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in ovarian cancer
Man Li, Yue Ma, Tinggeng Dai, Yongxin Wang and Ying Yue*

Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, China
Ovarian cancer remains the deadliest gynecologic malignancy, with its

aggressive progression and therapeutic resistance heavily influenced by the

tumor microenvironment (TME). Tumor-associated macrophages (TAMs), the

predominant immune infiltrates in OC, play pivotal roles in metastasis,

immunosuppression, and chemoresistance by adopting a pro-tumoral M2

phenotype. Despite promising preclinical results, clinical translation faces

challenges, such as on-target toxicity and incomplete understanding of TAM

ontogeny in humans. This review summarizes the origins, heterogeneity, and

functional plasticity of TAMs, emphasizing their mechanistic contributions to OC

progression through epithelial-mesenchymal transition (EMT), angiogenesis, and

immune evasion. We outline the emerging evidence that TAMs drive platinum

resistance via exosomal signaling and metabolic reprogramming, underscoring

TAMs as central mediators of OC pathogenesis and treatment paradigms.
KEYWORDS
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1 Introduction

Ovarian cancer remains the most lethal gynecologic malignancy worldwide, with its

pathogenesis and progression intricately shaped by the tumor microenvironment (TME)—

a dynamic ecosystem comprising not only malignant epithelial cells, but also adipocytes,

vasculature, stromal fibroblasts, lymphocytes, dendritic cells, cancer-associated fibroblasts,

and tumor-associated macrophages (TAMs) (1, 2). Through continuous bidirectional

communication with both cellular and acellular components, tumor cells operate as

adaptive entities that integrate cues from immune, endocrine, and nervous systems to

construct a self-sustaining niche promoting oncogenesis, metastasis, and therapeutic

resistance (3). The ovarian cancer TME is notably immunosuppressive, fostering

unchecked tumor expansion and evasion of host surveillance (4, 5).

Among immune components of the ovarian cancer TME, macrophages constitute the

predominant infiltrating population (6, 7). These cells contribute to multiple hallmarks of

malignancy, including facilitating intravasation of tumor cells into the circulation and

suppressing anti-tumor immunity. Fibroblasts represent another critical population,
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supporting migration of tumor cells from the primary site, aiding

systemic dissemination, and guiding endothelial cells during tumor

angiogenesis (8). Increasing evidence highlights TAMs as central

mediators of bidirectional crosstalk between tumor cells and the

TME. In ovarian cancer, TAMs predominantly exhibit an

immunosuppressive M2 phenotype that promotes tumor growth,

invasion, angiogenesis, immune evasion, and metastatic

competence (9). Given these multifaceted roles, TAMs have

emerged as key targets for therapeutic intervention. This review

summarizes the mechanistic roles of TAMs in ovarian cancer

progression and explores strategies to modulate TAM function,

with the aim of identifying innovative approaches to improve

outcomes for patients with ovarian cancer.
2 Origins of TAMs and emerging
concepts

Macrophages were once thought to arise exclusively from

circulating monocytes (10). However, lineage-tracing studies have

challenged this notion, revealing that while many macrophages

originate from bone marrow and splenic progenitors, a considerable

proportion are established during embryogenesis and persist as self-

renewing tissue-resident macrophages (TRMs) (11, 12). During

development, macrophages derived from the yolk sac and fetal liver

seed peripheral tissues and are later complemented by bone

marrow–derived monocytes in response to injury, infection, or

inflammation (13). These insights have reshaped the traditional

M1/M2 polarization paradigm. For instance, TAMs expressing

CD163 or CD206—markers typically aligned with M2 phenotypes

—can exhibit M1-like, T cell–activating properties in

gastrointestinal cancers and ovarian cancer ascites (12). M1/M2

dichotomy oversimplifies the functional continuum of

macrophages in the TME (14). High-dimensional analyses,

including single-cell RNA sequencing, have revealed remarkable

heterogeneity that transcends classical classifications. In tumors,

TAMs predominantly exhibit M2-like features, though a minority

display M1-like traits, contributing to tumor initiation,

angiogenesis, and metastasis. Human TRMs lack definitive lineage

markers, leaving their developmental origins and specialized roles

insufficiently characterized (12). This underscores an urgent need to

clarify macrophage heterogeneity and lineage diversity in human

tumors to advance precision immunotherapy.
3 Roles of TAMs in ovarian cancer

3.1 TAMs facilitate ovarian cancer
metastasis

TAMs, the predominant immune cell population within the

ovarian tumor microenvironment (TME), are critical mediators of

tumor progression and metastatic dissemination (15). These cells

facilitate tumor cell proliferation, invasion, and the establishment of

peritoneal metastases, processes closely linked to malignant ascites,
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recurrence, and poor prognosis. Within ascitic fluid, tumor cells

frequently aggregate into multicellular spheroids that adhere to

peritoneal mesothelium, initiating secondary lesions (16). Tos et al

(17). revealed that highly metastatic ovarian cancer cells, upon

intrabursal injection in mice, produce persistent peritoneal

dissemination, whereas non-metastatic lines fail to spread.

Mechanistically, b-catenin signaling, which underpins tumor

growth and invasion, plays a key role; its silencing reduces

omental metastases and metastatic nodules, with concurrent

depletion of CD68+ and CD163+ TAMs (7, 18). b-catenin
activation in tumor cells upregulates EMT-promoting

transcription factors such as ZEB1 and Snail, as well as

chemokines including CCL2 and CCL3, which recruit monocytes

and polarize them into M2-like TAMs (17, 19–22). These recruited

TAMs secrete high levels of CCL2 and IL-6, which act on tumor

cells via CCR2 and IL-6R, respectively (23, 24). IL-6 binding

activates the JAK/STAT3 axis, driving expression of EMT-related

genes and enhancing tumor motility (25). Simultaneously, CCL2–

CCR2 signaling stimulates NF-kB activity, which synergizes with b-
catenin to reinforce EMT programs (26). This cytokine-driven

positive feedback loop sustains mesenchymal states, promotes

invasion and peritoneal dissemination, and perpetuates TAM

recruitment and polarization. The EMT program further

amplifies CCL2 production, fostering continuous macrophage

influx and establishing a self-reinforcing TAM–tumor interaction

that accelerates migration, invasion, and metastasis (27).
3.2 TAMs promote chemoresistance in
ovarian cancer

Cytoreductive surgery fol lowed by platinum-based

chemotherapy remains the standard treatment for ovarian cancer.

However, resistance to platinum compounds—whether intrinsic or

acquired—remains a central challenge in disease management,

often driven by pre-existing resistant clones or selective pressure

from repeated treatments (28). Accumulating evidence implicates

the TME as a major contributor to relapse and drug resistance (29).

TAMs are predominant and contribute to angiogenesis, immune

evasion, metastasis, and particularly chemoresistance (30).

Although initially characterized in breast cancer, TAM-driven

resistance is increasingly recognized in ovarian cancer (31).

Notably, the M2-polarized subset of TAMs is closely associated

with tumor progression, immune evasion, and drug resistance (32).

Li et al (30). reported elevated serum circITGB6 in patients with

platinum-resistant ovarian cancer compared to platinum-sensitive

cases, which was accompanied by an expansion of M2

macrophages, suggesting circITGB6-driven M2 polarization as a

mechanism of resistance (30). Similarly, Jang et al (33). reported

that co-culture of ovarian cancer cells with macrophages reduced

carboplatin sensitivity in a dose-dependent manner, coinciding

with a shift toward an M2-like phenotype. Importantly, emerging

preclinical evidence supports the therapeutic potential of inhibiting

exosome secretion to counter TAM-mediated chemoresistance (34,

35). For example, the pharmacological inhibitor GW4869, which
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blocks neutral sphingomyelinase and thereby suppresses exosome

biogenesis and release, has been shown to reduce exosomal miR-223

levels, restore PTEN expression, and enhance cisplatin sensitivity in

ovarian cancer cells co-cultured with TAMs (35–37). In vivo,

GW4869 administration attenuates tumor growth and enhances

chemotherapy efficacy, further validating exosome-targeted

interventions as a promising strategy to disrupt TAM–tumor

crosstalk and overcome drug resistance in ovarian cancer (38).

Zhu et al (37). further demonstrated that hypoxic ovarian cancer

cells recruit macrophages and polarize them into a TAM-like

phenotype, whose exosomal miR-223 confers chemoresistance in

vitro and in vivo through the PTEN–PI3K/AKT pathway.
4 Therapeutic targeting of TAMs in
ovarian cancer

4.1 Depletion of TAMs

The folate receptor beta (FRb) is specifically overexpressed on

M2-polarized TAMs in various epithelial malignancies, including

ovarian cancer, making it a promising immunotherapeutic target

for modulating the tumor microenvironment (39). Unlike FRa,
which is mainly expressed on tumor cells, FRb localizes

predominantly on immune cells within the TME, particularly

immunosuppressive macrophages (40, 41). In syngeneic mouse

models, chimeric antigen receptor (CAR) T cells engineered to

recognize FRb have demonstrated the ability to selectively eradicate

FRb+ TAMs (42). This approach effectively reshapes the

immunosuppressive TME into a pro-inflammatory milieu,

enhancing monocyte influx, endogenous CD8+ T cell recruitment,

delaying tumor progression, and prolonging survival (43). In

syngeneic mouse models, chimeric antigen receptor (CAR) T cells

directed against FRb selectively eradicated FRb+ TAMs, thereby

reshaping the tumor microenvironment toward a pro-

inflammatory state, with enhanced monocyte influx, recruitment

of endogenous CD8+ T cells, delayed tumor progression, and

prolonged survival. Rodriguez-Garcia et al (42). further

demonstrated that murine FRb CAR-T treatment led to transient

weight loss but specific depletion of FRb+ TAMs and conferred a

significant survival advantage.

In contrast, the folate receptor alpha (FRa) is overexpressed

directly on tumor cells in epithelial ovarian cancer, and its selective

expression pattern has enabled the development of antibody–drug

conjugates (ADCs) for targeted tumor cell elimination (44, 45).

Mirvetuximab soravtansine (MIRV) is an FRa-targeting ADC that

has demonstrated clinical efficacy in platinum-resistant epithelial

ovarian cancer (46). In the phase II SORAYA trial, Matulonis et al

(44). evaluated MIRV in FRa-high, platinum-resistant epithelial

ovarian cancer previously treated with bevacizumab (48% ≥3 prior

lines, 13% prior PARP inhibitors). MIRV monotherapy yielded a

high objective response rate (ORR) with durable responses and a

favorable safety profile, irrespective of prior therapies.

Subsequently, Moore et al (47). in a phase III trial compared

MIRV to standard chemotherapy and reported lower rates of
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discontinuations. In patients with high FRa expression, MIRV

surpassed chemotherapy on secondary endpoints, showing higher

ORR, greater CA125 responses, and improved patient-reported

outcomes, although progression-free survival did not differ

significantly. MIRV has now been approved for FRa-positive,
platinum-resistant epithelial ovarian, fallopian tube, or primary

peritoneal cancers after one to three prior regimens (48). The

ADC therapeutic field is rapidly expanding, with >20 ongoing

trials across gynecologic malignancies, including phase III

(NCT04296890) of MIRV in FRa-high platinum-resistant ovarian

cancers (49, 50).
4.2 Reduction of TAM recruitment

Periostin (POSTN), a secreted matricellular protein, is

implicated in tumor progression and poor prognosis across

diverse malignancies, including ovarian cancer (51). POSTN

overexpression enhances migration, chemoresistance, and

macrophage recruitment (52). Tang et al (53). demonstrated that

siRNA-mediated POSTN silencing in A2780 ovarian cancer cells

markedly diminished chemotactic recruitment of THP-1–derived

or M-CSF–induced macrophages toward A2780-conditioned

medium (CM). Similarly, Zeng et al (54). showed that POSTN

depletion from intrahepatic cholangiocarcinoma CM suppressed

macrophage migration, whereas POSTN supplementation restored

monocyte invasion. POSTN strongly attracts macrophages and

drives M2 polarization, identifying it as both a prognostic

biomarker and therapeutic target. Lin et al (51). reported that

POSTN enrichment in invasive ovarian cancer correlates with

increased migration, invasion, and metastasis, whereas

knockdown reduced tumor growth in vivo. Mechanistically,

POSTN activates integrin–FAK/NF-kB signaling, inducing

cytokines (MIP-1b , MCP-1, TNF-a , RANTES), thereby

enhancing monocyte chemotaxis and M2 polarization (55);

metastases from POSTN-overexpressing SKOV3 cells were

enriched in cancer-associated fibroblasts (CAFs) (51). DDR2-

expressing CAFs regulate POSTN via ITGB1 to activate PI3K/

AKT and Src pathways (56). Furthermore, LINC00520

upregulates POSTN by sponging miR-577, triggering ILK/Akt/

mTOR activation; POSTN knockdown or ILK/Akt/mTOR

inhibition (OSU-T315) abrogates these effects (57). Beyond

oncology, POSTN deficiency exacerbates alcohol-associated liver

disease in mice, whereas hepatic POSTN restoration is protective

(58). Despite its central role, no clinical study has yet targeted

POSTN directly (Figure 1).
4.3 Attenuation of TAM-mediated
phagocytosis

CD47 is a widely expressed glycoprotein that transmits a “don’t

eat me” signal through interaction with signal regulatory protein a
(SIRPa) on macrophages, a mechanism exploited by tumor cells to
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evade immune surveillance (59). Blocking CD47–SIRPa
interactions restores phagocytic activity and has emerged as a key

immunotherapeutic strategy. Inhibiting CD47–SIRPa signaling

reinstates macrophage phagocytic function and represents a

promising immunotherapeutic approach (60, 61). Therapeutic

candidates include anti-CD47 monoclonal antibodies Hu5F9 G4

and CC-90002, and SIRPa–Fc fusion proteins such as TTI-621 and

ALX14894 (62–64). In a phase Ib trial (NCT02953782), Hu5F9-G4

combined with cetuximab yielded encouraging responses in

advanced solid tumors, including late-stage ovarian cancer (65).

In Sézary syndrome, CD47 expression is upregulated by

interleukins 4 (66). Blocking CD47–SIRPa with the decoy

receptor TTI-621 enhances macrophage phagocytosis and reduces

tumor burden. A phase I trial reported by Ansell et al. (67)

confirmed the safety and clinical responses of TTI-621

monotherapy in various hematologic malignancies, including B-

and T-cell lymphomas. Mechanistically, TTI-621 not only

augments macrophage function but also enhances CD8+ T cell

cytotoxicity and promotes M1 polarization in synergy with anti–

PD-L1, effectively suppressing lymphoma growth in vitro (68).

Beyond enhancing phagocytosis, ALX148 activates dendritic cells

and reprograms TAMs toward an inflammatory phenotype, thereby

stimulating innate antitumor immunity. Evorpacept (ALX78), a
Frontiers in Immunology 04
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domain linked to an inactive human IgG1 Fc fragment with half the

molecular weight of a conventional antibody, represents another

CD47-targeted approach (69). Lakhani et al. (41) demonstrated

that evorpacept is hematologically safe and, in preclinical models,

synergizes with anti–PD-1/PD-L1 antibodies to enhance

phagocytosis, pro-inflammatory polarization, dendritic cell

activation, and cytotoxic immune responses. A phase II study

(NCT05467670) is testing ALX148 with liposomal doxorubicin

and pembrolizumab in platinum-resistant ovarian cancer.

Ligufalimab (AK117), a novel humanized IgG4 anti-CD47

antibody, binds CD47 with high affinity while avoiding

hemagglutination (70).
4.4 Inducing apoptosis of M2 TAMs and
reprogramming toward an M1-like
phenotype

Bromodomain and extraterminal domain inhibitors (BETi),

which regu la te ep igenet i c t ranscr ip t ion by binding

bromodomains, have emerged as promising modulators of TAMs.

In ovarian cancer, Wilson et al (71). reported that the BET inhibitor
FIGURE 1

Therapeutic Targeting of TAMs in Ovarian Cancer.
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INCB054329 impairs homologous recombination and augments

the efficacy of poly (ADP-ribose) polymerase inhibitors (PARPis),

whose clinical benefit is limited by resistance and toxicity. Novel

delivery platforms, including JQ1-loaded nanocarriers, further

improve outcomes. In ovarian and breast cancer models, Juan et

al (72). showed that JQ1-loaded formulations enhanced

antiproliferative effects and synergized with olaparib, while Villar-

Prados et al (73). demonstrated that BET inhibition suppresses

Notch3 signaling and reduces tumor growth in situ. ZEN-3694, a

BET inhibitor, is currently under clinical evaluation in combination

regimens for solid tumors, including recurrent ovarian cancer

(NCT05422794, NCT05327010, NCT03901469, NCT04986423,

NCT04471974, NCT05071937) (74).

Beyond direct anti-tumor effects, recent evidence suggests that

BET inh ib i t o r s a l s o modu l a t e t h e tumor immune

microenvironment by reprogramming tumor-associated

macrophages (75). BET inhibition downregulates M2-polarizing

transcription factors such as IRF4 and STAT6, while simultaneously

enhancing NF-kB–dependent pro-inflammatory gene expression,

thereby promoting a phenotypic switch from immunosuppressive

M2 macrophages to antitumor M1 macrophages (76, 77). This

reprogramming leads to increased secretion of cytokines like IL-12

and TNF-a, enhanced antigen presentation, and improved

cytotoxic T cell recruitment (78, 79). Notably, in breast and

ovarian cancer models, JQ1 treatment reduced macrophage

infiltration and upregulated MHC II and iNOS expression in

macrophages, supporting M1 polarization and fostering an

inflamed TME conducive to immune-mediated tumor clearance

(80, 81). In addition, BETi-mediated epigenetic remodeling

suppresses the expression of immune checkpoint molecules such

as PD-L1 on both tumor cells and TAMs, potentially enhancing the

efficacy of checkpoint inhibitors (82–84). These dual effects on

tumor cells and immune components underscore the therapeutic

promise of BET inhibitors as both direct anti-cancer agents and

immunomodulators. In parallel, M1 macrophage-derived

extracellular vesicles (M1 MEVs) have been proposed to

reprogram TAMs. Schweer et al (85). demonstrated that human

M1 MEVs robustly induce M2-to-M1 repolarization both in

isolated macrophages and in co-culture with ovarian cancer cells,

and can target tumor xenografts, although clinical translation

remains unproven.
4.5 Inhibition of M2 TAM polarization

M2-polarized TAMs, as dominant components of the TME,

critically drive migration, invasion, immune evasion, and

therapeutic resistance in ovarian cancer. In epithelial ovarian

cancer, overexpression of CTHRC1 promotes EMT, thereby

enhancing tumor invasion and metastasis (86), a mechanism also

implicated in lung, gastrointestinal, breast, and pancreatic cancers

(87). Ovarian cancer cells secrete CTHRC1, which activates STAT6

signaling in TAMs, inducing their M2 polarization. These M2

TAMs, in turn, further stimulate tumor migration and invasion,

forming a positive feedback loop. Silencing CTHRC1 abrogates
Frontiers in Immunology 05
STAT6-mediated M2 polarization, suppresses metastasis, and

delays disease progression, highlighting CTHRC1 as a potential

therapeutic target. Additionally, miR-30b-3p, downregulated in

ovarian cancer R3 cells, suppresses proliferation, promotes

apoptosis, slows cell cycle progression, and inhibits migration and

invasion upon overexpression; it directly targets CTHRC1, thereby

linking it to EMT and suggesting its potential as a biomarker and

therapeutic candidate (88). Circular RNAs (circRNAs) provide an

additional regulatory layer. circITGB6 interacts with IGF2BP2 and

FGF9 mRNA to stabilize FGF9 transcripts, induce M2 polarization,

and confer cisplatin resistance (14). Combined cisplatin and

antisense oligonucleotide (ASO) targeting circITGB6 markedly

suppress tumor growth and improve survival.
4.6 Modulation of TAM polarization

Hypoxia, a hallmark of solid tumors, profoundly shapes ovarian

cancer progression (51). In ascitic fluid, exosomal miR-940 is

transferred to macrophages, reprogramming them toward an M2

phenotype that promotes ovarian cancer cell proliferation and

migration (89). Thus, miR-940 functions as a tumor-promoting

regulator through TAM polarization. In parallel, hypoxic stress

elevates the levels of miR-21-3p, miR-125b-5p, and miR-181d-5p

in ovarian cancer–derived exosomes. Uptake of these vesicles by

macrophages which are mediated via HIF-1a and HIF-2a induces

TAM-like phenotypes that further enhance tumor growth and

metastatic potential (90). Importantly, inhibition of miR-223

par t ia l l y a t tenuates TAM-der ived exosome– induced

chemoresistance, indicating that additional exosomal cargos,

including proteins and other miRNAs, contribute to drug

resistance (37). Among these, the miR-223/PTEN/PI3K/AKT axis

has been identified as a major driver of chemoresistance in ovarian

cancer cells, underscoring exosomes as potential therapeutic targets

to restore chemosensitivity. Recent findings demonstrated that circ-

BNC2 inhibits ovarian cancer progression via the miR-223-3p/

FBXW7 axis (91). FBXW7, a recognized tumor suppressor, inhibits

EMT in oral squamous cell carcinoma through PI3K/AKT signaling

(92) and regulates proliferation and apoptosis in colorectal cancer via

Notch and Akt/mTOR pathways (93). In ovarian cancer, FBXW7

expression is reduced and inversely associated with miR-223-3p while

positively correlating with circ-BNC2, and it functionally suppresses

invasion and migration (94). Moreover, circ-BNC4/miR-223-3p/

LARP3 axis was identified with similar regulatory implications (95).
5 Conclusion

The immunosuppressive tumor microenvironment (TME) in

ovarian cancer fosters immune evasion, metastasis, and

chemoresistance. Tumor-associated macrophages (TAMs),

predominantly M2-polarized, play central roles in these processes.

Accordingly, therapeutic strategies targeting TAMs—through

depletion, recruitment blockade, phagocytosis restoration,

apoptosis induction, or phenotype reprogramming—offer
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promising avenues. However, translational barriers remain,

including TAM heterogeneity, lack of specific markers,

incomplete understanding of macrophage ontogeny in humans,

and potential on-target toxicity. Most TAM-targeted therapies are

still in early-phase trials without definitive clinical validation.

To bridge these gaps, future studies should employ single-cell

and spatial transcriptomics to define TAM subsets, develop

humanized models that recapitulate the TME, and design rational

combination therapies. Biomarker-guided clinical trials are essential

to optimize patient selection and therapeutic efficacy. In sum, a

deeper mechanistic understanding of TAM plasticity and

intercellular networks will be key to advancing TAM-directed

interventions toward clinical translation in ovarian cancer.
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Targeting CD47 in sézary syndrome with SIRPaFc. Blood Adv (2019) 3:1145–53.
doi: 10.1182/bloodadvances.2018030577

67. Han Z, Wu X, Qin H, Yuan YC, Zain J, Smith DL, et al. Blockade of the immune
checkpoint CD47 by TTI-621 potentiates the response to anti-PD-L1 in cutaneous T-cell
lymphoma. J Invest Dermatol. (2023) 143:1569–1578.e1565. doi: 10.1016/j.jid.2023.02.017

68. Kauder SE, Kuo TC, Harrabi O, Chen A, Sangalang E, Doyle L, et al. ALX148
blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable
safety profile. PloS One. (2018) 13:e0201832. doi: 10.1371/journal.pone.0201832

69. Lakhani NJ, Chow LQM, Gainor JF, LoRusso P, Lee KW, Chung HC, et al.
Evorpacept alone and in combination with pembrolizumab or trastuzumab in patients
with advanced solid tumours (ASPEN-01): a first-in-human, open-label, multicentre,
phase 1 dose-escalation and dose-expansion study. Lancet Oncol. (2021) 22:1740–51.
doi: 10.1016/S1470-2045(21)00584-2

70. Qu T, Zhong T, Pang X, Huang Z, Jin C, Wang ZM, et al. Ligufalimab, a novel
anti-CD47 antibody with no hemagglutination demonstrates both monotherapy and
combo antitumor activity. J Immunother Cancer (2022) 10:e005517. doi: 10.1136/jitc-
2022-005517

71. Wilson AJ, Stubbs M, Liu P, Ruggeri B, Khabele D. The BET inhibitor
INCB054329 reduces homologous recombination efficiency and augments PARP
inhibitor activity in ovarian cancer. Gynecol Oncol. (2018) 149:575–84. doi: 10.1016/
j.ygyno.2018.03.049
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