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Intestinal epithelial cells (IECs) are capable of mounting an adequate
antimicrobial inflammatory response to pathogens while tolerating
commensals. The underlying regulatory mechanisms of immune sensitivity
remain incompletely understood, particularly in the context of human IECs. To
enhance our understanding of the immune response of IECs to bacterial
epithelial barrier breach, we investigated whether epithelial responsiveness is
contingent on cell identity and cell polarization. We exposed human intestinal
organoids to bacterial antigens to study their immune responses. Notable
discrepancies were observed in the specific reactions exhibited by intestinal
stem cells (ISCs) and enterocytes. It was determined that basolateral exposure of
|IECs to bacterial antigens resulted in a robust response, whereas apical exposure
elicited a significantly more modest response. We identified ISCs as the principal
responders, while the reaction of enterocytes was found to be attenuated. The
regulation of bacterial responsiveness in enterocytes occurs at multiple levels,
including the modulation of NFkB activation and post-transcriptional control of
MRNA stability. Our findings demonstrate that differentiated non-responsive
enterocytes can be sensitized to bacterial antigens through the activation of
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the WNT pathway. These findings extend the crucial role of WNT signaling for
intestinal epithelial homeostasis and regulation of stem cell maintenance,
proliferation, differentiation, and tissue architecture in the gut. Additionally,
they reveal a new function of WNT signaling in regulating microbial responses
within the intestinal environment.

intestinal stem cells, intestinal epithelium, innate immunity, immune regulation, WNT
pathway, inflammatory bowel disease

1 Introduction

The large intestine is populated by a vast number of commensal
microorganisms, resulting in a constant microbial exposure of the
intestinal epithelial cells (IECs) (1, 2). Under physiological conditions,
IECs do not elicit an inflammatory response (3), however,
inflammatory responses are necessary upon encountering pathogenic
bacteria or during epithelial barrier disruption to prevent microbial
invasion and dissemination into the bloodstream. Failure of IECs to
maintain a balance between responsiveness and non-responsiveness
during continuous microbial challenge (4, 5) can lead to chronic
inflammation as observed in Inflammatory Bowel Disease (IBD).

The responsiveness of cells to microbes is dependent on the
presence of Pattern Recognition Receptors (PRRs) and the
expression and modification of molecules involved in intracellular
signal transduction as well as various transcriptional and post-
transcriptional processes (6, 7). PRRs have the capacity to activate a
multitude of immune response pathways, including the NFxB pathway
(8). In its inactive state, NFKB is bound to an inhibitor, IkB, which
keeps it sequestered in the cytoplasm. Upon activation, IkB is
phosphorylated and subsequently degraded, thereby releasing NFxB
and enabling its entry into the nucleus. Within the nucleus, NFxB
binds to specific DNA sequences in the promoter regions of target
genes, thereby promoting transcription of NF«B target genes, including
CXCLS8, TNFalpha, and NFKBIA (8, 9). The innate immune response
requires minutes to hours to be fully activated upon stimulation (10).

PRRs are differentially expressed in the different epithelial cell
types and along the apical basolateral axis, which may cause cell
type specific responses (11-13). All epithelial cell types originate
from intestinal stem cells (ISCs) that reside at the bottom of the
crypts. Differentiated progeny that emerge from these stem cells
migrate towards the top of the villi of the small intestine or the
inter-crypt regions of the colon, where the cells are shed into the
lumen (14). The self-renewal, proliferation and differentiation of
ISCs are largely regulated by the WNT signaling pathway, which

Abbreviations: ARE, AU-rich element; ChIP, chromatin immuno-precipitation;
IBD, Inflammatory bowel disease; IECs, Intestinal epithelial cells; ISCs, Intestinal
stem cells; PRR, Pattern recognition receptors; qPCR, quantitative polymerase

chain reaction; TLRs, Toll like receptors; 3’UTR, 3’untranslated region.

Frontiers in Immunology

exhibits differential activity along the crypt-differentiation axis, with
the highest activity observed in the crypt (15).

The precise relationship between differentiation state,
responsiveness, and bacterial signaling remains unclear, as does the
impact of bacterial signaling on cell identity (16-18). While innate
immunity pathways have been extensively studied in myeloid-derived
cell types (19, 20), there is increasing interest for the role of for these
pathways in IECs with most studies conducted in mouse models and
immortalized cell lines. While these model systems provide valuable
insights, each model has inherent limitations in studying immune
responsiveness (21-23), such as intrinsic discrepancies between
human and murine immune responses (21-25) and genetic
aberrations that influence the responsiveness of human
immortalized cell lines. Moreover, cell lines represent only a single
cell type with incomplete cell differentiation and lack variation in
genetic background (21-23, 26). Human intestinal organoids can
overcome these limitations, as they are derived from human ISCs
isolated from epithelial biopsies and can be differentiated into various
IEC types (27, 28). Therefore, human intestinal organoids can be used
to study the microbe interaction in an isolated setting (29-31).

The objective of this study is to investigate the immune responses
in ISCs and differentiated IECs using human intestinal organoids
exposed to E. Coli antigens. Our findings reveal disparities in
immune responsiveness to bacterial antigens between ISCs and
enterocytes, the most prevalent differentiated cell type of the
intestinal epithelium. This study further explores the molecular
mechanisms that underlies high responsiveness of ISCs and low
responsiveness of enterocytes, dissecting the involved immune
pathways at multiple levels, ranging from NFkB activation to post-
transcriptional regulation of inflammatory gene transcripts. Our
findings indicate that the intestinal immune response is, regulated
processes upstream as well as downstream of NFkB activation with a
governing role for the WNT pathway.

2 Materials and methods
2.1 Medical and ethical guidelines

Biopsies were obtained via ileo-colonoscopies and gastroscopies,
which were conducted as part of the standard diagnostic procedure.
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Data collection and research studies were conducted in adherence to
the ethical guidelines established by the ethics committees. Human
Material Approval for this study was obtained from the Ethics
Committees University Medical Center Utrecht (Medisch Ethische
Toetsings Commissie (METC) protocol #10/402, titled: Specific Tissue
Engineering in Medicine (STEM)) or Boston Children Hospital
(protocol #IRB-P00000529, titled: Pediatric Gastrointestinal Disease
Biospecimen Repository and Data Registry).

2.2 Organoid culturing

Biopsies of the uninflamed colon and ileum were obtained from
patients via colonoscopy for gastrointestinal symptoms indicative of
IBD or CRC, but for who both IBD and CRC were ultimately ruled out
as the underlying condition based on pathological assessment. The
biopsies exhibited no macroscopic or pathological abnormalities. Crypt
isolation and culture of human intestinal cells from biopsies were
performed in accordance with the previously described methodology
(28, 32). The organoids were maintained long-term in a stem cell
medium, which consisted of in Advanced medium/F12 (Gibco,
12634028) containing RSPO1, noggin, EGF (Peprotech, 315-09-
IMG), A83-01 (Tocris Bioscience, 2939/10), nicotinamide (SIGMA-
ALDRICH, N0636-500G), SB202190 (SIGMA-ALDRICH, S7067-
25mg), and WNT3A. To induce differentiation, the cultures were
maintained for 5-7 days in enterocyte medium, which is stem cell
medium lacking nicotinamide, SB202190, and WNT3A. The
conditioned media for RSPOLI (stably transfected RSPO1 HEK293T
cells were kindly provided by Dr. C. J. Kuo, Department of Medicine,
Stanford, CA), noggin, and WNT3A were utilized. The medium was
refreshed every 2-3 days and the organoids were passaged at a ratio of
1:4 approximately every 10 days (detailed media composition:
Supplementary Table S1.

Matrigel-embedded organoids (3D) were cultured in 70% Matrigel
(BD Biosciences), diluted using growth factor-deficient medium (GF-),
which consisted of Advanced DMEM supplemented with penicillin/
streptomycin (GIBCO, 15140122), IM HEPES (GIBCO, 15630080)
and Glutamax 100x (GIBCO, 35050061). The primary intestinal
organoids were cultured at 37°C, in 5% CO2. Intestinal epithelial
monolayers (2D) were prepared according to the methodology
previously described (33). In brief, transwells (Corning Costar,
Tewksbury, MA, USA) were coated with Matrigel (1:40 in PBS+
with Ca/Mg, Sigma-Aldrich, D8662-500ML) for 1 hour at RT.
Subsequently, 2.5%10° single cells were seeded on a transwell insert in
the corresponding 24-well plate. A volume of 100pL and 600uL of
medium was utilized in the apical and basolateral compartments,
respectively. The monolayers were cultivated until they reached
confluence, which was determent through microscopy and trans-
epithelial electrical resistance (TEER) measurement. The primary
intestinal monolayers were cultured at 37 °C, in 5% CO2 environment.

2.3 Exposure to bacterial antigens

A bacterial lysate was prepared from E. coli HST-08 Stellar
competent cells (Takara Bio, 636766). The bacteria were subjected
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to a 20-min heat-inactivated process at 75 °C, pooled in sterile PBS,
and subsequently frozen for 1h at -80 °C. Subsequently, the samples
were subjected to sonicated using a Covaris ultrasonicator with the
following settings: duty cycle of 20%; intensity of 10; cycles per burst
of 500, and a total sonication time of 30 sec in a 13x65mm glass vial
(Covaris), subjected to centrifugation at 10,000g for 30 min at 4 °C,
and subsequently filtered through a sterilizing filter. The quantity of
bacterial lysate utilized for organoid exposure was determined
through a titration process, ranging from 1pL to 20uL of lysate
per 500uL medium. This was done to ascertain the concentration
that elicits half of the maximum CXCL8 response on mRNA in 3D
cultures. Stem cell-enriched organoids were exposed at day 7-10,
and enterocyte-enriched organoids were exposed after 5 days of
differentiation. The same bacterial lysate concentrations were
employed in 3D, and 2D apical and basolateral exposure
experiments. In experiments involving multiple days of exposure,
a new bacterial lysate was added at each medium refreshment
(approx. every 2 days).

2.4 RNA isolation and gPCR

RNA was isolated with TRIzol® LS (Ambion, cat. no. 10296-
028), in accordance with the manufacturer’s protocol. cDNA was
synthesized through reverse transcription (Invitrogen, Carlsbad,
CA or iScript, Biorad, Hercules, CA, 1708891). Messenger RNA
(mRNA) abundances were determined by real-time PCR using
validated primer pairs and SYBR Green (Bio-Rad, Hercules, CA,
1708886). ACTB mRNA abundance was employed for
normalization purposes. The following qPCR primers were
utilized: LGR5 forward GAATCCCCTGCCCAGTCTC, LGRS
reverse ATTGAAGGCTTCGCAAATTCT, B-actin forward TGG
CACCCAGCACAATGAA, B-actin reverse CTAAGTCATAGTCC
GCCTAGAAGCA, NFKBIA forward GCAAAATCCTGACCTGG
TGT, NFKBIA reverse GCTCGTCCTCTGTGAACTCC, CXCL8
forward GGCACAAACTTTCAGAGACAG, CXCLS8 reverse
ACACAGAGCTGCAGAAATCAG.

2.5 Luminex

At the time of harvesting, the medium from organoids was
collected (after 6h exposure) and was stored at -80 °C. The
concentrations of IL8, IL23, MIP3a, GROla, LIF, MCP1, TNFa,
ENA78, and GCP2 were measured using the Luminex technology as
previously described (34).

2.6 RNA sequencing

RNA was isolated with TRIzol® LS (Ambion, cat. no. 10296-
028), in accordance with the manufacturer’s protocol. Libraries
were generated using NEXTflexTM Rapid RNA-seq Kit (Bio
Scientific) and sequenced by the Nextseq500 platform (Illumina)
to produce 75 bp single-end reads at the Utrecht DNA sequencing
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facility. Reads were aligned to the human reference genome
GRCh37 using STAR. Differentially expressed genes in the
transcriptome data were identified using the DESeq2 package
with standard settings (35). RPM values were calculated using
edgeR’s RPKM function.

2.7 Explants

Colon biopsies were washed and cultured in stem cell medium
(described above) for 24h. Thereafter, the explants were stimulated
with bacterial lysate for 6h. Next, RNA was then isolated and
sequenced as described above.

2.8 Pathway analysis, functional
enrichment, GSEA, and KEGG pathway
analysis

Functional enrichment was performed with the R-package
clusterProfiler (36-38), while GSEA was carried out with the
packages gage and gageData were used (39). KEGG pathway
analysis was performed using the KEGG pathway analysis
package (40).

2.9 Immunohistochemistry

The organoids were collected by meticulous disruption of the
Matrigel and sequential elimination of the Matrigel through
centrifugation (5 min, 2000rpm). The samples were subsequently
fixed in 4% formaldehyde and embedded in 200pL of 2% agarose in
dH20, prior to embedding the samples in paraffin. Slides with a
thickness of 5um were deparaffinized and subjected to heat-
mediated antigen retrieval was performed for a period of 20 min
in a citrate antigen retrieval buffer with a pH of 6 (Sigma-Aldrich,
C9999). The slides were blocked for 30 min in 5% BSA at RT and
incubated ON at 4 °C with primary antibodies (mouse o.-NF«B p65
L8F6 1:50 (CST 69568, Cell signaling Technology) in 5% BSA-PBS).
Subsequently, the slides were incubated with secondary antibodies
Alexa 488 donkey-anti-mouse (1:400 (A21202, Thermo Fisher
Scientific)) for 1h a RT. Images were captured with a 63x
objective on a Leica TCS SP8 X confocal microscope.

2.10 NFxB-inhibition

Duodenum organoids were cultivated from single cells on stem
cell medium. 8 Days after seeding, the organoids were treated with
NFxB-inhibitors: 5uM IMD 0354 (Abcam, ab144823) or 10uM
TPCA 1 (Abcam, ab145522). Following the addition of the
inhibitors after12h of inhibitors, the organoids were exposed to
bacterial lysate for 6h, after which RNA was isolated.
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2.11 CHIR99021

Intestinal organoids generated from single cells using stem cell
medium. The organoids were cultured from single cells for 10-14
days, either on stem cell medium or by differentiating them into
enterocytes for the 5 days on enterocyte medium. 3mM of
CHIR99021 (Bio-Techne, 4423/10) (14, 41) were added 18h prior
to exposure of bacterial lysate for 6h, after which RNA was isolated.

2.12 Single-cell RNA sequencing

Colon and ileum-derived organoids were cultured for 10-14 days
from single cells in 3 conditions: 1) on stem cell medium during the
whole experiment, 2) stem cell medium was changed to enterocyte
medium for the last 24 hours before harvesting, 3) stem cells medium
was changed for the last 4 days before harvesting. For each condition
half of the organoids were exposed for 6h with bacterial lysates before
harvesting. Subsequently, cells were trypsinized and FACS-sorted using
Propidium Iodide (PI) (Thermo Fisher Scientific - P3566) to eliminate
dead cells into 384-well pre-indexed plates per condition. The plates
were processed by Single Cell Discoveries as described previously using
SORT-seq technology (42). The data were analyzed using the Seurat
V2.3.4. software package after excluding mitochondrial and ribosomal
gene and a set of unreliably mapped genes (UGDH-AS1, PGM2P2,
LOC100131257, MALAT1, KCNQ1OT1, PGM5P2, MAB21L3,
EEF1A1) with these parameters: CreateSeuratObject(min.cells = 3,
min.genes = 1500), NormalizeData(normalization.method =
10000), FindVariableGenes
(mean.function = ExpMean, dispersion.function = LogVMR,
xJow.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5), FindClusters
(reduction.type = “pca”, dims.use = 1:12, resolution = 0.6).

“LogNormalize”, scale.factor =

2.13 Chromatin immuno-precipitation
sequencing

ChIP was conducted using the MAGnify ChIP kit (Invitrogen,
Carlsbad, CA) in accordance with the manufacturer’s instructions. 1puL
o-acetylated histone 3 lysine 27 (H3K27ac) (ab4729; Abcam) or 1uL oi-
trimethylated lysine 4 (H3K4me3) (#39159; Active Motif) was utilized
per immunoprecipitation. The captured DNA was purified using the
ChIP DNA Clean & Concentrator kit (Zymo Research). The libraries
were prepared using the NEXTflex Rapid DNA Sequencing Kit
(Bioo Scientific). The samples were PCR amplified, checked for the
proper size range and for the absence of adaptor dimers on a 2%
agarose gel, and barcoded libraries were sequenced 75 bp single-end on
Nlumina NextSeq500 sequencer. The sequencing reads were mapped
against the reference genome (hg19 assembly, NCBI37) using the BWA
package (mem -t 7 —c 100 -M -R)42. Multiple reads mapping to the
same location and strand were collapsed to single read and used for
peak-calling. Peaks/regions were called using Cisgenome 2.043 (-e 150
-maxgap 200 —minlen 200).
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2.14 ARE-enrichment

ARE-enrichment was calculated using the ARED-plus database
(43). The percentage of response genes (genes upregulated upon 6h
exposure to bacterial lysate), stem genes (genes upregulated in stem
cell medium without exposure, Supplementary Table S2) or
differentiation genes (genes upregulated in enterocyte medium
without exposure, Supplementary Table S2) that have at least one
AU-rich element encoded in the 3’UTR was calculated per gene set.

2.15 Poly(A)-assay

Colon organoids were cultured from single cells for a period of
10-14 days, either in stem cell medium or organoids were
differentiated for the 5 days on enterocyte medium. All organoids
were subjected to bacterial lysate for 6h before RNA isolation, as
previously described. GI-tailing and reverse transcription were done
using the Poly(A)-tail length assay kit (ThermoFisher Scientific, #
764551KT) and according to the manufacturer’s protocol. Next,
amplification of individual genes was done with a gene specific
forward primer (CXCL8 CTTGTCATTGCCAGCTGTGT, GAPDH
CAACGAATTTGGCTACAGCA, B-actin ATCCTAAAAGCCA
CCCCACT, CXCLI GGCATACTGCCTTGTTTAATGG, CXCL2
CACAGTGTGTGGTCAACATTTCT, CCL2 GATACAGAGACTTG
GGGAAATTG) and a GI-tail reverse primer (Poly(A) tail length
assay kit) for 35 cycles in Platinum' " PCR SuperMix High Fidelity
(Invitrogen, # 12532016). Samples were analyzed on a 2% agarose gel.

3 Results

3.1 Epithelial cells mainly respond to
bacterial antigens when exposed
basolaterally and in a stem cell state.

The intestinal epithelium, in conjunction with the mucosal layer,
serves as the primary cellular defense mechanism against the gut
microbiota (44, 45). To investigate the responsiveness of IECs to
microbial antigens, we utilized healthy, human colon-derived
organoids and exposed them to a bacterial lysate. To assess the
responsiveness of ISCs versus enterocytes, we conducted a
comparative analysis of the effects of bacterial stimulation on
undifferentiated stem cell-enriched organoids and differentiated
enterocyte-enriched organoids followed by RNA-seq. Like the stem
cells of the crypts, stem cell-enriched organoids have high WNT-
pathway activity, while enterocyte organoids have low WNT-pathway
activity. Enterocyte organoids were obtained from stem cell enriched
organoids after five days of differentiation in the absence of WNT and
successful differentiation was confirmed by analysis of the expression of
marker genes in RNA sequencing data (Supplementary Figure S1).
Following a six-hour exposure to bacterial lysates, the undifferentiated
organoids exhibited a strong response leading to the differential
expression of over 1,000 genes (712 upregulated and 314
downregulated; Figure 1A and Supplementary Table S3). This time
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point was used as a reference in all subsequent assays, unless otherwise
indicated. The response is characterized by the upregulation of
numerous inflammatory genes, including TNFalpha, CXCL8, NFKB2,
and NFKBIA. Enterocyte organoids exhibited a weak response to
bacterial lysate with less than 100 differentially expressed genes (61
upregulated and 17 downregulated) (Figure 1B; Supplementary Table
S4; Supplementary Figure S2A). The baseline expression levels of CXCL8
demonstrated a comparable expression between unexposed stem cell-
enriched organoids and enterocyte-enriched organoids (Figure 1C). This
shows that the difference in CXCL8 expression upon exposure cannot be
explained by a higher baseline expression level in undifferentiated cells.

Notably, we conducted a bulk RNA transcriptomics analysis of
healthy colon explants (i.e., intact biopsies) and undifferentiated
organoids exposed to bacterial lysates. The explants exhibited
expression patterns analogous to those identified in the stem cell-
enriched organoid model, indicating that the organoid experiments
could be representative of responses from a completer tissue sample
(Figure 1D). In addition, we show heterogeneity in expression of
various cytokine and NF«B-related genes (Figure 1D; Supplementary
Figure S2A).

Next, we analyzed the secretion of Interleukin-8 (IL8) protein
when exposed to bacterial lysate. The colon stem cell-enriched
organoids secreted IL8, IL23, MIP3a, GROla, LIF, MCP1, TNFa,
ENA?78, and GCP2 (encode by genes CXCL8, IL23, CCL20, CXCL1,
LIF, CCL2, TNF, CXCL5, and CXCL6, respectively) upon exposure
(Figure 1E). It can be concluded that the responses observed in the in
vitro system reflect the intestinal epithelial inflammatory responses.

In physiological conditions, the intestinal epithelium is exposed
exclusively to bacteria at the apical (luminal) surface only. To
investigate the impact of cell polarity on microbial responsiveness,
organoids were cultivated as monolayers that were exposed from the
apical or the basolateral side. In contrast to the robust response
observed upon basolateral exposure, apical responses were found to
be attenuated under similar conditions (Figure 1F; Supplementary
Figure S2B). These findings suggest that in the in vivo situation,
epithelial cells within the intestinal crypt only respond when the
barrier that allows for microbial molecule passage is disrupted,
resulting in basolateral exposure. This can occur when the barrier
function of the intestinal epithelium is affected due to, for example,
invasive microorganisms, genetic defects that are associated with
increased epithelial permeability layer (46, 47) or disruption of the
epithelium as observed in the inflamed intestinal mucosa of patients
with IBD (48, 49). Additionally, an uneven distribution of receptors
along the apical-basolateral axis may contribute to the observed
differences in apical and basolateral responsiveness (12, 13).

3.2 Single cell RNA sequencing shows that
intestinal stem cells give a higher
inflammatory response compared to
enterocytes

To gain further insight into the specific responses of healthy

human epithelial cell types during a breach of the epithelial barrier
in their various states of differentiation, we performed single cell
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FIGURE 1

Epithelial cells mainly respond to bacterial antigens when exposed basolaterally and in a stem cell state. (A) MA-plot-visualization of the log ratio and
mean value of bulk RNAseq from healthy colon-derived stem cell-enriched organoids upon exposure to microbial antigens for 6h. (n=2). (B) MA-
plot visualization of the log ratio and mean value of bulk RNAseq from healthy colon-derived enterocyte-enriched organoids upon exposure to
microbial antigens for 6h. (n=2). (C) gPCR of CXCL8 of unexposed healthy colon-derived stem cell-enriched organoids and healthy colon-derived
enterocyte-enriched organoids. Error bars indicate SEM (unpaired t-test) (n=3). (D) Expression patterns of inflammatory genes of bulk RNAseq in
healthy colon-derived stem cell-enriched organoids (exposed/non-exposed) compared to healthy colon explants (exposed/non-exposed).

(E) Luminex analysis of Interleukin-8 (IL8), IL23, MIP3a, GRO1a, LIF, MCP1, TNFa, ENA78, and GCP2 release by healthy colon-derived stem cell-
enriched organoids upon exposure to bacterial antigens 6h (n=2). Error bars indicate SEM. (F) Expression changes of response genes were measured
by bulk RNA-seq healthy colon-derived stem cell-enriched organoids grown as a monolayer and exposed from either the apical or basolateral side
for 6h. Average genes up or down regulated. Statistical significance was determined using the Wilcoxon rank-sum test n=2. (results of the statistical
test — as noted in the figure legend: ns = p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001) gPCR = quantitative polymerase chain reaction

RNA sequencing (scRNAseq) on undifferentiated and differentiated
colon organoid cultures exposed to bacterial lysate at the basolateral
side. In this analysis, the stem cell and enterocyte conditions were
pooled, resulting in a total of 911 cells. The data revealed the
presence of seven distinct cell clusters (Figure 2A), which
collectively represent the various stages of the three major cell
types of IECs that are predominant under these culture conditions.
These included stem cells, transit amplifying (TA) cells and
enterocytes, which are found in their representative culture
condition (Supplementary Figure S3). The stem cells and the
transit amplifying cells are composed of two clusters each. The
distinctive feature that determines this separation is the cycling
activity of cells, which is marked by the expression of MKI67
(Figures 2A-C). Enterocyte-enriched organoids are separated into
three clusters. One cluster consisted of enterocytes in the early
phase of differentiation, based on the relatively low expression of
differentiation markers. The other two clusters contained more
differentiated enterocytes (Figures 2A-C).

Subsequently, the expression levels of multiple bacterial response
genes were projected onto the identified clusters. Cytokine expression
was observed to be higher in the stem cell cluster in comparison to both
the transit amplifying cell and the enterocyte clusters. A number of
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cytokines that are induced upon exposure to bacterial antigens were
exclusively expressed within the stem cell clusters (Figures 2D, E). The
upregulation of the inflammatory pathway was observed in all stem
cells and was independent of MKI67 expression (Figure 2F), thus
excluding cycling activity as a crucial determinant for microbial
responsiveness. These analyses confirm that, in comparison to
enterocytes, stem cells are the inflammatory responders to microbial
molecules among IECs in the large intestine.

To confirm these findings, we also performed scRNAseq on exposed
ileum organoids. In a total population of 2027 cells, we identified stem
cells, TA cells and enterocytes in three separate clusters (Supplementary
Figure S4). Inflammatory responses were confined to the stem and
progenitor cells thereby demonstrating that these differences between
stem cells and differentiated cells in responsiveness are not specific for
the colon but also applies to the small intestine.

3.3 The immune response of intestinal
stem cell is NFxB-mediated

To gain a deeper comprehension of the consequences of
bacterial stimulation, we conducted a gene set enrichment
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FIGURE 2

Single cell RNA sequencing shows that intestinal stem cells give a higher inf
clusters representing different subtypes of IECs. Data were pooled from five
upon exposure to 6h microbial antigens. (B) Heatmap depicting the express
(C) Expression of markers that are associated with different states of epitheli
cell type. (D) Expression of pro-inflammatory genes per cell type. (E) Heatm.

lammatory response compared to enterocytes. (A) tSNE-plot of cell
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ap depicting the expression of inflammatory markers for each identified

cell type (F) Distribution of expression of CXCL2, CXCL3, CXCL8 and TNFalpha by tSNE-plots. TA = transit amplifying cells; pos = positive.

analysis on bulk RNA transcriptomics, which underwent alterations
upon microbial exposure in ISCs. The enriched pathways exhibiting
the most pronounced upregulation in undifferentiated organoids
were predominantly associated with inflammatory responses
(Figure 3A). It is noteworthy that a considerable number of
immune response genes are regulated by the NFxB signaling
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pathway. However, gene set enrichment analysis did not show
any enriched pathways in line with reduced responsiveness of
differentiated cells (data not shown). Small molecule inhibition of
NFkB during bacterial antigen exposure in undifferentiated
organoids indeed resulted in reduced expression of the response
gene CXCL8 (Figure 3B).
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FIGURE 3

The immune response of intestinal stem cell is NFkB-mediated. (A) Bulk RNAseq gene set enrichment analysis of upregulated genes of stem cell-
enriched organoids. Response genes are enriched for inflammatory pathways. (n=2) (B) gPCR of CXCL8 of duodenal-derived stem cell-enriched
organoid CXCL8 upon microbial exposure can be inhibited with a specific NFkB blocker. Error bars indicate SEM. (unpaired t-test) (n=2).

3.4 Discrepancies in the expression of TLRs
and the nuclear translocation of NFkB
between stem cells and enterocytes

To elucidate the origin of the discrepancies in responses between
stem cells and enterocytes, we conducted a comprehensive
examination of the upstream and downstream activity of the NFxB
pathway. The activation of NFkB is the result of a complex cascade of
activating and inhibitory signals. Pathogen recognition molecules,
such as Toll-Like receptors (TLRs), are activated by specific ligands
(13). Upon stimulation, these TLRs initiate a signaling cascade that
leads to the phosphorylation and nuclear translocation of NFkB,
ultimately activating innate immune response genes (50).

The differential expression of upstream NF«B components may
be responsible for the observed differences in microbial
responsiveness between stem cells and enterocytes. Our findings
indicated that genes involved in the NFkB pathway exhibited higher
expression levels in enterocyte-enriched organoids than in stem
cell-enriched organoids. This suggests that the diminished
responsiveness of enterocytes is not attributable to a global
downregulation of this pathway (Figure 4A; Supplementary
Figure S5).

Notable exceptions to this trend include TLR5 and TLR2, both
of which are expressed at higher levels in stem cell-enriched
organoids than in enterocyte-enriched organoids. TLR5 is
activated by flagellin, while TLR2 is activated by diverse range of
microbial ligands (51). Therefore, while the majority of NFxB
pathway genes are upregulated during differentiation, the reduced
expression of TLR5 and TLR2 in enterocytes may contribute to the
diminished response to bacterial lysate. The differential expression
of TLRs is consistent with previous findings in mice and pigs (11-
13). Interestingly, certain inflammatory mediators, such as IL-1f3,
IL-12, IP-10, MIG, were more abundant in enterocytes, which could
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suggest that some inflammatory pathways are more active in this
cell type. It is important to note, however, that there are inherent
limitations to estimating pathway activity based on transcript
abundance. It is not necessarily the case that there is a direct
correlation between RNA transcript quantity and with protein
translation (52). An additional limitation is that we do not know
through which TLRs the responses are mediated, which would
require stimulation with purified TLR agonists instead of whole
bacterial lysates. Because of these limitations, it remains difficult to
use transcriptomic data to provide an explanation why ISCs are the
main responders. Therefore, as direct measure of NFkB pathway
activation downstream of TLRs, we also determined the nuclear
localization of NFxB. We conducted a comparative analysis of
NFkB localization in stem cell- and enterocyte-enriched
organoids after 2h of exposure to bacterial lysates. A higher In
line with previous observations (53, 54), we observed NFxB
translocation to the nucleus upon bacterial antigen exposure
(Figures 4B, C). It is noteworthy that nuclear NFxB translocation
was highest in ISCs, but also evident in a substantial number of
enterocytes, indicating that additional downstream mechanisms
may further attenuate the responsiveness of enterocytes to
bacterial molecules.

3.5 The chromatin in stem cells and
enterocytes exhibits equal accessibility and
activity of involved promoter sites

The subsequent analysis aimed to ascertain whether the chromatin
accessibility and promoter activity of specific response genes
contributes to the diminished microbial responsiveness observed in
enterocytes. Chromatin immuno-precipitation (ChIP) was performed
on colon organoids for histone modifications H3K4me3 and
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Discrepancies in the expression of TLRs and the nuclear translocation of NFkB between stem cells and enterocytes. (A) Bulk RNAseq expression
levels of genes involved in Toll Like Receptor signaling pathway in five days differentiated enterocytes-enriched organoids versus stem cell-enriched
organoids. (n=2) (B) Immunohistochemistry of NFkB (p65) in stem cell-enriched organoids compared to five days differentiated enterocyte-enriched
organoids, shows nuclear translocation of NFkB upon exposure (2h). (n=3) (C) Quantification of nuclear translocation of NFkB. The number of cells
with nuclear NFkB is higher in stem cell-enriched organoids compared to enterocyte-enriched organoids (Mann-Whitney). Error bars indicate SEM.

(n=3) gPCR: quantitative polymerase chain reaction

H3K27Ac, which are associated with active gene promoters (55). It is
notable that upon exposure to bacterial antigens, both stem cell- and
enterocyte-enriched organoids exhibited the presence and induction of
active chromatin marks within the promoters of the relevant response
genes (Supplementary Table S2), while the promoters of stem cell-
associated genes were more active in stem cells and the promoters of
differentiation-associated genes were more active in enterocytes
(Figure 5A). As example, the promoter region of the differentiation
marker FABP?2 is accessible in enterocytes and the promoter region of
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the stem cell marker ASCL2 is accessible in undifterentiated cells. The
promoter regions of the response genes CXCL8 and CXCL3 become
accessible upon stimulation in enterocytes and stem cells (Figure 5B).
These findings demonstrate that, even though the upregulation of the
mRNAs of response genes is stronger in undifferentiated organoids,
enterocyte-enriched organoids retain the ability to activate
inflammatory gene promoters upon bacterial antigen exposure. This
suggests that the reduced microbial responsiveness of enterocytes is not
caused by decreased promoter accessibility.
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The chromatin in stem cells and enterocytes exhibits equal accessibility and activity of involved promoter sites. (A) Chromatin immune-precipitation
sequencing signal of active histone modifications (H3K4me3, H3K27ac) in the 2kb window around the transcriptional start site of different gene
groups — at the baseline and upon exposure to bacterial antigens for 6h and 72h. (values represent median centered and log2 transformed RPKM)
(n=2) (B) ChlIP tracks at four genomic regions at baseline () and upon 6h of exposure to bacterial lysates (+) (n=2).

3.6 Evidence that post-transcriptional
regulation may play a role in the half-life of
genes involved in the epithelial
inflammatory response

Prior research has indicated that post-transcriptional regulation
may play a role in regulating immune response gene expression by
facilitating the rapid degradation of inflammatory transcripts (56,
57). For example, macrophage inflammatory responses are tightly
regulated at the post-transcriptional level through AU-rich element
(ARE)-mediated mRNA decay (58, 59). This process involves the
binding of RNA-binding proteins binding to AREs located in the
3’untranslated region (3’UTR) of mRNAs, which culminates in
exonuclease-mediated degradation of the mRNA’s poly(A)-tail.
This destabilization results in a reduction of the mRNA half-life
and the prevention of translation. To ascertain whether AREs are
present in IEC transcripts, we conducted an analysis to determine
ARE enrichment in specific gene sets. The response genes (i.e. genes
that are upregulated upon bacterial antigen exposure in stem cell-
enriched organoids) exhibited a higher ARE content compared to
the stem cell genes (stem genes are genes upregulated in stem cell-
enriched organoids without exposure) and the differentiation genes
(genes upregulated in enterocyte-enriched organoids without
exposure) (Supplementary Figure S6A and Supplementary Table
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S2) (43). This observation is consistent with previous studies that
have reported the presence of AREs in approximately 22.4% of
human mRNAs, particularly within the 3’UTR of inflammatory
genes (43, 60). This finding suggests that inflammatory genes in
IECs are susceptible to post-transcriptional regulation (56, 61-63),
which may play a role in the immune response of IECs.

The degradation of the poly(A)-tail represents a pivotal step in
the pathway of mRNA decay, thus serving as a key determinant of
mRNA half-life (64). To explore whether the attenuated
inflammatory response in enterocytes could be attributed to
increased mRNA decay, we assessed the poly(A)-tail length of
transcripts in our organoid models. To measure the poly(A)-tail
length, we employed a method involving the addition of guanosine
and inosine to the poly(A)-tail, followed by reverse transcription
using a 3’UTR-specific primer and a universal reverse primer to
generate complementary DNA. Subsequently, the amplified DNA
was then analyzed by PCR, and product lengths were determined
using agarose gel electrophoresis. The poly(A)-tail length of
housekeeping genes (ACTB and GAPDH) and immune response
genes (CXCL2, CXCL8, CXCLI1, and CCL2) was assessed in stem
cell-enriched and enterocyte-enriched organoids exposed to
bacterial antigens. The poly(A)-tail length of housekeeping genes
remains consistent in both stem cell state and enterocyte state.
However, immune response genes exhibit either a similar length
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(CXCLI and CXCL2) or a shorter length in enterocyte-enriched
samples (CXCL8 and CCL2) compared to stem cell-enriched
samples (Supplementary Figure S6B). These findings suggest that
a shorter poly(A)-tail length may contribute to the diminished
inflammatory response of enterocytes, potentially due to faster
mRNA degradation.

Previous studies have demonstrated that the RNA-binding protein
Zinc Finger Protein 36 (also known as TTP and encoded by the gene
ZFP36) is capable of binding to AREs and serves as a pivotal mediator
in poly(A)-mediated mRNA destabilization, particularly in the context
of immune response genes (65). We observe that ZFP36 is higher
expressed in enterocytes (Supplementary Figure S6C) compared to
stem cells. In contrast, ELAVLI, which encodes a protein (HuR)
involved in mRNA stabilization (66), was found to be downregulated
in enterocytes compared to stem cells (Supplementary Figure S6D).
Earlier studies have demonstrated that the expression of immune
response genes and ZFP36 are regulated by NF«B. As such, activated
TTP inhibits nuclear translocation of NFxB and downregulates the
immune response (67, 68). Our results suggest that HuR and TTP may
serve as potential factors that determine the mRNA stability of
inflammatory response genes, thereby contributing to the observed
differences in responsiveness between the various epithelial cell types.
Functional perturbations studies, such as ZFP36 knockdown, are
required to confirm this causality.

3.7 WNT activation re-establishes
inflammatory responses in enterocytes

The WNT/B-catenin pathway plays a pivotal role in the
proliferation and maintenance of ISCs in the crypt and as
undifferentiated organoids (14, 15) and decreased activity of this
pathway induces differentiation (Figure 6A). We observed that
undifferentiated organoids with high WNT activity show a
stronger response to bacterial antigens than enterocyte organoids
with low WNT activity. This may suggest crosstalk between the
innate immunity and WNT pathways.

Recent studies in a variety of species and cell types have identified
crosstalk between cell identity pathways and immune response
pathways (69). To investigate if such crosstalk also exists in IECs,
we investigated the effect of modulation of WNT signaling on IEC
responsiveness. After 5 days of enterocyte differentiation in the
absence of WNT, we stimulated the WNT pathway with WNT3A
for a 24h period. While fully differentiated enterocytes do not have
the plasticity to de-differentiate to stem cells (28), WNT-stimulation
resulted in an increase in LGRS expression, confirming robust WNT-
pathway activation (Figure 6B). Upon exposure to bacterial lysate in
the presence of WNT3A, enterocyte-enriched organoids exhibited an
increase in the expression of immune response genes CXCL8 and
NFKBIA (Figure 6C). Therefore, the observed increase in response
genes suggests a direct involvement of the WNT pathway in the
immune response to bacterial antigens.

The objective of the subsequent experiment was to ascertain
whether the responsiveness of the stem cell-enriched organoids was
diminished upon reduced WNT activity. To this aim, WNT3A was
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removed from the stem cell-enriched condition media to induce
differentiation towards enterocytes. Following the withdrawal of
WNT3A for a period of 24h, a slight decline in LGR5 expression was
observed (Supplementary Figure S7A). When exposed to bacterial
lysate in the absence of WNT3A, CXCL8 and NFKBIA levels are
comparable to those observed in stem cell-enriched organoids in the
presence of WNT (Supplementary Figure S7B). This suggests that a
24h period of WNT removal may not be sufficient to alter the stem
cell state or its associated responsiveness to bacterial antigens.

To further assess whether increased WNT pathway activity
modulates the responsiveness of stem cells, we introduced the WNT
agonist CHIR99021 into the culture conditions alongside WNT3A
for 24h (14). CHIR99021 was administered to stem cell- and
enterocyte-enriched organoids. This resulted in an increase in
LGR5 expression (Figure 6B; Supplementary Figure S7A). Upon
exposure to bacterial antigen, immune response genes CXCL8 and
NFKBIA were upregulated under these conditions (Figure 6C;
Supplementary Figure S7B). These results suggest that active
WNT signaling enhances the NFkB-mediated immune response
to bacterial exposure.

4 Discussion

Our findings indicate that the ISCs are the responders to bacterial
antigens in the large intestinal epithelium, in contrast to enterocytes.
Moreover, our findings indicate that ISCs mainly respond to microbial
stimuli when exposed basolaterally. These findings reinforce the
mucosal paradigm of the intestinal epithelium, which is designed to
avoid the elicitation of inflammatory responses to luminal antigens
under homeostatic conditions. Conversely, inflammatory activation is
only initiated when microbial antigens penetrate the IEC barrier and
reach the basolateral surface of ISCs. The role of the ISCs as epithelial
cell responders to microbial stimulation is consistent with previous
reports that have identified these cells as having immune functions at
the mucosal surfaces of the intestines. T-cell activation has been
demonstrated to be contingent upon antigen presentation by ISCs
via MHC-II expression (70). Our study demonstrates that, in addition
to antigen presentation, ISCs are involved in the mediation of local
epithelial immune responses upon exposure to bacterial antigens. We
illustrate that the variation in the response between ISCs and
enterocytes to bacterial antigens is regulated at multiple levels
upstream and downstream of NFxB activation. These findings
highlight the intricate regulatory mechanisms that enable ISCs to
function as immune mediators in the large intestine.

Lipopolysaccharides (LPS) are a widely utilized compound in
the study of bacterial immune responses, as they represent the outer
membrane components of gram-negative bacteria (71). However,
this approach offers a narrow view of the subject matter, as it does
not encompass the full range of bacterial antigens present in more
complex systems. In contrast, cecal slurry, prepared from the
luminal contents of the colon, contains a more diverse range of
bacterial antigens, including bacterial, viral antigens and food
particles (72). However, the presence of viral and dietary
components in cecal slurry may complicate the analysis of a
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WNT activation re-establishes inflammatory responses in enterocytes. (A) Transcription factor levels and microbial responsiveness along the crypt axis

(B) gPCR of LGRS in enterocyte medium, enterocyte medium supplemented with 50% WNT3A conditioned medium, and enterocyte medium
supplemented with 50% WNT3A conditioned medium and CHIR99021. Error bars indicate SEM (unpaired t-test) (n=3). (C) gPCR of CXCL8 and NFKBIA in
enterocyte medium, enterocyte medium supplemented with 50% WNT3A conditioned medium, and enterocyte medium supplemented with 50%
WNT3A conditioned medium and CHIR99021. Error bars indicate SEM (unpaired t-test) (n=3). gPCR = quantitative polymerase chain reaction.

bacterial-specific immune response. Here we employed an E. coli
lysate, which offers a controlled and diverse array of bacterial
antigens while circumventing interference from non-bacterial
components. This approach ensures a more targeted and reliable
evaluation of bacterial immune responses. It would be interesting to
extend this approach to other microbial antigens in future studies,
to determine the generalizability of our findings.

Our observations indicated differential expression of TLRs and
reduced nuclear NFkB translocation in enterocytes, suggesting
differential regulation of the processes upstream of NFxB
activation. Nevertheless, our results indicate that additional
mechanisms may be involved in the diminished microbial
responsiveness observed in enterocytes. It was thus established that
enterocytes have shortened poly(A)-tails of specific inflammatory
transcripts, which is likely to reduce the mRNA stability of these
transcripts. It is postulated that mRNA stability in enterocytes is
diminished by elevated activity of mRNA degradation pathways. This
is corroborated by the observation of high expression of ZFP36 and
low expression of ELAVLI, which respectively exert a destabilizing
and a stabilizing effect on mRNA. Regulation of the response to
bacterial ligands may additionally extend to processes that determine
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translational and posttranslational activity. To confirm the hypothesis
that posttranscriptional regulation plays a role in the attenuated
response of the enterocytes, functional studies are required.

Our findings indicate that in addition to its significant influence
on the cell fate of IECs, the activity of the WNT pathway also plays a
role in determining epithelial responsiveness. Prior research on
other cell types and species has documented crosstalk between
WNT/B-catenin signaling and NF«kB (73-75). Furthermore, [-
catenin has been shown to bind to immune response genes on
the DNA, thereby initiating their transcription (76). The results of
our study indicate that chromatin accessibility at promoter sites
relevant to the inflammatory response is similar between stem cells
and differentiated cells. These findings support the hypothesis that
specific transcription factors may be directly involved in regulating
microbial responsiveness.

The precise molecular mechanism through which WNT activity
determines cellular responsiveness remains to be elucidated
through further investigation. A potential explanation is through
direct interaction between the key players of both pathways, -
catenin and NFkB, as has previously been described (73, 74).
Through such interaction, PB-catenin could influence the nuclear
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translocation of NFxB upon stimulation with bacterial antigen,
thereby promoting the NFkB-mediated immune response.

A number of genes are frequently mutated in IBD, and they play a
role in the immune pathway. For example, there are mutations
identified in the TLR4, ILIOR, and NFKBIZ pathways (77-79). The
role of post-transcriptional regulation in the setting of inflammatory
responses has been previously delineated in the context of immune cells
(57). The clinical relevance of these mechanisms is supported by the
discovery of a genetic association between ZFP36 family members
(ZFP36L1, ZFP36L2) and IBD (80-82). Furthermore, some patients
with Very Early Onset-IBD have mutations in TTC37, which is
involved in RNA decay (83, 84). Other gene mutations involved in
IBD affect IEC polarization (46, 47, 83). Our data suggest that in cases
where the epithelial barrier is compromised or the polarization is
disrupted, resulting in exposure of the basolateral side is exposed to the
microbiome, an inflammatory response may ensue.

The human organoid cultures lack the complete complexity of cell
types present in the native epithelium (85). To profile a heterogeneous
population of cell types that constitute the majority of the human
intestinal epithelium (86), we combined organoids grown under
different culture conditions. In the future, models that include
Paneth cells, goblet cells, tuft cells, or deep secretory cells (85) may
provide a more comprehensive understanding of the differences in
responsiveness among epithelial cells.

The advent of new techniques, such as whole exome sequencing
and whole genome sequencing, has the potential to facilitate the
discovery of additional genes that may be implicated in IBD.
Moreover, the utilization of cutting-edge in vitro gut models will
facilitate the elucidation of human gut-microbe interactions (30). In
light of the findings presented in this study, we anticipate that novel
IBD-associated genes will be implicated in the processes upstream
and downstream of NFkB and may be involved in pathways ranging
from bacteria recognition to the post-transcriptional regulation of
response genes, and WNT-signaling.
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