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in Alzheimer’s disease
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Alzheimer’s disease (AD), characterized by the pathological accumulation of

amyloid-b (Ab) and hyperphosphorylated Tau proteins, remains a major global

health challenge with limited therapeutic options. Recent findings highlight that

peripheral immune and metabolic pathways play a pivotal role in regulating brain

Ab and Tau homeostasis, particularly in response to physical exercise. In this

review, we comprehensively examine current clinical and preclinical evidence on

how exercise modulates peripheral immune responses, metabolic states, and

systemic clearance mechanisms—including hepatic, renal, immune, and

glymphatic pathways. We discuss how regular exercise suppresses peripheral

inflammation, enhances immune cell–mediated phagocytosis, improves

metabolic resilience, and promotes the elimination of neurotoxic proteins.

Furthermore, exercise-induced peripheral mediators, such as myokines, non-

coding RNAs, and lactate, are shown to mediate inter-organ communication and

signaling pathway crosstalk and contribute to neuroprotection. This integrative

perspective underscores the therapeutic promise of exercise as a non-

pharmacological intervention that targets peripheral immune-metabolic

networks to mitigate AD pathology.
KEYWORDS
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1 Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder globally,

accounting for approximately 60–70% of all dementia cases (1). Currently affecting over 55

million people worldwide, the prevalence of AD is expected to reach 152 million by 2050,

presenting significant public health and socioeconomic challenges (2). The hallmark

features of AD include the abnormal accumulation of b-amyloid (Ab) plaques and

neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein (3, 4). These

pathologies jointly contribute to neuronal damage, synaptic impairment, and cognitive
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decline. Evidence increasingly indicates that Ab and Tau

interactions amplify their harmful effects, with disruptions in

their balance critically driving disease progression (5, 6). Current

treatments, such as cholinesterase inhibitors, offer limited

symptomatic relief (7). Therapeutic strategies directly targeting

Ab or Tau have also shown disappointing clinical outcomes (8,

9). For example, monoclonal antibodies against Ab, including
aducanumab and lecanemab, provide only modest cognitive

improvements in early-stage patients and frequently result in

amyloid-related imaging abnormalities (ARIA), which manifest as

cerebral edema (ARIA-E) or microhemorrhages (ARIA-H) that

may cause neurological complications, raising concerns about their

efficacy and safety (10). Similarly, interventions targeting Tau

pathology have yet to deliver meaningful clinical success (11).

These setbacks highlight the complexity of AD and underscore

the urgent need for innovative therapeutic strategies. Recent

research emphasizes that regulation of Ab and Tau is not

confined solely to the brain, suggesting that peripheral organs

significantly influence these proteins’ dynamics (12, 13), although

these mechanisms remain largely unexplored.

Physical exercise has emerged as a promising non-

pharmacological intervention for slowing cognitive decline in AD,

especially in early stages such as mild cognitive impairment (14, 15).

The beneficial effects of exercise largely result from bioactive

substances released by contracting muscles—termed myokines—

including interleukin-6 (IL-6), irisin, lactate, and non-coding RNAs

(16). These molecules circulate systemically, influencing both

peripheral organs and the central nervous system(CNS), thereby

enhancing neuronal function and structural resilience. Within the

brain, exercise increases brain-derived neurotrophic factor (BDNF)

expression, which in turn mediates the activation of synaptic

plasticity pathways and promotes neurogenesis (17, 18).

Additionally, exercise influences peripheral systems by improving

hepatic clearance of Ab, regulating systemic inflammation, and

maintaining metabolic balance, which collectively helps sustain Ab
and Tau equilibrium in the brain, delaying neurodegeneration (19).

Exercise also reduces peripheral inflammation by suppressing

circulating pro-inflammatory cytokines such as TNF-a and IL-1b.
Notably, Yang’s study demonstrated this effect through intravenous

transfer of plasma from exercise-trained donor rats (20), which

reduced neuroinflammation and modulated microglial and

astrocytic activity in recipient animals. In addition, exercise

enhances clearance-associated proteins such as APOE and low-

density lipoprotein receptor-related protein 1 (LRP1) (21).

Furthermore, regular physical activity strengthens the integrity of

the blood–brain barrier (BBB) by reducing inflammation,

enhancing antioxidant defenses, and increasing tight junction

protein expression (22). These combined effects limit

inflammatory mediator infiltration into the brain, creating an

environment conducive to effective clearance of AD–related

pathological proteins, including Ab and Tau, and preventing their

excessive production. Amyloidogenesis in AD involves the

sequential cleavage of amyloid precursor protein (APP) by b- and
g-secretases, generating Ab peptides of varying lengths

(predominantly Ab40 and Ab42). These peptides initially exist as
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soluble monomers and oligomers, which are considered the most

neurotoxic species due to their ability to disrupt synaptic function

and cellular membranes. Over time, these soluble forms aggregate

into insoluble fibrils and eventually form the characteristic amyloid

plaques. The transition from soluble to insoluble forms represents a

critical pathological progression, with soluble oligomers being more

diffusible and capable of spreading between brain regions and into

the periphery, while insoluble plaques represent end-stage

aggregates that are more difficult to clear. Notably, during

advanced stages of AD, compromised BBB integrity allows

soluble Ab and Tau to leak into peripheral circulation, where

exercise facilitates their removal by enhancing hepatic LRP1

expression and improving renal and lymphatic clearance

capacities (23, 24). Collectively, these findings demonstrate that

exercise exerts dual protective effects in AD by both modulating

central inflammation and boosting peripheral clearance of Ab and

Tau. However, most current studies focus narrowly on specific

organs or isolated molecular targets. The comprehensive

peripheral–central network through which exercise preserves

protein homeostasis in the brain remains poorly defined and

warrants detailed investigation.

Here, we systematically evaluate how physical exercise

contributes to maintaining brain Ab and Tau homeostasis

through peripheral mechanisms and discuss its potential

therapeutic value in AD. Specifically, we examine two primary

pathways: first, how exercise mitigates the overproduction of Ab
and Tau by reducing peripheral inflammation and enhancing

immunometabolic function, thus modulating critical enzymes

such as BACE1; and second, how exercise enhances the

functional capacity of key peripheral organs—such as the liver,

kidneys, and glymphatic–lymphatic systems—and improves

immune-mediated clearance and metabolic regulation. We also

highlight signaling mediators induced by exercise, including

myokines (e.g., irisin), cytokines (e.g., IL-6, IL-10), and non-

coding RNAs (e.g. , miR-132, miR-124), that facilitate

communication between peripheral systems and the brain. By

presenting an integrated framework encompassing interactions

among organs, cells, pathways, and molecules, this review

provides a comprehensive understanding of the systemic benefits

of exercise, laying the groundwork for translating these insights into

clinical AD interventions.
2 Effects of exercise on cognitive
function in AD

Exercise, a structured subtype of physical activity, refers to

planned and repetitive movements performed with the goal of

improving or maintaining physical health and fitness (25).

According to movement patterns, physiological targets, and

metabolic demands, exercise is generally categorized into four

main types (Table 1). Aerobic exercise, characterized by the

rhythmic and sustained activation of large muscle groups,

improves cardiovascular endurance and includes activities such as

jogging, swimming, and cycling (25). Resistance training enhances
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muscular strength and endurance through external loads, with

common examples including weightlifting, push-ups, and squats

(25). High-intensity interval training (HIIT) involves alternating

bursts of vigorous activity with periods of low-intensity recovery,

combining aerobic and anaerobic benefits within a shorter time

frame (25). Mind–body exercises, such as Tai Chi and yoga,

emphasize coordinated breathing, posture control, and mental

focus, and are particularly suitable for older adults due to their

low-impact and integrative nature (25). Growing evidence indicates

that regular engagement in these exercise modalities not only

enhances metabolic and immune function but also significantly

slows age-related cognitive decline, ultimately improving quality of

life in aging populations and individuals at risk for or diagnosed

with AD (26–28).

An increasing body of clinical and preclinical research indicates

that exercise exerts domain-specific and selective effects on cognitive

function in individuals with AD or those at elevated risk (Table 2).

Among various cognitive domains, memory—particularly long-term

memory and delayed recall—appears to benefit most consistently

from exercise interventions. Meta-analyses of multiple randomized

controlled trials (RCTs) have demonstrated that both aerobic and

resistance training can enhance episodic memory and executive

function in populations with AD or mild cognitive impairment

(MCI), whereas improvements in working memory, attention, and

verbal fluency are more variable and often restricted to the early

stages of disease (29, 30). Notably, global cognition, as measured by

standardized assessments such as the Mini-Mental State Examination

(MMSE) and the Alzheimer’s Disease Assessment Scale–Cognitive

Subscale (ADAS-Cog), shows moderate improvement following

regular physical exercise, suggesting that exercise may confer

broad-spectrum cognitive benefits. Emerging evidence also

supports a dose–response relationship between exercise volume and

cognitive outcomes. A recent study revealed that the most

pronounced cognitive benefits were observed at a moderate

exercise dose of approximately 650 metabolic equivalent of task

(MET)·minutes per week, which corresponds to around 150

minutes of moderate-intensity aerobic exercise or an equivalent

combination of exercise modalities. The trial was conducted in

non-demented, physically inactive older adults, suggesting that

these findings may be extrapolated to populations at increased risk
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for AD. Beyond 1000MET·min/week, cognitive gains tend to plateau,

indicating that excessive training does not yield additional benefits

(31). Furthermore, a minimum frequency of three sessions per week,

combined with appropriate intensity and duration, appears necessary

to achieve meaningful cognitive improvement. Among the various

exercise modalities, aerobic exercise remains the most consistently

effective intervention for enhancing cognitive function in AD (32).

However, high-intensity interval training (HIIT) and mind–body

exercises, such as Tai Chi, have also shown promise, particularly in

improving executive control and cognitive flexibility (33, 34). In

terms of intervention durability, cognitive improvements are

generally confined to the active intervention period and tend to

wane after cessation. Although some studies suggest that benefits may

persist for 6–12 months post-intervention (35), sustained

engagement in exercise appears essential for maintaining long-term

cognitive gains. Epidemiological evidence reinforces this notion,

showing that individuals who maintain high levels of physical

activity throughout life experience slower cognitive decline and a

reduced risk of dementia (32). Animal studies corroborate these

findings (36). In transgenic ADmouse models such as APP/PS1, both

forced and voluntary exercise training have been shown to improve

spatial learning and memory performance—even in the presence of

substantial amyloid pathology (37). Importantly, animals that

initiated exercise early in the disease course and continued training

over time demonstrated greater cognitive benefits (38), highlighting

the critical role of intervention timing and duration. Although effect

sizes are typically larger in animal models compared to human trials,

the two lines of evidence converge in demonstrating similar domain-

specific improvements, particularly in memory and executive

function. Collectively, these findings underscore the efficacy of

regular physical exercise as a behavioral intervention to improve

AD-related cognitive impairments. Optimized exercise prescriptions

—including tailored intensity, frequency, and duration—are crucial

to achieving maximal cognitive benefit. Long-term, individualized

exercise programs offer promising potential to enhance functional

outcomes in patients with AD and provide a strong scientific

rationale for incorporating physical activity into core non-

pharmacological treatment strategies for the disease.

Previous research on the cognitive effects of exercise in AD has

primarily centered on mechanisms within the CNS (16, 49).
TABLE 1 Taxonomy of exercise modalities and their physiological characteristics.

Exercise type Characteristics
Primary physiological

benefits
Common settings Examples References

Aerobic Exercise
Continuous, rhythmic activity
using large muscle groups

Improves cardiovascular and
respiratory endurance

Outdoor tracks, gyms,
swimming pools

Jogging,
swimming,
cycling

(25)

Resistance Exercise
Muscle contractions against

external resistance
Increases muscular strength, power,

and bone density
Gyms, home-based with

weights or resistance bands
Weightlifting,

push-ups, squats
(25)

High-Intensity
Interval Training

(HIIT)

Alternating high- and low-
intensity efforts

Enhances both aerobic and anaerobic
capacity

Fitness studios, sports
fields, home routines

Sprint intervals,
circuit training

(25)

Mind–Body Exercise
Integration of movement with
mental focus and breath control

Promotes balance, flexibility, and stress
reduction

Studios, community
centers, home
environments

Tai Chi, yoga,
Pilates

(25)
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Extensive evidence indicates that exercise promotes hippocampal

neurogenesis and synaptic plasticity, enhances the expression of

neurotrophic factors such as BDNF (50), and reduces abnormal

accumulation of Ab and Tau in the brain (23)—effects that

collectively contribute to improved learning and memory

performance in AD models. However, increasing attention has
Frontiers in Immunology 04
been directed toward the possibility that exercise-induced

cognitive benefits may also arise from its regulation of peripheral

mechanisms. Emerging studies have identified peripheral exercise-

induced factors as critical mediators of neuroprotection in AD,

including systemic blood factors (e.g., circulating exerkines such as

clusterin) and gut microbiota–derived metabolites (e.g., short-chain
TABLE 2 Effects of exercise on AD patients.

Subjects/age (years) Intervention groups Exercise protocol Main effects References

50 participants with MCI or early-
stage AD (aged 45–90 years)

Multimodal lifestyle
intervention (including

structured physical activity) vs
usual care

20-week multimodal program
comprising moderate-intensity

aerobic and behavioral
components

Slowed or reversed cognitive decline, as
measured by ADAS-Cog and Clinical

Dementia Rating (CDR) scales
(39)

23 cognitively unimpaired, middle-
aged adults with genetic or familial
risk for AD (mean age ~65 years)

Supervised aerobic treadmill
training vs no-exercise control

26-week aerobic training
program on a treadmill,

performed under supervision

Increased plasma cathepsin B (CTSB)
levels, which correlated with cognitive
improvement; no change in klotho;

reduced circulating BDNF

(40)

200 community-dwelling older
adults with mild AD (mean age

~73 years)

Supervised moderate-to-high
intensity aerobic exercise vs
stretching/toning control

16-week supervised aerobic
training (60 min/session, 3

sessions/week)

No significant change in global cognition
(Intent-to-treat analysis); reduced

neuropsychiatric symptoms
(Neuropsychiatric Inventory);

exploratory subgroup analysis suggested
cognitive benefit (Symbol Digit

Modalities Test) in participants with
high adherence

(41)

Adults with MCI or mild–
moderate AD (aged ~60–85 years)

Supervised physical training
(PT) vs cognitive training (CT)

vs usual care

6-month supervised aerobic
and resistance training (PT) or

cognitive sessions (CT)

Both PT and CT attenuated cognitive
decline (MMSE); memory improved in
MCI subgroup (+6.9% PT, + 8.5% CT);

PT also improved cardiovascular
function; no effects on attention or

executive function

(42)

51 older adults with mild–
moderate AD (mean age ~70

years)

Supervised aerobic exercise vs
usual care

16-week supervised moderate-
intensity aerobic training

No significant changes in whole-brain or
regional cerebral blood flow observed via

MRI
(43)

95 older adults with mild–
moderate AD (age not specified)

Supervised aerobic exercise vs
stretching control (ADEX trial)

16-week supervised aerobic
training (~150 minutes/week)

Increased levels of neuron-derived
extracellular vesicle (NDEV) biomarkers

including proBDNF, BDNF, and
humanin, particularly in APOE e4
carriers; no changes observed in

circulating exerkines

(44)

494 older adults with mild–
moderate dementia (mean age ~77

years)

Supervised moderate-to-high
intensity aerobic and resistance

training vs usual care

4-month supervised
community-based program,

followed by supported
unsupervised activity

Slight but statistically significant
worsening in cognitive performance
(ADAS-Cog) at 12 months (mean
difference –1.4, p = 0.03); improved
physical fitness; no effects on other

clinical outcomes

(45)

120 community-dwelling older
adults with chronic stroke (≥55

years), without dementia

Supervised aerobic exercise
(EX) vs cognitive–social

enrichment (ENRICH) vs usual
care

6-month supervised
intervention program (either

exercise or enrichment)

Exercise group showed significant
improvement in ADAS-Cog-Plus and
ADAS-Cog scores (≥Minimal Clinically

Important Difference) during the
intervention period; however, effects

were not sustained at 6-month follow-up

(46)

Sedentary older adults with
amnestic MCI (aged ~65–75 years)

Supervised moderate–to–high
intensity aerobic exercise vs
low-intensity flexibility and

balance training

Moderate–to–high intensity
aerobic training (frequency and

duration not specified)

Exercise group demonstrated slowed
cognitive decline over 12 months

compared to control; trend toward a
dose–response relationship was observed

(47)

31 older adults with dementia
(aged 65–93 years)

Tango therapy vs standard
physical exercise

3-month supervised
intervention, 30 minutes/
session, 5 sessions/week

Tango group showed significantly
improved gait speed and attenuated
decline in functional mobility and

activities of daily living; control group
declined in mobility

(48)
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fatty acids), suggesting that these systemic adaptations to exercise

may represent a key mechanism underlying its cognitive benefits

(15, 51, 52). Recent research has begun to elucidate how exercise

modulates peripheral immune responses to alleviate chronic

inflammation (53), strengthens BBB integrity, and enhances the

clearance of pathological proteins such as Ab and Tau by

stimulating peripheral elimination pathways, thereby reducing

their cerebral accumulation. These findings offer new insights into

the systemic mechanisms through which exercise exerts its

neuroprotective effects and underscore the potential of integrating

central and peripheral regulatory networks as a unified strategy for

the prevention and treatment of AD.
3 Exercise-mediated suppression of
Ab and Tau generation in AD

Long-term, structured physical exercise reduces Ab plaques and

NFTs in transgenic mouse models of AD (54). These pathological

changes are accompanied by reductions in neuroinflammatory

responses and result in improved cognitive and memory function.

Zhang’s study demonstrated that three months of voluntary wheel

running in APP/PS1 mice markedly reduced the overall burden and

size of Ab plaques and attenuated hippocampal Tau

phosphorylation (55). The same study reported reduced neuronal

loss, enhanced neurogenesis in the CA3 region and dentate gyrus,

and improved performance in spatial memory tasks (56). Exercise

also stimulates the expression of neurotrophic factors that support

synaptic integrity and neural resilience. For instance, voluntary

physical activity increases the levels of BDNF and glial cell line-

derived neurotrophic factor (GDNF) (57), which promote

structural and functional plasticity. In a human study, researchers

collected blood samples from the radial artery and internal jugular

vein during aerobic exercise and found that BDNF concentrations

rose approximately threefold compared to resting conditions (58).

Notably, 70–80% of circulating BDNF originated from central

sources (40). Follow-up experiments in mice demonstrated that

aerobic exercise also upregulated BDNF mRNA expression in the

hippocampus and cortex following treadmill training (59). These

findings indicate that exercise alleviates cognitive decline by

simultaneously reducing the accumulation of pathological

proteins and enhancing neurotrophic signaling pathways that

support plasticity. While many studies report consistent cognitive

benefits, not all have observed corresponding reductions in Ab or

phosphorylated tau levels. These inconsistencies may arise from

differences in the timing of intervention. Exercise initiated after

extensive plaque formation appears less effective in reversing

established pathology or restoring cognitive function. In contrast,

when introduced in early stages or prior to plaque accumulation,

exercise slows the progression of pathology and better preserves

cognitive performance. This stage-dependent effect has also been

observed in clinical studies. In cognitively unimpaired older adults,

higher levels of physical activity are associated with lower plasma

and cerebral Ab burden (42). One clinical trial involving

participants with MCI found that six months of aerobic exercise
Frontiers in Immunology 05
reduced plasma Ab1–42 concentrations by 24% (60). Moreover, the

form of exercise may influence therapeutic outcomes. In mouse

models, voluntary running has demonstrated superior efficacy over

forced treadmill exercise in improving cognitive function (61).

Collectively, these results highlight the capacity of exercise to

regulate Ab homeostasis and mitigate the neuropathological

cascade associated with AD.
3.1 Exercise suppresses peripheral
inflammation and limits excessive Ab and
Tau production in the brain

A hallmark of AD pathology is the accumulation of extracellular

Ab plaques and intracellular NFTs formed by hyperphosphorylated

tau protein. These aberrant protein aggregates disrupt synaptic

function and drive progressive cognitive decline. Emerging

evidence has highlighted the critical role of chronic peripheral

inflammation in exacerbating AD pathogenesis (62). With aging,

the integrity of the BBB declines, allowing peripheral immune

mediators to access the CNS more readily. Patients with AD

exhibit elevated levels of peripheral immune cells and pro-

inflammatory cytokines—such as interleukin-6 (IL-6), IL-17, and

tumor necrosis factor-a (TNF-a)—in both cerebrospinal fluid

(CSF) and peripheral blood (63). These peripheral signals

infiltrate the brain, activate microglia and other resident immune

cells, and amplify neuroinflammatory responses. Persistent low-

grade systemic inflammation engages key pro-inflammatory

signaling pathways, including NF-kB and the NLRP3

inflammasome (64). These pathways upregulate the expression of

b-site amyloid precursor protein-cleaving enzyme 1 (BACE1), a

critical enzyme in Ab generation (65). In parallel, pro-inflammatory

factors aberrantly activate kinases such as cyclin-dependent kinase 5

(CDK5) and glycogen synthase kinase 3b (GSK3b), promoting

pathological tau phosphorylation and tangle formation (66). This

inflammatory cascade establishes a self-reinforcing loop in which

neuroinflammation and proteinopathy exacerbate one another.

Given this mechanistic link, peripheral inflammation is

increasingly recognized as a driving force in the progression of

AD. Therapeutic strategies targeting inflammatory pathways may

offer a promising approach to disrupting the pathological feedback

between Ab and tau accumulation.

Regular physical exercise is widely recognized for its anti-

inflammatory effects and its capacity to lower chronic systemic

inflammation (67). Long-term adherence to moderate-intensity

exercise reduces resting levels of pro-inflammatory cytokines

while promoting the expression of anti-inflammatory mediators,

as demonstrated in patients with chronic kidney disease (68),

although caution is warranted when extrapolating these findings

to AD. In clinical populations, exercise interventions have

demonstrated promising anti-inflammatory benefits in individuals

with MCI. For example, a 12-week program combining moderate-

intensity aerobic training with cognitive stimulation led to

significant reductions in serum IL-1b, IL-6, and TNF-a, along
with concurrent decreases in plasma Ab40 and total tau
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concentrations (69). These findings suggest a potential link between

exercise-induced improvements in systemic inflammation and

reductions in AD-related pathological markers. Moreover,

consistent physical activity enhances the production of peripheral

anti-inflammatory cytokines and, within the CNS, promotes a

phenotypic shift of microglia from a pro-inflammatory “M1-type”

toward an anti-inflammatory “M2-type” polarization (70).

Interestingly, acute bouts of vigorous exercise can transiently

increase circulating IL-6 levels. However, this elevation triggers a

compensatory release of anti-inflammatory cytokines, such as

interleukin-1 receptor antagonist (IL-1ra) and IL-10. Over time,

this dynamic regulatory cycle contributes to the downregulation of

key inflammatory pathways, including NF-kB, ultimately resulting

in sustained reductions in basal levels of inflammatory markers

such as C-reactive protein (CRP), TNF-a, and IL-6.

In AD, disruption of the BBB is both a contributing factor and a

driver of disease progression (71). Compromise of BBB integrity and

selective permeability allows microbial metabolites and circulating

immunoglobulins to infiltrate the brain parenchyma, where they

activate microglia and central immune pathways. Activated

microglia trigger the nuclear translocation of NF-kB, leading to the

upregulation of pro-inflammatory cytokines such as IL-1b and IL-18

(72–75). This cascade accelerates Ab deposition and tau

phosphorylation, thereby exacerbating neurodegeneration.

Microvascular endothelial damage and increased BBB permeability

are common in AD and are closely associated with chronic systemic

inflammation (76). Regular physical exercise has been shown to

protect BBB function and reestablish the immune barrier of the

CNS. In animal models, exercise promotes the expression of tight

junction proteins in cerebral endothelial cells and increases

neurotrophic support to stabilize the vascular endothelium, thereby

reducing BBB permeability (77). Exercise also restores the number and

activity of astrocytes that are closely associated with the neurovascular

unit (78). These astrocytes, often reduced in AD models, are essential

for maintaining BBB structure and function. By preserving BBB

integrity, exercise limits the entry of peripheral immune mediators

into the brain. This restricts the influx of circulating pro-inflammatory

cytokines and reduces the recruitment of peripheral immune cells that

would otherwise perpetuate neuroinflammation. One study

demonstrated that plasma obtained from exercise-trained donor

mice suppressed complement-mediated inflammatory responses in

the hippocampus of sedentary recipient AD model mice, with

clusterin identified as a key mediator. In parallel, physically active

human participants showed elevated plasma clusterin levels after

exercise training, suggesting that systemic adaptations to exercise

may exert remote immunomodulatory effects within the brain (15).

Importantly, reduced peripheral inflammation lowers the

overactivation of central immune cells, thereby preventing the

upregulation of Ab-generating enzymes. For instance, voluntary

wheel running significantly downregulated BACE1 gene expression

in the hippocampus of AD mice and was accompanied by reduced

levels of soluble Ab1–42 (79). This effect is partly mediated by lactate

produced during skeletal muscle contraction, which activates the Sirt1

pathway and enhances BDNF expression in the hippocampus (80),

supporting neuronal viability and synaptic plasticity. BDNF not only
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promotes synaptic remodeling but also suppresses BACE1 activity,

thus inhibiting Ab generation via the b-/g-secretase pathway (81). In
addition to reducing Ab burden, exercise helps mitigate tau pathology

by modulating inflammation-associated kinase activation. Chronic

inflammation has been shown to activate tau kinases such as GSK3b
and CDK5 (82), which play pivotal roles in hyperphosphorylation and

neurofibrillary tangle formation. Exercise dampens these pathways by

suppressing peripheral inflammatory triggers and restoring BBB

homeostasis. Furthermore, it activates pro-survival signaling

cascades within neurons. In a male rat model of post-traumatic

stress disorder (PTSD), moderate exercise was shown to increase the

expression of insulin-like growth factor-1 (IGF-1) and activate the

BDNF/TrkB axis, which in turn stimulates the PI3K/Akt pathway

(83). Akt activation leads to the phosphorylation and inhibition of

GSK3b, thereby reducing its capacity to phosphorylate tau.

Supporting this mechanism, treadmill exercise in animal models

elevates hippocampal p-Akt levels and concurrently reduces active

GSK3b and tau phosphorylation (84). Similarly, voluntary running

activated the BDNF/TrkB/Akt axis and promoted GSK3b inactivation,
alleviating tau pathology (85). The anti-inflammatory effects of

exercise also prevent sustained activation of neurotoxic kinases. For

example, chronically activated microglia release IL-1b and other

cytokines that accelerate tau propagation and aggregation (86).

Exercise has been shown to reduce IL-1b levels and suppress pro-

inflammatory microglial phenotypes. In a short-term resistance

training study, 3xTg-AD mice subjected to ladder-climbing exercise

exhibited reduced Ab load and tau phosphorylation (87), attenuated

glial activation, and improved synaptic function. Together, these

findings demonstrate that exercise reduces peripheral pro-

inflammatory signaling and strengthens BBB function, forming a

defensive barrier against systemic immune insults. By reshaping the

brain’s inflammatory microenvironment, exercise slows Ab and tau

production and ultimately alleviates AD-related pathology. In sum,

structured physical training reprograms the peripheral immune

system and shifts the central immune tone from a pro-

inflammatory to an anti-inflammatory state, offering systemic

immunoregulatory support that may help delay disease progression

in AD (Figure 1).
3.2 Exercise modulates gut microbiota
dysbiosis to reduce aberrant Ab and Tau
accumulation in the brain

The gut microbiota significantly influences CNS health by shaping

immune responses, neuronal function, and glial cell activity through

the gut–brain axis, with microbiota-derived metabolites such as short-

chain fatty acids (e.g., acetate, propionate, butyrate), tryptophan-

derived indoles, and secondary bile acids serving as key mediators

of this communication (88). In AD, disrupted gut microbiota, known

as dysbiosis, weakens intestinal barrier integrity, leading to increased

permeability and systemic inflammation (89). This heightened

inflammatory state exacerbates neuroinflammation and accelerates

AD pathology, creating a self-reinforcing cycle. Notably, AD patients

exhibit reduced microbial diversity characterized by increased levels of
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harmful bacteria such as Proteobacteria and Bacteroidetes, along with

decreased beneficial groups like Firmicutes and Bifidobacterium (90).

These changes lower the production of short-chain fatty acids

(SCFAs), especially butyrate, impairing protective mechanisms like

BDNF signaling and facilitating Tau protein abnormalities. Moreover,

pathogenic bacteria contribute to AD pathology primarily through

endotoxins such as lipopolysaccharide (LPS) (91), which induce

neuroinflammation and exacerbate Ab accumulation, Tau

hyperphosphorylation, and blood–brain barrier disruption, thereby

accelerating cognitive decline.

Mounting evidence suggests that exercise reshapes gut microbiota

composition and metabolite profiles to reduce the cerebral

accumulation of Ab and Tau proteins. Regular physical activity has

been shown to enrich beneficial gut bacteria and enhance the

production of SCFAs, such as acetate, propionate, and butyrate (92).

These metabolites readily cross the BBB, where they exert anti-

inflammatory and neuroprotective effects, with butyrate exhibiting

the most pronounced activity. Butyrate—an SCFA acting as a histone

deacetylase (HDAC) inhibitor—enhances histone acetylation at

neurotrophic gene loci and thereby upregulates BDNF, supporting
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synaptic plasticity and cognition (93). Recent evidence further shows

that butyrate elevates brain BDNF and downstream PI3K/Akt

signaling in vivo (94). Experimental studies have shown that

butyrate treatment increases phosphorylation at serine-9 and

acetylation at lysine-15 of GSK3b, reducing its activity and

mitigating Tau hyperphosphorylation and neurofibrillary pathology

(95). In parallel, exercise-enhanced microbial metabolism suppresses

CNS inflammation through SCFA receptor activation in colonic

epithelial cells and by modulating glial cell activity (96, 97).

Conversely, exercise selectively decreases pro-inflammatory bacterial

populations and their harmful metabolites. Notably, regular exercise

lowers circulating levels of LPS (98), an endotoxin produced by Gram-

negative bacteria, while enhancing intestinal barrier integrity by

upregulating tight junction proteins such as ZO-1, Occludin, and

Claudin-5 (22). This prevents LPS translocation from the gut lumen

into the bloodstream. In APP/PS1 mice, 12 weeks of treadmill training

significantly reduced LPS levels in plasma and brain tissue, improved

BBB function, and attenuated microglia-mediated neuroinflammation

(98). Moreover, exercise modulates peripheral immune and

neuroendocrine pathways to facilitate gut–brain communication, in
FIGURE 1

Exercise reduces peripheral cytokines and curbs brain Ab and Tau accumulation. This schematic illustrates the contrasting effects of exercise (left,
blue background) and sedentary behavior (right, red background) on peripheral cytokine signaling, blood–brain barrier (BBB) integrity, and brain
pathology. Exercise enhances IL-6 and IL-17 signaling while suppressing pro-inflammatory cytokines such as TNF-a, thereby strengthening BBB
function, reducing Ab and Tau accumulation, and supporting neuroprotection through anti-inflammatory microglia and astrocytes. In contrast,
sedentary behavior decreases protective cytokines and elevates pro-inflammatory mediators, impairing BBB integrity, aggravating Ab and Tau
deposition, and driving neurodegeneration through pro-inflammatory glial activation. Key molecules (Ab, Tau, IL-6, IL-17, TNF-a, BACE1, and CDK5)
are indicated at the bottom, and arrows represent the direction of molecular or cellular effects.
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part by altering gut microbiota composition and enhancing the

production of beneficial metabolites such as short-chain fatty acids

and tryptophan-derived indoles (99–101). It reduces pro-

inflammatory monocyte subsets and cytokine while increasing anti-

inflammatory mediators. Long-term training also downregulates

TLR4 expression on monocytes, diminishing LPS responsiveness

and further limiting systemic inflammation—an effect that may

counteract chronic neuroinflammation in AD (102). Systemic

exercise-induced factors, termed exerkines, also mediate gut–brain

interactions. Irisin, a myokine derived from fibronectin type III

domain-containing protein 5 (FNDC5), is upregulated by aerobic

exercise and has been shown to enhance hippocampal neuroplasticity

and cognition (103). Recent studies suggest that irisin reprograms gut

microbial activity and suppresses gut–brain axis inflammation,

mitigating aging- and AD-related cognitive decline (104).

Furthermore, breathing-based training enhances vagal tone in

humans (105), and aerobic/resistance exercise is also associated with

increases in vagally mediated HRV (106). Enhanced vagal signaling, in

turn, supports gastrointestinal motility and secretion, thereby

contributing to microbial homeostasis (107). Notably, BDNF itself

plays a dual role in the exercise–gut–brain axis (108). Aerobic exercise

markedly increases central and peripheral BDNF levels (109),

supporting neuronal survival and synaptic function (110). BDNF

deficiency impairs colonic epithelial integrity, as evidenced by

reduced expression of ZO-1, Occludin, and Claudin-1 and elevated

Claudin-2 (111), along with microvillus degeneration and microbial

translocation. Reciprocally, gut microbial dysbiosis can reduce

hippocampal BDNF and TrkB expression, as demonstrated in

antibiotic-treated animals (112). These findings suggest that BDNF

acts both centrally and peripherally to coordinate neuroplasticity, gut

barrier integrity, and inflammatory tone in AD. Animal studies

provide direct support for this concept. In 3×Tg-AD mice, 20 weeks

of treadmill exercise significantly increased Akkermansia muciniphila

and reduced pro-inflammatory Bacteroides (113). These microbiota

shifts were accompanied by upregulation of BBB proteins, decreased

cerebral Ab and Tau pathology, and improved spatial memory. This

suggests that exercise remodels the gut–brain axis to preserve

cognition via peripheral barrier reinforcement. Collectively, exercise

sustains Ab and Tau homeostasis through coordinated peripheral

mechanisms—including metabolic modulation, immune suppression,

and neuroendocrine regulation—thereby offering a multi-targeted and

feasible intervention strategy against AD (Figure 2).
3.3 Exercise enhances energy metabolism
to reduce excessive Ab and Tau
accumulation in the brain

Dysregulated energy metabolism is considered one of the

central driving forces in the pathogenesis of AD (114). Substantial

evidence indicates that cerebral glucose metabolism is already

impaired in the early stages of AD, especially in cognition-related

regions such as the hippocampus and cortex (115, 116). These

impairments, including reduced glucose uptake and diminished

energy production, often precede hallmark pathological features
Frontiers in Immunology 08
such as Ab deposition and Tau hyperphosphorylation (117).

Impaired neuronal glucose utilization results in mitochondrial

dysfunction and oxidative stress, which subsequently trigger

signaling cascades that enhance Ab production and Tau

phosphorylation. Additionally, peripheral insulin resistance

exacerbates central insulin signaling deficits, reduces Ab clearance

by insulin-degrading enzyme (IDE) (118), and activates glycogen

synthase kinase-3b (GSK-3b), thereby contributing to the

pathological phosphorylation of Tau (119). Epidemiological

studies further support this link, showing that type 2 diabetes and

other energy-related metabolic disorders substantially increase the

risk of developing AD (120, 121). These findings suggest that early

intervention targeting both peripheral and central metabolic

dysfunction may offer a promising strategy for delaying the onset

and progression of AD.

Regular exercise, recognized as an effective lifestyle intervention,

markedly enhances skeletal muscle mitochondrial function and

glucose metabolism, thereby alleviating insulin resistance (122).

Mechanistically, exercise activates the AMPK/PGC-1a signaling axis

to promote mitochondrial biogenesis and mitochondrial quality

control processes, including fission–fusion dynamics and mitophagy,

in skeletal muscle and thereby enhances glucose uptake and utilization

(123). This metabolic optimization reduces peripheral

hyperinsulinemia and restores systemic insulin sensitivity. These

effects further enhance insulin signaling in the brain, inhibit GSK-

3b activity (124), and attenuate Tau hyperphosphorylation.

Additionally, reduced peripheral insulin levels lessen the competitive

inhibition of IDE, thereby facilitating more efficient Ab clearance.

Long-term aerobic exercise significantly decreases hippocampal Ab
deposition and Tau phosphorylation in AD transgenic mice, with

mechanisms involving reduced APP phosphorylation,

downregulation of g-secretase Presenilin-1, and GSK-3b inactivation

(124). In AD models with glucose metabolism disorders, exercise

reverses diabetes- induced cognit ive deficits and Tau

hyperphosphorylation by inhibiting the FOXO1/NF-kB/NLRP3
inflammatory pathway and activating PI3K/Akt signaling (125, 126).

In humans, older adults who consistently engage in physical activity

exhibit improved insulin sensitivity, lower fasting insulin and lipid

levels, and reduced cerebral Ab burden (127). Exercise also modulates

adipose tissue endocrine function, lowering systemic chronic

inflammation and indirectly alleviating Ab and Tau pathology in

the brain. In obesity and insulin-resistant states, excessive secretion of

pro-inflammatory cytokines from adipose tissue activates microglial

inflammation, upregulates BACE1, and promotes Tau

hyperphosphorylation (128). Regular exercise reduces adiposity,

suppresses pro-inflammatory cytokine release, and increases

adiponectin secretion. Adiponectin, in turn, activates the AMPK/

PPARa pathway to enhance systemic glucose and lipid homeostasis

while inhibiting NF-kB and IL-6/STAT3 signaling (129). Exercise also

shifts adipose macrophages from a pro-inflammatory M1 to an anti-

inflammatory M2 phenotype (64), further lowering systemic

inflammation and CNS inflammatory stress. Animal studies confirm

that these changes, combined with increased anti-inflammatory

mediators, reduce brain inflammatory factors, Ab deposition, and

Tau phosphorylation (130). Systemic metabolic improvements are
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closely synchronized with enhanced brain energy metabolism. Regular

exercise increases cerebral blood flow and the transport of nutrients

across the BBB (131), directly enhancing glucose availability in the

brain. Muscle contractions during exercise release metabolites such as

lactate and irisin, which cross the BBB to serve as alternative neuronal

energy substrates and activate the cAMP/CREB/BDNF signaling

pathway (132), thereby enhancing brain metabolism and

neuroplasticity. In AD models, exercise-induced irisin improves

synaptic plasticity and cognition while lowering Ab and Tau

pathology (133). In summary, regular exercise mitigates abnormal

Ab and Tau accumulation by enhancing skeletal muscle glucose

metabolism and mitochondrial function, modulating adipose

endocrine activity to reduce systemic inflammation, and

synchronously improving brain energy metabolism.
4 Exercise enhances peripheral
clearance mechanisms to maintain Ab
and Tau homeostasis

BBB dysfunction is recognized as an early and critical event in

the pathogenesis of AD (134). As BBB integrity deteriorates, both

Ab and Tau proteins in the CNS can be transported into the

peripheral circulation via passive diffusion or active receptor-
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mediated mechanisms (135). This enables peripheral organs and

systems to participate in the clearance of neurotoxic proteins

originating from the brain. Ab exits the brain through endothelial

transport mediated by receptors such as LRP1 and the receptor for

advanced glycation end-products (RAGE) (136), while Tau is also

detectable in peripheral blood via extracellular vesicles or specific

transporters. The integrity of peripheral clearance pathways is thus

essential for maintaining cerebral Ab and Tau homeostasis.

However, aging—the most significant risk factor for AD—

substantially impairs this defense system. In the elderly, hepatic

Ab uptake declines, renal excretory capacity weakens, and immune-

mediated clearance becomes impaired (137). These deficits result in

peripheral retention of Ab and Tau, and potentially their re-entry

into the brain, further exacerbating central accumulation and

establishing a pathological brain–periphery vicious cycle.

Enhancing peripheral clearance has therefore emerged as a

promising strategy to mitigate AD pathology. Within this context,

exercise—a systemic and modifiable intervention—has shown

potential to activate multiorgan clearance mechanisms, including

the glymphatic–astrocytic pathway (138), as well as peripheral

routes such as the liver, kidney, and immune system (139–141).

Exercise increases the expression of key transport receptors and

metabolic enzymes in the liver and kidneys, thereby improving

organ-level Ab and Tau clearance (19). It also improves glymphatic

fluid dynamics, enhancing cerebrospinal–interstitial fluid exchange
FIGURE 2

Multilevel regulation of Ab and Tau pathology by exercise through the gut–brain axis. This schematic illustrates how exercise modulates the gut–
brain axis to influence AD pathology. Exercise alters gut microbial composition, increasing the production of SCFAs and reducing harmful
metabolites such as LPS, while also enhancing protective immune factors like IgA. These changes strengthen intestinal barrier integrity through tight
junction proteins (occludin, claudin-5, and ZO-1) and reduce peripheral inflammation. Circulating SCFAs act on the brain, where they promote the
release of myokines such as irisin and upregulate BDNF, thereby enhancing synaptic plasticity.
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and metabolic coupling between the brain and periphery.

Furthermore, exercise promotes phenotypic switching and

phagocytic capacity of peripheral immune cells (142), offering an

additional immunological route for Ab and Tau clearance.

Collectively, these effects suggest that reprogramming peripheral

clearance mechanisms may represent a critical pathway through

which exercise delays the progression of AD.
4.1 Exercise enhances peripheral clearance
of Ab and Tau by modulating immune cell
function

The peripheral immune system plays a critical role in

maintaining the homeostasis of Ab and Tau proteins in the brain

(119). When the BBB is compromised, brain-derived Ab and Tau

can enter systemic circulation, where they are subject to clearance

by immune cells. Recent studies demonstrate that regular exercise

enhances peripheral Ab and Tau clearance by modulating the

activation states and functions of monocyte–macrophage cells,

neutrophils, and T lymphocytes, thereby contributing to the

mitigation of AD pathology (120). Monocyte–macrophage lineage

cells are central to the peripheral removal of Ab and Tau. Under

normal conditions, approximately 40–60% of brain Ab enters the

bloodstream and is cleared through this pathway (14). Aging,

however, diminishes their phagocytic efficiency, in part due to

reduced expression of scavenger receptors such as Toll-like

receptor 2 (TLR2) (121). Exercise has been shown to reverse these

deficits. In preclinical models, physical activity promotes anti-

inflammatory M2 polarization of macrophages and enhances

their capacity for Ab uptake and degradation (122). Exercise also

increases Fcg receptor expression (123), facilitating antibody-

dependent phagocytosis and improving overall clearance

efficiency. Neutrophils play a complementary role in peripheral

protein removal (124). Although their direct phagocytosis of Ab
and Tau is limited, neutrophils release neutrophil extracellular traps

that support the capture and degradation of amyloid fibrils by

macrophages (143). However, excessive neutrophil activation may

exacerbate inflammation and vascular damage. Exercise restores

neutrophil homeostasis (125), enhancing their maturation and

phagocytic function while limiting pathological activation. These

adaptations improve systemic clearance efficiency of brain-derived

proteins. T lymphocytes, particularly regulatory T cells (Tregs), may

contribute indirectly to immune clearance (126). By secreting anti-

inflammatory cytokines such as IL-4 and IL-10, Tregs promote M2

macrophage polarization, which could in turn enhance phagocytic

clearance of Ab and Tau (127). However, this interpretation

remains speculative, as direct evidence for Treg-mediated

clearance of amyloid pathology is still limited and requires further

investigation. In AD, T cell imbalance—characterized by increased

Th1/Th17 cells and reduced Treg function—dampens immune

tolerance and promotes chronic inflammation (128). Exercise

restores T cell subset balance (129), increases Treg prevalence,

suppresses pro-inflammatory cytokine expression, and supports

anti-inflammatory immune responses. Collectively, exercise-
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mediated modulation of peripheral immune cells—including

enhanced macrophage phagocytosis, functional rebalancing of

neutrophils, and T cell–driven immunoregulation—forms a key

mechanism through which physical activity facilitates Ab and Tau

clearance and slows AD progression.
4.2 Exercise enhances liver–brain axis
function to promote peripheral clearance
of Ab and Tau

Following BBB disruption, brain-derived Ab and Tau proteins

that are not cleared by peripheral immune cells can be transported via

the bloodstream to peripheral organs for elimination. Under

physiological conditions, approximately 40–60% of brain-derived

Ab is cleared through peripheral mechanisms, with the liver

serving as the major site of systemic clearance (19). Hepatocytes

and liver sinusoidal endothelial cells express high levels of LRP1

(144), a key receptor responsible for binding and internalizing

circulating Ab for degradation. LRP1-mediated hepatic uptake

allows for the clearance of roughly 13.9% of Ab42 and 8.9% of Ab40
per circulatory cycle (19). However, aging and AD progression are

associated with downregulation of hepatic LRP1 expression, resulting

in impaired Ab clearance and elevated Ab levels in both plasma and

brain. Conversely, enhancing hepatic LRP1 expression has been

shown to lower cerebral Ab burden and improve cognitive

outcomes (19), underscoring the importance of an intact liver–

brain axis in maintaining Ab homeostasis. Similarly, Tau protein

can enter peripheral circulation via extracellular vesicles and may be

degraded in peripheral organs such as the liver (145). The functional

integrity of this peripheral clearance route also influences Tau

accumulation in the brain. Regular exercise, as a systemic

intervention, improves liver function and enhances its capacity for

Ab elimination (123). Aerobic exercise has been shown in animal

models to reduce cerebral Ab load while accelerating hepatic

clearance. For example, in APP/PS1 transgenic mice, 8 weeks of

treadmill training improved cognitive and exploratory behavior,

reduced brain Ab deposition, and increased hepatic phagocytic and

degradative activity toward Ab (142). Exercise facilitates peripheral

Ab clearance by modulating key molecular pathways. It elevates

soluble LRP1 (sLRP1) levels in plasma, which act as peripheral

‘scavengers’ binding circulating Ab, and simultaneously upregulates

membrane-bound LRP1 expression on hepatocytes, which mediates

hepatic uptake and degradation of Ab. These two forms of LRP1 act

in a complementary manner to promote efficient systemic clearance

of circulating Ab (146). In AD models, treadmill training increased

LRP1 expression in both liver and hippocampus, suggesting a

synergistic enhancement of Ab clearance across the liver–brain

axis. In parallel, exercise also increases the expression of Ab-
degrading enzymes, such as IDE in the liver and neprilysin (NEP)

in the hippocampus (147). These enzymatic adaptations enhance

peripheral Ab catabolism, reduce its systemic accumulation, and

mitigate the risk of re-entry into the brain.

Although studies on the peripheral clearance of Tau are

currently limited, emerging evidence suggests that the enhanced
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systemic clearance pathways induced by exercise may also

contribute to Tau homeostasis. Tau has been shown to

dynamically exchange between the brain and peripheral tissues

through the bloodstream, with portions of brain-derived Tau

transported to peripheral organs—such as the liver and kidneys—

for metabolic degradation (148). A functional peripheral clearance

system helps minimize peripheral accumulation and reduces the

risk of Tau re-entry into the CNS. Accordingly, improvements in

liver–brain axis efficiency induced by exercise may simultaneously

enhance the peripheral elimination of Tau. Nwoko’s study

demonstrated that aerobic exercise reduced Tau phosphorylation

and attenuated Tau-related pathology in AD model mice,

potentially due in part to improved clearance of circulating Tau

exported from the brain (149). Nevertheless, compared to Ab, Tau
appears to be cleared through more complex peripheral

mechanisms, including extracellular vesicle–mediated transport,

hepatic macrophage degradation, and renal filtration—all of

which require further investigation. In summary, exercise

activates multiple mechanisms within the liver–brain axis to

promote the peripheral clearance of Ab and Tau proteins. These

include enhanced hepatic uptake and degradation, as well as

systemic improvements in liver metabolic health that support

sustained protein elimination (Figure 3).
4.3 Exercise enhances the kidney–brain
axis to promote peripheral clearance of Ab
and Tau

In addition to the liver, the kidneys—critical metabolic and

excretory organs—play an essential role in the peripheral clearance

of circulating Ab and Tau proteins (150). Under normal

physiological conditions, free Ab (approximately 4 kDa) is filtered

through the glomerular barrier into the primary urine and excreted

via the urinary tract (151). This has been confirmed in animal tracer

studies and through the detection of Ab in human urine samples.

The kidneys also eliminate Ab through receptor-mediated uptake

and enzymatic degradation by renal tubular epithelial cells. These

cells highly express megalin (also known as LRP2), a receptor that

binds and reabsorbs filtered Ab, preventing its excessive urinary loss
and directing it toward lysosomal degradation (152). Additionally,

the renal parenchyma is rich in proteolytic enzymes such as

neprilysin (NEP), which degrade circulating Ab and help lower

both plasma levels and brain deposition risk. Emerging studies also

indicate that Tau protein may undergo peripheral clearance via

renal pathways (148). Although the precise mechanisms remain to

be fully elucidated, patients with chronic kidney disease (CKD)

frequently present with elevated plasma Tau levels, greater cerebral

Ab and Tau burden, and impaired cognitive function, suggesting a

strong link between renal function and Tau clearance capacity

(153). In pathological states such as CKD, the kidney’s ability to

clear Ab and Tau is markedly reduced (154). Clinical studies have

reported significantly elevated levels of Ab40;, Ab42, and Tau in the

plasma of CKD patients, with the degree of brain Ab deposition

inversely associated with renal function (155, 156). These patients
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are at increased risk of cognitive impairment and dementia.

Supporting this, experimental models have demonstrated that

surgically induced renal impairment in mice accelerates the

accumulation of cerebral Ab and Tau (157), exacerbating AD-like

pathology. Conversely, improvements in renal function—such as

through kidney transplantation—can alleviate cognitive deficits,

reinforcing the protective role of the kidney–brain axis in

AD pathology.

As a non-pharmacological intervention, regular physical

exercise has been shown to significantly enhance renal function,

thereby facilitating the peripheral clearance of circulating Ab and

Tau proteins, lowering AD risk, and improving cognitive

performance. Exercise improves renal hemodynamics by

increasing tissue perfusion and oxygen delivery (158), which

enhances glomerular filtration and allows for more efficient

elimination of Ab and Tau via urinary excretion. In parallel, it

mitigates chronic inflammation and oxidative stress (159), both

locally in the kidney and systemically. These pathological states

disrupt nephron integrity and upregulate renal expression of the

receptor for advanced glycation end-products (RAGE) (160),

promoting Ab retention within renal tissues. Exercise counteracts

these effects by reducing levels of pro-inflammatory cytokines such

as TNF-a and IL-6, enhancing antioxidant capacity, and thereby

limiting RAGE-mediated Ab accumulation (161). Additionally,

long-term exercise suppresses renal fibrosis by downregulating

the TGF-b/Smad signaling pathway (162), reducing interstitial

collagen deposition and preserving parenchymal integrity.

Improvements in systemic metabolic parameters—such as blood

pressure, glycemia, and lipid profiles—further support optimal

kidney function. Overall, healthy renal function is essential for

maintaining peripheral Ab and Tau homeostasis, while renal

impairment may exacerbate toxic protein accumulation and

accelerate AD pathology. By enhancing renal filtration, transport,

and degradation mechanisms, exercise serves as a comprehensive

strategy to promote peripheral clearance of Ab and Tau and

mitigate their neurotoxic impact on the brain.
4.4 Exercise enhances glymphatic
clearance of Ab and Tau

The glymphatic system is a key CSF–mediated pathway

responsible for clearing metabolic waste from the brain, including

pathogenic proteins such as Ab and Tau (163). Disruption of this

system—such as loss of polarized aquaporin-4 (AQP4) expression

in astrocytic endfeet or reduced CSF circulation—has been closely

linked to the pathogenesis of AD (154). Enhancing glymphatic

clearance has thus emerged as a promising therapeutic strategy to

mitigate AD progression. Exercise has been shown to activate the

glymphatic system and improve brain-to-peripheral waste

clearance. One key mechanism is the upregulation and

repolarization of AQP4 at astrocytic endfeet, which facilitates

CSF–interstitial fluid (ISF) exchange (164). In AD mouse models,

aerobic exercise restored AQP4 polarity, enhanced glymphatic flow

(165), reduced Ab deposition and Tau phosphorylation, and
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improved cognitive performance. These benefits were abolished in

AQP4 knockout mice, confirming the essential role of AQP4-

mediated glymphatic activity in the neuroprotective effects of

exercise. Additionally, exercise promotes fluid exchange between

the brain and peripheral lymphatic vessels. Clinical imaging studies

indicate that long-term aerobic activity increases CSF flow in the

striatum and enhances meningeal lymphatic vessel diameter and

velocity (166). These effects reflect enhanced glymphatic–lymphatic

connectivity, supporting more efficient clearance of brain-derived

toxins. The observed reduction in systemic inflammatory markers

post-exercise may further indicate enhanced waste removal via this

pathway (16). Furthermore, exercise-induced improvements in

sleep architecture also augment glymphatic function. Glymphatic

clearance peaks during deep slow-wave sleep, and regular physical

activity increases both the duration and quality of this phase (167).

As a result, CSF circulation is boosted and nocturnal clearance of

Ab and Tau is enhanced. When combined with healthy sleep

hygiene, exercise may synergistically strengthen glymphatic

performance and metabolic homeostasis (168). In summary,

exercise strengthens glymphatic clearance of Ab and Tau by

restoring AQP4 polarity, enhancing cerebrospinal and lymphatic

circulation, and improving sleep-driven clearance rhythms. These

combined mechanisms promote efficient brain-to-periphery

protein transport, offering a practical and multifaceted

intervention to delay or mitigate AD pathology (Figure 4).
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5 Exercise-induced peripheral factors
in the regulation of Ab and Tau
homeostasis

As a systemic and multi-target intervention, physical exercise

has attracted increasing interest in the context of AD prevention

and treatment. Beyond localized effects within the brain, growing

evidence suggests that exercise exerts neuroprotective benefits

through peripheral factors induced by skeletal muscle contraction

(169). These circulating molecules can cross the BBB or signal

through systemic pathways to influence Ab homeostasis within the

CNS. The primary mediators of this peripheral regulatory network

include myokines, non-coding RNAs (ncRNAs), exosomes, and the

metabolic byproduct lactate (170, 171). Together, these components

regulate Ab and Tau clearance, metabolism, and toxicity

modulation. Skeletal muscle, as the body’s largest endocrine

organ, releases a range of bioactive signaling molecules during

physical activity (172). These myokines—secreted via endocrine,

paracrine, or exosome-based mechanisms—enter the bloodstream

and act on peripheral targets such as the liver, adipose tissue, and

the brain. Prominent examples include irisin (173), IL-6 (174),

CTSB (175), and glycosylphosphatidylinositol-specific

phospholipase D1 (GPLD1) (176), which have been shown to

enhance BDNF expression, promote synaptic plasticity, and
FIGURE 3

Exercise enhances peripheral clearance of brain-derived Ab and Tau via monocyte-mediated transport and Kupffer cell degradation. This schematic
compares the effects of exercise (left) and sedentary behavior (right) on peripheral clearance pathways for brain-derived proteins. Under exercise
conditions, Ab and Tau are transported across the blood–brain barrier and bound by peripheral monocytes through LRP1-mediated uptake, while
Kupffer cells in the liver further degrade these proteins via LRP1 and IDE-dependent mechanisms. These processes collectively enhance systemic
elimination of neurotoxic proteins and reduce their accumulation in the brain. In contrast, sedentary behavior is associated with impaired monocyte
uptake and reduced Kupffer cell clearance, leading to diminished peripheral removal of Ab and Tau and their subsequent deposition in the brain. Key
molecules (Ab plaques, Tau tangles, LRP1, IDE) and cellular components (monocytes, Kupffer cells) are indicated in the figure.
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facilitate Ab clearance, thereby attenuating AD pathology. Exercise

also modulates gene expression through various ncRNAs—

including miR-132, miR-124, and miR-146a—that circulate in

exosomes and serve as molecular messengers along the muscle–

liver–brain axis (170, 177). These ncRNAs regulate inflammation,

macrophage polarization, and synaptic stability (178). Furthermore,

lactate, a rapidly accumulating byproduct of muscular activity, has

emerged as a neuroactive metabolite capable of supporting neuronal

energy metabolism, enhancing neurogenesis, and improving

synaptic function (80). In summary, elucidating the molecular

mechanisms of exercise-induced peripheral signaling may inform

the development of exercise mimetics and novel AD therapies

aimed at restoring Ab and Tau homeostasis.
5.1 Myokines

Myokines are biologically active peptides synthesized and

secreted by skeletal muscle during contraction (179). They have

recently been redefined as endocrine messengers that mediate

communication between skeletal muscle and distant organs,

particularly the brain (180, 181). Beyond its role as a motor

effector, skeletal muscle is the body’s largest endocrine organ.

During physical activity, myokines are released into the

circulation and act through endocrine, paracrine, or autocrine

mechanisms to modulate peripheral immune responses, metabolic

homeostasis, and inflammatory states—thereby indirectly

influencing CNS function (182).

Accumulating evidence indicates that exercise-induced myokines

contribute to neuroprotection in AD by regulating systemic

inflammation, lipid metabolism, neurotrophic factor expression,

and peripheral clearance of Ab (123, 180). Interleukin-6 (IL-6) was
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the first identified myokine, robustly secreted by contracting skeletal

muscle during exercise (183). IL-6 activates its receptor pathway to

induce the expression of anti-inflammatory cytokines (e.g., IL-10, IL-

1ra) while inhibiting pro-inflammatory mediators such as TNF-a
(184), thereby establishing a systemic anti-inflammatory

environment (185). Reduced peripheral IL-6 expression is

commonly observed in AD patients, suggesting early impairment

in this myokine-mediated regulatory axis. However, this reduction is

likely multifactorial and may also reflect the effects of sarcopenia,

immune dysfunction, and comorbid conditions (186–188). Regular

exercise restores IL-6 levels (189), improves immune balance, and

indirectly attenuates neuroinflammation and Ab accumulation (190).

IL-6 also influences lipid metabolism and oxidative stress, further

supporting peripheral Ab clearance.

Irisin, another well-studied myokine, is generated through

cleavage of the FNDC5 precursor protein under the control of

PGC-1a (191). Circulating irisin binds to integrin aVb5 receptors

(192), activating the AMPK–BDNF axis to enhance neurotrophic

support (193), modulate immune cell activity, and reduce

peripheral inflammation. Blocking systemic irisin expression

significantly attenuates the cognitive benefits of exercise (103,

194), underscoring its essential role in mediating exercise-

induced neuroprotection.

CTSB, a lysosomal cysteine protease, is markedly elevated in the

bloodstream following exercise (195). CTSB enhances peripheral

BDNF expression and contributes to anti-inflammatory responses

and Ab clearance (187). It is hypothesized to function as a key

mediator in the muscle–liver–brain axis. Notably, CTSB-deficient

mice fail to exhibit exercise-induced cognitive improvements,

highlighting its necessity for trans-systemic neuroprotection.

GPLD1, primarily synthesized in the liver, is also upregulated

following exercise (176). It regulates signaling pathways via cleavage
FIGURE 4

Exercise promotes glymphatic Ab and Tau clearance via AQP4-mediated CSF–ISF exchange.
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of GPI-anchored proteins and promotes peripheral neurotrophic

factor production (196). Circulating GPLD1 has been shown to

mediate exercise-induced cognitive benefits even in sedentary

conditions, reinforcing its role in peripheral-to-central signaling.

Clusterin (Clu, also known as ApoJ) is another exercise-

responsive factor (15). Peripheral Clu expression increases after

physical activity and facilitates Ab binding and efflux from the brain

(15). Clu also modulates the complement system and suppresses

peripheral inflammation, indirectly supporting neuronal function

(197). Moreover, Clu upregulation correlates with peripheral neural

progenitor cell proliferation and may promote overall neural

plasticity. However, Clu’s role appears context-dependent; under

certain inflammatory conditions, it may promote Ab aggregation,

suggesting a dualistic or conditional regulatory role (198). In

summary, myokines serve as crucial messengers linking physical

activity to peripheral and central signaling. Through modulation of

immune, metabolic, inflammatory, and Ab clearance pathways,

they contribute to maintaining Ab and Tau homeostasis in the

brain. Understanding the peripheral mechanisms and interactive

networks of myokines offers novel insights into the molecular basis

of exercise therapy and may inform the development of myokine-

based therapeutic strategies for AD.
5.2 Non-coding RNAs and exosomal
factors

Non-coding RNAs, particularly microRNAs (miRNAs), are

increasingly recognized as peripheral signaling mediators with

relevance to AD (199). These approximately 22-nucleotide-long

RNAs regulate gene expression at the post-transcriptional level,

primarily by binding to complementary sequences in target mRNAs

to promote their degradation or translational repression, and circulate

freely or within exosomes to mediate peripheral–central

communication (200). Exercise profoundly alters miRNA expression

profiles and promotes the expression of neuroprotective miRNAs that

modulate inflammation, Ab metabolism, neurotrophic signaling, and

BBB integrity (201). Exercise-induced upregulation of miR-126 and

miR-146a improves cerebrovascular health and limits Ab
accumulation by enhancing endothelial function and reducing

inflammation (202, 203). Meanwhile, downregulation of pro-

inflammatory miR-155 and upregulation of neuron-specific miR-

124 help reprogram peripheral and central immune responses (178,

204). In parallel, liver-expressed miR-29 family members

downregulate BACE1 expression, thereby reducing peripheral Ab
generation (79). Importantly, exosomes derived from exercised

animals, enriched in specific miRNAs, have been shown to reduce

brain Ab levels and improve cognition in AD models, suggesting a

coordinated miRNA–exosome–periphery–CNS axis (205). These

findings position miRNAs as both biomarkers and therapeutic

targets for AD. Continued research into their dynamic expression,

molecular targets, and delivery mechanisms will be essential for

translating exercise-based interventions into clinical strategies.
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5.3 Lactate

Lactate has long been viewed as a metabolic waste product of

anaerobic glycolysis during intense physical activity, often

associated with muscle soreness and fatigue (206). However, this

traditional perspective has been fundamentally challenged in recent

years. Lactate is now recognized as a hormonally active metabolic

signal—termed a “lactormone”—that mediates inter-organ

communication and plays vital roles in metabolic regulation and

signal transduction across multiple systems (207, 208). Beyond its

role in energy redistribution, lactate also influences gene expression,

protein synthesis, and intercellular signaling, with broad

physiological implications. In the CNS, lactate can cross the BBB

and is taken up by neurons and astrocytes (209), where it serves as

both an energy substrate and signaling molecule. It enhances

synaptic plasticity, increases cerebral blood flow, induces the

expression of BDNF, and participates in epigenetic regulation

such as histone acetylation (210). In neurodegenerative diseases

such as AD, lactate has demonstrated neuroprotective properties.

Exogenous lactate administration has been shown to elevate

hippocampal BDNF expression (211), improve cognitive

performance in AD models, suppress neuroinflammation, reduce

Ab accumulation (212), and attenuate Tau hyperphosphorylation

(213). These effects are mediated, at least in part, via activation of

the GPR81 lactate receptor and the NAD+/SIRT1 signaling axis

within the hippocampus and other CNS tissues (80, 214).

Importantly, exercise is the principal physiological source of

lactate. During moderate to intense aerobic activity, skeletal

muscle produces and releases large quantities of lactate into

circulation, establishing a “muscle–lactate–brain” signaling axis.

Circulating lactate can directly reach the brain or exert effects on

peripheral organs that secondarily influence CNS homeostasis. For

example, lactate upregulates metabolic regulators such as PPARg
and SIRT1 in the liver and adipose tissue (215), thereby improving

lipid metabolism and insulin sensitivity—both of which are linked

to AD risk reduction. Concurrently, lactate promotes the

polarization of peripheral macrophages toward an anti-

inflammatory M2 phenotype and inhibits the release of pro-

inflammatory cytokines (216, 217), thus alleviating chronic

systemic inflammation relevant to AD pathology. Moreover,

lactate facilitates metabolic reprogramming between muscle and

liver, inducing the expression of hepatokines such as GPLD1 and

FGF21 (218), which have been shown to cross the BBB and exert

neuroprotective effects. Exercise not only enhances lactate

production but also improves its systemic clearance and buffering

capacity, sustaining its function as a long-range signaling molecule.

In AD mouse models, treadmill training elevates plasma lactate

levels, which act as a mechanistic mediator to enhance hippocampal

BDNF expression, reduce Ab deposition, and improve cognitive

function (219). These benefits are significantly diminished when

monocarboxylate transporters (MCTs) (220), responsible for lactate

transport, are pharmacologically inhibited—highlighting lactate’s

indispensable and independent role in mediating exercise-induced
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neuroprotection. In summary, lactate acts as a central metabolic

mediator linking exercise with brain health. Through its capacity to

modulate systemic metabolism, immune function, neurotrophic

support, and energy redistribution, lactate orchestrates a multi-

tiered “exercise–periphery–brain” regulatory pathway that holds

therapeutic potential for delaying or mitigating AD pathology.
6 Conclusion

The central pathological hallmark of AD is the disruption of

cerebral metabolic homeostasis of Ab and Tau proteins (181, 200).

This imbalance is governed not only by intrinsic mechanisms

within then CNS, but also by dynamic and coordinated regulatory

processes in peripheral systems. In this review, we have summarized

emerging evidence demonstrating how physical exercise maintains

brain Ab and Tau homeostasis through peripheral modulation of

inflammation, immunometabolic networks, clearance mechanisms,

and systemic signaling. These findings underscore the pivotal role of

the “exercise–periphery–brain” axis as a systemic regulatory

framework. Exercise acts as a key integrator linking peripheral

and central compartments, and the exercise-induced peripheral

mediators—such as myokines, miRNAs, exosomes, and lactate—

exert hormone-like, multitarget, and long-range effects critical for

modulating AD pathology.

Despite these advances, important scientific questions remain.

Do different peripheral factors act synergistically or independently?

How is their inter-organ transport and spatial selectivity

orchestrated? How do these factors selectively affect neurons, glial

cells, or the BBB? Addressing these questions is essential for

deciphering the mechanistic logic of peripheral–central

communication in neurodegeneration. Future research should

incorporate integrative multi-omics platforms—including single-

cell and spatial transcriptomics, proteomics, and metabolomics—

combined with functional validation via gene editing, transgenic

models, and translational models such as humanized AD mice or

3D brain organoids. These tools will enable fine-resolution mapping

of the dynamic regulation of the exercise–periphery–brain axis

across disease stages, and identify organ- or time-specific

therapeutic targets.

Given their pharmacological potential, exercise-induced factors

are also fueling the development of “exercise mimetic

interventions.” Translating agents such as exosomes, miRNAs,

and irisin into clinically usable, dose-controllable, and CNS-

targeted therapeutics may provide alternatives for individuals

unable to participate in regular physical activity. In this context,

advances in molecule purification, delivery vector design, and

brain-targeted transport strategies will be critical for moving

toward next-generation neurotherapeutics.

Lastly, we highlight the importance of accounting for individual

variability in exercise responsiveness. Biological factors such as sex,
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age, genetic background, and metabolic status significantly

influence the expression profiles and CNS impact of peripheral

mediators (201, 202). Personalized intervention programs—

anchored in physiological diversity—may facilitate the

development of precision exercise-based therapies. Moving

forward, interdisciplinary collaboration among basic science,

clinical neurology, and biomedical engineering will be pivotal in

driving the translation of systemic exercise-based strategies into

effective early interventions for AD.
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