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Alzheimer's disease (AD), characterized by the pathological accumulation of
amyloid-B (AB) and hyperphosphorylated Tau proteins, remains a major global
health challenge with limited therapeutic options. Recent findings highlight that
peripheral immune and metabolic pathways play a pivotal role in regulating brain
AB and Tau homeostasis, particularly in response to physical exercise. In this
review, we comprehensively examine current clinical and preclinical evidence on
how exercise modulates peripheral immune responses, metabolic states, and
systemic clearance mechanisms—including hepatic, renal, immune, and
glymphatic pathways. We discuss how regular exercise suppresses peripheral
inflammation, enhances immune cell-mediated phagocytosis, improves
metabolic resilience, and promotes the elimination of neurotoxic proteins.
Furthermore, exercise-induced peripheral mediators, such as myokines, non-
coding RNAs, and lactate, are shown to mediate inter-organ communication and
signaling pathway crosstalk and contribute to neuroprotection. This integrative
perspective underscores the therapeutic promise of exercise as a non-
pharmacological intervention that targets peripheral immune-metabolic
networks to mitigate AD pathology.

KEYWORDS
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1 Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder globally,
accounting for approximately 60-70% of all dementia cases (1). Currently affecting over 55
million people worldwide, the prevalence of AD is expected to reach 152 million by 2050,
presenting significant public health and socioeconomic challenges (2). The hallmark
features of AD include the abnormal accumulation of B-amyloid (AB) plaques and
neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein (3, 4). These
pathologies jointly contribute to neuronal damage, synaptic impairment, and cognitive
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decline. Evidence increasingly indicates that AP and Tau
interactions amplify their harmful effects, with disruptions in
their balance critically driving disease progression (5, 6). Current
treatments, such as cholinesterase inhibitors, offer limited
symptomatic relief (7). Therapeutic strategies directly targeting
AP or Tau have also shown disappointing clinical outcomes (8,
9). For example, monoclonal antibodies against A, including
aducanumab and lecanemab, provide only modest cognitive
improvements in early-stage patients and frequently result in
amyloid-related imaging abnormalities (ARIA), which manifest as
cerebral edema (ARIA-E) or microhemorrhages (ARIA-H) that
may cause neurological complications, raising concerns about their
efficacy and safety (10). Similarly, interventions targeting Tau
pathology have yet to deliver meaningful clinical success (11).
These setbacks highlight the complexity of AD and underscore
the urgent need for innovative therapeutic strategies. Recent
research emphasizes that regulation of AP and Tau is not
confined solely to the brain, suggesting that peripheral organs
significantly influence these proteins’ dynamics (12, 13), although
these mechanisms remain largely unexplored.

Physical exercise has emerged as a promising non-
pharmacological intervention for slowing cognitive decline in AD,
especially in early stages such as mild cognitive impairment (14, 15).
The beneficial effects of exercise largely result from bioactive
substances released by contracting muscles—termed myokines—
including interleukin-6 (IL-6), irisin, lactate, and non-coding RNAs
(16). These molecules circulate systemically, influencing both
peripheral organs and the central nervous system(CNS), thereby
enhancing neuronal function and structural resilience. Within the
brain, exercise increases brain-derived neurotrophic factor (BDNF)
expression, which in turn mediates the activation of synaptic
plasticity pathways and promotes neurogenesis (17, 18).
Additionally, exercise influences peripheral systems by improving
hepatic clearance of AP, regulating systemic inflammation, and
maintaining metabolic balance, which collectively helps sustain AP
and Tau equilibrium in the brain, delaying neurodegeneration (19).
Exercise also reduces peripheral inflammation by suppressing
circulating pro-inflammatory cytokines such as TNF-o. and IL-1f.
Notably, Yang’s study demonstrated this effect through intravenous
transfer of plasma from exercise-trained donor rats (20), which
reduced neuroinflammation and modulated microglial and
astrocytic activity in recipient animals. In addition, exercise
enhances clearance-associated proteins such as APOE and low-
density lipoprotein receptor-related protein 1 (LRPI) (21).
Furthermore, regular physical activity strengthens the integrity of
the blood-brain barrier (BBB) by reducing inflammation,
enhancing antioxidant defenses, and increasing tight junction
protein expression (22). These combined effects limit
inflammatory mediator infiltration into the brain, creating an
environment conducive to effective clearance of AD-related
pathological proteins, including AB and Tau, and preventing their
excessive production. Amyloidogenesis in AD involves the
sequential cleavage of amyloid precursor protein (APP) by B- and
y-secretases, generating AR peptides of varying lengths
(predominantly ARy, and AP,,). These peptides initially exist as
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soluble monomers and oligomers, which are considered the most
neurotoxic species due to their ability to disrupt synaptic function
and cellular membranes. Over time, these soluble forms aggregate
into insoluble fibrils and eventually form the characteristic amyloid
plaques. The transition from soluble to insoluble forms represents a
critical pathological progression, with soluble oligomers being more
diftusible and capable of spreading between brain regions and into
the periphery, while insoluble plaques represent end-stage
aggregates that are more difficult to clear. Notably, during
advanced stages of AD, compromised BBB integrity allows
soluble AB and Tau to leak into peripheral circulation, where
exercise facilitates their removal by enhancing hepatic LRP1
expression and improving renal and lymphatic clearance
capacities (23, 24). Collectively, these findings demonstrate that
exercise exerts dual protective effects in AD by both modulating
central inflammation and boosting peripheral clearance of Af and
Tau. However, most current studies focus narrowly on specific
organs or isolated molecular targets. The comprehensive
peripheral-central network through which exercise preserves
protein homeostasis in the brain remains poorly defined and
warrants detailed investigation.

Here, we systematically evaluate how physical exercise
contributes to maintaining brain AP and Tau homeostasis
through peripheral mechanisms and discuss its potential
therapeutic value in AD. Specifically, we examine two primary
pathways: first, how exercise mitigates the overproduction of AP
and Tau by reducing peripheral inflammation and enhancing
immunometabolic function, thus modulating critical enzymes
such as BACE1; and second, how exercise enhances the
functional capacity of key peripheral organs—such as the liver,
kidneys, and glymphatic-lymphatic systems—and improves
immune-mediated clearance and metabolic regulation. We also
highlight signaling mediators induced by exercise, including
myokines (e.g., irisin), cytokines (e.g., IL-6, IL-10), and non-
coding RNAs (e.g., miR-132, miR-124), that facilitate
communication between peripheral systems and the brain. By
presenting an integrated framework encompassing interactions
among organs, cells, pathways, and molecules, this review
provides a comprehensive understanding of the systemic benefits
of exercise, laying the groundwork for translating these insights into
clinical AD interventions.

2 Effects of exercise on cognitive
function in AD

Exercise, a structured subtype of physical activity, refers to
planned and repetitive movements performed with the goal of
improving or maintaining physical health and fitness (25).
According to movement patterns, physiological targets, and
metabolic demands, exercise is generally categorized into four
main types (Table 1). Aerobic exercise, characterized by the
rhythmic and sustained activation of large muscle groups,
improves cardiovascular endurance and includes activities such as
jogging, swimming, and cycling (25). Resistance training enhances
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TABLE 1 Taxonomy of exercise modalities and their physiological characteristics.

Exercise type Characteristics

Primary physiological

benefits

Continuous, rhythmic activit
Aerobic Exercise X vt Y
using large muscle groups

Muscle contractions against

Resistance Exercise R
external resistance

High-Intensit
‘g n en.51‘y Alternating high- and low-
Interval Training

(HIIT) intensity efforts

capacity

Integration of movement with
Mind-Body Exercise &

mental focus and breath control reduction

muscular strength and endurance through external loads, with
common examples including weightlifting, push-ups, and squats
(25). High-intensity interval training (HIIT) involves alternating
bursts of vigorous activity with periods of low-intensity recovery,
combining aerobic and anaerobic benefits within a shorter time
frame (25). Mind-body exercises, such as Tai Chi and yoga,
emphasize coordinated breathing, posture control, and mental
focus, and are particularly suitable for older adults due to their
low-impact and integrative nature (25). Growing evidence indicates
that regular engagement in these exercise modalities not only
enhances metabolic and immune function but also significantly
slows age-related cognitive decline, ultimately improving quality of
life in aging populations and individuals at risk for or diagnosed
with AD (26-28).

An increasing body of clinical and preclinical research indicates
that exercise exerts domain-specific and selective effects on cognitive
function in individuals with AD or those at elevated risk (Table 2).
Among various cognitive domains, memory—particularly long-term
memory and delayed recall—appears to benefit most consistently
from exercise interventions. Meta-analyses of multiple randomized
controlled trials (RCTs) have demonstrated that both aerobic and
resistance training can enhance episodic memory and executive
function in populations with AD or mild cognitive impairment
(MCI), whereas improvements in working memory, attention, and
verbal fluency are more variable and often restricted to the early
stages of disease (29, 30). Notably, global cognition, as measured by
standardized assessments such as the Mini-Mental State Examination
(MMSE) and the Alzheimer’s Disease Assessment Scale-Cognitive
Subscale (ADAS-Cog), shows moderate improvement following
regular physical exercise, suggesting that exercise may confer
broad-spectrum cognitive benefits. Emerging evidence also
supports a dose-response relationship between exercise volume and
cognitive outcomes. A recent study revealed that the most
pronounced cognitive benefits were observed at a moderate
exercise dose of approximately 650 metabolic equivalent of task
(MET)-minutes per week, which corresponds to around 150
minutes of moderate-intensity aerobic exercise or an equivalent
combination of exercise modalities. The trial was conducted in
non-demented, physically inactive older adults, suggesting that
these findings may be extrapolated to populations at increased risk
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Improves cardiovascular and
respiratory endurance

Increases muscular strength, power,
and bone density

Enhances both aerobic and anaerobic

Promotes balance, flexibility, and stress

03

Common settings Examples References
Outdoor tracks, gyms, ]ﬁ)ggln'g,
. swimming, (25)
swimming pools .
cycling
Gyms, home-based with Weightlifting, 25)
weights or resistance bands | push-ups, squats
Fitness studios, sports Sprint intervals,
i A (25)
fields, home routines circuit training
Studios, community Tai Chi, yoga,
centers, home K (25)
R Pilates
environments

for AD. Beyond 1000 MET-min/week, cognitive gains tend to plateau,
indicating that excessive training does not yield additional benefits
(31). Furthermore, a minimum frequency of three sessions per week,
combined with appropriate intensity and duration, appears necessary
to achieve meaningful cognitive improvement. Among the various
exercise modalities, aerobic exercise remains the most consistently
effective intervention for enhancing cognitive function in AD (32).
However, high-intensity interval training (HIIT) and mind-body
exercises, such as Tai Chi, have also shown promise, particularly in
improving executive control and cognitive flexibility (33, 34). In
terms of intervention durability, cognitive improvements are
generally confined to the active intervention period and tend to
wane after cessation. Although some studies suggest that benefits may
persist for 6-12 months post-intervention (35), sustained
engagement in exercise appears essential for maintaining long-term
cognitive gains. Epidemiological evidence reinforces this notion,
showing that individuals who maintain high levels of physical
activity throughout life experience slower cognitive decline and a
reduced risk of dementia (32). Animal studies corroborate these
findings (36). In transgenic AD mouse models such as APP/PS1, both
forced and voluntary exercise training have been shown to improve
spatial learning and memory performance—even in the presence of
substantial amyloid pathology (37). Importantly, animals that
initiated exercise early in the disease course and continued training
over time demonstrated greater cognitive benefits (38), highlighting
the critical role of intervention timing and duration. Although effect
sizes are typically larger in animal models compared to human trials,
the two lines of evidence converge in demonstrating similar domain-
specific improvements, particularly in memory and executive
function. Collectively, these findings underscore the efficacy of
regular physical exercise as a behavioral intervention to improve
AD-related cognitive impairments. Optimized exercise prescriptions
—including tailored intensity, frequency, and duration—are crucial
to achieving maximal cognitive benefit. Long-term, individualized
exercise programs offer promising potential to enhance functional
outcomes in patients with AD and provide a strong scientific
rationale for incorporating physical activity into core non-
pharmacological treatment strategies for the disease.

Previous research on the cognitive effects of exercise in AD has
primarily centered on mechanisms within the CNS (16, 49).
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TABLE 2 Effects of exercise on AD patients.

Subjects/age (years)

50 participants with MCI or early-

Intervention groups

Multimodal lifestyle
intervention (including

Exercise protocol

20-week multimodal program
comprising moderate-intensity

10.3389/fimmu.2025.1678526

Main effects

Slowed or reversed cognitive decline, as

References

d by ADAS-C d Clinical 39
stage AD (aged 45-90 years) structured physical activity) vs aerobic and behavioral me?;::jenti}; Rating (Colg)aRr)l scalle:ma 9
usual care components
Increased plasma cathepsin B (CTSB
23 cognitively unimpaired, middle- . . . 26-week aerobic training _P P . ¢ . )
. . o Supervised aerobic treadmill . levels, which correlated with cognitive
aged adults with genetic or familial o . program on a treadmill, R i (40)
risk for AD (mean age ~65 years) training vs no-exercise control performed under supervision improvement; no change in klotho;
8 ¥ reduced circulating BDNF
No significant change in global cognition
(Intent-to-treat analysis); reduced
opsychiatric t
200 community-dwelling older Supervised moderate-to-high 16-week supervised aerobic NIEUropsy l,a n‘ symptoms
. . . . . . . . . (Neuropsychiatric Inventory);
adults with mild AD (mean age intensity aerobic exercise vs training (60 min/session, 3 R (41)
. . . exploratory subgroup analysis suggested
~73 years) stretching/toning control sessions/week) L 7
cognitive benefit (Symbol Digit
Modalities Test) in participants with
high adherence
Both PT and CT attenuated cognitive
decli MMSE); i d i
. . Supervised physical training 6-month supervised aerobic ecline ( )s memory improved in
Adults with MCI or mild— o . K . MCI subgroup (+6.9% PT, + 8.5% CT);
(PT) vs cognitive training (CT) and resistance training (PT) or R i (42)
moderate AD (aged ~60-85 years) . . PT also improved cardiovascular
vs usual care cognitive sessions (CT) K X
function; no effects on attention or
executive function
51 older adults with mild— i . . i No significant changes in whole-brain or
Supervised aerobic exercise vs 16-week supervised moderate- . .
moderate AD (mean age ~70 X X i . regional cerebral blood flow observed via (43)
usual care intensity aerobic training
years) MRI
Increased levels of neuron-derived
extracellular vesicle (NDEV) biomarkers
95 older adults with mild- Supervised aerobic exercise vs 16-week supervised aerobic including proBDNF, BDNF, and (44)
moderate AD (age not specified) stretching control (ADEX trial) training (~150 minutes/week) humanin, particularly in APOE €4
carriers; no changes observed in
circulating exerkines
Slight but statistically significant
4- th ised ing i iti e
494 older adults with mild— Supervised moderate-to-high mgn Supervise worsening in cognitive periormance
R X i X . community-based program, (ADAS-Cog) at 12 months (mean
moderate dementia (mean age ~77  intensity aerobic and resistance . . (45)
. followed by supported difference -1.4, p = 0.03); improved
years) training vs usual care i . .
unsupervised activity physical fitness; no effects on other
clinical outcomes
Exercise group showed significant
S ised bi i i t in ADAS-Cog-Pl d
120 community-dwelling older Hpervise aerf). e exerAase 6-month supervised tmprovement i . °8 l?s -an
i i (EX) vs cognitive-social i K K ADAS-Cog scores (=Minimal Clinically
adults with chronic stroke (=55 . intervention program (either . . (46)
i . enrichment (ENRICH) vs usual R g Important Difference) during the
years), without dementia exercise or enrichment) . K i
care intervention period; however, effects
were not sustained at 6-month follow-up
Supervised moderate-to-high Exercise group demonstrated slowed
. . P . . . & Moderate-to-high intensity Heres 'g P . N
Sedentary older adults with intensity aerobic exercise vs K . cognitive decline over 12 months
. . . e aerobic training (frequency and (47)
amnestic MCI (aged ~65-75 years) low-intensity flexibility and . . compared to control; trend toward a
. duration not specified) . .
balance training dose-response relationship was observed
Tango group showed significantly
3- th ised i d gait d and atty ted
31 older adults with dementia Tango therapy vs standard i mon' superv'lse 1mp r'ove. 82 sp'ee an a' 'enua ¢
intervention, 30 minutes/ decline in functional mobility and (48)

(aged 65-93 years)

physical exercise

session, 5 sessions/week

activities of daily living; control group
declined in mobility

Extensive evidence indicates that exercise promotes hippocampal  been directed toward the possibility that exercise-induced

neurogenesis and synaptic plasticity, enhances the expression of  cognitive benefits may also arise from its regulation of peripheral
neurotrophic factors such as BDNF (50), and reduces abnormal
accumulation of AP and Tau in the brain (23)—effects that

collectively contribute to improved learning and memory

mechanisms. Emerging studies have identified peripheral exercise-
induced factors as critical mediators of neuroprotection in AD,
including systemic blood factors (e.g., circulating exerkines such as

performance in AD models. However, increasing attention has  clusterin) and gut microbiota—derived metabolites (e.g., short-chain
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fatty acids), suggesting that these systemic adaptations to exercise
may represent a key mechanism underlying its cognitive benefits
(15, 51, 52). Recent research has begun to elucidate how exercise
modulates peripheral immune responses to alleviate chronic
inflammation (53), strengthens BBB integrity, and enhances the
clearance of pathological proteins such as AP and Tau by
stimulating peripheral elimination pathways, thereby reducing
their cerebral accumulation. These findings offer new insights into
the systemic mechanisms through which exercise exerts its
neuroprotective effects and underscore the potential of integrating
central and peripheral regulatory networks as a unified strategy for
the prevention and treatment of AD.

3 Exercise-mediated suppression of
AB and Tau generation in AD

Long-term, structured physical exercise reduces A} plaques and
NFTs in transgenic mouse models of AD (54). These pathological
changes are accompanied by reductions in neuroinflammatory
responses and result in improved cognitive and memory function.
Zhang’s study demonstrated that three months of voluntary wheel
running in APP/PS1 mice markedly reduced the overall burden and
size of AP plaques and attenuated hippocampal Tau
phosphorylation (55). The same study reported reduced neuronal
loss, enhanced neurogenesis in the CA3 region and dentate gyrus,
and improved performance in spatial memory tasks (56). Exercise
also stimulates the expression of neurotrophic factors that support
synaptic integrity and neural resilience. For instance, voluntary
physical activity increases the levels of BDNF and glial cell line-
derived neurotrophic factor (GDNF) (57), which promote
structural and functional plasticity. In a human study, researchers
collected blood samples from the radial artery and internal jugular
vein during aerobic exercise and found that BDNF concentrations
rose approximately threefold compared to resting conditions (58).
Notably, 70-80% of circulating BDNF originated from central
sources (40). Follow-up experiments in mice demonstrated that
aerobic exercise also upregulated BDNF mRNA expression in the
hippocampus and cortex following treadmill training (59). These
findings indicate that exercise alleviates cognitive decline by
simultaneously reducing the accumulation of pathological
proteins and enhancing neurotrophic signaling pathways that
support plasticity. While many studies report consistent cognitive
benefits, not all have observed corresponding reductions in A or
phosphorylated tau levels. These inconsistencies may arise from
differences in the timing of intervention. Exercise initiated after
extensive plaque formation appears less effective in reversing
established pathology or restoring cognitive function. In contrast,
when introduced in early stages or prior to plaque accumulation,
exercise slows the progression of pathology and better preserves
cognitive performance. This stage-dependent effect has also been
observed in clinical studies. In cognitively unimpaired older adults,
higher levels of physical activity are associated with lower plasma
and cerebral AP burden (42). One clinical trial involving
participants with MCI found that six months of aerobic exercise
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reduced plasma AP, 4, concentrations by 24% (60). Moreover, the
form of exercise may influence therapeutic outcomes. In mouse
models, voluntary running has demonstrated superior efficacy over
forced treadmill exercise in improving cognitive function (61).
Collectively, these results highlight the capacity of exercise to
regulate AR homeostasis and mitigate the neuropathological
cascade associated with AD.

3.1 Exercise suppresses peripheral
inflammation and limits excessive A and
Tau production in the brain

A hallmark of AD pathology is the accumulation of extracellular
AP plaques and intracellular NFTs formed by hyperphosphorylated
tau protein. These aberrant protein aggregates disrupt synaptic
function and drive progressive cognitive decline. Emerging
evidence has highlighted the critical role of chronic peripheral
inflammation in exacerbating AD pathogenesis (62). With aging,
the integrity of the BBB declines, allowing peripheral immune
mediators to access the CNS more readily. Patients with AD
exhibit elevated levels of peripheral immune cells and pro-
inflammatory cytokines—such as interleukin-6 (IL-6), IL-17, and
tumor necrosis factor-o. (TNF-o)—in both cerebrospinal fluid
(CSF) and peripheral blood (63). These peripheral signals
infiltrate the brain, activate microglia and other resident immune
cells, and amplify neuroinflammatory responses. Persistent low-
grade systemic inflammation engages key pro-inflammatory
signaling pathways, including NF-xB and the NLRP3
inflammasome (64). These pathways upregulate the expression of
[-site amyloid precursor protein-cleaving enzyme 1 (BACEL), a
critical enzyme in AP generation (65). In parallel, pro-inflammatory
factors aberrantly activate kinases such as cyclin-dependent kinase 5
(CDK5) and glycogen synthase kinase 3 (GSK3[), promoting
pathological tau phosphorylation and tangle formation (66). This
inflammatory cascade establishes a self-reinforcing loop in which
neuroinflammation and proteinopathy exacerbate one another.
Given this mechanistic link, peripheral inflammation is
increasingly recognized as a driving force in the progression of
AD. Therapeutic strategies targeting inflammatory pathways may
offer a promising approach to disrupting the pathological feedback
between AP and tau accumulation.

Regular physical exercise is widely recognized for its anti-
inflammatory effects and its capacity to lower chronic systemic
inflammation (67). Long-term adherence to moderate-intensity
exercise reduces resting levels of pro-inflammatory cytokines
while promoting the expression of anti-inflammatory mediators,
as demonstrated in patients with chronic kidney disease (68),
although caution is warranted when extrapolating these findings
to AD. In clinical populations, exercise interventions have
demonstrated promising anti-inflammatory benefits in individuals
with MCI. For example, a 12-week program combining moderate-
intensity aerobic training with cognitive stimulation led to
significant reductions in serum IL-1fB, IL-6, and TNF-a, along
with concurrent decreases in plasma AP, and total tau
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concentrations (69). These findings suggest a potential link between
exercise-induced improvements in systemic inflammation and
reductions in AD-related pathological markers. Moreover,
consistent physical activity enhances the production of peripheral
anti-inflammatory cytokines and, within the CNS, promotes a
phenotypic shift of microglia from a pro-inflammatory “M1-type”
toward an anti-inflammatory “M2-type” polarization (70).
Interestingly, acute bouts of vigorous exercise can transiently
increase circulating IL-6 levels. However, this elevation triggers a
compensatory release of anti-inflammatory cytokines, such as
interleukin-1 receptor antagonist (IL-1ra) and IL-10. Over time,
this dynamic regulatory cycle contributes to the downregulation of
key inflammatory pathways, including NF-kB, ultimately resulting
in sustained reductions in basal levels of inflammatory markers
such as C-reactive protein (CRP), TNF-o,, and IL-6.

In AD, disruption of the BBB is both a contributing factor and a
driver of disease progression (71). Compromise of BBB integrity and
selective permeability allows microbial metabolites and circulating
immunoglobulins to infiltrate the brain parenchyma, where they
activate microglia and central immune pathways. Activated
microglia trigger the nuclear translocation of NF-kB, leading to the
upregulation of pro-inflammatory cytokines such as IL-13 and IL-18
(72-75). This cascade accelerates AP deposition and tau
phosphorylation, thereby exacerbating neurodegeneration.
Microvascular endothelial damage and increased BBB permeability
are common in AD and are closely associated with chronic systemic
inflammation (76). Regular physical exercise has been shown to
protect BBB function and reestablish the immune barrier of the
CNS. In animal models, exercise promotes the expression of tight
junction proteins in cerebral endothelial cells and increases
neurotrophic support to stabilize the vascular endothelium, thereby
reducing BBB permeability (77). Exercise also restores the number and
activity of astrocytes that are closely associated with the neurovascular
unit (78). These astrocytes, often reduced in AD models, are essential
for maintaining BBB structure and function. By preserving BBB
integrity, exercise limits the entry of peripheral immune mediators
into the brain. This restricts the influx of circulating pro-inflammatory
cytokines and reduces the recruitment of peripheral immune cells that
would otherwise perpetuate neuroinflammation. One study
demonstrated that plasma obtained from exercise-trained donor
mice suppressed complement-mediated inflammatory responses in
the hippocampus of sedentary recipient AD model mice, with
clusterin identified as a key mediator. In parallel, physically active
human participants showed elevated plasma clusterin levels after
exercise training, suggesting that systemic adaptations to exercise
may exert remote immunomodulatory effects within the brain (15).
Importantly, reduced peripheral inflammation lowers the
overactivation of central immune cells, thereby preventing the
upregulation of Af-generating enzymes. For instance, voluntary
wheel running significantly downregulated BACE1 gene expression
in the hippocampus of AD mice and was accompanied by reduced
levels of soluble AP, 4, (79). This effect is partly mediated by lactate
produced during skeletal muscle contraction, which activates the Sirtl
pathway and enhances BDNF expression in the hippocampus (80),
supporting neuronal viability and synaptic plasticity. BDNF not only
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promotes synaptic remodeling but also suppresses BACE1 activity,
thus inhibiting AP generation via the B-/y-secretase pathway (81). In
addition to reducing A} burden, exercise helps mitigate tau pathology
by modulating inflammation-associated kinase activation. Chronic
inflammation has been shown to activate tau kinases such as GSK3[3
and CDKS5 (82), which play pivotal roles in hyperphosphorylation and
neurofibrillary tangle formation. Exercise dampens these pathways by
suppressing peripheral inflaimmatory triggers and restoring BBB
homeostasis. Furthermore, it activates pro-survival signaling
cascades within neurons. In a male rat model of post-traumatic
stress disorder (PTSD), moderate exercise was shown to increase the
expression of insulin-like growth factor-1 (IGF-1) and activate the
BDNE/TrkB axis, which in turn stimulates the PI3K/Akt pathway
(83). Akt activation leads to the phosphorylation and inhibition of
GSK3, thereby reducing its capacity to phosphorylate tau.
Supporting this mechanism, treadmill exercise in animal models
elevates hippocampal p-Akt levels and concurrently reduces active
GSK3p and tau phosphorylation (84). Similarly, voluntary running
activated the BDNF/TrkB/Akt axis and promoted GSK3[} inactivation,
alleviating tau pathology (85). The anti-inflammatory effects of
exercise also prevent sustained activation of neurotoxic kinases. For
example, chronically activated microglia release IL-1B and other
cytokines that accelerate tau propagation and aggregation (86).
Exercise has been shown to reduce IL-1 levels and suppress pro-
inflammatory microglial phenotypes. In a short-term resistance
training study, 3xTg-AD mice subjected to ladder-climbing exercise
exhibited reduced AP load and tau phosphorylation (87), attenuated
glial activation, and improved synaptic function. Together, these
findings demonstrate that exercise reduces peripheral pro-
inflammatory signaling and strengthens BBB function, forming a
defensive barrier against systemic immune insults. By reshaping the
brain’s inflammatory microenvironment, exercise slows Af and tau
production and ultimately alleviates AD-related pathology. In sum,
structured physical training reprograms the peripheral immune
system and shifts the central immune tone from a pro-
inflammatory to an anti-inflammatory state, offering systemic
immunoregulatory support that may help delay disease progression
in AD (Figure 1).

3.2 Exercise modulates gut microbiota
dysbiosis to reduce aberrant AB and Tau
accumulation in the brain

The gut microbiota significantly influences CNS health by shaping
immune responses, neuronal function, and glial cell activity through
the gut-brain axis, with microbiota-derived metabolites such as short-
chain fatty acids (e.g., acetate, propionate, butyrate), tryptophan-
derived indoles, and secondary bile acids serving as key mediators
of this communication (88). In AD, disrupted gut microbiota, known
as dysbiosis, weakens intestinal barrier integrity, leading to increased
permeability and systemic inflammation (89). This heightened
inflammatory state exacerbates neuroinflammation and accelerates
AD pathology, creating a self-reinforcing cycle. Notably, AD patients
exhibit reduced microbial diversity characterized by increased levels of
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Exercise reduces peripheral cytokines and curbs brain Ap and Tau accumulation. This schematic illustrates the contrasting effects of exercise (left,
blue background) and sedentary behavior (right, red background) on peripheral cytokine signaling, blood—-brain barrier (BBB) integrity, and brain
pathology. Exercise enhances IL-6 and IL-17 signaling while suppressing pro-inflammatory cytokines such as TNF-o., thereby strengthening BBB
function, reducing AB and Tau accumulation, and supporting neuroprotection through anti-inflammatory microglia and astrocytes. In contrast,
sedentary behavior decreases protective cytokines and elevates pro-inflammatory mediators, impairing BBB integrity, aggravating Ap and Tau
deposition, and driving neurodegeneration through pro-inflammatory glial activation. Key molecules (AB, Tau, IL-6, IL-17, TNF-o, BACEL, and CDK5)
are indicated at the bottom, and arrows represent the direction of molecular or cellular effects.

harmful bacteria such as Proteobacteria and Bacteroidetes, along with
decreased beneficial groups like Firmicutes and Bifidobacterium (90).
These changes lower the production of short-chain fatty acids
(SCFAs), especially butyrate, impairing protective mechanisms like
BDNF signaling and facilitating Tau protein abnormalities. Moreover,
pathogenic bacteria contribute to AD pathology primarily through
endotoxins such as lipopolysaccharide (LPS) (91), which induce
neuroinflammation and exacerbate AP accumulation, Tau
hyperphosphorylation, and blood-brain barrier disruption, thereby
accelerating cognitive decline.

Mounting evidence suggests that exercise reshapes gut microbiota
composition and metabolite profiles to reduce the cerebral
accumulation of AB and Tau proteins. Regular physical activity has
been shown to enrich beneficial gut bacteria and enhance the
production of SCFAs, such as acetate, propionate, and butyrate (92).
These metabolites readily cross the BBB, where they exert anti-
inflammatory and neuroprotective effects, with butyrate exhibiting
the most pronounced activity. Butyrate—an SCFA acting as a histone
deacetylase (HDAC) inhibitor—enhances histone acetylation at
neurotrophic gene loci and thereby upregulates BDNF, supporting
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synaptic plasticity and cognition (93). Recent evidence further shows
that butyrate elevates brain BDNF and downstream PI3K/Akt
signaling in vivo (94). Experimental studies have shown that
butyrate treatment increases phosphorylation at serine-9 and
acetylation at lysine-15 of GSK3p, reducing its activity and
mitigating Tau hyperphosphorylation and neurofibrillary pathology
(95). In parallel, exercise-enhanced microbial metabolism suppresses
CNS inflammation through SCFA receptor activation in colonic
epithelial cells and by modulating glial cell activity (96, 97).
Conversely, exercise selectively decreases pro-inflammatory bacterial
populations and their harmful metabolites. Notably, regular exercise
lowers circulating levels of LPS (98), an endotoxin produced by Gram-
negative bacteria, while enhancing intestinal barrier integrity by
upregulating tight junction proteins such as ZO-1, Occludin, and
Claudin-5 (22). This prevents LPS translocation from the gut lumen
into the bloodstream. In APP/PS1 mice, 12 weeks of treadmill training
significantly reduced LPS levels in plasma and brain tissue, improved
BBB function, and attenuated microglia-mediated neuroinflammation
(98). Moreover, exercise modulates peripheral immune and
neuroendocrine pathways to facilitate gut-brain communication, in
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part by altering gut microbiota composition and enhancing the
production of beneficial metabolites such as short-chain fatty acids
and tryptophan-derived indoles (99-101). It reduces pro-
inflammatory monocyte subsets and cytokine while increasing anti-
inflammatory mediators. Long-term training also downregulates
TLR4 expression on monocytes, diminishing LPS responsiveness
and further limiting systemic inflaimmation—an effect that may
counteract chronic neuroinflammation in AD (102). Systemic
exercise-induced factors, termed exerkines, also mediate gut-brain
interactions. Irisin, a myokine derived from fibronectin type III
domain-containing protein 5 (FNDC5), is upregulated by aerobic
exercise and has been shown to enhance hippocampal neuroplasticity
and cognition (103). Recent studies suggest that irisin reprograms gut
microbial activity and suppresses gut-brain axis inflammation,
mitigating aging- and AD-related cognitive decline (104).
Furthermore, breathing-based training enhances vagal tone in
humans (105), and aerobic/resistance exercise is also associated with
increases in vagally mediated HRV (106). Enhanced vagal signaling, in
turn, supports gastrointestinal motility and secretion, thereby
contributing to microbial homeostasis (107). Notably, BDNF itself
plays a dual role in the exercise—gut-brain axis (108). Aerobic exercise
markedly increases central and peripheral BDNF levels (109),
supporting neuronal survival and synaptic function (110). BDNF
deficiency impairs colonic epithelial integrity, as evidenced by
reduced expression of ZO-1, Occludin, and Claudin-1 and elevated
Claudin-2 (111), along with microvillus degeneration and microbial
translocation. Reciprocally, gut microbial dysbiosis can reduce
hippocampal BDNF and TrkB expression, as demonstrated in
antibiotic-treated animals (112). These findings suggest that BDNF
acts both centrally and peripherally to coordinate neuroplasticity, gut
barrier integrity, and inflammatory tone in AD. Animal studies
provide direct support for this concept. In 3xTg-AD mice, 20 weeks
of treadmill exercise significantly increased Akkermansia muciniphila
and reduced pro-inflammatory Bacteroides (113). These microbiota
shifts were accompanied by upregulation of BBB proteins, decreased
cerebral AP and Tau pathology, and improved spatial memory. This
suggests that exercise remodels the gut-brain axis to preserve
cognition via peripheral barrier reinforcement. Collectively, exercise
sustains AP} and Tau homeostasis through coordinated peripheral
mechanisms—including metabolic modulation, immune suppression,
and neuroendocrine regulation—thereby offering a multi-targeted and
feasible intervention strategy against AD (Figure 2).

3.3 Exercise enhances energy metabolism
to reduce excessive Af and Tau
accumulation in the brain

Dysregulated energy metabolism is considered one of the
central driving forces in the pathogenesis of AD (114). Substantial
evidence indicates that cerebral glucose metabolism is already
impaired in the early stages of AD, especially in cognition-related
regions such as the hippocampus and cortex (115, 116). These
impairments, including reduced glucose uptake and diminished
energy production, often precede hallmark pathological features
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such as AP deposition and Tau hyperphosphorylation (117).
Impaired neuronal glucose utilization results in mitochondrial
dysfunction and oxidative stress, which subsequently trigger
signaling cascades that enhance AP production and Tau
phosphorylation. Additionally, peripheral insulin resistance
exacerbates central insulin signaling deficits, reduces A clearance
by insulin-degrading enzyme (IDE) (118), and activates glycogen
synthase kinase-38 (GSK-3B), thereby contributing to the
pathological phosphorylation of Tau (119). Epidemiological
studies further support this link, showing that type 2 diabetes and
other energy-related metabolic disorders substantially increase the
risk of developing AD (120, 121). These findings suggest that early
intervention targeting both peripheral and central metabolic
dysfunction may offer a promising strategy for delaying the onset
and progression of AD.

Regular exercise, recognized as an effective lifestyle intervention,
markedly enhances skeletal muscle mitochondrial function and
glucose metabolism, thereby alleviating insulin resistance (122).
Mechanistically, exercise activates the AMPK/PGC-1a:. signaling axis
to promote mitochondrial biogenesis and mitochondrial quality
control processes, including fission-fusion dynamics and mitophagy,
in skeletal muscle and thereby enhances glucose uptake and utilization
(123). This metabolic optimization reduces peripheral
hyperinsulinemia and restores systemic insulin sensitivity. These
effects further enhance insulin signaling in the brain, inhibit GSK-
3B activity (124), and attenuate Tau hyperphosphorylation.
Additionally, reduced peripheral insulin levels lessen the competitive
inhibition of IDE, thereby facilitating more efficient AP clearance.
Long-term aerobic exercise significantly decreases hippocampal A
deposition and Tau phosphorylation in AD transgenic mice, with
mechanisms involving reduced APP phosphorylation,
downregulation of y-secretase Presenilin-1, and GSK-3p inactivation
(124). In AD models with glucose metabolism disorders, exercise
reverses diabetes-induced cognitive deficits and Tau
hyperphosphorylation by inhibiting the FOXO1/NF-kB/NLRP3
inflammatory pathway and activating PI3K/Akt signaling (125, 126).
In humans, older adults who consistently engage in physical activity
exhibit improved insulin sensitivity, lower fasting insulin and lipid
levels, and reduced cerebral A burden (127). Exercise also modulates
adipose tissue endocrine function, lowering systemic chronic
inflammation and indirectly alleviating AP and Tau pathology in
the brain. In obesity and insulin-resistant states, excessive secretion of
pro-inflammatory cytokines from adipose tissue activates microglial
inflammation, upregulates BACE1l, and promotes Tau
hyperphosphorylation (128). Regular exercise reduces adiposity,
suppresses pro-inflammatory cytokine release, and increases
adiponectin secretion. Adiponectin, in turn, activates the AMPK/
PPARa. pathway to enhance systemic glucose and lipid homeostasis
while inhibiting NF-xB and IL-6/STAT?3 signaling (129). Exercise also
shifts adipose macrophages from a pro-inflammatory M1 to an anti-
inflammatory M2 phenotype (64), further lowering systemic
inflammation and CNS inflammatory stress. Animal studies confirm
that these changes, combined with increased anti-inflammatory
mediators, reduce brain inflammatory factors, Af deposition, and
Tau phosphorylation (130). Systemic metabolic improvements are
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FIGURE 2

Multilevel regulation of AR and Tau pathology by exercise through the gut—brain axis. This schematic illustrates how exercise modulates the gut—
brain axis to influence AD pathology. Exercise alters gut microbial composition, increasing the production of SCFAs and reducing harmful
metabolites such as LPS, while also enhancing protective immune factors like IgA. These changes strengthen intestinal barrier integrity through tight
junction proteins (occludin, claudin-5, and ZO-1) and reduce peripheral inflammation. Circulating SCFAs act on the brain, where they promote the
release of myokines such as irisin and upregulate BDNF, thereby enhancing synaptic plasticity.

closely synchronized with enhanced brain energy metabolism. Regular
exercise increases cerebral blood flow and the transport of nutrients
across the BBB (131), directly enhancing glucose availability in the
brain. Muscle contractions during exercise release metabolites such as
lactate and irisin, which cross the BBB to serve as alternative neuronal
energy substrates and activate the cAMP/CREB/BDNF signaling
pathway (132), thereby enhancing brain metabolism and
neuroplasticity. In AD models, exercise-induced irisin improves
synaptic plasticity and cognition while lowering AR and Tau
pathology (133). In summary, regular exercise mitigates abnormal
AP and Tau accumulation by enhancing skeletal muscle glucose
metabolism and mitochondrial function, modulating adipose
endocrine activity to reduce systemic inflammation, and
synchronously improving brain energy metabolism.

4 Exercise enhances peripheral
clearance mechanisms to maintain AB
and Tau homeostasis

BBB dysfunction is recognized as an early and critical event in
the pathogenesis of AD (134). As BBB integrity deteriorates, both
AP and Tau proteins in the CNS can be transported into the
peripheral circulation via passive diffusion or active receptor-
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mediated mechanisms (135). This enables peripheral organs and
systems to participate in the clearance of neurotoxic proteins
originating from the brain. AP exits the brain through endothelial
transport mediated by receptors such as LRP1 and the receptor for
advanced glycation end-products (RAGE) (136), while Tau is also
detectable in peripheral blood via extracellular vesicles or specific
transporters. The integrity of peripheral clearance pathways is thus
essential for maintaining cerebral AP and Tau homeostasis.
However, aging—the most significant risk factor for AD—
substantially impairs this defense system. In the elderly, hepatic
AP uptake declines, renal excretory capacity weakens, and immune-
mediated clearance becomes impaired (137). These deficits result in
peripheral retention of AB and Tau, and potentially their re-entry
into the brain, further exacerbating central accumulation and
establishing a pathological brain-periphery vicious cycle.
Enhancing peripheral clearance has therefore emerged as a
promising strategy to mitigate AD pathology. Within this context,
exercise—a systemic and modifiable intervention—has shown
potential to activate multiorgan clearance mechanisms, including
the glymphatic-astrocytic pathway (138), as well as peripheral
routes such as the liver, kidney, and immune system (139-141).
Exercise increases the expression of key transport receptors and
metabolic enzymes in the liver and kidneys, thereby improving
organ-level AP and Tau clearance (19). It also improves glymphatic
fluid dynamics, enhancing cerebrospinal-interstitial fluid exchange
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and metabolic coupling between the brain and periphery.
Furthermore, exercise promotes phenotypic switching and
phagocytic capacity of peripheral immune cells (142), offering an
additional immunological route for A and Tau clearance.
Collectively, these effects suggest that reprogramming peripheral
clearance mechanisms may represent a critical pathway through
which exercise delays the progression of AD.

4.1 Exercise enhances peripheral clearance
of A and Tau by modulating immune cell
function

The peripheral immune system plays a critical role in
maintaining the homeostasis of AR and Tau proteins in the brain
(119). When the BBB is compromised, brain-derived AB and Tau
can enter systemic circulation, where they are subject to clearance
by immune cells. Recent studies demonstrate that regular exercise
enhances peripheral AP and Tau clearance by modulating the
activation states and functions of monocyte-macrophage cells,
neutrophils, and T lymphocytes, thereby contributing to the
mitigation of AD pathology (120). Monocyte-macrophage lineage
cells are central to the peripheral removal of AB and Tau. Under
normal conditions, approximately 40-60% of brain Af enters the
bloodstream and is cleared through this pathway (14). Aging,
however, diminishes their phagocytic efficiency, in part due to
reduced expression of scavenger receptors such as Toll-like
receptor 2 (TLR2) (121). Exercise has been shown to reverse these
deficits. In preclinical models, physical activity promotes anti-
inflammatory M2 polarization of macrophages and enhances
their capacity for AP uptake and degradation (122). Exercise also
increases Fcy receptor expression (123), facilitating antibody-
dependent phagocytosis and improving overall clearance
efficiency. Neutrophils play a complementary role in peripheral
protein removal (124). Although their direct phagocytosis of AP
and Tau is limited, neutrophils release neutrophil extracellular traps
that support the capture and degradation of amyloid fibrils by
macrophages (143). However, excessive neutrophil activation may
exacerbate inflammation and vascular damage. Exercise restores
neutrophil homeostasis (125), enhancing their maturation and
phagocytic function while limiting pathological activation. These
adaptations improve systemic clearance efficiency of brain-derived
proteins. T lymphocytes, particularly regulatory T cells (Tregs), may
contribute indirectly to immune clearance (126). By secreting anti-
inflammatory cytokines such as IL-4 and IL-10, Tregs promote M2
macrophage polarization, which could in turn enhance phagocytic
clearance of AP and Tau (127). However, this interpretation
remains speculative, as direct evidence for Treg-mediated
clearance of amyloid pathology is still limited and requires further
investigation. In AD, T cell imbalance—characterized by increased
Th1/Th17 cells and reduced Treg function—dampens immune
tolerance and promotes chronic inflammation (128). Exercise
restores T cell subset balance (129), increases Treg prevalence,
suppresses pro-inflammatory cytokine expression, and supports
anti-inflammatory immune responses. Collectively, exercise-
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mediated modulation of peripheral immune cells—including
enhanced macrophage phagocytosis, functional rebalancing of
neutrophils, and T cell-driven immunoregulation—forms a key
mechanism through which physical activity facilitates AP and Tau
clearance and slows AD progression.

4.2 Exercise enhances liver—brain axis
function to promote peripheral clearance
of AR and Tau

Following BBB disruption, brain-derived AP and Tau proteins
that are not cleared by peripheral immune cells can be transported via
the bloodstream to peripheral organs for elimination. Under
physiological conditions, approximately 40-60% of brain-derived
AP is cleared through peripheral mechanisms, with the liver
serving as the major site of systemic clearance (19). Hepatocytes
and liver sinusoidal endothelial cells express high levels of LRP1
(144), a key receptor responsible for binding and internalizing
circulating AP for degradation. LRP1-mediated hepatic uptake
allows for the clearance of roughly 13.9% of AB,, and 8.9% of AR,
per circulatory cycle (19). However, aging and AD progression are
associated with downregulation of hepatic LRP1 expression, resulting
in impaired AP clearance and elevated A levels in both plasma and
brain. Conversely, enhancing hepatic LRP1 expression has been
shown to lower cerebral AB burden and improve cognitive
outcomes (19), underscoring the importance of an intact liver—
brain axis in maintaining A homeostasis. Similarly, Tau protein
can enter peripheral circulation via extracellular vesicles and may be
degraded in peripheral organs such as the liver (145). The functional
integrity of this peripheral clearance route also influences Tau
accumulation in the brain. Regular exercise, as a systemic
intervention, improves liver function and enhances its capacity for
AP elimination (123). Aerobic exercise has been shown in animal
models to reduce cerebral AP load while accelerating hepatic
clearance. For example, in APP/PS1 transgenic mice, 8 weeks of
treadmill training improved cognitive and exploratory behavior,
reduced brain AP deposition, and increased hepatic phagocytic and
degradative activity toward AP (142). Exercise facilitates peripheral
AP clearance by modulating key molecular pathways. It elevates
soluble LRP1 (sLRP1) levels in plasma, which act as peripheral
‘scavengers’ binding circulating AP, and simultaneously upregulates
membrane-bound LRP1 expression on hepatocytes, which mediates
hepatic uptake and degradation of AP. These two forms of LRP1 act
in a complementary manner to promote efficient systemic clearance
of circulating AB (146). In AD models, treadmill training increased
LRP1 expression in both liver and hippocampus, suggesting a
synergistic enhancement of AP clearance across the liver-brain
axis. In parallel, exercise also increases the expression of AB-
degrading enzymes, such as IDE in the liver and neprilysin (NEP)
in the hippocampus (147). These enzymatic adaptations enhance
peripheral AP catabolism, reduce its systemic accumulation, and
mitigate the risk of re-entry into the brain.

Although studies on the peripheral clearance of Tau are
currently limited, emerging evidence suggests that the enhanced
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systemic clearance pathways induced by exercise may also
contribute to Tau homeostasis. Tau has been shown to
dynamically exchange between the brain and peripheral tissues
through the bloodstream, with portions of brain-derived Tau
transported to peripheral organs—such as the liver and kidneys—
for metabolic degradation (148). A functional peripheral clearance
system helps minimize peripheral accumulation and reduces the
risk of Tau re-entry into the CNS. Accordingly, improvements in
liver-brain axis efficiency induced by exercise may simultaneously
enhance the peripheral elimination of Tau. Nwoko’s study
demonstrated that aerobic exercise reduced Tau phosphorylation
and attenuated Tau-related pathology in AD model mice,
potentially due in part to improved clearance of circulating Tau
exported from the brain (149). Nevertheless, compared to AB, Tau
appears to be cleared through more complex peripheral
mechanisms, including extracellular vesicle-mediated transport,
hepatic macrophage degradation, and renal filtration—all of
which require further investigation. In summary, exercise
activates multiple mechanisms within the liver-brain axis to
promote the peripheral clearance of AB and Tau proteins. These
include enhanced hepatic uptake and degradation, as well as
systemic improvements in liver metabolic health that support
sustained protein elimination (Figure 3).

4.3 Exercise enhances the kidney—brain
axis to promote peripheral clearance of AR
and Tau

In addition to the liver, the kidneys—critical metabolic and
excretory organs—play an essential role in the peripheral clearance
of circulating AR and Tau proteins (150). Under normal
physiological conditions, free AR (approximately 4 kDa) is filtered
through the glomerular barrier into the primary urine and excreted
via the urinary tract (151). This has been confirmed in animal tracer
studies and through the detection of AP in human urine samples.
The kidneys also eliminate AP through receptor-mediated uptake
and enzymatic degradation by renal tubular epithelial cells. These
cells highly express megalin (also known as LRP2), a receptor that
binds and reabsorbs filtered AP, preventing its excessive urinary loss
and directing it toward lysosomal degradation (152). Additionally,
the renal parenchyma is rich in proteolytic enzymes such as
neprilysin (NEP), which degrade circulating AP and help lower
both plasma levels and brain deposition risk. Emerging studies also
indicate that Tau protein may undergo peripheral clearance via
renal pathways (148). Although the precise mechanisms remain to
be fully elucidated, patients with chronic kidney disease (CKD)
frequently present with elevated plasma Tau levels, greater cerebral
AP and Tau burden, and impaired cognitive function, suggesting a
strong link between renal function and Tau clearance capacity
(153). In pathological states such as CKD, the kidney’s ability to
clear AP and Tau is markedly reduced (154). Clinical studies have
reported significantly elevated levels of AB,o;, ARz, and Tau in the
plasma of CKD patients, with the degree of brain AB deposition
inversely associated with renal function (155, 156). These patients
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are at increased risk of cognitive impairment and dementia.
Supporting this, experimental models have demonstrated that
surgically induced renal impairment in mice accelerates the
accumulation of cerebral AP and Tau (157), exacerbating AD-like
pathology. Conversely, improvements in renal function—such as
through kidney transplantation—can alleviate cognitive deficits,
reinforcing the protective role of the kidney-brain axis in
AD pathology.

As a non-pharmacological intervention, regular physical
exercise has been shown to significantly enhance renal function,
thereby facilitating the peripheral clearance of circulating AB and
Tau proteins, lowering AD risk, and improving cognitive
performance. Exercise improves renal hemodynamics by
increasing tissue perfusion and oxygen delivery (158), which
enhances glomerular filtration and allows for more efficient
elimination of AP and Tau via urinary excretion. In parallel, it
mitigates chronic inflammation and oxidative stress (159), both
locally in the kidney and systemically. These pathological states
disrupt nephron integrity and upregulate renal expression of the
receptor for advanced glycation end-products (RAGE) (160),
promoting AP retention within renal tissues. Exercise counteracts
these effects by reducing levels of pro-inflammatory cytokines such
as TNF-o and IL-6, enhancing antioxidant capacity, and thereby
limiting RAGE-mediated AP accumulation (161). Additionally,
long-term exercise suppresses renal fibrosis by downregulating
the TGF-B/Smad signaling pathway (162), reducing interstitial
collagen deposition and preserving parenchymal integrity.
Improvements in systemic metabolic parameters—such as blood
pressure, glycemia, and lipid profiles—further support optimal
kidney function. Overall, healthy renal function is essential for
maintaining peripheral Af and Tau homeostasis, while renal
impairment may exacerbate toxic protein accumulation and
accelerate AD pathology. By enhancing renal filtration, transport,
and degradation mechanisms, exercise serves as a comprehensive
strategy to promote peripheral clearance of Af} and Tau and
mitigate their neurotoxic impact on the brain.

4.4 Exercise enhances glymphatic
clearance of AB and Tau

The glymphatic system is a key CSF-mediated pathway
responsible for clearing metabolic waste from the brain, including
pathogenic proteins such as AP and Tau (163). Disruption of this
system—such as loss of polarized aquaporin-4 (AQP4) expression
in astrocytic endfeet or reduced CSF circulation—has been closely
linked to the pathogenesis of AD (154). Enhancing glymphatic
clearance has thus emerged as a promising therapeutic strategy to
mitigate AD progression. Exercise has been shown to activate the
glymphatic system and improve brain-to-peripheral waste
clearance. One key mechanism is the upregulation and
repolarization of AQP4 at astrocytic endfeet, which facilitates
CSF-interstitial fluid (ISF) exchange (164). In AD mouse models,
aerobic exercise restored AQP4 polarity, enhanced glymphatic flow
(165), reduced AP deposition and Tau phosphorylation, and
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FIGURE 3

Exercise enhances peripheral clearance of brain-derived AR and Tau via monocyte-mediated transport and Kupffer cell degradation. This schematic
compares the effects of exercise (left) and sedentary behavior (right) on peripheral clearance pathways for brain-derived proteins. Under exercise
conditions, AB and Tau are transported across the blood—brain barrier and bound by peripheral monocytes through LRP1-mediated uptake, while
Kupffer cells in the liver further degrade these proteins via LRP1 and IDE-dependent mechanisms. These processes collectively enhance systemic
elimination of neurotoxic proteins and reduce their accumulation in the brain. In contrast, sedentary behavior is associated with impaired monocyte
uptake and reduced Kupffer cell clearance, leading to diminished peripheral removal of AR and Tau and their subsequent deposition in the brain. Key
molecules (AB plagues, Tau tangles, LRP1, IDE) and cellular components (monocytes, Kupffer cells) are indicated in the figure.

improved cognitive performance. These benefits were abolished in
AQP4 knockout mice, confirming the essential role of AQP4-
mediated glymphatic activity in the neuroprotective effects of
exercise. Additionally, exercise promotes fluid exchange between
the brain and peripheral lymphatic vessels. Clinical imaging studies
indicate that long-term aerobic activity increases CSF flow in the
striatum and enhances meningeal lymphatic vessel diameter and
velocity (166). These effects reflect enhanced glymphatic-lymphatic
connectivity, supporting more efficient clearance of brain-derived
toxins. The observed reduction in systemic inflammatory markers
post-exercise may further indicate enhanced waste removal via this
pathway (16). Furthermore, exercise-induced improvements in
sleep architecture also augment glymphatic function. Glymphatic
clearance peaks during deep slow-wave sleep, and regular physical
activity increases both the duration and quality of this phase (167).
As a result, CSF circulation is boosted and nocturnal clearance of
AP and Tau is enhanced. When combined with healthy sleep
hygiene, exercise may synergistically strengthen glymphatic
performance and metabolic homeostasis (168). In summary,
exercise strengthens glymphatic clearance of AP and Tau by
restoring AQP4 polarity, enhancing cerebrospinal and lymphatic
circulation, and improving sleep-driven clearance rhythms. These
combined mechanisms promote efficient brain-to-periphery
protein transport, offering a practical and multifaceted
intervention to delay or mitigate AD pathology (Figure 4).
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5 Exercise-induced peripheral factors
in the regulation of AB and Tau
homeostasis

As a systemic and multi-target intervention, physical exercise
has attracted increasing interest in the context of AD prevention
and treatment. Beyond localized effects within the brain, growing
evidence suggests that exercise exerts neuroprotective benefits
through peripheral factors induced by skeletal muscle contraction
(169). These circulating molecules can cross the BBB or signal
through systemic pathways to influence A} homeostasis within the
CNS. The primary mediators of this peripheral regulatory network
include myokines, non-coding RNAs (ncRNAs), exosomes, and the
metabolic byproduct lactate (170, 171). Together, these components
regulate AP and Tau clearance, metabolism, and toxicity
modulation. Skeletal muscle, as the body’s largest endocrine
organ, releases a range of bioactive signaling molecules during
physical activity (172). These myokines—secreted via endocrine,
paracrine, or exosome-based mechanisms—enter the bloodstream
and act on peripheral targets such as the liver, adipose tissue, and
the brain. Prominent examples include irisin (173), IL-6 (174),
CTSB (175), and glycosylphosphatidylinositol-specific
phospholipase D1 (GPLD1) (176), which have been shown to
enhance BDNF expression, promote synaptic plasticity, and
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FIGURE 4

Exercise promotes glymphatic AR and Tau clearance via AQP4-mediated CSF-ISF exchange.

facilitate AP clearance, thereby attenuating AD pathology. Exercise
also modulates gene expression through various ncRNAs—
including miR-132, miR-124, and miR-146a—that circulate in
exosomes and serve as molecular messengers along the muscle-
liver-brain axis (170, 177). These ncRNAs regulate inflammation,
macrophage polarization, and synaptic stability (178). Furthermore,
lactate, a rapidly accumulating byproduct of muscular activity, has
emerged as a neuroactive metabolite capable of supporting neuronal
energy metabolism, enhancing neurogenesis, and improving
synaptic function (80). In summary, elucidating the molecular
mechanisms of exercise-induced peripheral signaling may inform
the development of exercise mimetics and novel AD therapies
aimed at restoring AP and Tau homeostasis.

5.1 Myokines

Myokines are biologically active peptides synthesized and
secreted by skeletal muscle during contraction (179). They have
recently been redefined as endocrine messengers that mediate
communication between skeletal muscle and distant organs,
particularly the brain (180, 181). Beyond its role as a motor
effector, skeletal muscle is the body’s largest endocrine organ.
During physical activity, myokines are released into the
circulation and act through endocrine, paracrine, or autocrine
mechanisms to modulate peripheral immune responses, metabolic
homeostasis, and inflammatory states—thereby indirectly
influencing CNS function (182).

Accumulating evidence indicates that exercise-induced myokines
contribute to neuroprotection in AD by regulating systemic
inflammation, lipid metabolism, neurotrophic factor expression,
and peripheral clearance of AP (123, 180). Interleukin-6 (IL-6) was
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the first identified myokine, robustly secreted by contracting skeletal
muscle during exercise (183). IL-6 activates its receptor pathway to
induce the expression of anti-inflammatory cytokines (e.g., IL-10, IL-
Ira) while inhibiting pro-inflammatory mediators such as TNF-o
(184), thereby establishing a systemic anti-inflammatory
environment (185). Reduced peripheral IL-6 expression is
commonly observed in AD patients, suggesting early impairment
in this myokine-mediated regulatory axis. However, this reduction is
likely multifactorial and may also reflect the effects of sarcopenia,
immune dysfunction, and comorbid conditions (186-188). Regular
exercise restores IL-6 levels (189), improves immune balance, and
indirectly attenuates neuroinflammation and A accumulation (190).
IL-6 also influences lipid metabolism and oxidative stress, further
supporting peripheral Af clearance.

Irisin, another well-studied myokine, is generated through
cleavage of the FNDC5 precursor protein under the control of
PGC-1a. (191). Circulating irisin binds to integrin V5 receptors
(192), activating the AMPK-BDNF axis to enhance neurotrophic
support (193), modulate immune cell activity, and reduce
peripheral inflammation. Blocking systemic irisin expression
significantly attenuates the cognitive benefits of exercise (103,
194), underscoring its essential role in mediating exercise-
induced neuroprotection.

CTSB, a lysosomal cysteine protease, is markedly elevated in the
bloodstream following exercise (195). CTSB enhances peripheral
BDNF expression and contributes to anti-inflammatory responses
and AP clearance (187). It is hypothesized to function as a key
mediator in the muscle-liver-brain axis. Notably, CTSB-deficient
mice fail to exhibit exercise-induced cognitive improvements,
highlighting its necessity for trans-systemic neuroprotection.

GPLD1, primarily synthesized in the liver, is also upregulated
following exercise (176). It regulates signaling pathways via cleavage
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of GPI-anchored proteins and promotes peripheral neurotrophic
factor production (196). Circulating GPLD1 has been shown to
mediate exercise-induced cognitive benefits even in sedentary
conditions, reinforcing its role in peripheral-to-central signaling.

Clusterin (Clu, also known as Apo]) is another exercise-
responsive factor (15). Peripheral Clu expression increases after
physical activity and facilitates AP binding and efflux from the brain
(15). Clu also modulates the complement system and suppresses
peripheral inflammation, indirectly supporting neuronal function
(197). Moreover, Clu upregulation correlates with peripheral neural
progenitor cell proliferation and may promote overall neural
plasticity. However, Clu’s role appears context-dependent; under
certain inflammatory conditions, it may promote AP aggregation,
suggesting a dualistic or conditional regulatory role (198). In
summary, myokines serve as crucial messengers linking physical
activity to peripheral and central signaling. Through modulation of
immune, metabolic, inflammatory, and AP clearance pathways,
they contribute to maintaining AR and Tau homeostasis in the
brain. Understanding the peripheral mechanisms and interactive
networks of myokines offers novel insights into the molecular basis
of exercise therapy and may inform the development of myokine-
based therapeutic strategies for AD.

5.2 Non-coding RNAs and exosomal
factors

Non-coding RNAs, particularly microRNAs (miRNAs), are
increasingly recognized as peripheral signaling mediators with
relevance to AD (199). These approximately 22-nucleotide-long
RNAs regulate gene expression at the post-transcriptional level,
primarily by binding to complementary sequences in target mRNAs
to promote their degradation or translational repression, and circulate
freely or within exosomes to mediate peripheral-central
communication (200). Exercise profoundly alters miRNA expression
profiles and promotes the expression of neuroprotective miRNAs that
modulate inflammation, A metabolism, neurotrophic signaling, and
BBB integrity (201). Exercise-induced upregulation of miR-126 and
miR-146a improves cerebrovascular health and limits AB
accumulation by enhancing endothelial function and reducing
inflammation (202, 203). Meanwhile, downregulation of pro-
inflammatory miR-155 and upregulation of neuron-specific miR-
124 help reprogram peripheral and central immune responses (178,
204). In parallel, liver-expressed miR-29 family members
downregulate BACE1 expression, thereby reducing peripheral AP
generation (79). Importantly, exosomes derived from exercised
animals, enriched in specific miRNAs, have been shown to reduce
brain Af levels and improve cognition in AD models, suggesting a
coordinated miRNA-exosome-periphery—-CNS axis (205). These
findings position miRNAs as both biomarkers and therapeutic
targets for AD. Continued research into their dynamic expression,
molecular targets, and delivery mechanisms will be essential for
translating exercise-based interventions into clinical strategies.
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5.3 Lactate

Lactate has long been viewed as a metabolic waste product of
anaerobic glycolysis during intense physical activity, often
associated with muscle soreness and fatigue (206). However, this
traditional perspective has been fundamentally challenged in recent
years. Lactate is now recognized as a hormonally active metabolic
signal—termed a “lactormone”—that mediates inter-organ
communication and plays vital roles in metabolic regulation and
signal transduction across multiple systems (207, 208). Beyond its
role in energy redistribution, lactate also influences gene expression,
protein synthesis, and intercellular signaling, with broad
physiological implications. In the CNS, lactate can cross the BBB
and is taken up by neurons and astrocytes (209), where it serves as
both an energy substrate and signaling molecule. It enhances
synaptic plasticity, increases cerebral blood flow, induces the
expression of BDNF, and participates in epigenetic regulation
such as histone acetylation (210). In neurodegenerative diseases
such as AD, lactate has demonstrated neuroprotective properties.
Exogenous lactate administration has been shown to elevate
hippocampal BDNF expression (211), improve cognitive
performance in AD models, suppress neuroinflammation, reduce
AP accumulation (212), and attenuate Tau hyperphosphorylation
(213). These effects are mediated, at least in part, via activation of
the GPR81 lactate receptor and the NAD'/SIRT1 signaling axis
within the hippocampus and other CNS tissues (80, 214).
Importantly, exercise is the principal physiological source of
lactate. During moderate to intense aerobic activity, skeletal
muscle produces and releases large quantities of lactate into
circulation, establishing a “muscle-lactate-brain” signaling axis.
Circulating lactate can directly reach the brain or exert effects on
peripheral organs that secondarily influence CNS homeostasis. For
example, lactate upregulates metabolic regulators such as PPARy
and SIRT1 in the liver and adipose tissue (215), thereby improving
lipid metabolism and insulin sensitivity—both of which are linked
to AD risk reduction. Concurrently, lactate promotes the
polarization of peripheral macrophages toward an anti-
inflammatory M2 phenotype and inhibits the release of pro-
inflammatory cytokines (216, 217), thus alleviating chronic
systemic inflammation relevant to AD pathology. Moreover,
lactate facilitates metabolic reprogramming between muscle and
liver, inducing the expression of hepatokines such as GPLD1 and
FGF21 (218), which have been shown to cross the BBB and exert
neuroprotective effects. Exercise not only enhances lactate
production but also improves its systemic clearance and buffering
capacity, sustaining its function as a long-range signaling molecule.
In AD mouse models, treadmill training elevates plasma lactate
levels, which act as a mechanistic mediator to enhance hippocampal
BDNF expression, reduce AP deposition, and improve cognitive
function (219). These benefits are significantly diminished when
monocarboxylate transporters (MCTs) (220), responsible for lactate
transport, are pharmacologically inhibited—highlighting lactate’s
indispensable and independent role in mediating exercise-induced
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neuroprotection. In summary, lactate acts as a central metabolic
mediator linking exercise with brain health. Through its capacity to
modulate systemic metabolism, immune function, neurotrophic
support, and energy redistribution, lactate orchestrates a multi-
tiered “exercise—periphery-brain” regulatory pathway that holds
therapeutic potential for delaying or mitigating AD pathology.

6 Conclusion

The central pathological hallmark of AD is the disruption of
cerebral metabolic homeostasis of AP and Tau proteins (181, 200).
This imbalance is governed not only by intrinsic mechanisms
within then CNS, but also by dynamic and coordinated regulatory
processes in peripheral systems. In this review, we have summarized
emerging evidence demonstrating how physical exercise maintains
brain AB and Tau homeostasis through peripheral modulation of
inflammation, immunometabolic networks, clearance mechanisms,
and systemic signaling. These findings underscore the pivotal role of
the “exercise-periphery-brain” axis as a systemic regulatory
framework. Exercise acts as a key integrator linking peripheral
and central compartments, and the exercise-induced peripheral
mediators—such as myokines, miRNAs, exosomes, and lactate—
exert hormone-like, multitarget, and long-range effects critical for
modulating AD pathology.

Despite these advances, important scientific questions remain.
Do different peripheral factors act synergistically or independently?
How is their inter-organ transport and spatial selectivity
orchestrated? How do these factors selectively affect neurons, glial
cells, or the BBB? Addressing these questions is essential for
deciphering the mechanistic logic of peripheral-central
communication in neurodegeneration. Future research should
incorporate integrative multi-omics platforms—including single-
cell and spatial transcriptomics, proteomics, and metabolomics—
combined with functional validation via gene editing, transgenic
models, and translational models such as humanized AD mice or
3D brain organoids. These tools will enable fine-resolution mapping
of the dynamic regulation of the exercise-periphery-brain axis
across disease stages, and identify organ- or time-specific
therapeutic targets.

Given their pharmacological potential, exercise-induced factors
are also fueling the development of “exercise mimetic
interventions.” Translating agents such as exosomes, miRNAs,
and irisin into clinically usable, dose-controllable, and CNS-
targeted therapeutics may provide alternatives for individuals
unable to participate in regular physical activity. In this context,
advances in molecule purification, delivery vector design, and
brain-targeted transport strategies will be critical for moving
toward next-generation neurotherapeutics.

Lastly, we highlight the importance of accounting for individual
variability in exercise responsiveness. Biological factors such as sex,
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age, genetic background, and metabolic status significantly
influence the expression profiles and CNS impact of peripheral
mediators (201, 202). Personalized intervention programs—
anchored in physiological diversity—may facilitate the
development of precision exercise-based therapies. Moving
forward, interdisciplinary collaboration among basic science,
clinical neurology, and biomedical engineering will be pivotal in
driving the translation of systemic exercise-based strategies into
effective early interventions for AD.
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