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Background:Oral squamous cell carcinoma (OSCC) is one of the most common

malignant tumors in the head and neck region, with a complex molecular

mechanism that has not yet been fully elucidated. This study aims to identify

key genes closely associated with the development and progression of OSCC

through integrative multi-omics data analysis and to explore the potential roles

of these genes in protein phosphorylation regulation and the immune

microenvironment, providing new insights for precision diagnosis and treatment.

Methods: The study integrated data from National Center for Biotechnology

Information (NCBI) and National Institutes of Health (NIH) sources, combining

differential expression gene analysis and co-expression network construction to

identify candidate genes significantly associated with phosphorylation status. Key

genes were further screened, and molecular subtyping of samples was

performed based on gene expression patterns. Additionally, the association

between key genes and immune microenvironment characteristics was

evaluated, and Mendelian randomization (MR) was employed to investigate the

impact of genetic variants on disease risk.

Results: The analysis revealed multiple significantly differentially expressed

genes, primarily enriched in pathways related to cell cycle regulation, signal

transduction, and metabolism. Five key genes—BMP2, FN1, INHBA, MMP9, and

THY1—were ultimately identified. These genes exhibited subtype-specific

expression patterns across different molecular subtypes and were closely

associated with immune cell infiltration levels. Furthermore, functional

validation demonstrated that FN1 was significantly linked to OSCC occurrence

at the genetic level.

Conclusion: This study identified key genes and molecular subtypes associated

with OSCC, highlighting their potential links to protein phosphorylation and the

immunemicroenvironment. Among these, FN1 may serve as a potential risk gene

and a candidate biomarker, providing novel insights into the molecular

mechanisms of OSCC.
KEYWORDS

oral squamous cell carcinoma, FN1, multi-omics analysis, immune microenvironment,
molecular subtyping
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1 Introduction

Oral Squamous Cell Carcinoma (OSCC) is the most common

malignant tumor in the head and neck region and ranks sixth in

terms of incidence among malignant tumors worldwide (1). It is

estimated that in 2020, approximately 400,000 people worldwide

were affected by oral epithelial cancer, resulting in about 178,000

deaths. This disease ranks 16th among global cancer incidence and

mortality rates (2, 3). Among oral specialty diseases, OSCC

accounts for over 90% of all oral malignant tumors. The 5-year

survival rate of Chinese patients is only 50-60% (4, 5). In addition,

the prevalence of OSCC varies significantly around the world: it is

the most common type of cancer in Southeast Asian countries,

while it ranks 16th in Finland (6). This global disparity in

prevalence rates is mainly attributed to the varying degrees of

exposure among populations to carcinogenic risk factors such as

tobacco, including smoking and smokeless tobacco products (7). In

addition, alcohol exposure, betel nut chewing habits, HPV infection

and gene mutations are all important pathogenic factors of OSCC

(8). OSCC is a multi-stage disease that usually progresses from the

initial normal mucosa to a potential malignant disease in the oral

cavity, and eventually becomes invasive carcinoma (9). In the early

stage, the patient presents with persistent oral ulcers, white and red

spot lesions and local pain. In the late stage, it is often accompanied

by lymph node metastasis in the neck. OSCC is often diagnosed

only when the disease has progressed to an advanced stage, which

results in a lower five-year survival rate for affected patients (10).

Although surgery remains the main treatment for OSCC, there is

still controversy over the surgical management of cervical lymph

nodes in patients, especially on whether to intervene in the

contralateral neck (11). Although targeted drugs and immune

checkpoint inhibitors have been applied in clinical practice, their

overall response rates remain relatively low (12, 13). This

therapeutic predicament mainly stems from the high

heterogeneity of tumors, the suppression of the immune

microenvironment and the drug resistance mechanism (14).

Therefore, in-depth analysis of the molecular regulatory

mechanism of OSCC, especially the epigenetic modification

network such as protein phosphorylation, has an urgent need to

improve the prognosis of patients.

Protein phosphorylation is a key post-translational

modification of proteins, which regulates the function of proteins

by adding a phosphate group to a specific amino acid on the protein

molecule, such as serine, threonine or tyrosine (15). This process

plays a crucial role in cellular signal transduction as it can alter the

activity, localization, stability of proteins and their interactions with

other molecules (16). In cancer biology, dysregulation of protein

phosphorylation is regarded as one of the significant factors leading

to tumorigenesis and development (17, 18). Many studies have

shown that in various types of cancer, the activities of protein

kinases and phosphatases in certain signaling pathways have

undergone significant changes (19). For instance, the abnormal

activation of classic oncogenic signaling pathways such as EGFR/

RAS/RAF/MEK/ERK and PI3K/AKT/mTOR is usually closely

related to changes in protein phosphorylation levels (20). The
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overactivity of these pathways can promote cell proliferation,

inhibit apoptosis, enhance invasiveness and metastasis ability, and

contribute to the development of the tumor microenvironment,

thereby advancing the cancer process (21, 22).

In this study, by integrating multi-source gene expression data,

the key phosphorylation molecular pathways and candidate genes

closely related to the occurrence and development of OSCC were

systematically identified. By integrating functional enrichment

analysis with molecular feature mining, we identified multiple

core factors with potential regulatory roles in tumor progression

and revealed their biological significance in the immune

microenvironment. Based on the heterogeneity analysis of gene

expression patterns, we classified the patients into subgroups with

different molecular characteristics, suggesting their potential value

in disease classification and individualized treatment. The research

results provide a theoretical basis for in-depth exploration of the

phosphorylation molecular mechanism of OSCC and the

development of new intervention targets.
2 Materials and methods

2.1 Data acquisition and preprocessing

The bulk RNA sequencing data of OSCC and their

corresponding clinical data — GSE9844 (12 Normal tissue vs 26

Tumor tissue), GSE30784 (45 Normal tissue vs 167 Tumor tissue),

GSE74530 (6 Normal tissue vs 6 Tumor tissue), GSE78060 (4

Normal tissue vs 26 Tumor tissue), and GSE138206 (18 Tumor

tissue) are from the National Center for Biotechnology Information

(NCBI). Additionally, we have downloaded OSCC data from the

National Institutes of Health (NIH). Records of patients with

missing information were excluded. The sequencing data was

converted into Transcripts Per Million (TPM) format for

subsequent analysis. If the data distribution is highly scattered, a

log2 transformation of the expression matrix was performed.

This study focuses on the analysis of phosphorylation-related

genes in OSCC. The relevant gene sets are from: GOBP_

CARBOHYDRATE_PHOSPHORYLATION.v2025.1.Hs.gmt,

GOBP_DEPHOSPHORYLATION.v2025.1.Hs.gmt, GOBP_

LIPID_PHOSPHORYLATION.v2025.1 .Hs.gmt, GOBP_

OXIDATIVE_PHOSPHORYLATION.v2025 .1 .Hs . gmt ,

GOBP_PHOSPHOLIPID_DEPHOSPHORYLATION.v2025.

1.Hs.gmt, GOBP_PHOSPHORYLATION.v2025.1.Hs.gmt,

GOBP_REGULATION_OF_PHOSPHORYLATION.v2025.

1.Hs.gmt. We take the intersection of these gene lists and include

the intersected genes for further analysis.
2.2 Differential gene expression analysis
and weighted gene co-expression network
analysis analysis

Differential gene expression (DEG) analysis was performed on

NIH and NCBI datasets using the criteria of P < 0.05 and
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|log2FoldChange| > 1. Results were visualized with volcano plots,

highlighting significantly up- and down-regulated genes.

For WGCNA, phosphorylation-related scores were first

calculated for each sample based on the intersected

phosphorylation-related gene set. A weighted gene co-expression

network was then constructed using the WGCNA R package. The

optimal soft-threshold power (b = 5) was selected based on scale-

free topology criteria and mean connectivity, ensuring the resulting

network approximated a scale-free topology while maintaining

sufficient connectivity among genes. Gene modules were

identified using hierarchical clustering and the dynamic tree cut

algorithm, with minimum module size set to 30 genes. Modules

showing significant correlation with phosphorylation-related scores

(Pearson correlation, |R| > 0.2, P < 0.05) were selected for

subsequent analyses, consistent with standard WGCNA

procedures (23). Module-trait relationships were visualized using

a module-feature heatmap.
2.3 Intersection genes and their biological
function analysis

We use the “Venn” package to create Venn diagrams, taking the

intersection of the differential genes from theNCBI data, the differential

genes from the NIH data, the genes from the WGCNA-selected

modules, and the phosphorylation-related genes. Based on the

intersected genes, we conduct biological function analysis, including

Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis using the “clusterProfiler”

package, and visualize the results with bar charts. Additionally, we

use wilcox.test to calculate the expression differences of the intersected

genes between the tumor and normal groups in both the NIH and

NCBI databases, and display the differential analysis results of the

intersected genes using box plots from the “ggpubr” package.
2.4 Comprehensive analysis of key gene
selection using machine learning methods

To ensure the reliability of the results, we applied three machine

learning methods—Least Absolute Shrinkage and Selection

Operator (LASSO) regression, Support Vector Machine (SVM),

and Random Forest—to comprehensively screen candidate genes

for key gene identification. The following R packages were used

during the analysis: “randomForest,” “xgboost,” and “caret.” In the

LASSO analysis, the optimal regularization parameter l was

determined through k-fold cross-validation. To balance the

model’s predictive accuracy and complexity, we selected lmin as

the regularization parameter for the final model and used it for gene

selection. In the SVM, we selected the points with the highest

accuracy, smallest error, and fewest features for gene screening. In

the Random Forest, we selected genes with an importance greater

than 3 for further analysis. For the screening results from the three

methods, we used a Venn diagram to take the intersection,

identifying several key genes.
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2.5 SHapley Additive exPlanations-based
model interpretation and validation

/For the NIH and NCBI source data, we first randomly divided the

data into training and validation sets in a 7:3 ratio. Subsequently, we

performed SHAP analysis on the models built using the three machine

learning methods to assess the contribution of each feature to the

prediction results. The following R packages were used in the analysis:

“kernelshap,” “ggplot2,” “ranger,” and “shapviz.” Specifically, based on

the SHAP values of the key genes, we assessed the relative importance

of the key genes in the model’s prediction results and visualized them

using a variable importance heatmap. Additionally, we revealed the

interdependencies and potential complex interactions of different key

genes in the model prediction using variable dependence plots. We also

used variable accumulation attribution waterfall charts to visually

display the cumulative contribution of each key gene to the model’s

prediction results. Furthermore, we evaluated the model performance

under different machine learning methods in both the training and

validation sets using four metrics: Area Under the Curve (AUC),

Recall, Precision, and F1_Score, and selected the method with the best

performance for further analysis.
2.6 Molecular subtype analysis based on
non-negative matrix factorization
clustering

Unsupervised clustering was performed on key gene expression

data using the Non-negative Matrix Factorization (NMF)

algorithm. The optimal number of clusters was determined based

on the cophenetic correlation coefficient and residual sum of

squares (RSS), which are widely used metrics to assess NMF

cluster stability (24). Two molecular subtypes (C1 and C2) were

chosen, balancing cluster stability and biological interpretability.

Differential expression analysis of key genes among the

subtypes was conducted using the “limma” R package. Immune

infiltration of 28 immune cell types across subtypes was quantified

and visualized using boxplots generated with the “ggpubr” package.

Gene Set Variation Analysis (GSVA) was applied to examine

pathway activation differences between subtypes. Finally,

Principal Component Analysis (PCA) was performed to validate

the discriminative power of the identified subtypes across datasets.
2.7 Immune microenvironment features
and correlation analysis of key genes with
immune cells

To assess immune cell infiltration, we applied single-sample

Gene Set Enrichment Analysis (ssGSEA) to quantify the relative

abundance of 28 immune cell types. The corresponding immune

cell–specific gene signatures were obtained from the C7

(immunologic signatures) collection of the Molecular Signatures

Database (MSigDB, v7.5.1). After completing the overall immune

microenvironment assessment, we focused on the key genes
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identified and explored their potential correlations with various

immune cells in the tumor patient population. For the correlation

analysis, we primarily used the “limma” and “ggplot2” software

packages for statistical analysis and graphical visualization.
2.8 Mendelian randomization analysis

To investigate the potential impact of genetic variation on OSCC,

we conducted a systematic study using MR analysis. All analyses were

performed using the “TwoSampleMR” package in R, with strict settings

for linkage disequilibrium (LD) pruning: P-value threshold of 5×10-8,

r² = 0.001, and an F-statistic greater than 10 to ensure the validity and

independence of the selected instrumental variables.

In this study, we used OSCC data from the Finnish Biobank as the

outcome variable, and the exposure factors were based on

the expression quantitative trait loci (eQTL) of the key genes in the

blood. After performing LD pruning, only a few genes retained valid

Single Nucleotide Polymorphism (SNP) sites, which were used for

subsequent analysis.

Our analysis first used a forest plot to clearly demonstrate the effect

size and direction of each SNP site on OSCC outcomes. Then, scatter

plots were used to further analyze the relationships between SNPs,

exposure factors, and their effects on the outcome variable. Five

mainstream MR methods (Inverse variance weighted, MR Egger,

Simple mode, Weighted median, and Weighted mode) were used for

robustness testing, ensuring the reliability of the analysis results. To

further verify the stability of the analysis and detect potential

heterogeneity or bias, we performed a leave-one-out sensitivity

analysis. Additionally, funnel plots were applied to assess the

symmetry of instrumental variables, providing a preliminary

judgment of the risk of publication bias. Finally, a comprehensive

MR analysis was conducted on the FN1 gene to explore its association

with OSCC.
2.9 Clinical sample collection and
preparation

Tumor and paired normal tissues were collected from fifteen

OSCC patients during surgeries at Tianjin Medical University

General Hospital between May 2019 and April 2024. Normal tissues

were obtained from areas at least 3 cm away from the tumor margins.

Following surgical excision, tissue samples were immediately snap-

frozen in liquid nitrogen and stored at −80°C to preserve RNA integrity

for subsequent molecular analyses. Ethical approval for the study was

obtained from the Institutional Review Board (IRB) of Tianjin Medical

University General Hospital, and written informed consent was

provided by all patients prior to tissue collection.
2.10 Cell culture and siRNA transfection

Human oral squamous cell carcinoma (OSCC) cell lines (OKF5,

FaDu, SCC-9, SCC-25, HSC-3, and HSC-2) were used in this study.
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Cells were cultured in DMEM medium supplemented with 10%

fetal bovine serum (FBS) at 37°C in a 5% CO2 incubator, with

regular changes of fresh medium. Subsequently, small interfering

RNA (siRNA) was used to transfect OSCC cells to knock down the

expression of the FN1 gene. The experimental group was

transfected with siRNA specific to FN1 (si-FN1), while the

control group was transfected with non-specific control siRNA

(si-NC). The transfection was performed according to the

instructions of the Lipofectamine 3000 reagent, and subsequent

experiments were conducted 48 hours after transfection.
2.11 qPCR detection of FN1 mRNA
expression

Total RNA was extracted from cells using Trizol reagent and

reverse transcribed into cDNA according to the instructions of the

reverse transcription kit. Using the cDNA as a template, qPCR

reactions were performed with specific primers. The reaction

conditions were as follows: initial denaturation at 95°C for 5

minutes, followed by 40 cycles of denaturation at 95°C for 15

seconds and annealing at 60°C for 30 seconds. GAPDH was used as

an internal reference, and the relative expression level of FN1 was

calculated using the 2-▵▵Ct method.
2.12 Transwell assay for cell migration and
invasion

Under 4°C conditions, Matrigel was diluted in serum-free

medium (1:8), and 50-60mL was evenly applied to the upper

surface of the bottom membrane of the Transwell chamber,

followed by incubation at 37°C for 1–3 hours. After incubation,

excess liquid was removed, and 100mL of serum-free medium was

added for hydration at 37°C for 30 minutes. Cells were starved for

12–24 hours, resuspended in serum-free medium, and adjusted to a

density of 5×105/mL. 100mL of cell suspension was added to the

upper chamber, while 600mL of medium containing 10% FBS was

added to the lower chamber, and the cells were cultured for 12–48

hours. Subsequently, the cells that had migrated through were

detected. Five random fields were selected under the microscope

for counting, and ImageJ software was used for quantitative analysis.
2.13 Western blot detection of apoptosis-
and EMT-Related proteins

Cells were lysed with RIPA lysis buffer to extract total protein,

and the protein concentration was determined using the BCA

protein concentration determination kit according to the

instructions. The protein samples were separated by SDS-PAGE,

transferred to PVDF membranes, and the membranes were blocked

with 5% skim milk for 1 hour. The membranes were then incubated

with primary antibodies (FN1, cleaved caspase-3, Bcl-2, E-cadherin,

Vimentin, b-actin) at 4°C overnight, followed by incubation with
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secondary antibodies for 1 hour at room temperature. The proteins

were visualized using ECL chemiluminescence, and the band

densities were analyzed using ImageJ software. Additionally, cell

apoptosis was detected using the Annexin V-FITC/PI double

staining kit. Transfected cells were collected and stained with

Annexin V-FITC and PI according to the kit instructions, and the

apoptosis rate was determined using flow cytometry.
2.14 Statistical analysis

All statistical analyses were conducted using R software (version

4.1.3). In Receiver Operating Characteristic (ROC) analysis, an

AUC greater than 0.6 was considered to have good diagnostic

efficacy. Correlation analysis, unless otherwise specified, used

Pearson correlation methods. A P -value less than 0.05 was

considered statistically significant (*P<0.05; **P<0.01; ***P<0.001;

**** P<0.0001).
3 Results

3.1 DEG analysis and WGCNA analysis

First, for the NIH source data, DEG analysis revealed 1,809

downregulated genes (e.g., FAM3D, OTC, GPD1L, GPR12, MAL)

and 2,410 upregulated genes (e.g., IL11, FIBCD1, CSAG3, HOXA13,

RXFP3, LHX9, GUCA1C) (Figure 1A). For the NCBI source data, the

volcano plot showed 760 downregulated genes (e.g., PADI1,

ANKRD20A11P, MLLT4-AS1, MYZAP, HLF, GPD1L, PAQR8,

FAM214A, CAB39L, MAMDC2) and 785 upregulated genes (e.g.,

COL4A1, COL4A2, CDH3, CEBPB, MYO1B, PLAUR, SERPINH1,

WDR66, COL1A1, COL5A2, COLGALT1, HOMER3, ADAMTS2,

IL36G, IL24) (Figure 1B). Next, we conducted WGCNA. Based on

Scale independence and Mean connectivity, we selected b = 5 as the

optimal soft threshold, where R² ≈ 0.85, and the network displayed

good scale-free properties andmoderate sparsity (Figure 1C). Using the

WGCNA co-expression network, we successfully identified 3 modules

(Figure 1D). The module feature heatmap showed that MEblue and

MEturquoise were highly correlated with phosphorylation-related

scores (Figure 1E). Therefore, we included the genes from these two

modules in subsequent analysis.
3.2 Intersection genes and their biological
function analysis

/Using the “Venn” package, we took the intersection of the

differential genes from NCBI, NIH, WGCNA module genes, and

phosphorylation-related genes, successfully identifying 40 intersection

genes (Figure 2A).We then performed enrichment analysis on these 40

intersection genes. GO analysis revealed that they were significantly

enriched in pathways related to cell division (Spindle, Spindle midzone,

Intercellular bridge), signal transduction (Protein kinase complex,

Regulation of protein serine/threonine kinase activity, Negative
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regulation of phosphorylation, Negative regulation of protein

phosphorylation, Transmembrane receptor protein serine/threonine

kinase binding), and metabolic regulation (Negative regulation of

phosphate metabolic process, Negative regulation of phosphorus

metabolic process). KEGG analysis indicated that they were mainly

enriched in pathways related to immune and inflammatory responses

(Cytokine-cytokine receptor interaction, IL-17 signaling pathway,

TGF-beta signaling pathway), cancer progression (MicroRNAs in

cancer, p53 signaling pathway, Transcriptional misregulation in

cancer, Prostate cancer), and metabolic and endocrine regulation

(Non-alcoholic fatty liver disease, Lipid and atherosclerosis, Fluid

shear stress and atherosclerosis) (P<0.05, Figures 2B, C). Finally, box

plots demonstrated the gene expression differences of the 40 genes in

different databases. These genes showed significant differences between

the two groups in both data sources. Specifically, in the NIH source

data, the expression level of LTF was significantly higher in the Normal

group compared to the Tumor group, whereas genes such as HMGA2

and FN1 were expressed at higher levels in the Tumor group

(Figure 2D). In the NCBI source data, LTF was also significantly

overexpressed in the Control group, while genes such as BMP2 and

CDKN2A showed higher expression levels in the Tumor group

(P<0.001, Figure 2E).
3.3 Comprehensive analysis of key genes
selected by machine learning methods

To identify key candidate genes, we applied three complementary

machine learning methods: LASSO regression, SVM, and RF. First,

LASSO regression, based on the regularization path and 10-fold cross-

validation, selected 19 significant genes (Figure 3A). Next, SVM was

applied, and when the number of features was set to 25, the model

achieved its highest accuracy of 0.958 (Figures 3B, C), resulting in 25

candidate genes. Finally, Random Forest analysis was performed, and

12 genes with importance scores greater than 3 were retained, with

INHBA exhibiting the highest importance score (Figures 3D, E). To

integrate results from the three methods, we constructed a Venn

diagram, which revealed that five genes—BMP2, FN1, INHBA,

MMP9, and THY1—were consistently selected across all approaches.

These five genes were considered key genes and were used for

subsequent analyses, ensuring robustness and reliability in the

screening strategy.
3.4 SHAP-based model explanation and
validation in different datasets

We first applied SHAP in the NCBI source data to obtain SHAP

values for the 5 key genes, with INHBA showing the highest

importance and FN1 showing relatively low importance (Figure 4A).

The variable importance honeycomb plot further validated this

conclusion (Figure 4B). We then found that as the expression level

of a key gene increased, its contribution to the model’s prediction

became more stable and significant, especially when multiple key genes

were highly expressed at the same time. This revealed the complex
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interaction mechanism of key genes in model prediction (Figure 4C).

Furthermore, we visualized the cumulative contribution of the 5 key

genes to the model’s prediction results using the variable accumulation

attribution waterfall plot. It can be seen that INHBA had the most

significant negative contribution, while other genes had relatively

smaller contributions, and BMP2 had a positive effect (Figure 4D).

Additionally, we evaluated the model’s performance under different

machine learningmethods using AUC, Recall, Precision, and F1_Score.
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The evaluation results showed that RF performed excellently in these

indicators’ ROC results, indicating that it could provide stable and

efficient prediction capabilities (Figures 4E, F).

Next, we conducted the same analysis on the NIH source data to

verify the reliability of the selected key genes. By comparing SHAP

values and the variable importance honeycomb plot, we found that

MMP9 and INHBA had good importance, consistent with the

NCBI source data results (Figures 5A, B). The variable
FIGURE 1

Differentially expressed genes (DEG) analysis and weighted gene co-expression network analysis (WGCNA). (A) The volcano plot shows DEGs of Oral
squamous cell carcinoma (OSCC) in National Institutes of Health (NIH) data. P<0.05 and |log2FoldChange|>1 were identified as significant DEGs. The
downregulated genes (Down) = 1809, upregulated genes (Up) = 2410. (B) The volcano plot shows DEGs of OSCC in National Center for
Biotechnology Information (NCBI) data. P<0.05 and |log2FoldChange|>1 were identified as significant DEGs. The downregulated genes (Down) =
760, upregulated genes (Up) = 785. (C) Determination of the optimal soft threshold power for constructing a scale-free network. (Left) Scale
independence analysis. (Right) Mean connectivity analysis. (D) Network heatmap plot of selected genes. (E) Module characteristic heatmap showing
the correlation between module features and phosphorylation-related scores.
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dependence plot also displayed the relationship and interaction

between the expression levels of the core genes and their SHAP

values for model prediction contribution. Similarly, the SHAP

values of INHBA and THY1 showed a significant correlation with

their respective expression levels, and were influenced by other

genes such as MMP9 and INHBA (Figure 5C). Moreover, except for

BMP2, the core genes had a negative contribution to the model’s

prediction results (Figure 5D). Finally, the ROC results validated

that RF had excellent model performance (Figures 5E, F). We

selected RF for subsequent analysis.
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3.5 Molecular subtype analysis based on
NMF clustering

For the NCBI source data, we performed unsupervised

clustering analysis using the NMF algorithm and successfully

divided the patient population into two molecular subtypes (C1

and C2) with significant differences (Figures 6A, B). Key gene

expression analysis showed that, except for FN1, the other genes

had significant differences. Among them, BMP2 and INHBA had

higher expression levels in C2; MMP9 and THY1 had higher
FIGURE 2

Intersection genes and their biological function analysis. (A) Venn diagram showing the intersection of differential genes from NCBI (n=260 tumor vs.
73 normal), NIH (n=241 tumor vs. 57 normal), WGCNA module genes significantly correlated with phosphorylation-related scores (|R|>0.2, P<0.05),
and phosphorylation-related genes, resulting in 40 overlapping genes. (B) Gene Ontology (GO) enrichment analysis of the 40 intersection genes.
The top enriched biological processes, cellular components, and molecular functions are shown. Adjusted P values (Benjamini-Hochberg correction)
<0.05 were considered significant. Enrichment scores represent -log10(adjusted P value). (C) KEGG pathway enrichment analysis of the 40
intersection genes. Only pathways with adjusted P < 0.05 are displayed; enrichment scores are shown as -log10(adjusted P value). (D) Boxplots
comparing expression levels of the 40 intersection genes between tumor and normal samples in the NIH dataset (tumor n=241, normal n=57).
Statistical significance was assessed using Wilcoxon rank-sum test; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (E) Boxplots comparing
expression levels of the 40 intersection genes between tumor and normal samples in the NCBI dataset (tumor n=260, normal n=73). Statistical
analysis as in (D).
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expression in C1 (P <0.01, Figure 6C). Immune microenvironment

analysis found that most immune cells were highly infiltrated in the

C1 subtype (P<0.05, Figure 6D). GSVA enrichment analysis further

revealed that C2 was significantly enriched in pro-tumor pathways

such as epithelial-mesenchymal transition (EMT), angiogenesis,

and inflammation (Figure 6E). Additionally, PCA results

demonstrated that the NMF-based classification method had

good discriminatory ability (Figure 6F).

At the same time, we performed clustering analysis on the NIH

source data and successfully obtained C1 and C2 subtypes

(Figures 7A, B). We also compared the differences in key gene

expression and immune cell infiltration between the two subtypes.
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The results showed that MMP9 had no significant difference

between C1 and C2, and the other genes, except for BMP2, all

had significant differences, with higher expression in C1 (P<0.05,

Figure 7C). Box plot observations revealed that CD56bright natural

killer cells, CD56dim natural killer cells, and Neutrophils had

higher expression levels in C2, while other statistically significant

immune cells were more likely to be highly expressed in C1

(P<0.05, Figure 7D). Furthermore, C2 showed significant

upregulation in cancer-related pathways and downregulation in

metabolism and immune-related pathways compared to C1

(Figure 7E). Finally, PCA analysis again confirmed the reliability

of the subtyping (Figure 7F).
FIGURE 3

Comprehensive analysis of key genes screened by machine learning methods. (A) Coefficient path diagram and deviation curve of Least Absolute
Shrinkage and Selection Operator (LASSO) regression analysis. (B) 5-fold Cross-Validation (5 x CV) accuracy change of Support Vector Machine
(SVM) under different feature numbers. (C) 5-fold Cross-Validation (5 x CV) error change of SVM analysis under different feature numbers. (D) Error
rate change of Random Forest analysis under different numbers of trees. (E) Lollipop chart of gene importance in Random Forest analysis. (F) Venn
diagram showing the intersection of genes from three machine learning methods. Five genes were obtained (BMP2, FN1, INHBA, MMP9, and THY1).
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3.6 Immune microenvironment features
and correlation analysis of key genes with
immune cells

The ssGSEA analysis results showed that most immune cells

were highly infiltrated in OSCC patients in both the NCBI source
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data and NIH source data (Figures 8A, 9A). Further correlation

analysis showed that the 5 key genes (BMP2, FN1, INHBA, MMP9,

and THY1) were closely related to the infiltration levels of various

immune cells to varying degrees (Figures 8B–F, 9B–F). In summary,

BMP2 showed a significant positive correlation with Type 2 T

helper cells and Neutrophils (P<0.001); FN1 showed a significant
FIGURE 4

SHapley Additive exPlanations (SHAP)-based model interpretation and validation in NCBI data. (A) SHAP values of the 5 key genes. (B) Variable
importance hexagonal chart of the 5 key genes. (C) Variable dependency plot of the 5 key genes. (D) Cumulative attribution waterfall plot of the 5
key genes. (E, F) Evaluation of the model performance of 10 machine learning algorithms based on AUC, Recall, Precision, and F1_Score.
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positive correlation with Natural killer cells and Central memory

CD4 T cells (P<0.001); INHBA showed a significant positive

correlation with Memory B cells (P<0.001); MMP9 and THY1

both showed a significant positive correlation with Natural killer

cells and Regulatory T cells (P<0.001); moreover, THY1 also

showed a significant negative correlation with CD56bright natural

killer cells (P<0.001).
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3.7 MR analysis

To explore the causal relationship between genes and OSCC, we

conducted MR analysis. First, the forest plot visually demonstrated the

MR effect sizes of multiple SNPs and exposure factors on the outcome

variable, with rs11689499 and rs72952151 showing significant positive

associations (Figure 10A). The scatter plot further revealed the
FIGURE 5

SHAP-based model interpretation and validation in NIH data. (A) SHAP values of the 5 key genes. (B) Variable importance hexagonal chart of the 5
key genes. (C) Variable dependency plot of the 5 key genes. (D) Cumulative attribution waterfall plot of the 5 key genes. (E, F) Evaluation of the
model performance of 10 machine learning algorithms based on AUC, Recall, Precision, and F1_Score.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1677807
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zeng et al. 10.3389/fimmu.2025.1677807
influence of SNPs on exposure factors and outcome variables. All five

MR methods (Inverse variance weighted, MR Egger, Simple mode,

Weighted median, Weighted mode) showed consistent positive linear

trends, indicating a positive correlation between SNPs’ influence on
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exposure factors and outcome variables. Among them, the Inverse

variance weighted method showed the strongest positive correlation

(Figure 10B). Next, the leave-one-out analysis validated the robustness

of the analysis and potential bias, and the results showed that the
FIGURE 6

Molecular subtyping analysis based on Non-negative Matrix Factorization (NMF) clustering in NCBI data. (A, B) NMF clustering of tumor samples
(n=260) based on 5 key genes (BMP2, FN1, INHBA, MMP9, THY1) identified two subtypes, C1 and C2. Consensus maps and cophenetic correlation
coefficient were used to determine the optimal cluster number. (C) Boxplots showing expression differences of the key genes between C1 and C2.
Differences were tested using Wilcoxon rank-sum test; *P < 0.05, **P < 0.01. (D) Boxplots showing the infiltration differences of 28 immune cell
types between C1 and C2 subtypes, assessed by ssGSEA. Statistical significance tested by Wilcoxon rank-sum test. (E) GSVA enrichment analysis
comparing pathway activation between C2 and C1. Enrichment scores represent normalized GSVA scores; pathways with adjusted P < 0.05 are
shown. (F) Principal Component Analysis (PCA) demonstrating separation between C1 and C2 subtypes. ***P<0.001.
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FIGURE 7

Molecular subtyping analysis based on NMF clustering in NIH data. (A, B) NMF clustering of tumor samples (n=241) based on 5 key genes identified
two subtypes, C1 and C2. Cluster number was determined based on consensus matrices and cophenetic coefficient. (C) Boxplots showing
expression differences of key genes between C1 and C2 subtypes. Statistical testing by Wilcoxon rank-sum test; *P < 0.05, **P < 0.01. (D) Boxplots
showing differences in 28 immune cell infiltrations between C1 and C2, quantified by ssGSEA. Statistical significance assessed with Wilcoxon rank-
sum test. (E) GSVA enrichment analysis comparing C2 versus C1 subtypes. Pathways with adjusted P < 0.05 are displayed; enrichment scores
correspond to normalized GSVA scores. (F) PCA confirming discriminative ability of the NMF-based classification. ***P<0.001.
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overall effect estimate was relatively stable, with rs10932612 showing a

high positive correlation with OSCC outcomes (Figures 10C, D).

Finally, for FN1, we applied various MR methods, and the results

showed that the Inverse variance weighted method had statistical

significance and was a risk factor with an OR of 1.84 (1.07 to 3.14)

(P<0.05, Figure 10E).
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3.8 Results of qPCR-based screening of
target cell lines and functional validation of
FN1

The potential role of FN1, suggested as a possible prognostic

marker, was further investigated through a series of functional
FIGURE 8

Immune microenvironment characteristics and correlation analysis between key genes and immune cells in NCBI data. (A) single-sample Gene Set
Enrichment Analysis (ssGSEA), heatmap showing the difference in immune cell infiltration between the Control group and the Tumor group.
(B–F) Correlation analysis between the five key genes (BMP2, FN1, INHBA, MMP9, and THY1) and immune cells in tumor patients.
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assays in OSCC. Initially, qPCR analysis of FN1 expression in

OSCC tumor tissues versus adjacent normal tissues revealed

significantly elevated levels of FN1 mRNA in the tumor samples

(Figure 11A). Subsequent qPCR profiling in OSCC cell lines showed

that FN1 expression was markedly higher in SCC-9 and HSC-2 cells

compared to DKF6 cells, leading to the selection of these two cell

lines for further functional studies (Figure 11B). To explore the

functional implications of FN1, it was specifically knocked down in
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SCC-9 and HSC-2 cells. Successful knockdown was confirmed by

qRT-PCR, where FN1 mRNA levels were significantly reduced in

the si-FN1 group relative to the negative control (si-NC; P <

0.0001), validating the efficacy of the knockdown (Figure 11C).

The impact of FN1 depletion on cell proliferation was evaluated

using the CCK-8 assay, which demonstrated a marked reduction in

cell proliferation in FN1-silenced cells, indicating that FN1 may

contribute to OSCC cell growth (Figures 11D, E). Flow cytometry
FIGURE 9

Immune microenvironment characteristics and correlation analysis between key genes and immune cells in NIH data. (A) ssGSEA, heatmap showing
the difference in immune cell infiltration between the Control group and the Tumor group. (B–F) Correlation analysis between the five key genes
(BMP2, FN1, INHBA, MMP9, and THY1) and immune cells in tumor patients.
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analysis further elucidated the effect of FN1 knockdown on

apoptosis. The si-FN1 group exhibited a significant increase in

apoptosis rates compared to the si-NC control (P < 0.0001),

confirming that FN1 depletion promotes apoptotic cell death

(Figures 11F, G). To investigate the effects of FN1 knockdown on

cellular migration and invasion, Transwell assays were performed.

These assays revealed a significant reduction in both migration (P <
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0.0001) and invasion (P < 0.01) in FN1-depleted cells compared to

controls, suggesting that FN1 may play a role in promoting OSCC

cell migration and invasion (Figures 11H, I). Finally, Western blot

analysis was employed to assess the molecular changes following

FN1 knockdown at the protein level. As expected, FN1 protein

expression was significantly reduced in the si-FN1 group (P < 0.05).

Additionally, the pro-apoptotic marker cleaved caspase-3 was
FIGURE 10

Mendelian Randomization (MR) Analysis. (A) Forest plot of each Single Nucleotide Polymorphism (SNP) effect on OSCC. (B) Scatter plot, where the
x-axis represents the SNP effect on exposure and the y-axis represents the SNP effect on outcome. (C) Leave-one-out analysis. (D) Funnel plot.
(E) Forest plot showing MR effect of FN1 on OSCC risk (OR=1.84, 95% CI 1.07–3.14, P < 0.05). Statistical significance was assessed by IVW, MR Egger,
Weighted median, Weighted mode, and Simple mode methods.
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FIGURE 11

Functional validation of FN1 in OSCC. (A) qPCR analysis showing FN1 expression levels in OSCC tumor tissues and adjacent normal tissues. (B) qPCR
comparison of FN1 expression in OSCC cell lines (SCC-9, HSC-2, DKF6) relative to the normal colorectal cell line FHC (n = 3 independent
experiments per cell line; one-way ANOVA). (C) Validation of FN1 knockdown in OSCC cell lines by qRT-PCR (si-FN1 vs si-NC; n = 3, Student’s t-
test; P < 0.0001). (D, E) CCK-8 proliferation assays showing significantly reduced cell proliferation rates in FN1-knockdown OSCC cells compared to
control. (F, G) Flow cytometry analysis indicating a significant increase in apoptosis in FN1-depleted SCC-9 cells (n = 3, Student’s t-test; P < 0.0001).
(H, I) Transwell assays illustrating reduced migration and invasion potential in FN1-silenced OSCC cells (n = 3, Student’s t-test; migration: P <
0.0001, invasion: P < 0.01). (J, K) Western blot analysis showing FN1 knockdown reduces FN1 and Bcl-2 expression, increases cleaved caspase-3 and
E-cadherin, and decreases Vimentin (n = 3, Student’s t-test; P < 0.05). ***P<0.001.
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upregulated, while the anti-apoptotic protein Bcl-2 was

downregulated (P < 0.05), further supporting the notion that FN1

depletion promotes apoptosis. Furthermore, FN1 knockdown was

associated with an increase in E-cadherin expression and a decrease

in Vimentin expression (P < 0.05), suggesting a potential inhibitory

effect on the epithelial-mesenchymal transition (EMT) process

(Figures 11J, K).
4 Discussion

OSCC as one of the most common malignant tumors in the head

and neck, its complex molecular mechanisms and highly

heterogeneous tumor microenvironment have always been hot

topics and difficult issues in research. This study systematically

explored the key molecular features and immune regulatory

networks of OSCC development and progression by integrating

multi-omics data and machine learning algorithms. The results not

only revealed the molecular heterogeneity of OSCC but also identified

a series of key genes and molecular markers with potential clinical

application value, providing important theoretical basis for the

precise diagnosis and individualized treatment of OSCC.

In DEG analysis, a large number of differentially expressed genes

closely related to OSCC were identified in both NIH and NCBI

source data. Upregulated genes such as IL11, HOXA13, etc., further

confirmed the important role of the inflammatory microenvironment

in OSCC progression. In contrast, downregulated expression of

tumor-suppressor genes such as LTF in tumor tissues may

represent important molecular events in the occurrence of OSCC.

Notably, the overlap of these differentially expressed genes between

datasets was relatively low, which may reflect the heterogeneity of

different research platforms and sample sources. As an important

analysis tool in this study, WGCNA successfully constructed a gene

co-expression network related to OSCC and identified several co-

expression modules closely related to protein phosphorylation

modifications. Among them, the MEblue and MEturquoise

modules showed a high correlation with phosphorylation-related

scores, indicating significant biological significance. This is because

protein phosphorylation is a key regulatory mechanism in

intracellular signal transduction, and its abnormal regulation is

closely related to the occurrence and development of various

tumors (25). The identification of these key module genes not only

provides a new perspective for understanding the abnormalities in

signal transduction pathways in OSCC but also lays the foundation

for identifying potential therapeutic targets.

By integrating multi-omics data (differential genes from NCBI

and NIH, WGCNA module genes, and phosphorylation-related

genes), we successfully screened out 40 core intersecting genes.

These genes play important roles in key biological processes such as

cell cycle regulation, signal transduction, and metabolic

reprogramming. GO analysis results showed that these genes were

significantly enriched in cell division-related pathways, such as

spindle formation and protein kinase complexes, which aligns

with the characteristic abnormal proliferation of OSCC cells.
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KEGG analysis further revealed the important roles of these genes

in classic tumor-related pathways such as the IL-17 signaling

pathway and TGF-b signaling pathway. Notably, the significant

enrichment of the p53 signaling pathway resonates with the

common genomic instability features in OSCC. These findings

not only deepen our understanding of the molecular mechanisms

of OSCC but also provide a theoretical basis for developing new

therapeutic strategies. Finally, we presented the gene expression

differences of the 40 core genes in different databases.

In OSCC and related head and neck cancers, the five identified

key genes demonstrate distinct but complementary roles in tumor

progression. BMP2 has been shown to promote invasion and

vasculogenic mimicry through CCL5 release and PI3K-AKT

signaling (26, 27), highlighting its role as a driver of

aggressiveness. FN1, a classic EMT marker, not only enhances

proliferation, invasion, and lymph node metastasis via FAK–

VEGF-C signaling but also shapes an immunosuppressive

microenvironment by regulating macrophage polarization (28,

29), underscoring its dual role in tumor progression and immune

modulation. INHBA, acting through the TGF-b axis, has been

linked to pro-inflammatory CAFs and macrophage-driven

immunosuppression (30), suggesting a central role in remodeling

the tumor microenvironment. MMP9 facilitates ECM degradation

and angiogenesis, partly through neutrophil-mediated MEK/ERK

activation (31), reinforcing its importance in invasion and

metastasis. THY1 (CD90), frequently associated with stemness

and tumor recurrence in multiple cancers, may promote OSCC

progression by mediating tumor–macrophage interactions and

sustaining an immunosuppressive niche (32–34). Together, these

findings position the five genes as critical regulators of OSCC

aggressiveness and potential therapeutic targets, with direct

relevance to immunotherapy and targeted intervention strategies.

Furthermore, SHAP-based interpretable machine learning

analysis provided important insights into the mechanisms of key

genes in the OSCC prediction model. The results showed that

INHBA and MMP9 had higher SHAP values in both NIH and

NCBI source data, indicating that they played a core role in model

prediction, which has significant biological implications. As a

subunit of activin A, INHBA mainly participates in regulating

tumor occurrence and development through the TGF-b signaling

pathway. Its high contribution in the model may reflect the core

regulatory role of this signaling pathway in OSCC progression. The

variable dependence graph further revealed the complex

interactions between key genes. The study found that when

multiple key genes were highly expressed simultaneously, their

impact on the model prediction results was more significant. This

synergistic effect may reflect the activation of multiple signaling

pathways in OSCC, suggesting potential molecular mechanisms

behind the tumor’s high heterogeneity. Moreover, in the analysis of

accumulated contributions to model predictions, INHBA showed

the most significant negative contribution in the NCBI source data,

which is consistent with its function in promoting tumor invasion

and metastasis in previous studies, suggesting that its high

expression may predict a worse clinical outcome. BMP2 was the
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only gene showing a positive contribution, and its bone-forming

properties may play a unique role in OSCC’s local invasion process.

This positive-negative regulatory balance provides new perspectives

for analyzing the molecular regulatory network of OSCC. In NIH

source data, except for BMP2, all five key genes showed a negative

contribution, which may be related to the clinical characteristics of

NIH source samples. Considering that the NIH source data is

mainly derived from advanced cancer patients, this consistent

negative contribution may reflect the synergistic pro-cancer effect

of these genes in the later stages of tumor progression. Model

performance evaluation results showed that the RF algorithm

performed best in multiple evaluation metrics such as AUC,

Recall, Precision, and F1_Score. This result may stem from RF’s

good adaptability to high-dimensional genomic data and its ability

to capture feature interactions. It is worth noting that the validation

results of RF in NIH source data were highly consistent with those

in NCBI source data, which not only further validated the

robustness of the model but also significantly enhanced the

credibility of the research conclusions. The multi-dataset cross-

validation strategy used in this study effectively reduced the bias risk

from a single data source and provided more reliable and

compelling evidence support for key gene screening.

Molecular Subtyping Analysis is another important component

of this study. Using the NMF clustering algorithm, we successfully

classified OSCC patients into two molecular subtypes, C1 and C2,

which showed significant differences. These two subtypes exhibited

distinct differences in key gene expression patterns, tumor immune

microenvironment composition, and functional pathway

enrichment. Specifically, C1 displayed a significant “immune-hot”

feature, characterized by high infiltration of various immune cell

subsets, such as regulatory T cells and NK cells, suggesting that

patients in this subtype may be more sensitive to immune checkpoint

inhibitor treatments and have potential clinical therapeutic value. In

contrast, subtype C2 was marked by significantly enhanced EMT

features and activation of angiogenesis-related pathways, which are

closely associated with tumor invasiveness and poor prognosis. This

molecular subtyping not only reveals the high heterogeneity of OSCC

at the molecular level but also provides an important basis for the

development of personalized treatment strategies. Finally, PCA

analysis further validated the rationality of the molecular subtyping,

offering crucial insights into the molecular mechanisms of

each subtype.

Subsequently, tumor microenvironment analysis revealed the

complexity of the OSCC immune landscape. Using the ssGSEA

method, we systematically evaluated the infiltration of various

immune cell types in OSCC and found significant correlations

between key genes and specific immune cell subsets. For example,

the positive correlation between BMP2 and neutrophils may reflect

its role in inflammation microenvironment formation; the negative

correlation between THY1 and NK cells may represent an immune

evasion mechanism. These findings not only enrich our

understanding of the OSCC immune microenvironment but also

provide potential targets for the development of new

immunotherapy strategies. Particularly, the positive correlation

between FN1 and memory B cells suggests that tumor-associated
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stroma may affect tumor progression by modulating humoral

immune responses, a finding worth further investigation.

Finally, MR analysis provided genetic evidence for this study.

Through a systematic analysis of the association between multiple

SNPs and OSCC risk, we found that rs11689499 and rs72952151

showed significant positive associations, suggesting they may be

potential molecular markers of OSCC genetic susceptibility.

Notably, a consistent positive association trend was observed

across five different MR analysis methods (Inverse Variance

Weighted, MR Egger, Simple Mode, Weighted Median, and

Weighted Mode), with the strongest correlation found using

Inverse Variance Weighted. The consistency of results from

multiple methods significantly enhances the robustness and

credibility of the research conclusions. From a biological

mechanism perspective, these SNP loci may regulate the

expression or functional status of the FN1 gene, affecting the

extracellular matrix (ECM) remodeling process, thus promoting

the occurrence and development of OSCC. Sensitivity analysis using

the leave-one-out method further validated the stability of MR

results, with rs10932612 consistently showing a stable positive

correlation with OSCC risk, suggesting that this locus may be a

key genetic variation influencing OSCC development. Importantly,

the specialized MR analysis of the FN1 gene showed an odds ratio

(OR) of 1.84 (95% CI: 1.07–3.14) for its role as a risk factor, a value

that holds significant clinical importance in genetic epidemiology

studies. FN1, which encodes fibronectin, is an essential component

of the extracellular matrix, involved in various critical biological

processes such as cell adhesion, migration, and signal transduction

(35). Previous studies have shown that FN1 is abnormally

overexpressed in various tumor tissues (36). Our study provides

genetic evidence supporting a positive association between FN1

expression and OSCC risk, offering new theoretical and empirical

support for considering it as a potential therapeutic target

for OSCC.

Although this study has made certain innovations in multi-

omics data integration and machine learning methods, there are still

some aspects that need improvement. First, the study is primarily

based on retrospective data from public databases, which requires

validation in independent prospective cohorts. Secondly, the

specific functional mechanisms of key genes still need to be

further clarified through experimental research. Furthermore, the

clinical significance of molecular subtypes needs to be assessed with

long-term follow-up data. Future research could integrate single-

cell sequencing technology to explore the heterogeneity of the

tumor microenvironment in greater depth and validate the

functions of key genes through organoid models or animal

experiments. In terms of clinical translation, the multi-gene

predictive model developed based on the results of this study

holds the potential to provide new tools for the early diagnosis

and prognostic evaluation of OSCC.

In summary, this study systematically reveals the molecular

characteristics and immune regulatory networks of OSCC through

multi-omics integration analysis and machine learning algorithms.

The research not only identifies a series of key genes and molecular

biomarkers with potential clinical application value but also
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establishes a reliable molecular subtyping system. These findings

provide new insights into the pathogenesis of OSCC and lay the

theoretical foundation for developing precision diagnosis and

treatment strategies. Future research should focus on the clinical

translation of these findings, aiming to improve the diagnosis and

treatment of OSCC.
5 Limitations and future perspectives

This study provides novel insights into OSCC molecular

mechanisms but has several limitations. Only FN1 was

experimentally validated, leaving the roles of BMP2, INHBA,

MMP9, and THY1 unexamined. Analyses relied on retrospective

public datasets, and prospective validation is needed to confirm the

clinical utility of identified biomarkers and subtypes. Some cohorts

(e.g., GSE78060, GSE138206) had small sample sizes, which may

introduce bias despite cross-dataset normalization. The MR analysis

was limited by few valid SNPs, warranting cautious interpretation of

causal inference. Finally, the mechanisms underlying molecular

subtypes and their treatment associations remain unclear,

highlighting the need for studies using single-cell sequencing,

organoid models, and long-term clinical follow-up.
6 Conclusion

In this study, through systematic integration of gene expression

characteristics and functional analysis, a group of phosphorylation-

related molecular markers that play a key regulatory role in OSCC

were identified, and their potential functions in the tumor

microenvironment and signaling pathways were revealed.

Molecular typing based on gene expression heterogeneity further

indicates the differences in immune infiltration and cancer-

promoting phenotypes among different subtypes. The research

results not only deepened the understanding of the pathogenesis

of OSCC, but also provided experimental evidence for exploring

new diagnostic markers and therapeutic targets.
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