and were influenced by other
genes such as MMP9 and INHBA (Figure 5C). Moreover, except for
BMP?2, the core genes had a negative contribution to the model’s
prediction results (Figure 5D). Finally, the ROC results validated
that RF had excellent model performance (Figures 5E, F). We
selected RF for subsequent analysis.
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3.5 Molecular subtype analysis based on
NMF clustering

For the NCBI source data, we performed unsupervised
clustering analysis using the NMF algorithm and successfully
divided the patient population into two molecular subtypes (Cl
and C2) with significant differences (Figures 6A, B). Key gene
expression analysis showed that, except for FN1, the other genes
had significant differences. Among them, BMP2 and INHBA had
higher expression levels in C2; MMP9 and THY1 had higher
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FIGURE 3
Comprehensive analysis of key genes screened by machine learning methods. (A) Coefficient path diagram and deviation curve of Least Absolute
Shrinkage and Selection Operator (LASSO) regression analysis. (B) 5-fold Cross-Validation (5 x CV) accuracy change of Support Vector Machine
(SVM) under different feature numbers. (C) 5-fold Cross-Validation (5 x CV) error change of SVM analysis under different feature numbers. (D) Error
rate change of Random Forest analysis under different numbers of trees. (E) Lollipop chart of gene importance in Random Forest analysis. (F) Venn
diagram showing the intersection of genes from three machine learning methods. Five genes were obtained (BMP2, FN1, INHBA, MMP9, and THY1).

expression in C1 (P <0.01, Figure 6C). Immune microenvironment
analysis found that most immune cells were highly infiltrated in the
C1 subtype (P<0.05, Figure 6D). GSVA enrichment analysis further
revealed that C2 was significantly enriched in pro-tumor pathways
such as epithelial-mesenchymal transition (EMT), angiogenesis,
and inflammation (Figure 6E). Additionally, PCA results
demonstrated that the NMF-based classification method had
good discriminatory ability (Figure 6F).

At the same time, we performed clustering analysis on the NIH
source data and successfully obtained C1 and C2 subtypes
(Figures 7A, B). We also compared the differences in key gene
expression and immune cell infiltration between the two subtypes.

Frontiers in Immunology

The results showed that MMP9 had no significant difference
between Cl and C2, and the other genes, except for BMP2, all
had significant differences, with higher expression in C1 (P<0.05,
Figure 7C). Box plot observations revealed that CD56bright natural
killer cells, CD56dim natural killer cells, and Neutrophils had
higher expression levels in C2, while other statistically significant
immune cells were more likely to be highly expressed in Cl
(P<0.05, Figure 7D). Furthermore, C2 showed significant
upregulation in cancer-related pathways and downregulation in
metabolism and immune-related pathways compared to Cl
(Figure 7E). Finally, PCA analysis again confirmed the reliability

of the subtyping (Figure 7F).
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FIGURE 4

SHapley Additive exPlanations (SHAP)-based model interpretation and validation in NCBI data. (A) SHAP values of the 5 key genes. (B) Variable
importance hexagonal chart of the 5 key genes. (C) Variable dependency plot of the 5 key genes. (D) Cumulative attribution waterfall plot of the 5
key genes. (E, F) Evaluation of the model performance of 10 machine learning algorithms based on AUC, Recall, Precision, and F1_Score.

3.6 Immune microenvironment features data and NIH source data (Figures 8A, 9A). Further correlation
and correlation ana[ysis of key genes with analysis showed that the 5 key genes (BMP2, FN1, INHBA, MMP9,
immune cells and THY1) were closely related to the infiltration levels of various

immune cells to varying degrees (Figures 8B-F, 9B-F). In summary,
The ssGSEA analysis results showed that most immune cells ~ BMP2 showed a significant positive correlation with Type 2 T
were highly infiltrated in OSCC patients in both the NCBI source  helper cells and Neutrophils (P<0.001); FN1 showed a significant
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positive correlation with Natural killer cells and Central memory
CD4 T cells (P<0.001); INHBA showed a significant positive
correlation with Memory B cells (P<0.001); MMP9 and THY1
both showed a significant positive correlation with Natural killer
cells and Regulatory T cells (P<0.001); moreover, THY1 also
showed a significant negative correlation with CD56bright natural
killer cells (P<0.001).

Frontiers in Immunology 10

3.7 MR analysis

To explore the causal relationship between genes and OSCC, we
conducted MR analysis. First, the forest plot visually demonstrated the
MR effect sizes of multiple SNPs and exposure factors on the outcome
variable, with rs11689499 and rs72952151 showing significant positive
associations (Figure 10A). The scatter plot further revealed the
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FIGURE 6

Molecular subtyping analysis based on Non-negative Matrix Factorization (NMF) clustering in NCBI data. (A, B) NMF clustering of tumor samples
(n=260) based on 5 key genes (BMP2, FN1, INHBA, MMP9, THY1) identified two subtypes, C1 and C2. Consensus maps and cophenetic correlation
coefficient were used to determine the optimal cluster number. (C) Boxplots showing expression differences of the key genes between C1 and C2.
Differences were tested using Wilcoxon rank-sum test; *P < 0.05, **P < 0.01. (D) Boxplots showing the infiltration differences of 28 immune cell
types between C1 and C2 subtypes, assessed by ssGSEA. Statistical significance tested by Wilcoxon rank-sum test. (E) GSVA enrichment analysis
comparing pathway activation between C2 and C1. Enrichment scores represent normalized GSVA scores; pathways with adjusted P < 0.05 are
shown. (F) Principal Component Analysis (PCA) demonstrating separation between C1 and C2 subtypes. ***P<0.001.

influence of SNPs on exposure factors and outcome variables. All five

MR methods (Inverse variance weighted, MR Egger,

Weighted median, Weighted mode) showed consistent positive linear

trends, indicating a positive correlation between SNP.
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exposure factors and outcome variables. Among them, the Inverse
variance weighted method showed the strongest positive correlation
(Figure 10B). Next, the leave-one-out analysis validated the robustness
of the analysis and potential bias, and the results showed that the
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FIGURE 8

Immune microenvironment characteristics and correlation analysis between key genes and immune cells in NCBI data. (A) single-sample Gene Set
Enrichment Analysis (ssGSEA), heatmap showing the difference in immune cell infiltration between the Control group and the Tumor group.
(B—F) Correlation analysis between the five key genes (BMP2, FN1, INHBA, MMP9, and THY1) and immune cells in tumor patients.

overall effect estimate was relatively stable, with rs10932612 showing a
high positive correlation with OSCC outcomes (Figures 10C, D).
Finally, for FN1, we applied various MR methods, and the results
showed that the Inverse variance weighted method had statistical
significance and was a risk factor with an OR of 1.84 (1.07 to 3.14)
(P<0.05, Figure 10E).
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3.8 Results of gPCR-based screening of
target cell lines and functional validation of
FN1

The potential role of FN1, suggested as a possible prognostic
marker, was further investigated through a series of functional
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FIGURE 9

Immune microenvironment characteristics and correlation analysis between key genes and immune cells in NIH data. (A) ssGSEA, heatmap showing
the difference in immune cell infiltration between the Control group and the Tumor group. (B—F) Correlation analysis between the five key genes

(BMP2, FN1, INHBA, MMP9, and THY1) and immune cells in tumor patients.

assays in OSCC. Initially, qPCR analysis of FNI expression in
OSCC tumor tissues versus adjacent normal tissues revealed
significantly elevated levels of FN1 mRNA in the tumor samples
(Figure 11A). Subsequent qPCR profiling in OSCC cell lines showed
that FN1 expression was markedly higher in SCC-9 and HSC-2 cells
compared to DKF6 cells, leading to the selection of these two cell
lines for further functional studies (Figure 11B). To explore the
functional implications of FN1, it was specifically knocked down in
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SCC-9 and HSC-2 cells. Successful knockdown was confirmed by
qRT-PCR, where FN1 mRNA levels were significantly reduced in
the si-FN1 group relative to the negative control (si-NGC; P <
0.0001), validating the efficacy of the knockdown (Figure 11C).
The impact of FN1 depletion on cell proliferation was evaluated
using the CCK-8 assay, which demonstrated a marked reduction in
cell proliferation in FN1-silenced cells, indicating that FN1 may
contribute to OSCC cell growth (Figures 11D, E). Flow cytometry
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(E) Forest plot showing MR effect of FN1 on OSCC risk (OR=1.84, 95% CI 1.07-3.14, P < 0.05). Statistical significance was assessed by IVW, MR Egger,

Weighted median, Weighted mode, and Simple mode methods.

analysis further elucidated the effect of FN1 knockdown on
apoptosis. The si-FN1 group exhibited a significant increase in
apoptosis rates compared to the si-NC control (P < 0.0001),
confirming that FN1 depletion promotes apoptotic cell death
(Figures 11F, G). To investigate the effects of FN1 knockdown on
cellular migration and invasion, Transwell assays were performed.
These assays revealed a significant reduction in both migration (P <
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0.0001) and invasion (P < 0.01) in FN1-depleted cells compared to
controls, suggesting that FN1 may play a role in promoting OSCC
cell migration and invasion (Figures 11H, I). Finally, Western blot
analysis was employed to assess the molecular changes following
FN1 knockdown at the protein level. As expected, FN1 protein
expression was significantly reduced in the si-FN1 group (P < 0.05).
Additionally, the pro-apoptotic marker cleaved caspase-3 was
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FIGURE 11

Functional validation of FN1 in OSCC. (A) gPCR analysis showing FN1 expression levels in OSCC tumor tissues and adjacent normal tissues. (B) gPCR
comparison of FN1 expression in OSCC cell lines (SCC-9, HSC-2, DKF6) relative to the normal colorectal cell line FHC (n = 3 independent
experiments per cell line; one-way ANOVA). (C) Validation of FN1 knockdown in OSCC cell lines by gRT-PCR (si-FN1 vs si-NC; n = 3, Student's t-
test; P < 0.0001). (D, E) CCK-8 proliferation assays showing significantly reduced cell proliferation rates in FN1-knockdown OSCC cells compared to
control. (F, G) Flow cytometry analysis indicating a significant increase in apoptosis in FN1-depleted SCC-9 cells (n = 3, Student's t-test; P < 0.0001).
(H, ) Transwell assays illustrating reduced migration and invasion potential in FN1-silenced OSCC cells (n = 3, Student’s t-test; migration: P <
0.0001, invasion: P < 0.01). (3, K) Western blot analysis showing FN1 knockdown reduces FN1 and Bcl-2 expression, increases cleaved caspase-3 and
E-cadherin, and decreases Vimentin (n = 3, Student'’s t-test; P < 0.05). ***P<0.001.
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upregulated, while the anti-apoptotic protein Bcl-2 was
downregulated (P < 0.05), further supporting the notion that FN1
depletion promotes apoptosis. Furthermore, FN1 knockdown was
associated with an increase in E-cadherin expression and a decrease
in Vimentin expression (P < 0.05), suggesting a potential inhibitory
effect on the epithelial-mesenchymal transition (EMT) process
(Figures 11], K).

4 Discussion

OSCC as one of the most common malignant tumors in the head
and neck, its complex molecular mechanisms and highly
heterogeneous tumor microenvironment have always been hot
topics and difficult issues in research. This study systematically
explored the key molecular features and immune regulatory
networks of OSCC development and progression by integrating
multi-omics data and machine learning algorithms. The results not
only revealed the molecular heterogeneity of OSCC but also identified
a series of key genes and molecular markers with potential clinical
application value, providing important theoretical basis for the
precise diagnosis and individualized treatment of OSCC.

In DEG analysis, a large number of differentially expressed genes
closely related to OSCC were identified in both NIH and NCBI
source data. Upregulated genes such as IL11, HOXA13, etc., further
confirmed the important role of the inflammatory microenvironment
in OSCC progression. In contrast, downregulated expression of
tumor-suppressor genes such as LTF in tumor tissues may
represent important molecular events in the occurrence of OSCC.
Notably, the overlap of these differentially expressed genes between
datasets was relatively low, which may reflect the heterogeneity of
different research platforms and sample sources. As an important
analysis tool in this study, WGCNA successfully constructed a gene
co-expression network related to OSCC and identified several co-
expression modules closely related to protein phosphorylation
modifications. Among them, the MEblue and MEturquoise
modules showed a high correlation with phosphorylation-related
scores, indicating significant biological significance. This is because
protein phosphorylation is a key regulatory mechanism in
intracellular signal transduction, and its abnormal regulation is
closely related to the occurrence and development of various
tumors (25). The identification of these key module genes not only
provides a new perspective for understanding the abnormalities in
signal transduction pathways in OSCC but also lays the foundation
for identifying potential therapeutic targets.

By integrating multi-omics data (differential genes from NCBI
and NIH, WGCNA module genes, and phosphorylation-related
genes), we successfully screened out 40 core intersecting genes.
These genes play important roles in key biological processes such as
cell cycle regulation, signal transduction, and metabolic
reprogramming. GO analysis results showed that these genes were
significantly enriched in cell division-related pathways, such as
spindle formation and protein kinase complexes, which aligns
with the characteristic abnormal proliferation of OSCC cells.
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KEGG analysis further revealed the important roles of these genes
in classic tumor-related pathways such as the IL-17 signaling
pathway and TGF-f signaling pathway. Notably, the significant
enrichment of the p53 signaling pathway resonates with the
common genomic instability features in OSCC. These findings
not only deepen our understanding of the molecular mechanisms
of OSCC but also provide a theoretical basis for developing new
therapeutic strategies. Finally, we presented the gene expression
differences of the 40 core genes in different databases.

In OSCC and related head and neck cancers, the five identified
key genes demonstrate distinct but complementary roles in tumor
progression. BMP2 has been shown to promote invasion and
vasculogenic mimicry through CCL5 release and PI3K-AKT
signaling (26, 27), highlighting its role as a driver of
aggressiveness. FN1, a classic EMT marker, not only enhances
proliferation, invasion, and lymph node metastasis via FAK-
VEGE-C signaling but also shapes an immunosuppressive
microenvironment by regulating macrophage polarization (28,
29), underscoring its dual role in tumor progression and immune
modulation. INHBA, acting through the TGF-§ axis, has been
linked to pro-inflammatory CAFs and macrophage-driven
immunosuppression (30), suggesting a central role in remodeling
the tumor microenvironment. MMP9 facilitates ECM degradation
and angiogenesis, partly through neutrophil-mediated MEK/ERK
activation (31), reinforcing its importance in invasion and
metastasis. THY1 (CD90), frequently associated with stemness
and tumor recurrence in multiple cancers, may promote OSCC
progression by mediating tumor-macrophage interactions and
sustaining an immunosuppressive niche (32-34). Together, these
findings position the five genes as critical regulators of OSCC
aggressiveness and potential therapeutic targets, with direct
relevance to immunotherapy and targeted intervention strategies.

Furthermore, SHAP-based interpretable machine learning
analysis provided important insights into the mechanisms of key
genes in the OSCC prediction model. The results showed that
INHBA and MMP9 had higher SHAP values in both NIH and
NCBI source data, indicating that they played a core role in model
prediction, which has significant biological implications. As a
subunit of activin A, INHBA mainly participates in regulating
tumor occurrence and development through the TGF-f signaling
pathway. Its high contribution in the model may reflect the core
regulatory role of this signaling pathway in OSCC progression. The
variable dependence graph further revealed the complex
interactions between key genes. The study found that when
multiple key genes were highly expressed simultaneously, their
impact on the model prediction results was more significant. This
synergistic effect may reflect the activation of multiple signaling
pathways in OSCC, suggesting potential molecular mechanisms
behind the tumor’s high heterogeneity. Moreover, in the analysis of
accumulated contributions to model predictions, INHBA showed
the most significant negative contribution in the NCBI source data,
which is consistent with its function in promoting tumor invasion
and metastasis in previous studies, suggesting that its high
expression may predict a worse clinical outcome. BMP2 was the
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only gene showing a positive contribution, and its bone-forming
properties may play a unique role in OSCC’s local invasion process.
This positive-negative regulatory balance provides new perspectives
for analyzing the molecular regulatory network of OSCC. In NIH
source data, except for BMP2, all five key genes showed a negative
contribution, which may be related to the clinical characteristics of
NIH source samples. Considering that the NIH source data is
mainly derived from advanced cancer patients, this consistent
negative contribution may reflect the synergistic pro-cancer effect
of these genes in the later stages of tumor progression. Model
performance evaluation results showed that the RF algorithm
performed best in multiple evaluation metrics such as AUC,
Recall, Precision, and F1_Score. This result may stem from RF’s
good adaptability to high-dimensional genomic data and its ability
to capture feature interactions. It is worth noting that the validation
results of RF in NIH source data were highly consistent with those
in NCBI source data, which not only further validated the
robustness of the model but also significantly enhanced the
credibility of the research conclusions. The multi-dataset cross-
validation strategy used in this study effectively reduced the bias risk
from a single data source and provided more reliable and
compelling evidence support for key gene screening.

Molecular Subtyping Analysis is another important component
of this study. Using the NMF clustering algorithm, we successfully
classified OSCC patients into two molecular subtypes, C1 and C2,
which showed significant differences. These two subtypes exhibited
distinct differences in key gene expression patterns, tumor immune
microenvironment composition, and functional pathway
enrichment. Specifically, C1 displayed a significant “immune-hot”
feature, characterized by high infiltration of various immune cell
subsets, such as regulatory T cells and NK cells, suggesting that
patients in this subtype may be more sensitive to immune checkpoint
inhibitor treatments and have potential clinical therapeutic value. In
contrast, subtype C2 was marked by significantly enhanced EMT
features and activation of angiogenesis-related pathways, which are
closely associated with tumor invasiveness and poor prognosis. This
molecular subtyping not only reveals the high heterogeneity of OSCC
at the molecular level but also provides an important basis for the
development of personalized treatment strategies. Finally, PCA
analysis further validated the rationality of the molecular subtyping,
offering crucial insights into the molecular mechanisms of
each subtype.

Subsequently, tumor microenvironment analysis revealed the
complexity of the OSCC immune landscape. Using the ssGSEA
method, we systematically evaluated the infiltration of various
immune cell types in OSCC and found significant correlations
between key genes and specific immune cell subsets. For example,
the positive correlation between BMP2 and neutrophils may reflect
its role in inflammation microenvironment formation; the negative
correlation between THY1 and NK cells may represent an immune
evasion mechanism. These findings not only enrich our
understanding of the OSCC immune microenvironment but also
provide potential targets for the development of new
immunotherapy strategies. Particularly, the positive correlation
between FN1 and memory B cells suggests that tumor-associated
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stroma may affect tumor progression by modulating humoral
immune responses, a finding worth further investigation.

Finally, MR analysis provided genetic evidence for this study.
Through a systematic analysis of the association between multiple
SNPs and OSCC risk, we found that rs11689499 and rs72952151
showed significant positive associations, suggesting they may be
potential molecular markers of OSCC genetic susceptibility.
Notably, a consistent positive association trend was observed
across five different MR analysis methods (Inverse Variance
Weighted, MR Egger, Simple Mode, Weighted Median, and
Weighted Mode), with the strongest correlation found using
Inverse Variance Weighted. The consistency of results from
multiple methods significantly enhances the robustness and
credibility of the research conclusions. From a biological
mechanism perspective, these SNP loci may regulate the
expression or functional status of the FNI gene, affecting the
extracellular matrix (ECM) remodeling process, thus promoting
the occurrence and development of OSCC. Sensitivity analysis using
the leave-one-out method further validated the stability of MR
results, with rs10932612 consistently showing a stable positive
correlation with OSCC risk, suggesting that this locus may be a
key genetic variation influencing OSCC development. Importantly,
the specialized MR analysis of the FN1 gene showed an odds ratio
(OR) of 1.84 (95% CI: 1.07-3.14) for its role as a risk factor, a value
that holds significant clinical importance in genetic epidemiology
studies. FN1, which encodes fibronectin, is an essential component
of the extracellular matrix, involved in various critical biological
processes such as cell adhesion, migration, and signal transduction
(35). Previous studies have shown that FN1 is abnormally
overexpressed in various tumor tissues (36). Our study provides
genetic evidence supporting a positive association between FNI
expression and OSCC risk, offering new theoretical and empirical
support for considering it as a potential therapeutic target
for OSCC.

Although this study has made certain innovations in multi-
omics data integration and machine learning methods, there are still
some aspects that need improvement. First, the study is primarily
based on retrospective data from public databases, which requires
validation in independent prospective cohorts. Secondly, the
specific functional mechanisms of key genes still need to be
further clarified through experimental research. Furthermore, the
clinical significance of molecular subtypes needs to be assessed with
long-term follow-up data. Future research could integrate single-
cell sequencing technology to explore the heterogeneity of the
tumor microenvironment in greater depth and validate the
functions of key genes through organoid models or animal
experiments. In terms of clinical translation, the multi-gene
predictive model developed based on the results of this study
holds the potential to provide new tools for the early diagnosis
and prognostic evaluation of OSCC.

In summary, this study systematically reveals the molecular
characteristics and immune regulatory networks of OSCC through
multi-omics integration analysis and machine learning algorithms.
The research not only identifies a series of key genes and molecular
biomarkers with potential clinical application value but also
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establishes a reliable molecular subtyping system. These findings
provide new insights into the pathogenesis of OSCC and lay the
theoretical foundation for developing precision diagnosis and
treatment strategies. Future research should focus on the clinical
translation of these findings, aiming to improve the diagnosis and
treatment of OSCC.

5 Limitations and future perspectives

This study provides novel insights into OSCC molecular
mechanisms but has several limitations. Only FN1 was
experimentally validated, leaving the roles of BMP2, INHBA,
MMPY, and THY1 unexamined. Analyses relied on retrospective
public datasets, and prospective validation is needed to confirm the
clinical utility of identified biomarkers and subtypes. Some cohorts
(e.g., GSE78060, GSE138206) had small sample sizes, which may
introduce bias despite cross-dataset normalization. The MR analysis
was limited by few valid SNPs, warranting cautious interpretation of
causal inference. Finally, the mechanisms underlying molecular
subtypes and their treatment associations remain unclear,
highlighting the need for studies using single-cell sequencing,
organoid models, and long-term clinical follow-up.

6 Conclusion

In this study, through systematic integration of gene expression
characteristics and functional analysis, a group of phosphorylation-
related molecular markers that play a key regulatory role in OSCC
were identified, and their potential functions in the tumor
microenvironment and signaling pathways were revealed.
Molecular typing based on gene expression heterogeneity further
indicates the differences in immune infiltration and cancer-
promoting phenotypes among different subtypes. The research
results not only deepened the understanding of the pathogenesis
of OSCC, but also provided experimental evidence for exploring
new diagnostic markers and therapeutic targets.
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