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Immune-related prognostic
signature and identifies NRGL1 as
a novel methylation biomarker in
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Background: The dysfunction of membraneless organelles (MLOs) has been
implicated in tumorigenesis and progression by aberrant liquid—liquid phase
separation (LLPS). However, the role of MLOs in the prognosis and tumor
immune microenvironment (TIME) of colorectal cancer (CRC) remains unclear.
Method: We integrated transcriptomic data of MLO-related genes to identify
distinct CRC subtypes and constructed a prognostic risk score termed MPRS.
Then, we systematically demonstrated the characteristics of MPRS based on
multi-omics analyses. We further assessed NRG1's LLPS possibility, prognostic
significance, and its correlation with methylation through comprehensive
analysis and in vitro experiment.

Results: A prognostic signature called MPRS associated with prognosis, tumor
ecotypes, genomic alterations, TIME patterns, immunotherapy responses,
chemotherapy sensitivity in CRC patients. NRG1, identified as the most
important MPRS gene with high predicted LLPS propensity—was significantly
downregulated in CRC tissues and correlated with prognosis. Promoter
methylation was found to be a crucial mechanism underlying NRG1
downregulation, which could be rescued by 5-Aza-2-deoxycytidine (Aza)
treatment. The gqRT-PCR, IHC and Aza treatment were utilized for in
vitro validation.
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Conclusion: Our integrated multi-omics analysis constructed the MPRS model
to delineate CRC tumor ecology and identified NRG1 as a methylation biomarker
with predicted phase-separation propensity, with potential therapeutic
implications that warrant prospective validation.

colorectal cancer, Nrgl, liquid-liquid phase separation, prognosis, methylation,
membraneless organelle

1 Introduction

Colorectal cancer (CRC), a prevalent cancer type, ranks as the
third leading cause of death worldwide, claiming over 600,000 lives
each year (1, 2). Furthermore, the notable variability in patient
outcomes and treatment responses restricts the universal
applicability of standard therapies. Recent breakthroughs, such as
the work by Federica Papaccio and colleagues, have illuminated the
molecular landscapes of advanced CRC characterized by
chromosomal instability (CIN) (3). Concurrently, emerging
evidence highlights the critical role of stress granules (SGs) in
CRC pathogenesis (4). Despite these advances, significant gaps
remain in understanding how subcellular organizational dynamics
link to tumor ecology and clinical outcomes, significantly hindering
the development of effective treatment strategies. For instance,
Neuregulin-1 (NRG1), a growth factor, has been shown to
influence cell survival, proliferation, migration, and differentiation
by activating the epidermal growth factor receptor (EGFR) and its
downstream pathways (5, 6). In CRC, overactivation of EGFR is
often associated with poorer prognosis (7, 8); however, existing
studies have demonstrated that high NRGI expression in CRC
patients correlates with better prognosis (9-11). The emergence of
such contradictions necessitates exploring novel role of NRG1 via
multi-omics landscape and cellular models to elucidate
CRC pathogenesis.

Liquid-liquid phase separation (LLPS) refers to a phenomenon
in which a homogeneous liquid solution spontaneously separates
into two distinct liquid phases, usually due to the presence of
specific components or conditions (12). LLPS, as a novel concept
elucidating the complex organizational rules of living cells, has been
shown to participate in forming various membraneless organelles
(MLOs), including stress granules, heterochromatin, and transport
channels within the nuclear pore complex (13-15). MLOs, also
referred to as liquid condensates or liquid droplets, play essential
roles in diverse biological processes and are vital for human well-
being (16, 17). Recent studies indicate that abnormal MLOs are
linked to various cancers by interfering with tumor suppression,
disrupting normal signaling pathways, hyperactivating oncogenes,
replication stress or impacting protein quality control mechanisms
(18, 19). For the development of CRC, many tumorigenesis in
relation to abnormal MLOs and LLPS were found recently. The
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Goi2 mutant was associated with axin2 MLO dysfunction, affecting
B-catenin degradation (20). APC mutants can impair phase
separation capability, resulting in Wnt pathway hyperactivation
(21, 22). Therefore, exploring the role of MLOs in CRC represents a
promising avenue in the field of oncology treatment. These studies
will significantly improve the understanding of tumor pathogenesis,
aid in prognosis prediction, and support personalized
treatment selection.

In our study, we identified distinct subtypes according to the
MLO-related transcriptional profiles of CRC patient. The MLO-
related prognostic risk score (MPRS) was developed as a novel
prognostic signature, demonstrating strong predictive capabilities
for prognosis, tumor immune microenvironment (TIME) patterns,
immune checkpoint blockade (ICB) response, and chemotherapy
sensitivity selection. Ultimately, we identified NRG1 as the MPRS
component with the strongest LLPS potential and a potential link to
KRAS mutation, which prompted us to further investigate and
validate it as the most critical MLO-related gene (MRG) in CRC for
its biomarker properties. We further established NRG1’s significant
prognostic value in CRC and observed a specific downregulation of
its expression in CRC tissues. Intriguingly, we found that NRG1
silencing is mediated by promoter methylation and can be rescued
by treatment with 5-Aza-2-deoxycytidine (Aza). These findings
suggest that NRG1 may serve as a promising prognostic
biomarker and therapeutic for target CRC.

2 Methods
2.1 Study design workflow

The integrative research framework is schematically presented
in Figure 1. Initial transcriptomic integration of MRGs enabled
identification of differentially expressed prognostic genes in CRC
versus normal tissues. Subsequent consensus clustering stratified
CRC patients into molecularly defined MLO subtypes.
We developed a robust prognostic signature called MPRS
using LASSO regression, which was comprehensively validated
across multiple domains: clinical outcomes, pathological
characteristics, tumor ecotypes, genomic instability, TIME
profiles, immunotherapy efficacy, and chemosensitivity. Further
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investigation focused on NRG1, which was a pivotal prognostic
determinant identified through MPRS with high LLPS propensity.
Experimental validation confirmed NRG1 downregulation in CRC,
its association with adverse prognosis, and epigenetic silencing via
promoter hypermethylation.

2.2 Data curation and harmonization

Transcriptomic profiles, somatic mutation data, and clinical
annotations for CRC were retrieved from The Cancer Genome
Atlas (TCGA), encompassing paired tumor and adjacent normal
specimens. External validation cohorts were acquired from Gene
Expression Omnibus (GEO) repositories. Single-cell RNA
sequencing data originated from the Tumor Immune Single-cell
Hub (TISCH), while spatial transcriptomics derived from
CRC_WholeTranscriptomeAnalysis_10x. Proteomic datasets were
sourced from The Cancer Proteome Atlas (TCPA), with DNA
methylation data accessed via the SMART application. All
datasets underwent rigorous normalization to ensure cross-cohort
comparability (cohort characteristics detailed in Supplementary
Table S1).

2.3 Molecular subtyping and validation

Differential expression analysis of MRGs between CRC and
normal tissues was conducted using transcriptomic datasets from

Step1: Identification of MLO related clusters in CRC
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FIGURE 1
The integrative research framework.
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TCGA, employing log2 fold change (Jlog2FC| > 1) with statistical
significance (P < 0.05). Prognostic MRGs were identified by
univariate Cox regression with two-sided P < 0.05; genes with
positive (negative) coefficients were classified as risk (protective).
Intersectional analysis yielded prognostic MLO-related
differentially expressed genes (DEGs), which were subjected to
functional annotation using Metascape for Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, with a significance threshold of P < 0.01 and a minimum
enrichment count of 3. Protein-protein interaction networks were
reconstructed using STRING (medium confidence score: 0.4) and
visualized via string-db.org. Genomic alterations—including
somatic mutations, copy number variations, and methylation
patterns—were interrogated using the R package Maftools and
GSCA database. Optimal patient clustering was determined by
ConsensusClusterPlus R package, where the inflection point of
the sum of squared errors (SSE) curve established cluster stability.
Subtype validity was confirmed through principal component
analysis (PCA) and Kaplan-Meier survival stratification.

2.4 Construction of an MLO-related
prognostic signature

Lasso regression was utilized to identify robust prognostic
MRGs. As a form of linear regression, Lasso regression
incorporates a regularization term referred to as the A penalty.
This A penalty induces sparsity in the model coefficients, causing

therapy
response

PuLps = 0.9987
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many of them to be zero, which was a property that aids in
pinpointing the most impactful features within high-dimensional
datasets. Based on A 1se, a six-MLO-gene MLO-related prognostic
signature (MPRS) was developed in the training dataset. The MPRS
was calculated as follows: MPRS = (-0.07488007 * CDC25C) +
(-0.037942695*NRG1) + (0.014292142 *DMPK) + (0.031397958
*TIGD1)+(0.078577812 * TIMP1)+(0.192689886*ATP2A1) Here,
“Expr” represents the expression levels of these six genes, and
“Coef” denotes their corresponding coefficients. Subsequently,
each individual in both the training and validation datasets was
assigned an MLO index. The Predictor Of Naturally Disordered
Regions (PONDR) algorithm was employed to assess the
localization and functional roles of these MLO-associated proteins
in LLPS. Patients in each dataset were divided into high-risk and
low-risk groups, and principal component analysis (PCA) was
performed to evaluate batch effects. Survival analysis was
performed using Kaplan-Meier curves with log-rank testing (P <
0.05) to evaluate prognostic significance. The predictive accuracy of
MPRS for overall survival (OS) was quantified via time-dependent
ROC curve analysis, with the area under the curve (AUC) calculated
at 1, 3, and 5 years to assess temporal performance.

2.5 Estimation of immune infiltration
statuses

Immune infiltration profiles of CRC patients were evaluated
using the ESTIMATE, CIBERSORT, and ssGSEA methods. The
ESTIMATE algorithm, executed through the R package “estimate,”
was used to calculate immune, stromal, and ESTIMATE scores for
CRC patients (23). The CIBERSORT algorithm, with 1,000
permutations, was applied to determine the composition of 22
immune cell types. Additionally, the ssGSEA algorithm quantified
the enrichment levels of 24 immune cell-related gene sets in
CRC samples.

2.6 Single-cell sequencing technology and
spatial transcriptomics

Single-cell RNA sequencing (scRNA-seq) data of CRC were
retrieved from the TISCH database (Supplementary Table SI).
Heatmaps illustrating gene expression profiles were constructed
using the pheatmap R package. Unsupervised clustering of single
cells was carried out using Seurat v4, which utilizes a graph-based
clustering approach. We selected the top 2,000 variable genes
using Seurat’s FindVariableFeatures (vst), performed PCA on the
scaled matrix, and used the top 20 PCs for downstream neighbor
graph construction and clustering. The FindClusters function was
used on the top 10-25 principal components, and cluster identities
were assigned using established cell-type marker genes. The
UMAP algorithm was used to visualize high-dimensional single-
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cell data in two dimensions. Moreover, AUCell scores were
calculated to quantify pathway activity heterogeneity across
individual cells.

For spatial transcriptomics analysis, CRC_WholeTranscriptome
Analysis_10x data in.h5 format and annotation results were
downloaded from 10xGenomics. An enrichment score matrix was
generated using the R package “Cottrazm,” and statistical significance
was assessed using Wilcoxon Rank Sum Tests. Deconvolution analysis,
combining spatial transcriptomics and single-cell data, was employed
to accurately evaluate cellular composition at each location on 10x
Visium slides. Using the get_enrichment_matrix and
enrichment_analysis functions from the Cottrazm package, an
enrichment scoring matrix was generated for further composition
analysis. For visualization, Seurat’s SpatialFeaturePlot was used to
display cell type enrichment scores. From the deconvolution results,
the predominant cell type in each microregion was identified and
visualized using Seurat’s SpatialDimPlot; SpatialFeaturePlot also
illustrated the expression of specific genes across microregions.

2.7 Profiling of tumor immune ecotypes
with Ecotyper

The EcoTyper machine learning platform (https://
ecotyper.stanford.edu/) was employed to characterize cell type-
specific states and multicellular communities. This computational
framework leverages machine learning algorithms to enable large-
scale identification of cell states and cellular ecosystems from bulk
gene expression datasets. The relative abundance of each cell type
was estimated based on the average abundance of its corresponding
specific cell states (24).

2.8 The impact of MPRS on standalone ICI
therapy groups

Data on copy number variations (CNVs), neoantigen load
(NEO), and somatic non-silent mutations in TCGA were retrieved
from UCSC Xena. The GISTIC 2.0 pipeline was used to analyze CNV
characteristics. The R package “maftools” (version 2.12.0) was applied
to visualize and compare tumor somatic mutation landscapes, as well
as to identify genes with significantly different mutation frequencies
between the two groups. Tumor Immune Dysfunction and Exclusion
(TIDE) integrates expression profiles of T-cell dysfunction and
exclusion in tumors with those of three cell types known to restrict
T-cell infiltration: cancer-associated fibroblasts (CAFs), myeloid-
derived suppressor cells (MDSCs), and M2 tumor-associated
macrophages (TAMs) (25). The TIDE algorithm (accessed online
at http://tide.dfci.harvard.edu/) was used to evaluate potential
responses to immune checkpoint inhibitor (ICI) therapy, with
input data as log2-transformed TPM-normalized RNA-seq
counts. The area under the receiver operating characteristic curve
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(AUC) was calculated to assess the performance of target genes in
predicting responses to immune checkpoint blockade (ICB), by
comparing them with established immune response biomarkers
such as tumor mutation burden (TMB), microsatellite instability
(MSI), CD274, CD8, interferon gamma (INFy), and TIDE. Three
independent immunotherapy cohorts were included in this study:
TCGA-COADREAD, GSE78220, and IMvigor210. Gene expression
profiles were converted to TPM format using the ‘limma' R
package to improve comparability, and the MPRS for each patient
was computed to examine its correlation with ICI therapy response.

2.9 Drug sensitivity analysis

Drug sensitivity data were acquired using the R package
“pRRophetic”. The 50% maximal inhibitory concentration (IC50)
values were used to assess the sensitivity of cells to Gemcitabine and
Etoposide. Additionally, the Genomics of Drug Sensitivity in
Cancer (GDSC) and Cancer Therapeutics Response Portal
(CTRP) databases were used to predict potential drugs associated
with prognostic MLO-related differentially expressed genes (DEGs).
For pharmacogenomic correlation with cetuximab. DepMap
colorectal cancer cell lines (n = 28) were queried for cetuximab
response from GDSC (AUC; higher AUC denotes lower sensitivity).
NRGI1 promoter methylation was computed as the methylation
fraction averaged within 1 kb upstream of the TSS. Associations
were evaluated by two-sided Spearman correlation. Parameters
matched those used elsewhere in correlation analyses.

2.10 Prediction of intrinsically disordered
regions and LLPS

Amino acid sequences of target proteins were retrieved from the
UniProt database, and their disordered regions were analyzed using
the PONDR platform. PhaSePred serves as a centralized resource
for predicting both self-assembling and partner-dependent phase-
separating proteins. It integrates scores from multiple phase
separation-related prediction tools and provides proteome-level
quantiles for various features. We employed this tool to profile
phase separation propensity and extract valuable insights for
identifying candidate proteins. FuzDrop, a sequence-based
scoring method, predicts the likelihood of spontaneous LLPS in
proteins, offering insights into protein functional relationships and
deepening our understanding of such interactions. We utilized
FuzDrop to assess protein behavior in condensed phases. The
AlphaFold Protein Structure Database (AlphaFold DB), accessible
at https://alphafold.ebi.ac.uk/, is a comprehensive public resource
for accurate protein structure prediction (26, 27). To predict protein
structures, we input the UniProt accession numbers of target
proteins into this database, which was an Al system developed by
DeepMind that predicts 3D protein structures from amino acid
sequences. For proteins with multiple isoforms, canonical isoforms
were selected as candidate sequences.
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2.11 Quantification of NRG1-related
pathway activities via proteomics and
transcriptomics

Pathway enrichment analysis was performed on transcriptomic
data from GEO and TCGA using the clusterProfiler R package, with
mapping to known signaling pathways via KEGG and GO
databases. Proteomic data were obtained from The Cancer
Proteome Atlas (TCPA) projects. Correlation analysis was
conducted to identify prognosis-related proteins associated with
NRG1, using the criteria of p<0.05 and |Spearman’s R|>0.3. Reverse
phase protein array (RPPA) data from the TCPA database were
used to calculate pathway activity scores for 10 cancer-related
pathways in CRC samples from TCGA (28). These pathways,
included in the GSCA, are well-recognized for their association
with cancer. The pathway activity score is defined as the sum of
relative protein levels of all positive regulatory components minus
those of negative regulatory components within a specific pathway.
The GSVA score, which reflects the overall expression level of a
gene set, exhibits a positive correlation with such expression.

2.12 Cell lines and tissue specimens

Human colorectal cancer cell lines (LoVo, SW480, RKO,
HCT116) and the normal colon epithelial cell line NCM460 were
obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). All cell lines were cultured in RPMI-1640
medium (Gibco BRL, Karlsruhe, Germany) supplemented with 10%
fetal bovine serum, maintained at 37 °C in a 5% CO, incubator.
Immunohistochemical (IHC) staining was performed on human
CRC tissues and their corresponding adjacent non-tumor tissues,
which were collected from patients at Chongging Beibei District
Traditional Chinese Medicine Hospital. This study was approved by
the Institutional Ethics Committee of Chongqing Beibei District
Traditional Chinese Medicine Hospital.

2.13 qRT-PCR

Total RNA was extracted from cells using the TRIzol kit
(Invitrogen). Quantitative real-time PCR (qRT-PCR) was carried
out in accordance with standard protocols (29). The primers used
for qQRT-PCR are listed in Supplementary Table S2.

2.14 Immunohistochemistry

IHC staining was performed following established protocols on
human CRC tissues and their adjacent non-tumor tissues, using an
anti-NRG1 antibody (1:100, Immunoway, YT3054) (29). Detailed
information of the patients involved is provided in Supplementary
Table S3.
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2.15 DNA methylation and rescue
experiments

The MART (Shiny Methylation Analysis Resource Tool) App,
available at http://www.bioinfo-zs.com/smartapp, is a web-based
tool designed for analyzing DNA methylation patterns in human
cancers (30). In this study, NRGI methylation levels were analyzed
using DNA methylation data via the SMART (Shiny Methylation
Analysis Resource Tool) App (http://www.bioinfo-zs). The
prognostic significance of NRG1 DNA methylation in CRC
patients was explored using SurvivalMeth (http://bio-
bigdata.hrbmu.edu.cn/survivalmeth/) (31). HCT116 and SW480
cells were treated with 10 uM Aza (Sigma-Aldrich, St. Louis, MO,
USA) for 72 hours, after which total RNA was extracted for qRT-
PCR analysis.

2.16 Statistical analysis

Spearman or Pearson correlation analyses were used to evaluate
the relationships between continuous variables. For normally
distributed variables, two-tailed t-tests or one-way ANOVA were
applied to assess significant quantitative differences between or
among groups, respectively. For non-normally distributed
variables, the Wilcoxon test was used to compare differences
between groups, while the Kruskal-Wallis test was employed for
comparisons among multiple groups. To control for multiple
testing, we applied the Benjamini-Hochberg method to control
the false discovery rate (FDR) in all gene-level analyses, including
differential expression, Cox regression, correlation, GSVA/ssGSEA
modules, and ORA (reporting FDR q-values). For small families of
<10 comparisons (e.g., limited clinical covariates), Bonferroni
correction was used. For pathway-level RPPA panels, BH-FDR
correction was applied. All statistical analyses were performed
using R 4.1.2 and GraphPad Prism 9. Statistical significance was
defined as FDR q < 0.05 (or Bonferroni-adjusted P < 0.05 for small
families). Supplementary methods, tables, details of web tools, and
R packages are available in the Supplementary Material. Specific
information including versions, functions, access routes,
parameters, and DOI numbers is provided in Supplementary
Table S4.

3 Results

3.1 Differentially expressed and prognostic
MRGs

Transcriptome data for 3737 MRGs were retrieved from the
PhaSepDB database. A volcano plot revealed differential expression
of 722 identified MLO-related DEGs, with 434 upregulated and 294
downregulated in CRC samples compared to adjacent normal
tissues (Figure 2A). By intersecting these DEGs with prognostic
MRGs identified via univariate Cox regression analysis, a total of 70
prognostic MLO-related DEGs were obtained (Figures 2B, C).
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Metascape enrichment analysis results, presented in Figure 2D
highlights significant enrichment in terms including regulation of
cell cycle process, PID AP1 pathway, negative regulation of intrinsic
apoptotic signaling pathway, and negative regulation of protein
catabolic process. A protein-protein interaction (PPI) network
illustrated the complex regulatory relationships among these
prognostic MLO-related DEGs (Figure 2E). Supplementary Figure
S1A depicts the mutation profiles of prognostic MLO-related DEGs
in CRC patients. Methylation levels of genes such as TRIP6, DSN1,
POU2AF]I, and EPHB2 showed a negative correlation with their
expression (FDR < 0.05, Supplementary Figure S1B). Additionally,
copy number variations (CNVs) of DSN1, CDCA2, GRINA, and
ATP8BI were positively correlated with their expression (FDR <
0.05, Supplementary Figure SIC). A total of 70 genes exhibited
varying mutation frequencies in both READ and COAD samples
(Supplementary Figure S1D). Missense mutations were the most
prevalent, with single nucleotide polymorphisms (SNPs) occurring
more frequently than insertions (INS) or deletions (DEL). The most
frequently mutated genes were AHNAK2 and DNAHIO0,
accounting for 28% and 24% of all CRC patients, respectively
(Supplementary Figure S1E).

3.2 ldentification of MLO related clusters in
CRC

Consensus clustering analysis was performed using 70
prognostic MLO-related DEGs to investigate the association
between MLOs and CRC subtypes. For clustering variables, k = 2
showed excellent stability, characterized by strong intragroup
correlations and weak intergroup correlations, leading to the
identification of two distinct clusters: MC1 and MC2 (Figures 2F-
H). Figure 21 visually presents the distinct survival probabilities
between the two clusters. PCA analysis confirmed that the two
subgroups could be reliably distinguished (Figure 2]). A heatmap
displayed the significantly different expression levels of the 70
prognostic MLO-related DEGs between the two groups
(Figure 2K), while Supplementary Figures S2A-D clearly showed
that the MC2 group had more mutations than the MCI group.
Additionally, notable differences in TMB, microsatellite instability,
and neoantigen levels were observed between M1 and M2
(Supplementary Figures S2E-G). Taken together, these results
strongly confirm the existence of two distinct MLO-related
CRC subtypes.

3.3 Development and validation of the
MLO-related prognostic model

To assist clinicians in predicting outcomes for CRC patients, we
developed the MPRS prognostic model. To reduce overfitting, Lasso
regression was applied to the prognostic MLO-related DEGs
(Figure 3A). Using the optimal A value and the lowest partial
likelihood of deviance, the model was constructed with six genes and
their corresponding correlation coefficients (Figure 3B). The formula is
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as follows: MPRS = (-0.07488007 * CDC25C) + (-0.037942695 *
NRGI) + (0.014292142 * DMPK) + (0.031397958 * TIGDI1) +
(0.078577812 * TIMP1) + (0.192689886 * ATP2A1) (Figure 3C).
PONDR analysis showed that the proteins encoded by these genes
are distributed in p-bodies, nucleoli, nuclear bodies, and stress granules.
Among them, CDC25C and DMPK function as clients, while ATP2A1
acts as a regulator (Figure 3D). Figure 3E presents a distribution plot
highlighting significant differences in risk scores and model gene
expression levels between the two risk groups. Identical analyses
were conducted using the GSE39582 database (Figure 3F), where the
high-risk group showed worse overall survival than the low-risk group.
Kaplan-Meier survival analysis and PCA verified the significant
differences between the groups. Additionally, validation was
performed in six independent cohorts (TCGA_CRC, GSE17536,
GSE103479, GSE87211, GSE39582, GSE28722), confirming the
model’s robustness (Supplementary Figure S3). These results
demonstrated that the prognostic signature is accurate, independent,
and widely applicable.

3.4 Correlation of MPRS with cancer TIME
patterns and ecotypes

Given the growing recognition of MLOs™ potential role in
regulating TIME patterns and influencing immunotherapy
sensitivity (32, 33), we aimed to analyze TIME patterns across
different MLO clusters. The distribution of enrichment scores from
CIBERSORT and ssGSEA is presented in Figure 4A and
Supplementary Figure S4A, revealing significant differences in
both immune cell infiltration and immune functions among the
MLO clusters. Notably, M0 macrophages showed greater
infiltration in the high-risk group compared to the low-risk
group. Using the ESTIMATE algorithm to assess TIME
components in CRC patients, we found that the high-risk group
exhibited the highest immune, stromal, and ESTIMATE scores
relative to the low-risk group (Figure 4B). Traditional sequencing
averages signals across a cell population, masking cell heterogeneity.
Thus, we employed single-cell sequencing to capture heterogeneity
unobtainable from bulk sequencing. UMAP results clearly showed
distinct cell populations separated by their expression profiles
(Figures 4C, D). Figure 4E illustrates that the six hub genes are
primarily expressed in monocytes/macrophages, fibroblasts, mast
cells, plasma cells, myofibroblasts, endothelial cells, and malignant
cells. Additionally, we used the EcoTyper algorithm to identify and
validate cell states and ecotypes. Monocytes/macrophages in state
09 showed a significant positive correlation with risk scores, while
those in state 08 were negatively correlated (Figure 4F). Spatial
transcriptomic analysis was performed on tissue specimens
(Supplementary Figure S6A). After deconvolution, the cellular
composition at each spot and spatial localization of all cell types
are presented in Supplementary Figures S6B, C, revealing significant
macrophage infiltration at the tumor-stroma junction. EcoTyper
showed that risk scores were most closely associated with CE7 status
(Figure 4G). Integrating known ligand-receptor interactions of CE7,
potential cellular communication networks are shown in Figure 4H.
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Collectively, our comprehensive analysis demonstrates that MPRS
is associated with distinct TIME patterns in CRC, with high-risk
groups exhibiting enhanced immune cell infiltration and unique
cellular ecotypes.

3.5 The significance of MPRS in forecasting
the efficacy of ICl treatment

We compared TIDE, TMB, MSI, and NEO scores across
different risk groups, revealing that patients with high-risk scores
had significantly higher levels of these scores than those with low-
risk scores (Figures 5A-D, p<0.01). For TIDE, the high-risk group
showed a higher dysfunction score, while no significant difference
was observed in the exclusion score between the two groups,
suggesting that CRC immune evasion may be associated with
CD8+ T cell dysfunction (Figure 5E). To validate the utility of the
risk score in predicting survival and immunotherapy response, we
conducted separate analyses in two immunotherapy cohorts.
Results from these cohorts indicated that patients with high-risk
scores had poorer responses to immunotherapy compared to the
low-risk group (Figures 5F-I). We also benchmarked MPRS against
nine established biomarkers: across 25 immunotherapy cohorts,
MPRS achieved an AUC > 0.5 in 11 cohorts, with the highest
predictive performance in the Zhao2019-PD1-Glioblastoma-pre
cohort (AUC = 0.71) (Figure 5]). Additionally, the heatmap
suggested that NRG1 and DMPK may contribute to CD8+ T cell
dysfunction (Figure 5K). These findings underscore the value of
MPRS in predicting immunotherapy outcomes for CRC patients.

3.6 Evaluation of the chemotherapy
response and candidate compounds for
sensitization by MLO related risk score

A volcano plot illustrating the sensitivity of CRC to
chemotherapeutic drugs is presented in Figure 6A. The IC50 values
of PD.173074, Nilotinib, AMG.706, and PLX4720 showed a negative
correlation with MPRS, indicating their potential efficacy in patients
with high MPRS (Figure 6B). 5-fluorouracil (5-Fu) and Irinotecan
were selected to assess drug sensitivity in CRC patients across
different risk scores. Results revealed higher IC50 values for both
drugs in the high-risk group, suggesting that these two classical anti-
tumor agents are more effective in patients with low MPRS
(Figure 6C). The TIDE algorithm was used to evaluate the risk
stratification of MPRS for the combination of two chemotherapeutic
drugs with immunotherapy. We found that in patients with low
MPRS, responders showed increased sensitivity to 5-fluorouracil but
increased resistance to irinotecan. Thus, low MPRS indicated a
potential beneficiary population for 5-fluorouracil combined with
ICB therapy (Figure 6D). Furthermore, several potentially effective
drugs for chemosensitization were identified through GDSC and
CTRP analyses (Figures 6E, F). Collectively, these findings
demonstrate that CRC patients with higher MPRS have reduced
sensitivity to 5-fluorouracil and Irinotecan, whereas lower MPRS is
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associated with greater drug sensitivity, highlighting potential
therapeutic compounds for CRC treatment.

3.7 Expression and phase separation
probability of MRPS genes

We validated the transcriptional levels of the six MPRS-related
genes in both human colon cancer cell lines and normal colon
epithelial cell lines. qRT-PCR analysis showed that the mRNA

10.3389/fimmu.2025.1678096

expression levels of TIMP1, CDC25C, ATP2A1, and TIGDI1 were
upregulated in cancer cell lines compared to normal cell lines,
whereas NRG1 and DMPK exhibited reduced expression in cancer
cell lines (Figure 7A). Using the PONDR tool, we detected high-
scoring disordered regions in the proteins encoded by these six
genes, suggesting their potential to undergo phase separation
(Figure 7B). FuzDrop analysis further confirmed the phase
separation propensity of these proteins, with NRG1 displaying the
highest tendency (Figure 7C). The protein structure of NRGI,
retrieved from the AlphaFold DB, revealed extensive IDRs, which
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further supports its strong potential for LLPS (Figure 8A). In the
TCGA CRC cohort (n=514), KRAS mutation status showed no
significant association with overall survival (P 0.72)
(Supplementary Figure S5A). However, KRAS mutant CRC
patients exhibited distinct MPRS gene expression: NRG1 was
downregulated (P<0.05) and DMPK upregulated (P<0.05) versus
wild-type (Supplementary Figure S5C). KRAS mutant CRC patients
also had higher MPRS scores (P<0.05) and elevated stress granule
activity by ssGSEA (P<0.05) (Supplementary Figure S5B),
indicating KRAS may driven MLO and SG dysregulation. Given

that KRAS mutation modulates NRG1 expression while influencing
MPRS and SG activity, NRG1 was further prioritized as the key
MLO-related gene in CRC for further biomarker validation.

3.8 NRGL1 protein influenced on
progression and mediated the pathway
activities via phase separation in CRC

Building on the identification of NRGI1 as the most critical
MPRS gene, we performed a comprehensive analysis of its clinical
and pathological relevance in CRC. Our results revealed that NRG1
expression is significantly lower in tumor tissues compared to
normal tissues in TCGA, GPL570_CRC and GPL96_CRC cohort
(Figures 8B-E). Kaplan-Meier (K-M) survival curves showed that
patients with high NRG1 expression had better disease-specific
survival (DSS) and progression-free interval (PFI) in the TCGA
cohort (Figure 8F), with similar trends observed in three additional
independent cohorts (Supplementary Figure S4B). Moreover, we
performed ITHC assays on CRC tissue samples from 7 patients
(containing tumor and adjacent normal tissue), we observed
significantly down-regulated expression levels of the NRGI1
protein in colorectal tumor tissues compared with adjacent
benign tissues, consistent with our bioinformatic findings
(Figures 8G, H; Supplementary Figures S7A-F). An over-
representation analysis was conducted on genes associated with
NRGI1 (P<0.05), identifying 50 significantly enriched terms with
FDR < 0.05 (Figure 9A). Key enriched terms included neuroactive
ligand-receptor interaction, spliceosome, ribosome, Alzheimer’s
disease, Huntington’s disease, oxidative phosphorylation, and
olfactory transduction. Additionally, most genes were enriched in
categories such as folding, sorting and degradation; infectious
diseases (bacterial); neurodegenerative diseases; immune system;
and nervous system (Figure 9A). Subsequently, univariate Cox
regression analysis was used to evaluate the association between
NRGI and 223 proteins from the TCPA database. A volcano plot
showed 27 proteins positively correlated and 16 proteins negatively
correlated with NRGI. A heatmap further revealed that tumor-
suppressive proteins (FOXO3A, DIRAS3, cleaved PARP, SMAD4,
CD20, and P53) were positively correlated with NRGI, while
oncogenic proteins (YB1, PKCBIL, HER2, B-catenin, GSK3, and
AKT) were negatively correlated with NRG1. This suggested that
NRGI1 exerts a protective role in CRC (Figure 9B). Pathway analysis
indicated that NRGI promotes apoptosis and inhibits oncogenic
pathways such as mTOR and PI3K/AKT (Figure 9C). Collectively,
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these findings support that NRGI functions as a tumor suppressor
in CRC, where low expression is associated with poor prognosis and
high expression correlates with improved survival.

3.9 Methylation of NRG1 in CRC

We explored the relationship between NRG1 methylation and
its expression levels to clarify the mechanism underlying its reduced
expression in CRC tissues. Using the SMART App, analysis via this
platform showed that NRG1 methylation levels were significantly
higher in CRC tissues than in adjacent normal colorectal tissues
(Figure 10A). SurvivalMeth is a comprehensive platform for
analyzing the prognostic significance of DNA methylation in
cancer, which improves research efficiency by reducing
redundancy. Using this tool, we investigated DNA methylation-
related functional elements and found that 17 CpG sites in both the
promoter and non-promoter regions of NRG1 had higher
methylation B values in tumor samples compared to normal
samples (Figure 10B). NRG1 mRNA expression was significantly
negatively correlated with the methylation levels of the following
probes: cgl18387156, cg08776832, cg04773818, cg04555373,
€g24946597, cg03430846, cg00614182, cgl2166610, cg05387189,
cgl19162158, ¢g25230074, cgl7457560, cg08695336, cg22865798,
cg14488905, and cg08032135 (Figure 10C). Given the strong
correlation between NRGI1 promoter methylation and its
expression, we further examined the effect of DNA methylation
on NRGI gene expression after bioinformatic analyses. Treatment
with the DNA methyltransferase inhibitor Aza led to an
upregulation of NRG1 expression (Figure 10D). Our findings
suggest that changes in DNA methylation contribute to the
downregulation of NRG1, and its expression increases following
treatment with the DNA methyltransferase inhibitor Aza. These
observations support NRG1 promoter methylation as a regulatory
mechanism of its downregulation and nominate NRGI
demethylation as a candidate strategy that requires prospective
validation and careful patient selection. To further evaluate the
therapeutic implications, we analyzed DepMap CRC cell lines (n =
28) and found that NRG1 promoter methylation was inversely
correlated with cetuximab AUC (Spearman R = - 0.527, P = 0.004)
(Figure 10E), implying that NRG1 de-methylation/up-regulation
may attenuate cetuximab activity via ERBB2-ERBB3 bypass under
EGEFR blockade.

4 Discussion

Mounting evidence suggests that membraneless organelles
(MLOs) are pivotal to tumorigenesis and progression (34). Our
hypothesis was that in-depth exploration of MLO-related
biomarkers could significantly facilitate the identification of new
tumor subtypes, as well as the prediction of prognosis and responses
to immunotherapy. This study focused exclusively on colorectal
cancer (CRC) patients. Through consensus clustering analysis of
expression profiles from 70 prognostic MLO-related DEGs, we
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Expression in Cell Lines and LLPS Probability of MPRS Model Genes. (A) mRNA expression levels of model genes in normal and CRC cell lines

assessed by quantitative PCR. (B) Identification of intrinsically disordered

separation potential of model genes via FuzDrop. Statistical comparisons performed using Wilcoxon or T tests with Bonferroni adjustment where

applicable. *p < 0.05, **p < 0.01, ***p < 0.001.

regions (IDRs) in model genes via PONDR. (C) Evaluation of phase

identified two distinct MLO subtypes in CRC patients. These
subtypes exhibited significant differences in prognosis, genomic
alterations, TIME patterns, and responses to immunotherapy.
Using LASSO Cox regression, we constructed a prognostic
signature (MPRS) to enable personalized comprehensive
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evaluation. Findings revealed that MPRS correlates with
prognosis, genomic alterations, and TIME patterns in CRC
patients, and demonstrated robust predictive capacity for
responses to immune checkpoint inhibitor (ICI) therapy. Notably,
we conducted detailed investigations into NRG1, one of the six core
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genes in the signature. Our results indicated that NRGI1 has a
marked propensity for phase separation and may influence CRC
initiation and progression through methylation, thus establishing it
as a novel methylation biomarker with predicted phase-
separation propensity.

The development of distinct TIME patterns is a highly complex
process involving multiple factors. Although progress has been
made in certain areas, our overall understanding remains limited,
requiring further research and innovative models to reveal its
specific mechanisms and roles in cancer progression. Recent
studies on MLOs have shed new light on their roles in TIME.
Stress granules (SGs), a type of MLO formed under cellular stress,
contribute to key cancer hallmarks such as proliferation, invasion,
migration, apoptosis evasion, metabolic reprogramming, and
immune evasion (35). Additionally, several MLOs in T cell
transmembrane signaling receptors may cluster via phase
separation to enhance signal transduction and regulate tumor
immune responses (36). Given the critical role of MLOs in the
cancer TIME, we reasoned that developing a prognostic signature to
quantify TIME patterns in CRC patients could support personalized
assessment. The constructed MPRS showed strong correlations
with TIME patterns, key genomic alterations, prognosis, and ICI
therapy responses in CRC patients. Specifically, the high MPRS
group exhibited elevated immune, stromal, and ESTIMATE scores,
indicating a higher abundance of non-tumor components, along
with increased infiltration of tumor-infiltrating lymphocytes.
Meanwhile, MPRS was significantly positively correlated with
TMB, MSI, and NEO, further confirming higher immune
infiltration in high-MPRS tumors. However, higher MPRS was
associated with worse prognosis, which was explained by TIDE
analysis: MPRS was significantly positively correlated with TIDE
score. Although MPRS had no effect on CD8+ T cell exclusion,
high-MPRS tumors showed significantly higher CD8+ T cell
dysfunction. Therefore, high-MPRS phenotype was accompanied
by a paradoxical immune landscape: despite “hot”, immune-
infiltrated microenvironment features, it was characterized by
CD8+ T cell dysfunction and abundant immunosuppressive cells
such as regulatory T cells. What’s more, this immune-inflamed
phenotype among high MPRS groups suggested a potential
favorable response to immunotherapy, findings validated by
subsequent predictions of ICI therapy responses. In conclusion,
these results highlight the critical role of MLO-related subtypes in
distinguishing TIME patterns and identifying patients likely to
benefit from ICI therapy. Further research is warranted to clarify
the precise mechanisms by which MLO-related processes shape
specific TIME patterns.

Currently, research on membraneless organelles is still in its
infancy, with a limited number of identified organelles and
immature validation methods. Traditional hypothesis testing
methods require screening one by one, consuming a large amount
of manpower and time. In our study, we successfully identified six
core MLO-related genes in CRC using multi-omics and Al
technologies, with particular focus on the most promising
Neuregulin 1 (NRG1). NRG1, a pivotal member of the epidermal
growth factor (EGF) family, holds significant importance in cellular
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signaling pathways. Under normal physiological circumstances, the
NRGI1 protein undergoes proteolytic cleavage, resulting in the
release of soluble NRGI fragments that contain EGF-like
domains. These soluble molecules participate in paracrine
signaling by binding to ErbB3 or ErbB4 receptor subunits at a
distance, which in turn induces the phosphorylation of their
intrinsic kinase domains (37). Clinical investigations have shown
that the NRGI1 protein acts as an inhibitor in the progression of
CRC (9-11). Nevertheless, the exact mechanisms behind its
protective effects in CRC are not yet fully understood. Our
research confirmed that low expression of NRGI1 in CRC is
significantly associated with an unfavorable patient prognosis.
Additionally, we discovered that the NRGI protein exhibits
extensive IDRs and predicted phase-separation propensity, has a
strong tendency to undergo phase separation, which may be a key
mechanism influencing the progression of CRC. Further studies are
needed to explore in detail how the LLPS processes involved in
NRGI assembly contribute to tumorigenesis and development.

In this study, we investigated the difference between KRAS-
mutant and wild-type CRC patients. Prior studies have shown that
oncogenic KRAS signaling enhances tumor cell fitness by
promoting stress granule biogenesis (38). Our results are
consistent with this model and further suggest a link to MLO
dysregulation. Specifically, KRAS-mutant tumors exhibited
decreased NRG1 expression and hyperactive SG formation,
indicating that oncogenic mutations may intersect with
subcellular organizational dynamics to sculpt tumor behavior.
The translational relevance of NRG1 is strengthened as both a
biomarker for risk stratification and a target for precision
interventions in KRAS-mutant populations.

Abnormal DNA methylation plays a vital role in the initiation
and progression of tumors. Our research suggests that methylation
leads to the inhibition of NRGI1 gene transcription in CRC.
Azacitidine, a pioneering hypomethylating agent, is essential in
the treatment of myelodysplastic syndromes and acute myeloid
leukemia. Although targeting DNA methylation with
hypomethylating agents has made significant progress in the
treatment of various myeloid neoplasms (39, 40), its effectiveness
in other solid tumors remains unclear. our data suggest that
demethylation (e.g., with Aza) can upregulate NRG1 in CRC cell
lines. However, our findings suggest a context-dependent effect of
NRGI. Although reduced NRG1 expression is associated with poor
prognosis at baseline, NRG1 upregulation under EGFR blockade
may activate ERBB2-ERBB3 bypass signaling, thereby diminishing
cetuximab efficacy. Therefore, NRG1 de-methylation should not be
generalized as a therapeutic strategy for all patients. Instead, its
application may be more suitable in non-anti-EGFR settings (e.g.,
RAS-mutant CRC, where EGFR antibodies are not used) or in
combination with HER3/pan-ERBB inhibition. Furthermore,
NRG1 methylation or expression could be developed as a
biomarker to stratify patients for anti-EGFR therapy. Importantly,
these conclusions are based on pharmacogenomic correlations in
cell lines and require prospective validation in EGFR-dependent
CRC models and clinical cohorts to stratify cetuximab use or
rational combinations. Hence, NRG1 methylation/expression may
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serve as a biomarker to stratify anti-EGFR use and to nominate
combinations with HER3/pan-ERBB inhibition.

This study presents several limitations that merit consideration.
Firstly, the analyses were based on retrospective data from public
databases; using prospective multi-center cohorts would lead to
more reliable results. Secondly, although bioinformatics analyses
provide valuable insights, experimental evidence is necessary to
achieve a comprehensive understanding of molecular mechanisms,
the anti-EGFR inference is pharmacogenomic and associative
(DepMap) and requires perturbational validation in EGFR-
dependent CRC models (NRGI gain/loss + HER3/pan-ERBB
inhibition). Third, our LLPS-related analyses relied entirely on
predictive algorithms without direct imaging or perturbation
assays. Functional validation, including live-cell condensate
imaging, FRAP assays, and stress-induced NRG1 perturbations,
will be necessary to establish whether NRG1 indeed forms
functional condensates in CRC.

In conclusion, our study proposed the MPRS prognostic
signature for personalized comprehensive assessment. Compared
with previous classifications of CRC patients, our MLO subtyping
has advantages in revealing multi-dimensional heterogeneities,
especially in terms of prognosis, genomic alterations, TIME
patterns, and notably, responses to immunotherapy. Our study
identified NRG1 as a methylation-linked biomarker with predicted
phase-separation propensity in colorectal cancer. Future research
can further verify and explore the phase separation and methylation
characteristics of NRG1, providing new targets and therapeutic
strategies for the targeted therapy of CRC.
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Glossary
Aza
MLOs
LLPS
CRC
MPRS
DEGs
TCGA
GEO
TISCH
TCPA
qRT-PCR
IHC
SMART
0s

DSS

PFI
KEGG
GO

PPI
LASSO
PONDR

FuzDrop

AlphaFold DB
CIBERSORT

ssGSEA
UMAP

AUCell

5-Aza-2-deoxycytidine

membraneless organelles

liquid-liquid phase separation

colorectal cancer

MLO-related prognostic risk score
differentially expressed genes

The Cancer Genome Atlas

Gene Expression Omnibus

Tumor Immune Single-cell Hub

The Cancer Proteome Atlas

quantitative real-time PCR
immunohistochemistry

Shiny Methylation Analysis Resource Tool
overall survival

disease-specific survival

progression-free interval

Kyoto Encyclopedia of Genes and Genomes
Gene Ontology

protein-protein interaction

Least Absolute Shrinkage and Selection Operator
Predictor Of Naturally Disordered Regions

a sequence-based scoring method for predicting spontaneous
liquid-liquid phase separation

AlphaFold Protein Structure Database

Cell-type Identification By Estimating Relative Subsets Of
RNA Transcripts

single-sample gene set enrichment analysis
Uniform Manifold Approximation and Projection

Area Under the Curve for cellular enrichment
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TIDE
TMB
MSI
NEO
ICI
ICB
IC50
GDSC
CTRP
IDRs
SNPs
INS
DEL
COAD
READ
GSVA
RPPA
AUC
Mo0/M2
MC1/MC2
CNVs
HR
FDR
SSE
tSNE
PCA

GSCA

10.3389/fimmu.2025.1678096

Tumor Immune Dysfunction and Exclusion
tumor mutation burden

microsatellite instability

neoantigen

immune checkpoint inhibitor

immune checkpoint blockade

half maximal inhibitory concentration
Genomics of Drug Sensitivity in Cancer
Cancer Therapeutics Response Portal
intrinsically disordered regions

single nucleotide polymorphisms
insertions

deletions

colon adenocarcinoma

rectal adenocarcinoma

Gene Set Variation Analysis

reverse phase protein array

area under the curve

macrophage subsets (M0, M2)
MLO-related clusters 1/2

copy number variations

hazard ratio

false discovery rate

sum of squared errors

t-distributed stochastic neighbor embedding
principal component analysis

Gene Set Cancer Analysis
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