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Background: The dysfunction of membraneless organelles (MLOs) has been

implicated in tumorigenesis and progression by aberrant liquid–liquid phase

separation (LLPS). However, the role of MLOs in the prognosis and tumor

immune microenvironment (TIME) of colorectal cancer (CRC) remains unclear.

Method: We integrated transcriptomic data of MLO-related genes to identify

distinct CRC subtypes and constructed a prognostic risk score termed MPRS.

Then, we systematically demonstrated the characteristics of MPRS based on

multi-omics analyses. We further assessed NRG1’s LLPS possibility, prognostic

significance, and its correlation with methylation through comprehensive

analysis and in vitro experiment.

Results: A prognostic signature called MPRS associated with prognosis, tumor

ecotypes, genomic alterations, TIME patterns, immunotherapy responses,

chemotherapy sensitivity in CRC patients. NRG1, identified as the most

important MPRS gene with high predicted LLPS propensity—was significantly

downregulated in CRC tissues and correlated with prognosis. Promoter

methylation was found to be a crucial mechanism underlying NRG1

downregulation, which could be rescued by 5-Aza-2-deoxycytidine (Aza)

treatment. The qRT-PCR, IHC and Aza treatment were utilized for in

vitro validation.
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Conclusion: Our integrated multi-omics analysis constructed the MPRS model

to delineate CRC tumor ecology and identified NRG1 as a methylation biomarker

with predicted phase-separation propensity, with potential therapeutic

implications that warrant prospective validation.
KEYWORDS

colorectal cancer, Nrg1, liquid-liquid phase separation, prognosis, methylation,
membraneless organelle
1 Introduction

Colorectal cancer (CRC), a prevalent cancer type, ranks as the

third leading cause of death worldwide, claiming over 600,000 lives

each year (1, 2). Furthermore, the notable variability in patient

outcomes and treatment responses restricts the universal

applicability of standard therapies. Recent breakthroughs, such as

the work by Federica Papaccio and colleagues, have illuminated the

molecular landscapes of advanced CRC characterized by

chromosomal instability (CIN) (3). Concurrently, emerging

evidence highlights the critical role of stress granules (SGs) in

CRC pathogenesis (4). Despite these advances, significant gaps

remain in understanding how subcellular organizational dynamics

link to tumor ecology and clinical outcomes, significantly hindering

the development of effective treatment strategies. For instance,

Neuregulin-1 (NRG1), a growth factor, has been shown to

influence cell survival, proliferation, migration, and differentiation

by activating the epidermal growth factor receptor (EGFR) and its

downstream pathways (5, 6). In CRC, overactivation of EGFR is

often associated with poorer prognosis (7, 8); however, existing

studies have demonstrated that high NRG1 expression in CRC

patients correlates with better prognosis (9–11). The emergence of

such contradictions necessitates exploring novel role of NRG1 via

multi-omics landscape and cellular models to elucidate

CRC pathogenesis.

Liquid–liquid phase separation (LLPS) refers to a phenomenon

in which a homogeneous liquid solution spontaneously separates

into two distinct liquid phases, usually due to the presence of

specific components or conditions (12). LLPS, as a novel concept

elucidating the complex organizational rules of living cells, has been

shown to participate in forming various membraneless organelles

(MLOs), including stress granules, heterochromatin, and transport

channels within the nuclear pore complex (13–15). MLOs, also

referred to as liquid condensates or liquid droplets, play essential

roles in diverse biological processes and are vital for human well-

being (16, 17). Recent studies indicate that abnormal MLOs are

linked to various cancers by interfering with tumor suppression,

disrupting normal signaling pathways, hyperactivating oncogenes,

replication stress or impacting protein quality control mechanisms

(18, 19). For the development of CRC, many tumorigenesis in

relation to abnormal MLOs and LLPS were found recently. The
02
Gai2 mutant was associated with axin2 MLO dysfunction, affecting

b-catenin degradation (20). APC mutants can impair phase

separation capability, resulting in Wnt pathway hyperactivation

(21, 22). Therefore, exploring the role of MLOs in CRC represents a

promising avenue in the field of oncology treatment. These studies

will significantly improve the understanding of tumor pathogenesis,

aid in prognosis prediction, and support personalized

treatment selection.

In our study, we identified distinct subtypes according to the

MLO-related transcriptional profiles of CRC patient. The MLO-

related prognostic risk score (MPRS) was developed as a novel

prognostic signature, demonstrating strong predictive capabilities

for prognosis, tumor immune microenvironment (TIME) patterns,

immune checkpoint blockade (ICB) response, and chemotherapy

sensitivity selection. Ultimately, we identified NRG1 as the MPRS

component with the strongest LLPS potential and a potential link to

KRAS mutation, which prompted us to further investigate and

validate it as the most critical MLO-related gene (MRG) in CRC for

its biomarker properties. We further established NRG1’s significant

prognostic value in CRC and observed a specific downregulation of

its expression in CRC tissues. Intriguingly, we found that NRG1

silencing is mediated by promoter methylation and can be rescued

by treatment with 5-Aza-2-deoxycytidine (Aza). These findings

suggest that NRG1 may serve as a promising prognostic

biomarker and therapeutic for target CRC.
2 Methods

2.1 Study design workflow

The integrative research framework is schematically presented

in Figure 1. Initial transcriptomic integration of MRGs enabled

identification of differentially expressed prognostic genes in CRC

versus normal tissues. Subsequent consensus clustering stratified

CRC patients into molecularly defined MLO subtypes.

We developed a robust prognostic signature called MPRS

using LASSO regression, which was comprehensively validated

across multiple domains: clinical outcomes, pathological

characteristics, tumor ecotypes, genomic instability, TIME

profiles, immunotherapy efficacy, and chemosensitivity. Further
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investigation focused on NRG1, which was a pivotal prognostic

determinant identified through MPRS with high LLPS propensity.

Experimental validation confirmed NRG1 downregulation in CRC,

its association with adverse prognosis, and epigenetic silencing via

promoter hypermethylation.
2.2 Data curation and harmonization

Transcriptomic profiles, somatic mutation data, and clinical

annotations for CRC were retrieved from The Cancer Genome

Atlas (TCGA), encompassing paired tumor and adjacent normal

specimens. External validation cohorts were acquired from Gene

Expression Omnibus (GEO) repositories. Single-cell RNA

sequencing data originated from the Tumor Immune Single-cell

Hub (TISCH), while spatial transcriptomics derived from

CRC_WholeTranscriptomeAnalysis_10x. Proteomic datasets were

sourced from The Cancer Proteome Atlas (TCPA), with DNA

methylation data accessed via the SMART application. All

datasets underwent rigorous normalization to ensure cross-cohort

comparability (cohort characteristics detailed in Supplementary

Table S1).
2.3 Molecular subtyping and validation

Differential expression analysis of MRGs between CRC and

normal tissues was conducted using transcriptomic datasets from
Frontiers in Immunology 03
TCGA, employing log2 fold change (|log2FC| > 1) with statistical

significance (P < 0.05). Prognostic MRGs were identified by

univariate Cox regression with two-sided P < 0.05; genes with

positive (negative) coefficients were classified as risk (protective).

Intersectional analysis yielded prognostic MLO-related

differentially expressed genes (DEGs), which were subjected to

functional annotation using Metascape for Gene Ontology (GO)

terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways, with a significance threshold of P < 0.01 and a minimum

enrichment count of 3. Protein-protein interaction networks were

reconstructed using STRING (medium confidence score: 0.4) and

visualized via string-db.org. Genomic alterations—including

somatic mutations, copy number variations, and methylation

patterns—were interrogated using the R package Maftools and

GSCA database. Optimal patient clustering was determined by

ConsensusClusterPlus R package, where the inflection point of

the sum of squared errors (SSE) curve established cluster stability.

Subtype validity was confirmed through principal component

analysis (PCA) and Kaplan-Meier survival stratification.
2.4 Construction of an MLO-related
prognostic signature

Lasso regression was utilized to identify robust prognostic

MRGs. As a form of linear regression, Lasso regression

incorporates a regularization term referred to as the l penalty.

This l penalty induces sparsity in the model coefficients, causing
FIGURE 1

The integrative research framework.
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many of them to be zero, which was a property that aids in

pinpointing the most impactful features within high-dimensional

datasets. Based on l 1se, a six-MLO-gene MLO-related prognostic

signature (MPRS) was developed in the training dataset. The MPRS

was calculated as follows: MPRS = (-0.07488007 * CDC25C) +

(-0.037942695*NRG1) + (0.014292142 *DMPK) + (0.031397958

*TIGD1)+(0.078577812 * TIMP1)+(0.192689886*ATP2A1) Here,

“Expr” represents the expression levels of these six genes, and

“Coef” denotes their corresponding coefficients. Subsequently,

each individual in both the training and validation datasets was

assigned an MLO index. The Predictor Of Naturally Disordered

Regions (PONDR) algorithm was employed to assess the

localization and functional roles of these MLO-associated proteins

in LLPS. Patients in each dataset were divided into high-risk and

low-risk groups, and principal component analysis (PCA) was

performed to evaluate batch effects. Survival analysis was

performed using Kaplan-Meier curves with log-rank testing (P <

0.05) to evaluate prognostic significance. The predictive accuracy of

MPRS for overall survival (OS) was quantified via time-dependent

ROC curve analysis, with the area under the curve (AUC) calculated

at 1, 3, and 5 years to assess temporal performance.
2.5 Estimation of immune infiltration
statuses

Immune infiltration profiles of CRC patients were evaluated

using the ESTIMATE, CIBERSORT, and ssGSEA methods. The

ESTIMATE algorithm, executed through the R package “estimate,”

was used to calculate immune, stromal, and ESTIMATE scores for

CRC patients (23). The CIBERSORT algorithm, with 1,000

permutations, was applied to determine the composition of 22

immune cell types. Additionally, the ssGSEA algorithm quantified

the enrichment levels of 24 immune cell-related gene sets in

CRC samples.
2.6 Single-cell sequencing technology and
spatial transcriptomics

Single-cell RNA sequencing (scRNA-seq) data of CRC were

retrieved from the TISCH database (Supplementary Table S1).

Heatmaps illustrating gene expression profiles were constructed

using the pheatmap R package. Unsupervised clustering of single

cells was carried out using Seurat v4, which utilizes a graph-based

clustering approach. We selected the top 2,000 variable genes

using Seurat’s FindVariableFeatures (vst), performed PCA on the

scaled matrix, and used the top 20 PCs for downstream neighbor

graph construction and clustering. The FindClusters function was

used on the top 10–25 principal components, and cluster identities

were assigned using established cell-type marker genes. The

UMAP algorithm was used to visualize high-dimensional single-
Frontiers in Immunology 04
cell data in two dimensions. Moreover, AUCell scores were

calculated to quantify pathway activity heterogeneity across

individual cells.

For spatial transcriptomics analysis, CRC_WholeTranscriptome

Analysis_10x data in.h5 format and annotation results were

downloaded from 10xGenomics. An enrichment score matrix was

generated using the R package “Cottrazm,” and statistical significance

was assessed usingWilcoxon Rank Sum Tests. Deconvolution analysis,

combining spatial transcriptomics and single-cell data, was employed

to accurately evaluate cellular composition at each location on 10x

Visium slides. Using the get_enrichment_matrix and

enrichment_analysis functions from the Cottrazm package, an

enrichment scoring matrix was generated for further composition

analysis. For visualization, Seurat’s SpatialFeaturePlot was used to

display cell type enrichment scores. From the deconvolution results,

the predominant cell type in each microregion was identified and

visualized using Seurat’s SpatialDimPlot; SpatialFeaturePlot also

illustrated the expression of specific genes across microregions.
2.7 Profiling of tumor immune ecotypes
with Ecotyper

The EcoTyper machine learning platform (https://

ecotyper.stanford.edu/) was employed to characterize cell type-

specific states and multicellular communities. This computational

framework leverages machine learning algorithms to enable large-

scale identification of cell states and cellular ecosystems from bulk

gene expression datasets. The relative abundance of each cell type

was estimated based on the average abundance of its corresponding

specific cell states (24).
2.8 The impact of MPRS on standalone ICI
therapy groups

Data on copy number variations (CNVs), neoantigen load

(NEO), and somatic non-silent mutations in TCGA were retrieved

from UCSC Xena. The GISTIC 2.0 pipeline was used to analyze CNV

characteristics. The R package “maftools” (version 2.12.0) was applied

to visualize and compare tumor somatic mutation landscapes, as well

as to identify genes with significantly different mutation frequencies

between the two groups. Tumor Immune Dysfunction and Exclusion

(TIDE) integrates expression profiles of T-cell dysfunction and

exclusion in tumors with those of three cell types known to restrict

T-cell infiltration: cancer-associated fibroblasts (CAFs), myeloid-

derived suppressor cells (MDSCs), and M2 tumor-associated

macrophages (TAMs) (25). The TIDE algorithm (accessed online

at http://tide.dfci.harvard.edu/) was used to evaluate potential

responses to immune checkpoint inhibitor (ICI) therapy, with

input data as log2-transformed TPM-normalized RNA-seq

counts. The area under the receiver operating characteristic curve
frontiersin.o
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(AUC) was calculated to assess the performance of target genes in

predicting responses to immune checkpoint blockade (ICB), by

comparing them with established immune response biomarkers

such as tumor mutation burden (TMB), microsatellite instability

(MSI), CD274, CD8, interferon gamma (INFg), and TIDE. Three

independent immunotherapy cohorts were included in this study:

TCGA-COADREAD, GSE78220, and IMvigor210. Gene expression

profiles were converted to TPM format using the `limma` R

package to improve comparability, and the MPRS for each patient

was computed to examine its correlation with ICI therapy response.
2.9 Drug sensitivity analysis

Drug sensitivity data were acquired using the R package

“pRRophetic”. The 50% maximal inhibitory concentration (IC50)

values were used to assess the sensitivity of cells to Gemcitabine and

Etoposide. Additionally, the Genomics of Drug Sensitivity in

Cancer (GDSC) and Cancer Therapeutics Response Portal

(CTRP) databases were used to predict potential drugs associated

with prognostic MLO-related differentially expressed genes (DEGs).

For pharmacogenomic correlation with cetuximab. DepMap

colorectal cancer cell lines (n = 28) were queried for cetuximab

response from GDSC (AUC; higher AUC denotes lower sensitivity).

NRG1 promoter methylation was computed as the methylation

fraction averaged within 1 kb upstream of the TSS. Associations

were evaluated by two-sided Spearman correlation. Parameters

matched those used elsewhere in correlation analyses.
2.10 Prediction of intrinsically disordered
regions and LLPS

Amino acid sequences of target proteins were retrieved from the

UniProt database, and their disordered regions were analyzed using

the PONDR platform. PhaSePred serves as a centralized resource

for predicting both self-assembling and partner-dependent phase-

separating proteins. It integrates scores from multiple phase

separation-related prediction tools and provides proteome-level

quantiles for various features. We employed this tool to profile

phase separation propensity and extract valuable insights for

identifying candidate proteins. FuzDrop, a sequence-based

scoring method, predicts the likelihood of spontaneous LLPS in

proteins, offering insights into protein functional relationships and

deepening our understanding of such interactions. We utilized

FuzDrop to assess protein behavior in condensed phases. The

AlphaFold Protein Structure Database (AlphaFold DB), accessible

at https://alphafold.ebi.ac.uk/, is a comprehensive public resource

for accurate protein structure prediction (26, 27). To predict protein

structures, we input the UniProt accession numbers of target

proteins into this database, which was an AI system developed by

DeepMind that predicts 3D protein structures from amino acid

sequences. For proteins with multiple isoforms, canonical isoforms

were selected as candidate sequences.
Frontiers in Immunology 05
2.11 Quantification of NRG1-related
pathway activities via proteomics and
transcriptomics

Pathway enrichment analysis was performed on transcriptomic

data from GEO and TCGA using the clusterProfiler R package, with

mapping to known signaling pathways via KEGG and GO

databases. Proteomic data were obtained from The Cancer

Proteome Atlas (TCPA) projects. Correlation analysis was

conducted to identify prognosis-related proteins associated with

NRG1, using the criteria of p<0.05 and |Spearman’s R|>0.3. Reverse

phase protein array (RPPA) data from the TCPA database were

used to calculate pathway activity scores for 10 cancer-related

pathways in CRC samples from TCGA (28). These pathways,

included in the GSCA, are well-recognized for their association

with cancer. The pathway activity score is defined as the sum of

relative protein levels of all positive regulatory components minus

those of negative regulatory components within a specific pathway.

The GSVA score, which reflects the overall expression level of a

gene set, exhibits a positive correlation with such expression.
2.12 Cell lines and tissue specimens

Human colorectal cancer cell lines (LoVo, SW480, RKO,

HCT116) and the normal colon epithelial cell line NCM460 were

obtained from the American Type Culture Collection (ATCC,

Manassas, VA, USA). All cell lines were cultured in RPMI-1640

medium (Gibco BRL, Karlsruhe, Germany) supplemented with 10%

fetal bovine serum, maintained at 37 °C in a 5% CO2 incubator.

Immunohistochemical (IHC) staining was performed on human

CRC tissues and their corresponding adjacent non-tumor tissues,

which were collected from patients at Chongqing Beibei District

Traditional Chinese Medicine Hospital. This study was approved by

the Institutional Ethics Committee of Chongqing Beibei District

Traditional Chinese Medicine Hospital.
2.13 qRT-PCR

Total RNA was extracted from cells using the TRIzol kit

(Invitrogen). Quantitative real-time PCR (qRT-PCR) was carried

out in accordance with standard protocols (29). The primers used

for qRT-PCR are listed in Supplementary Table S2.
2.14 Immunohistochemistry

IHC staining was performed following established protocols on

human CRC tissues and their adjacent non-tumor tissues, using an

anti-NRG1 antibody (1:100, Immunoway, YT3054) (29). Detailed

information of the patients involved is provided in Supplementary

Table S3.
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2.15 DNA methylation and rescue
experiments

The MART (Shiny Methylation Analysis Resource Tool) App,

available at http://www.bioinfo-zs.com/smartapp, is a web-based

tool designed for analyzing DNA methylation patterns in human

cancers (30). In this study, NRG1 methylation levels were analyzed

using DNA methylation data via the SMART (Shiny Methylation

Analysis Resource Tool) App (http://www.bioinfo-zs). The

prognostic significance of NRG1 DNA methylation in CRC

patients was explored using SurvivalMeth (http://bio-

bigdata.hrbmu.edu.cn/survivalmeth/) (31). HCT116 and SW480

cells were treated with 10 mM Aza (Sigma-Aldrich, St. Louis, MO,

USA) for 72 hours, after which total RNA was extracted for qRT-

PCR analysis.
2.16 Statistical analysis

Spearman or Pearson correlation analyses were used to evaluate

the relationships between continuous variables. For normally

distributed variables, two-tailed t-tests or one-way ANOVA were

applied to assess significant quantitative differences between or

among groups, respectively. For non-normally distributed

variables, the Wilcoxon test was used to compare differences

between groups, while the Kruskal–Wallis test was employed for

comparisons among multiple groups. To control for multiple

testing, we applied the Benjamini–Hochberg method to control

the false discovery rate (FDR) in all gene-level analyses, including

differential expression, Cox regression, correlation, GSVA/ssGSEA

modules, and ORA (reporting FDR q-values). For small families of

≤10 comparisons (e.g., limited clinical covariates), Bonferroni

correction was used. For pathway-level RPPA panels, BH-FDR

correction was applied. All statistical analyses were performed

using R 4.1.2 and GraphPad Prism 9. Statistical significance was

defined as FDR q < 0.05 (or Bonferroni-adjusted P < 0.05 for small

families). Supplementary methods, tables, details of web tools, and

R packages are available in the Supplementary Material. Specific

information including versions, functions, access routes,

parameters, and DOI numbers is provided in Supplementary

Table S4.
3 Results

3.1 Differentially expressed and prognostic
MRGs

Transcriptome data for 3737 MRGs were retrieved from the

PhaSepDB database. A volcano plot revealed differential expression

of 722 identified MLO-related DEGs, with 434 upregulated and 294

downregulated in CRC samples compared to adjacent normal

tissues (Figure 2A). By intersecting these DEGs with prognostic

MRGs identified via univariate Cox regression analysis, a total of 70

prognostic MLO-related DEGs were obtained (Figures 2B, C).
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Metascape enrichment analysis results, presented in Figure 2D

highlights significant enrichment in terms including regulation of

cell cycle process, PID AP1 pathway, negative regulation of intrinsic

apoptotic signaling pathway, and negative regulation of protein

catabolic process. A protein-protein interaction (PPI) network

illustrated the complex regulatory relationships among these

prognostic MLO-related DEGs (Figure 2E). Supplementary Figure

S1A depicts the mutation profiles of prognostic MLO-related DEGs

in CRC patients. Methylation levels of genes such as TRIP6, DSN1,

POU2AF1, and EPHB2 showed a negative correlation with their

expression (FDR < 0.05, Supplementary Figure S1B). Additionally,

copy number variations (CNVs) of DSN1, CDCA2, GRINA, and

ATP8B1 were positively correlated with their expression (FDR <

0.05, Supplementary Figure S1C). A total of 70 genes exhibited

varying mutation frequencies in both READ and COAD samples

(Supplementary Figure S1D). Missense mutations were the most

prevalent, with single nucleotide polymorphisms (SNPs) occurring

more frequently than insertions (INS) or deletions (DEL). The most

frequently mutated genes were AHNAK2 and DNAH10,

accounting for 28% and 24% of all CRC patients, respectively

(Supplementary Figure S1E).
3.2 Identification of MLO related clusters in
CRC

Consensus clustering analysis was performed using 70

prognostic MLO-related DEGs to investigate the association

between MLOs and CRC subtypes. For clustering variables, k = 2

showed excellent stability, characterized by strong intragroup

correlations and weak intergroup correlations, leading to the

identification of two distinct clusters: MC1 and MC2 (Figures 2F–

H). Figure 2I visually presents the distinct survival probabilities

between the two clusters. PCA analysis confirmed that the two

subgroups could be reliably distinguished (Figure 2J). A heatmap

displayed the significantly different expression levels of the 70

prognostic MLO-related DEGs between the two groups

(Figure 2K), while Supplementary Figures S2A-D clearly showed

that the MC2 group had more mutations than the MC1 group.

Additionally, notable differences in TMB, microsatellite instability,

and neoantigen levels were observed between M1 and M2

(Supplementary Figures S2E-G). Taken together, these results

strongly confirm the existence of two distinct MLO-related

CRC subtypes.
3.3 Development and validation of the
MLO-related prognostic model

To assist clinicians in predicting outcomes for CRC patients, we

developed the MPRS prognostic model. To reduce overfitting, Lasso

regression was applied to the prognostic MLO-related DEGs

(Figure 3A). Using the optimal l value and the lowest partial

likelihood of deviance, the model was constructed with six genes and

their corresponding correlation coefficients (Figure 3B). The formula is
frontiersin.org
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FIGURE 2

Identification of MLO-related Subtypes in CRC via Consensus Clustering. (A) A volcano plot displays differentially expressed genes (DEGs) with P <
0.05 and |log2FC| > 1.5 between colorectal cancer (CRC) tissues and adjacent normal tissues in the TCGA cohort, genes shown meet FDR q < 0.05.
(B) A volcano plot of overall survival (OS)-related mRNAs in the TCGA dataset, where red indicates high-risk genes (Cox regression coefficient > 0)
and blue indicates low-risk genes (coefficient < 0); genes shown meet FDR q < 0.05 after BH correction. (C) A Venn diagram identifies 70 prognostic
MLO-related DEGs. (D) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. (E) A protein-protein
interaction (PPI) network of MLO-related DEGs. (F) A consensus map generated by non-negative matrix factorization (NMF) clustering. (G) A
consensus cumulative distribution function (CDF) curve. (H) A CDF delta area curve, which illustrates the difference in area between the CDF under
ki and the horizontal axis versus the CDF under ki + 1 and the horizontal axis. (I) Kaplan–Meier survival analysis showing significant differences in
survival probabilities across MLO subtypes. (J) A t-distributed stochastic neighbor embedding (tSNE) plot visualizing the expression profiles of 70
prognostic MLO-related DEGs, effectively distinguishing between MLO subtypes. (K) A heatmap displaying the expression levels of 70 prognostic
MLO-related DEGs across MLO subtypes.
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as follows: MPRS = (-0.07488007 * CDC25C) + (-0.037942695 *

NRG1) + (0.014292142 * DMPK) + (0.031397958 * TIGD1) +

(0.078577812 * TIMP1) + (0.192689886 * ATP2A1) (Figure 3C).

PONDR analysis showed that the proteins encoded by these genes

are distributed in p-bodies, nucleoli, nuclear bodies, and stress granules.

Among them, CDC25C and DMPK function as clients, while ATP2A1

acts as a regulator (Figure 3D). Figure 3E presents a distribution plot

highlighting significant differences in risk scores and model gene

expression levels between the two risk groups. Identical analyses

were conducted using the GSE39582 database (Figure 3F), where the

high-risk group showed worse overall survival than the low-risk group.

Kaplan-Meier survival analysis and PCA verified the significant

differences between the groups. Additionally, validation was

performed in six independent cohorts (TCGA_CRC, GSE17536,

GSE103479, GSE87211, GSE39582, GSE28722), confirming the

model’s robustness (Supplementary Figure S3). These results

demonstrated that the prognostic signature is accurate, independent,

and widely applicable.
3.4 Correlation of MPRS with cancer TIME
patterns and ecotypes

Given the growing recognition of MLOs’ potential role in

regulating TIME patterns and influencing immunotherapy

sensitivity (32, 33), we aimed to analyze TIME patterns across

different MLO clusters. The distribution of enrichment scores from

CIBERSORT and ssGSEA is presented in Figure 4A and

Supplementary Figure S4A, revealing significant differences in

both immune cell infiltration and immune functions among the

MLO clusters. Notably, M0 macrophages showed greater

infiltration in the high-risk group compared to the low-risk

group. Using the ESTIMATE algorithm to assess TIME

components in CRC patients, we found that the high-risk group

exhibited the highest immune, stromal, and ESTIMATE scores

relative to the low-risk group (Figure 4B). Traditional sequencing

averages signals across a cell population, masking cell heterogeneity.

Thus, we employed single-cell sequencing to capture heterogeneity

unobtainable from bulk sequencing. UMAP results clearly showed

distinct cell populations separated by their expression profiles

(Figures 4C, D). Figure 4E illustrates that the six hub genes are

primarily expressed in monocytes/macrophages, fibroblasts, mast

cells, plasma cells, myofibroblasts, endothelial cells, and malignant

cells. Additionally, we used the EcoTyper algorithm to identify and

validate cell states and ecotypes. Monocytes/macrophages in state

09 showed a significant positive correlation with risk scores, while

those in state 08 were negatively correlated (Figure 4F). Spatial

transcriptomic analysis was performed on tissue specimens

(Supplementary Figure S6A). After deconvolution, the cellular

composition at each spot and spatial localization of all cell types

are presented in Supplementary Figures S6B, C, revealing significant

macrophage infiltration at the tumor-stroma junction. EcoTyper

showed that risk scores were most closely associated with CE7 status

(Figure 4G). Integrating known ligand-receptor interactions of CE7,

potential cellular communication networks are shown in Figure 4H.
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Collectively, our comprehensive analysis demonstrates that MPRS

is associated with distinct TIME patterns in CRC, with high-risk

groups exhibiting enhanced immune cell infiltration and unique

cellular ecotypes.
3.5 The significance of MPRS in forecasting
the efficacy of ICI treatment

We compared TIDE, TMB, MSI, and NEO scores across

different risk groups, revealing that patients with high-risk scores

had significantly higher levels of these scores than those with low-

risk scores (Figures 5A-D, p<0.01). For TIDE, the high-risk group

showed a higher dysfunction score, while no significant difference

was observed in the exclusion score between the two groups,

suggesting that CRC immune evasion may be associated with

CD8+ T cell dysfunction (Figure 5E). To validate the utility of the

risk score in predicting survival and immunotherapy response, we

conducted separate analyses in two immunotherapy cohorts.

Results from these cohorts indicated that patients with high-risk

scores had poorer responses to immunotherapy compared to the

low-risk group (Figures 5F–I). We also benchmarked MPRS against

nine established biomarkers: across 25 immunotherapy cohorts,

MPRS achieved an AUC > 0.5 in 11 cohorts, with the highest

predictive performance in the Zhao2019-PD1-Glioblastoma-pre

cohort (AUC = 0.71) (Figure 5J). Additionally, the heatmap

suggested that NRG1 and DMPK may contribute to CD8+ T cell

dysfunction (Figure 5K). These findings underscore the value of

MPRS in predicting immunotherapy outcomes for CRC patients.
3.6 Evaluation of the chemotherapy
response and candidate compounds for
sensitization by MLO related risk score

A volcano plot illustrating the sensitivity of CRC to

chemotherapeutic drugs is presented in Figure 6A. The IC50 values

of PD.173074, Nilotinib, AMG.706, and PLX4720 showed a negative

correlation with MPRS, indicating their potential efficacy in patients

with high MPRS (Figure 6B). 5-fluorouracil (5-Fu) and Irinotecan

were selected to assess drug sensitivity in CRC patients across

different risk scores. Results revealed higher IC50 values for both

drugs in the high-risk group, suggesting that these two classical anti-

tumor agents are more effective in patients with low MPRS

(Figure 6C). The TIDE algorithm was used to evaluate the risk

stratification of MPRS for the combination of two chemotherapeutic

drugs with immunotherapy. We found that in patients with low

MPRS, responders showed increased sensitivity to 5-fluorouracil but

increased resistance to irinotecan. Thus, low MPRS indicated a

potential beneficiary population for 5-fluorouracil combined with

ICB therapy (Figure 6D). Furthermore, several potentially effective

drugs for chemosensitization were identified through GDSC and

CTRP analyses (Figures 6E, F). Collectively, these findings

demonstrate that CRC patients with higher MPRS have reduced

sensitivity to 5-fluorouracil and Irinotecan, whereas lower MPRS is
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FIGURE 3

Development and Validation of the MLO-Associated Prognostic Model. (A) LASSO regression analysis of 70 prognostic MLO-related DEGs. (B) Cross-
validation for selecting optimal genes, error bars = mean ± 95% CI across 10-fold cross-validation repeats. (C) LASSO coefficients for 6 selected
MLO-related DEGs, circle size encodes absolute LASSO coefficient magnitude. (D, E) A mulberry diagram of 6 selected MLO-related DEGs/long
non-coding RNAs (LRGs), accompanied by Kaplan–Meier survival analysis (OS), time-dependent ROC curves, and an overview of LLPS-related risk
scores in the TCGA-COADREAD cohort. (F) Kaplan–Meier analysis for OS, time-dependent ROC curves, and summary plots of LLPS-related risk
scores in the GSE39582 cohort.
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FIGURE 4

Association of MPRS with Immune Cell Infiltration, Single-Cell Profiles, and Ecotype Landscape in CRC. (A) Differences in the proportions of
immune-infiltrating cells as determined by CIBERSORT. (B) ESTIMATE scores across subgroups. (C) A UMAP plot of single cells from CRC samples.
(D) Expression of model genes in each cell type on the UMAP plot. (E) AUCell scores of different cell clusters. (F, G) Correlation between risk scores
and cell ecotypes. (H) A Sankey diagram showing carcinoma ecotypes and cell states identified by the EcoTyper algorithm. Statistical two-group
comparisons by Wilcoxon rank-sum (non-normal) or Student’s t (normality by Shapiro–Wilk) with Bonferroni adjustment where applicable, *p < 0.05,
**p < 0.01, ***p < 0.001.
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FIGURE 5

MPRS as a Novel Indicator for Immunotherapy Response. (A) Levels of TIDE scores across different MPRS groups. (B) Levels of TMB scores across
different MPRS groups. (C) Levels of MSI scores across different MPRS groups. (D) Levels of neoantigen scores across different MPRS groups. (E) The
enrichment scores of myeloid-derived suppressor cells (MDSC), cancer-associated fibroblasts (CAF), M2 tumor-associated macrophages (M2), T-cell
exclusion, T-cell dysfunction, and TIDE between different MPRS groups. (F, H) Comparison of MPRS levels between subgroups with varying
responses to anti-PD-L1 immunotherapy in the TCGA-COADREAD and IMvigor210 cohorts. (G, I) ROC curve illustrating the performance of the
MPRS in predicting response to immunotherapy in the TCGA-COADREAD and IMvigor210 cohorts. (J) Bar plot displaying the AUC of MPRS and nine
established immune response biomarkers across 25 immunotherapy cohorts. (K) A heatmap displaying T-cell dysfunction values, Z-scores, and
expression levels of 6 prognostic MLO-related DEGs. Statistical two-group comparisons by Wilcoxon rank-sum (non-normal) or Student’s t
(normality by Shapiro–Wilk) with Bonferroni adjustment where applicable, Spearman’s correlation with BH-FDR correction. *p < 0.05, **p < 0.01,
***p < 0.001.
Frontiers in Immunology frontiersin.org11

https://doi.org/10.3389/fimmu.2025.1678096
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cheng et al. 10.3389/fimmu.2025.1678096
associated with greater drug sensitivity, highlighting potential

therapeutic compounds for CRC treatment.
3.7 Expression and phase separation
probability of MRPS genes

We validated the transcriptional levels of the six MPRS-related

genes in both human colon cancer cell lines and normal colon

epithelial cell lines. qRT-PCR analysis showed that the mRNA
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expression levels of TIMP1, CDC25C, ATP2A1, and TIGD1 were

upregulated in cancer cell lines compared to normal cell lines,

whereas NRG1 and DMPK exhibited reduced expression in cancer

cell lines (Figure 7A). Using the PONDR tool, we detected high-

scoring disordered regions in the proteins encoded by these six

genes, suggesting their potential to undergo phase separation

(Figure 7B). FuzDrop analysis further confirmed the phase

separation propensity of these proteins, with NRG1 displaying the

highest tendency (Figure 7C). The protein structure of NRG1,

retrieved from the AlphaFold DB, revealed extensive IDRs, which
FIGURE 6

Association of MPRS with Chemotherapy Sensitivity and Candidate Compounds in CRC. (A) A volcano plot showing the sensitivity of CRC to
chemotherapeutic drugs. (B) IC50 values of four chemotherapeutic drugs: PD.173074, Nilotinib, AMG.706, and PLX4720. (C) IC50 values of 5-
fluorouracil and Irinotecan predicted by the pRRophetic algorithm in high- and low-MPRS groups. (D) Predicted IC50 values of 5-fluorouracil and
Irinotecan in the low-MPRS group via the TIDE algorithm. (E, F) Drug sensitivity of selected genes based on CTRP analyses. (F) Drug sensitivity of
selected genes based on GDSC analyses. Statistical two-group comparisons by Wilcoxon rank-sum (non-normal) or Student’s t (normality by
Shapiro–Wilk) with Bonferroni adjustment where applicable, Spearman’s correlation with BH-FDR correction. *p < 0.05, **p < 0.01, ***p < 0.001.
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further supports its strong potential for LLPS (Figure 8A). In the

TCGA CRC cohort (n=514), KRAS mutation status showed no

significant association with overall survival (P = 0.72)

(Supplementary Figure S5A). However, KRAS mutant CRC

patients exhibited distinct MPRS gene expression: NRG1 was

downregulated (P<0.05) and DMPK upregulated (P<0.05) versus

wild-type (Supplementary Figure S5C). KRAS mutant CRC patients

also had higher MPRS scores (P<0.05) and elevated stress granule

activity by ssGSEA (P<0.05) (Supplementary Figure S5B),

indicating KRAS may driven MLO and SG dysregulation. Given

that KRAS mutation modulates NRG1 expression while influencing

MPRS and SG activity, NRG1 was further prioritized as the key

MLO-related gene in CRC for further biomarker validation.
3.8 NRG1 protein influenced on
progression and mediated the pathway
activities via phase separation in CRC

Building on the identification of NRG1 as the most critical

MPRS gene, we performed a comprehensive analysis of its clinical

and pathological relevance in CRC. Our results revealed that NRG1

expression is significantly lower in tumor tissues compared to

normal tissues in TCGA, GPL570_CRC and GPL96_CRC cohort

(Figures 8B-E). Kaplan-Meier (K-M) survival curves showed that

patients with high NRG1 expression had better disease-specific

survival (DSS) and progression-free interval (PFI) in the TCGA

cohort (Figure 8F), with similar trends observed in three additional

independent cohorts (Supplementary Figure S4B). Moreover, we

performed IHC assays on CRC tissue samples from 7 patients

(containing tumor and adjacent normal tissue), we observed

significantly down-regulated expression levels of the NRG1

protein in colorectal tumor tissues compared with adjacent

benign tissues, consistent with our bioinformatic findings

(Figures 8G, H; Supplementary Figures S7A-F). An over-

representation analysis was conducted on genes associated with

NRG1 (P<0.05), identifying 50 significantly enriched terms with

FDR < 0.05 (Figure 9A). Key enriched terms included neuroactive

ligand-receptor interaction, spliceosome, ribosome, Alzheimer’s

disease, Huntington’s disease, oxidative phosphorylation, and

olfactory transduction. Additionally, most genes were enriched in

categories such as folding, sorting and degradation; infectious

diseases (bacterial); neurodegenerative diseases; immune system;

and nervous system (Figure 9A). Subsequently, univariate Cox

regression analysis was used to evaluate the association between

NRG1 and 223 proteins from the TCPA database. A volcano plot

showed 27 proteins positively correlated and 16 proteins negatively

correlated with NRG1. A heatmap further revealed that tumor-

suppressive proteins (FOXO3A, DIRAS3, cleaved PARP, SMAD4,

CD20, and P53) were positively correlated with NRG1, while

oncogenic proteins (YB1, PKCbII, HER2, b-catenin, GSK3, and
AKT) were negatively correlated with NRG1. This suggested that

NRG1 exerts a protective role in CRC (Figure 9B). Pathway analysis

indicated that NRG1 promotes apoptosis and inhibits oncogenic

pathways such as mTOR and PI3K/AKT (Figure 9C). Collectively,
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these findings support that NRG1 functions as a tumor suppressor

in CRC, where low expression is associated with poor prognosis and

high expression correlates with improved survival.
3.9 Methylation of NRG1 in CRC

We explored the relationship between NRG1 methylation and

its expression levels to clarify the mechanism underlying its reduced

expression in CRC tissues. Using the SMART App, analysis via this

platform showed that NRG1 methylation levels were significantly

higher in CRC tissues than in adjacent normal colorectal tissues

(Figure 10A). SurvivalMeth is a comprehensive platform for

analyzing the prognostic significance of DNA methylation in

cancer, which improves research efficiency by reducing

redundancy. Using this tool, we investigated DNA methylation-

related functional elements and found that 17 CpG sites in both the

promoter and non-promoter regions of NRG1 had higher

methylation b values in tumor samples compared to normal

samples (Figure 10B). NRG1 mRNA expression was significantly

negatively correlated with the methylation levels of the following

probes: cg18387156, cg08776832, cg04773818, cg04555373,

cg24946597, cg03430846, cg00614182, cg12166610, cg05387189,

cg19162158, cg25230074, cg17457560, cg08695336, cg22865798,

cg14488905, and cg08032135 (Figure 10C). Given the strong

correlation between NRG1 promoter methylation and its

expression, we further examined the effect of DNA methylation

on NRG1 gene expression after bioinformatic analyses. Treatment

with the DNA methyltransferase inhibitor Aza led to an

upregulation of NRG1 expression (Figure 10D). Our findings

suggest that changes in DNA methylation contribute to the

downregulation of NRG1, and its expression increases following

treatment with the DNA methyltransferase inhibitor Aza. These

observations support NRG1 promoter methylation as a regulatory

mechanism of its downregulation and nominate NRG1

demethylation as a candidate strategy that requires prospective

validation and careful patient selection. To further evaluate the

therapeutic implications, we analyzed DepMap CRC cell lines (n =

28) and found that NRG1 promoter methylation was inversely

correlated with cetuximab AUC (Spearman R = - 0.527, P = 0.004)

(Figure 10E), implying that NRG1 de-methylation/up-regulation

may attenuate cetuximab activity via ERBB2–ERBB3 bypass under

EGFR blockade.
4 Discussion

Mounting evidence suggests that membraneless organelles

(MLOs) are pivotal to tumorigenesis and progression (34). Our

hypothesis was that in-depth exploration of MLO-related

biomarkers could significantly facilitate the identification of new

tumor subtypes, as well as the prediction of prognosis and responses

to immunotherapy. This study focused exclusively on colorectal

cancer (CRC) patients. Through consensus clustering analysis of

expression profiles from 70 prognostic MLO-related DEGs, we
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identified two distinct MLO subtypes in CRC patients. These

subtypes exhibited significant differences in prognosis, genomic

alterations, TIME patterns, and responses to immunotherapy.

Using LASSO Cox regression, we constructed a prognostic

signature (MPRS) to enable personalized comprehensive
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evaluation. Findings revealed that MPRS correlates with

prognosis, genomic alterations, and TIME patterns in CRC

patients, and demonstrated robust predictive capacity for

responses to immune checkpoint inhibitor (ICI) therapy. Notably,

we conducted detailed investigations into NRG1, one of the six core
FIGURE 7

Expression in Cell Lines and LLPS Probability of MPRS Model Genes. (A) mRNA expression levels of model genes in normal and CRC cell lines
assessed by quantitative PCR. (B) Identification of intrinsically disordered regions (IDRs) in model genes via PONDR. (C) Evaluation of phase
separation potential of model genes via FuzDrop. Statistical comparisons performed using Wilcoxon or T tests with Bonferroni adjustment where
applicable. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 8

Downregulated NRG1 Expression in CRC Correlates with Poor Prognosis. (A) AlphaFold DB-predicted structural model of NRG1, colors indicate
pLDDT (model confidence) and blue indicates the IDR region with low-pLDDT predicted by FuzDrop. (B, C) NRG1 expression levels in normal versus
tumor tissues in TCGA datasets. (D) NRG1 expression levels in normal versus tumor tissues in GPL570 datasets. (E) NRG1 expression levels in normal
versus tumor tissues in GPL96-CRC datasets. (F) Kaplan–Meier estimates of OS, DSS, and PFI for patients with different NRG1 expression levels in
TCGA. (G) Immunohistochemical assay of NRG1 in CRC tissues and adjacent normal tissues (magnification ×100 and ×400). (H) Quantification of
IHC images of CRC samples from 7 patients. Statistical two-group comparisons by Wilcoxon rank-sum (non-normal) or Student’s t (normality by
Shapiro–Wilk) with Bonferroni adjustment where applicable. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 9

Integrating Transcriptomics and Proteomics to Unravel NRG1 Signaling. (A) A summary plot of over-representation analyses (ORA). (B) Proteins with
expression significantly correlated with NRG1 protein levels in CRC (Spearman’s correlation coefficient > 0.3 or < -0.3, p < 0.05). (C) Pathway
correlation analysis revealing relationships between pathway activity and NRG1 expression in the TCGA cohort. Spearman’s correlation with BH-FDR
correction. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 10

Promoter Methylation of NRG1 in CRC. (A) Methylation b-values of NRG1 across different tumor types and adjacent non-cancerous tissues in TCGA
datasets. (B) Methylation levels of various probes in breast tumor and normal groups. (C) Analysis of the relationship between NRG1 expression and
methylation sites (Spearman’s correlation coefficient, r). (D) NRG1 expression assessed by RT-PCR in HCT116 and SW480 cells after Aza treatment.
Data are presented as mean ± SD from three independent experiments; significance levels: (E) Correlation between NRG1 promoter methylation (1
kb upstream of TSS) and cetuximab AUC (GDSC) in CRC cell lines (higher AUC = lower sensitivity). Statistical two-group comparisons by Wilcoxon
rank-sum (non-normal) or Student’s t (normality by Shapiro–Wilk) with Bonferroni adjustment where applicable, Spearman’s correlation with BH-
FDR correction. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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genes in the signature. Our results indicated that NRG1 has a

marked propensity for phase separation and may influence CRC

initiation and progression through methylation, thus establishing it

as a novel methylation biomarker with predicted phase-

separation propensity.

The development of distinct TIME patterns is a highly complex

process involving multiple factors. Although progress has been

made in certain areas, our overall understanding remains limited,

requiring further research and innovative models to reveal its

specific mechanisms and roles in cancer progression. Recent

studies on MLOs have shed new light on their roles in TIME.

Stress granules (SGs), a type of MLO formed under cellular stress,

contribute to key cancer hallmarks such as proliferation, invasion,

migration, apoptosis evasion, metabolic reprogramming, and

immune evasion (35). Additionally, several MLOs in T cell

transmembrane signaling receptors may cluster via phase

separation to enhance signal transduction and regulate tumor

immune responses (36). Given the critical role of MLOs in the

cancer TIME, we reasoned that developing a prognostic signature to

quantify TIME patterns in CRC patients could support personalized

assessment. The constructed MPRS showed strong correlations

with TIME patterns, key genomic alterations, prognosis, and ICI

therapy responses in CRC patients. Specifically, the high MPRS

group exhibited elevated immune, stromal, and ESTIMATE scores,

indicating a higher abundance of non-tumor components, along

with increased infiltration of tumor-infiltrating lymphocytes.

Meanwhile, MPRS was significantly positively correlated with

TMB, MSI, and NEO, further confirming higher immune

infiltration in high-MPRS tumors. However, higher MPRS was

associated with worse prognosis, which was explained by TIDE

analysis: MPRS was significantly positively correlated with TIDE

score. Although MPRS had no effect on CD8+ T cell exclusion,

high-MPRS tumors showed significantly higher CD8+ T cell

dysfunction. Therefore, high-MPRS phenotype was accompanied

by a paradoxical immune landscape: despite “hot”, immune-

infiltrated microenvironment features, it was characterized by

CD8+ T cell dysfunction and abundant immunosuppressive cells

such as regulatory T cells. What’s more, this immune-inflamed

phenotype among high MPRS groups suggested a potential

favorable response to immunotherapy, findings validated by

subsequent predictions of ICI therapy responses. In conclusion,

these results highlight the critical role of MLO-related subtypes in

distinguishing TIME patterns and identifying patients likely to

benefit from ICI therapy. Further research is warranted to clarify

the precise mechanisms by which MLO-related processes shape

specific TIME patterns.

Currently, research on membraneless organelles is still in its

infancy, with a limited number of identified organelles and

immature validation methods. Traditional hypothesis testing

methods require screening one by one, consuming a large amount

of manpower and time. In our study, we successfully identified six

core MLO-related genes in CRC using multi-omics and AI

technologies, with particular focus on the most promising

Neuregulin 1 (NRG1). NRG1, a pivotal member of the epidermal

growth factor (EGF) family, holds significant importance in cellular
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signaling pathways. Under normal physiological circumstances, the

NRG1 protein undergoes proteolytic cleavage, resulting in the

release of soluble NRG1 fragments that contain EGF-like

domains. These soluble molecules participate in paracrine

signaling by binding to ErbB3 or ErbB4 receptor subunits at a

distance, which in turn induces the phosphorylation of their

intrinsic kinase domains (37). Clinical investigations have shown

that the NRG1 protein acts as an inhibitor in the progression of

CRC (9–11). Nevertheless, the exact mechanisms behind its

protective effects in CRC are not yet fully understood. Our

research confirmed that low expression of NRG1 in CRC is

significantly associated with an unfavorable patient prognosis.

Additionally, we discovered that the NRG1 protein exhibits

extensive IDRs and predicted phase-separation propensity, has a

strong tendency to undergo phase separation, which may be a key

mechanism influencing the progression of CRC. Further studies are

needed to explore in detail how the LLPS processes involved in

NRG1 assembly contribute to tumorigenesis and development.

In this study, we investigated the difference between KRAS-

mutant and wild-type CRC patients. Prior studies have shown that

oncogenic KRAS signaling enhances tumor cell fitness by

promoting stress granule biogenesis (38). Our results are

consistent with this model and further suggest a link to MLO

dysregulation. Specifically, KRAS-mutant tumors exhibited

decreased NRG1 expression and hyperactive SG formation,

indicating that oncogenic mutations may intersect with

subcellular organizational dynamics to sculpt tumor behavior.

The translational relevance of NRG1 is strengthened as both a

biomarker for risk stratification and a target for precision

interventions in KRAS-mutant populations.

Abnormal DNA methylation plays a vital role in the initiation

and progression of tumors. Our research suggests that methylation

leads to the inhibition of NRG1 gene transcription in CRC.

Azacitidine, a pioneering hypomethylating agent, is essential in

the treatment of myelodysplastic syndromes and acute myeloid

leukemia. Although targeting DNA methylat ion with

hypomethylating agents has made significant progress in the

treatment of various myeloid neoplasms (39, 40), its effectiveness

in other solid tumors remains unclear. our data suggest that

demethylation (e.g., with Aza) can upregulate NRG1 in CRC cell

lines. However, our findings suggest a context-dependent effect of

NRG1. Although reduced NRG1 expression is associated with poor

prognosis at baseline, NRG1 upregulation under EGFR blockade

may activate ERBB2–ERBB3 bypass signaling, thereby diminishing

cetuximab efficacy. Therefore, NRG1 de-methylation should not be

generalized as a therapeutic strategy for all patients. Instead, its

application may be more suitable in non-anti-EGFR settings (e.g.,

RAS-mutant CRC, where EGFR antibodies are not used) or in

combination with HER3/pan-ERBB inhibition. Furthermore,

NRG1 methylation or expression could be developed as a

biomarker to stratify patients for anti-EGFR therapy. Importantly,

these conclusions are based on pharmacogenomic correlations in

cell lines and require prospective validation in EGFR-dependent

CRC models and clinical cohorts to stratify cetuximab use or

rational combinations. Hence, NRG1 methylation/expression may
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serve as a biomarker to stratify anti-EGFR use and to nominate

combinations with HER3/pan-ERBB inhibition.

This study presents several limitations that merit consideration.

Firstly, the analyses were based on retrospective data from public

databases; using prospective multi-center cohorts would lead to

more reliable results. Secondly, although bioinformatics analyses

provide valuable insights, experimental evidence is necessary to

achieve a comprehensive understanding of molecular mechanisms,

the anti-EGFR inference is pharmacogenomic and associative

(DepMap) and requires perturbational validation in EGFR-

dependent CRC models (NRG1 gain/loss ± HER3/pan-ERBB

inhibition). Third, our LLPS-related analyses relied entirely on

predictive algorithms without direct imaging or perturbation

assays. Functional validation, including live-cell condensate

imaging, FRAP assays, and stress-induced NRG1 perturbations,

will be necessary to establish whether NRG1 indeed forms

functional condensates in CRC.

In conclusion, our study proposed the MPRS prognostic

signature for personalized comprehensive assessment. Compared

with previous classifications of CRC patients, our MLO subtyping

has advantages in revealing multi-dimensional heterogeneities,

especially in terms of prognosis, genomic alterations, TIME

patterns, and notably, responses to immunotherapy. Our study

identified NRG1 as a methylation-linked biomarker with predicted

phase-separation propensity in colorectal cancer. Future research

can further verify and explore the phase separation and methylation

characteristics of NRG1, providing new targets and therapeutic

strategies for the targeted therapy of CRC.
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Glossary

Aza 5-Aza-2-deoxycytidine
Frontiers in Immunol
MLOs membraneless organelles
LLPS liquid–liquid phase separation
CRC colorectal cancer
MPRS MLO-related prognostic risk score
DEGs differentially expressed genes
TCGA The Cancer Genome Atlas
GEO Gene Expression Omnibus
TISCH Tumor Immune Single-cell Hub
TCPA The Cancer Proteome Atlas
qRT-PCR quantitative real-time PCR
IHC immunohistochemistry
SMART Shiny Methylation Analysis Resource Tool
OS overall survival
DSS disease-specific survival
PFI progression-free interval
KEGG Kyoto Encyclopedia of Genes and Genomes
GO Gene Ontology
PPI protein-protein interaction
LASSO Least Absolute Shrinkage and Selection Operator
PONDR Predictor Of Naturally Disordered Regions
FuzDrop a sequence-based scoring method for predicting spontaneous

liquid-liquid phase separation
AlphaFold DB AlphaFold Protein Structure Database
CIBERSORT Cell-type Identification By Estimating Relative Subsets Of

RNA Transcripts
ssGSEA single-sample gene set enrichment analysis
UMAP Uniform Manifold Approximation and Projection
AUCell Area Under the Curve for cellular enrichment
ogy 21
TIDE Tumor Immune Dysfunction and Exclusion
TMB tumor mutation burden
MSI microsatellite instability
NEO neoantigen
ICI immune checkpoint inhibitor
ICB immune checkpoint blockade
IC50 half maximal inhibitory concentration
GDSC Genomics of Drug Sensitivity in Cancer
CTRP Cancer Therapeutics Response Portal
IDRs intrinsically disordered regions
SNPs single nucleotide polymorphisms
INS insertions
DEL deletions
COAD colon adenocarcinoma
READ rectal adenocarcinoma
GSVA Gene Set Variation Analysis
RPPA reverse phase protein array
AUC area under the curve
M0/M2 macrophage subsets (M0, M2)
MC1/MC2 MLO-related clusters 1/2
CNVs copy number variations
HR hazard ratio
FDR false discovery rate
SSE sum of squared errors
tSNE t-distributed stochastic neighbor embedding
PCA principal component analysis
GSCA Gene Set Cancer Analysis
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1678096
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Membraneless organelles-based integrative analysis constructs an immune-related prognostic signature and identifies NRG1 as a novel methylation biomarker in colorectal cancer
	1 Introduction
	2 Methods
	2.1 Study design workflow
	2.2 Data curation and harmonization
	2.3 Molecular subtyping and validation
	2.4 Construction of an MLO-related prognostic signature
	2.5 Estimation of immune infiltration statuses
	2.6 Single-cell sequencing technology and spatial transcriptomics
	2.7 Profiling of tumor immune ecotypes with Ecotyper
	2.8 The impact of MPRS on standalone ICI therapy groups
	2.9 Drug sensitivity analysis
	2.10 Prediction of intrinsically disordered regions and LLPS
	2.11 Quantification of NRG1-related pathway activities via proteomics and transcriptomics
	2.12 Cell lines and tissue specimens
	2.13 qRT-PCR
	2.14 Immunohistochemistry
	2.15 DNA methylation and rescue experiments
	2.16 Statistical analysis

	3 Results
	3.1 Differentially expressed and prognostic MRGs
	3.2 Identification of MLO related clusters in CRC
	3.3 Development and validation of the MLO-related prognostic model
	3.4 Correlation of MPRS with cancer TIME patterns and ecotypes
	3.5 The significance of MPRS in forecasting the efficacy of ICI treatment
	3.6 Evaluation of the chemotherapy response and candidate compounds for sensitization by MLO related risk score
	3.7 Expression and phase separation probability of MRPS genes
	3.8 NRG1 protein influenced on progression and mediated the pathway activities via phase separation in CRC
	3.9 Methylation of NRG1 in CRC

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References
	Glossary


