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Integrative multi-omics reveals
energy metabolism–related
prognostic signatures and
immunogenetic landscapes in
lung adenocarcinoma
Lei Xie1, Yajie Zhou1, Zijian Hu1, Wenxiong Zhang1*

and Xiaoqiang Zhang2*

1Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang
University, Nanchang, China, 2Lung Cancer Center, The Second Affiliated Hospital, Jiangxi Medical
College, Nanchang University, Nanchang, China
Background: Energy metabolism (EM) is critically involved in driving tumor

development, therapeutic resistance, and modulation of the immune response.

However, its genetic basis and prognostic value in lung adenocarcinoma (LUAD)

remain unclear. This study integrates multi-omics approaches to develop an EM-

related prognostic model for assessing LUAD prognosis and uncovering relevant

immunogenetic pathways.

Methods:Differential analysis combined with Mendelian randomization was used

to identify EM-related genes (EMRGs) with a causal link to LUAD, which were then

used to build a prognostic model via machine learning. Nomogram integrating

clinical features and risk model was developed to enhance prognostic accuracy.

Subsequent analyses, including immune invasion, enrichment analysis, and

tumor mutational burden (TMB), were conducted to explore biological

associations. The heterogeneity and cell-specific expression of critical EMRGs

were explored through single-cell RNA sequencing (scRNA-seq). The

transcriptional levels of the chosen EMRGs were experimentally validated using

reverse transcription quantitative PCR (RT-qPCR).

Results: A prognostic model was established in our study using Random Survival

Forest (RSF) machine learning (ML) algorithm. Survival outcomes were

substantially lower in the high-risk group (HRG) than in the low-risk group

(LRG), as reflected by an AUC value of 0.73. A nomogram incorporating this

risk model outperformed one without it. Gene Ontology (GO)/Kyoto

Encyclopedia of Genes and Genomes (KEGG)-based analyses showed a

significant enrichment of these genes in pathways linked to immune regulation
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and extracellular matrix (ECM) dynamics. An elevated TMB in HRGmay predict

a worse prognosis. Evaluation of pharmacologic susceptibility revealed

enhanced drug sensitivity in the HRG, such as Cytotoxic Chemotherapy and

Apoptosis-inducing small molecule inhibitors, etc. ScRNA-seq revealed that

prognostic EMRGs were mainly enriched in T and NK cells, myeloid cells, and

fibroblasts, suggesting their involvement in immune regulation and

remodeling of the tumor microenvironment (TME). RT-qPCR confirmed

their differential expression in LUAD and normal cell lines.

Conclusions: This integrative model reveals the prognostic and therapeutic

relevance of EMRGs in LUAD, presenting a novel structure for immunogenetic

risk assessment and personalized treatment strategies.
KEYWORDS

energy metabolism, lung adenocarcinoma, prognostic model, machine learning,
multi-omics
Introduction

The incidence of lung cancer is steadily increasing worldwide,

making it the leading cause of cancer-related mortality, particularly

in younger populations (1). Lung adenocarcinoma (LUAD), which

makes up more than half of the patients, is the most commonly

occurring form of non-small cell lung cancer (NSCLC) (2, 3). In

LUAD treatment, immune checkpoint inhibitors (ICIs), have

proven to be effective, yet only a few patients benefit from

prolonged clinical improvement (4–6). Identifying novel

molecular biomarkers is crucial for improving prognostic

classification and facilitating personalized therapy in LUAD (7).

Energy metabolism (EM) alterations are now commonly

acknowledged as a hallmark of cancer. Cells in LUAD frequently

favor aerobic glycolysis over oxidative phosphorylation to satisfy their

bioenergetic and biosynthetic needs—a phenomenon called the

Warburg effect (8). Beyond glycolysis, aberrant regulation of other

metabolic pathways, such as fatty acid oxidation, glutaminolysis, and

mitochondrial function, also contributes to tumor progression,

immune evasion, and therapy resistance (9, 10). Tumor EM has

been increasingly recognized as a key regulator of the tumor

microenvironment (TME), affecting both immune landscape and

stromal remodeling, thereby influencing treatment outcomes (11, 12).

However, the prognostic significance and genetic underpinnings of

energy metabolism-related genes (EMRGs) in LUAD remain

insufficiently characterized. To address this gap, we built a robust

prognostic model based on EMRGs by integrating multi-omics and

multiple machine learning (ML) algorithms. Using genetic variants as

instrumental variables, Mendelian randomization (MR) infers causal

relationships between gene expression and clinical outcomes,

minimizing biases like confounding and reverse causality (13).

Complementarily, ML algorithms offer high-dimensional feature
02
selection and predictive modeling capabilities, enabling the

identification of gene signatures with superior prognostic accuracy

(14). And single-cell RNA sequencing (scRNA-seq) was utilized to

analyze the cellular localization and heterogeneity of key EMRGs,

providing a high-resolution view of their functional roles within the

TME (15).
Materials and methods

Data acquisition

LUAD data of survey are primarily derived from The Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/, till

March 1st, 2025). In addition, three external validation cohorts

(GSE30219, GSE72094 and GSE50081) and a single-cell sequencing

cohort (GSE189357) were download the Gene Expression Omnibus

(GEO) repository (https://www.ncbi.nlm.nih.gov/geo/, accessible

until March 1st, 2025). Initially, 9950 EMRGs were derived from

GeneCards database (https://www.genecards.org/, on March 1st,

2025) using “EM” as the search term and a relevance score

exceeding 1. Expression profiles of these genes in TCGA-LUAD

samples were then extracted via the “limma” R package.

Differentially expressed genes (DEGs) were screened based on

criteria of |log2 fold change| greater than 1 and a false discovery

rate (FDR) less than 0.05 for further analysis.

For MR analysis, summary statistics for LUAD and a blood

Expression Quantitative Trait Loci (eQTL) data from eQTLGen

consortium were retrieved via the IEU GWAS platform (https://

gwas.mrcieu.ac.uk/). The eQTL data encompassed associations for

19,942 genes derived from 31,684 blood samples of healthy

individuals of European descent (16). In parallel, GWAS
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summary data on LUAD (11,273 cases and 55,483 controls; study

ID: “ebi-a-GCST004744”) were obtained, comprising 7,849,324

single nucleotide polymorphisms (SNPs) from a European-

ancestry cohort.
MR statistical analysis and evaluation

To generate eQTL instruments for individual genes, we selected

SNPs with strong associations (P < 5×10-8) from GWAS-derived

summary eQTL datasets as instrumental variables (IVs). To

minimize confounding due to high linkage disequilibrium (LD),

SNPs exhibiting r² > 0.001 within a 10 Mb window were excluded in

favor of the most strongly associated variant. The F-statistic was

used to quantify instrument strength, calculated as F = R² × (N-2)/

(1-R²) (N: the sample size; R²: the proportion of variance in the

exposure explained by the SNP) (17).

We utilized the “TwoSampleMR” R package to perform five MR

approaches for evaluating the potential causal association between

eQTLs and LUAD. In order to strengthen the credibility of our

findings, we applied sensitivity analyses, with Cochran’s Q test

being one of the key methods used, funnel plot visualization, leave-

one-out diagnostics, and the MR-Egger intercept method.

Heterogeneity among SNP instruments was examined via

Cochran’s Q statistic (P-value less than 0.05 indicated significant

heterogeneity). Funnel plots were employed to detect asymmetry

suggestive of bias. Leave-one-out analysis was implemented to

determine whether any single SNP disproportionately influenced

the outcome. Additionally, the presence of horizontal pleiotropy

was assessed using the MR-Egger intercept; a significant intercept

(P < 0.05) implied pleiotropy, which would violate core MR

assumptions and lead to exclusion of that result (18).
Signature constructed through machine
learning–driven integrative method

To achieve a robust and reliable consensus on prognostic

EMRGs, we implemented a comprehensive strategy that

integrated ten machine learning techniques across 117 unique

algorithmic combinations. Our approach leveraged ML

algorithms, including Random Survival Forest (RSF), Supervised

Principal Components, Generalized Boosted Regression Modeling

(GBM), Partial Least Squares for Cox regression, Stepwise Cox,

CoxBoost, Survival Support Vector Machine, Ridge, Elastic Net, and

Least Absolute Shrinkage and Selection Operator (LASSO) (19).The

workflow for constructing the prognostic model consisted of the

following steps: (a) DEGs that overlapped with the MR-identified

candidates were selected to define LUAD-relevant EMRGs; (b) The

117 combinations of algorithms were evaluated via Leave-One-Out

Cross-Validation (LOOCV), utilizing the intersected gene set as

input for model construction; (c) Each model’s performance was

externally validated using three GEO cohorts (GSE30219,

GSE72094, and GSE50081); (d) The models were evaluated

using the concordance index (C-index) across all datasets, and the
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model with the highest mean C-index was considered the optimal

one (20).
Validation model and nomogram

With the optimal ML algorithm, we estimated risk scores from

the prognostic gene panel and stratified patients into high, low risk

group (HRG&LRG) according median values (21). Our study

plotted Kaplan-Meier (K-M) survival curves using R packages

“survival”, “survminer” to assess overall survival (OS) in different

groups. In addition, we created scatterplots of risk distributions,

Principal component analysis (PCA), and gene expression heat

maps to observe differences between HRG&LRG. Subsequently, we

plotted K-M curves for various clinical features to investigate their

feasibility in the model.

To determine whether EMRGs serve as independent prognostic

indicators in LUAD patients, Cox regression analyses, including both

univariate and multivariate models, were performed (22), evaluating

their association with clinical variables. To generate the prognostic

nomogram, TCGA-LUAD cohort data were analyzed using the “rms”,

“replot” packages in R. To assess the clinical utility and accuracy of the

nomogram, we performed decision curve analysis (DCA), receiver

operating characteristic (ROC) curve analysis, and calibration plots.
Biological function and pathway
enrichment analysis

DEGs between the HRG&LRG were identified and annotated

using “clusterProfiler”, “https://bioconductor.org/packages/release/

data/annotation/html/org.Hs.eg.db.html” R packages (23). To

delineate pathway differences between HRG&LRG, we applied

Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG) for in-depth analyses.
Tumor mutation burden

Using R package “maftools”, we computed the TMB score for

each patient and created waterfall plots to visualize the mutation

data for the TCGA-LUAD cohort (24). In addition, we performed

survival curve analysis to distinguish differences in OS between

groups of patients classified according to different TMB levels (25).
Tumor microenvironment analysis

Differences in ESTIMATE, immune, and stromal composite

scores between HRG&LRG were calculated using the ‘ESTIMATE’

R tool. Furthermore, immune cell infiltration levels were evaluated

using multiple computational tools, including XCELL, TIMER,

QUANTISEQ, and MCPCOUNTER, to enhance the robustness

of the immune profiling (26). We performed immunoinfiltration

analysis on multiple immune cell lines to estimate the abundance of
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different immune cell subsets. To examine immune functional states

in LUAD population, we performed single-sample gene set

enrichment analysis, which formed the basis for differential

analysis between HRG & LRG.
Immunotherapy and chemotherapy
effectiveness in LUAD

To explore the variance in rejection reactions, immune

dysfunction between HRG&LRG, we employed Tumor Immune

Dysfunct ion and Exc lus ion (TIDE) webs i te (ht tp : / /

tide.dfci.harvard.edu/) to calculate TIDE scores (27). We

compared the TIDE scores between the two groups to assess

differences in immunotherapy responses. Using the “oncoPredict”

R package integrated with Genomics of Drug Sensitivity in Cancer

(GDSC) datasets, we estimated the half-maximal inhibitory

concentration (IC50) values of multiple anticancer agents (28).

Drug sensitivity differences between HRG&LRG were then

evaluated by comparing these IC50 estimates.
Single-cell sequencing analysis of EMRGs

The scRNA-seq dataset GSE189357, comprising nine LUAD

samples, was retrieved from GEO database. Using “Seurat” R

package, the data were transformed into Seurat objects. We

excluded cells with less than 500 genes and genes present in fewer

than three cells. Mitochondrial gene percentages were computed via

the PercentageFeatureSet function, and violin plots were

generated with VlnPlot to assess gene expression distributions.

Quality control involved filtering out outliers based on gene count

ranges and transcript abundance, excluding cells with over 25%

mitochondrial content (29). PCA was employed for initial

dimensionality reduction, while batch effects were mitigated

using Harmony, which iteratively determined optimal reduction

thresholds. The visualization of cell clusters was performed

using Uniform Manifold Approximation and Projection (UMAP)

(30). Cellular distances were estimated using FindNeighbors, and

clusters were defined using the FindClusters function with a

specified resolution parameter. Using reference transcriptomic

datasets, cell-type annotation was performed with the

“SingleR” package.
CeRNA regulatory network

To identify potential miRNA targets, we utilized TargetScan

Human (https://www.targetscan.org), miRWalk (http://

mirwalk.umm.uni-heidelberg.de/). Predictions of miRNA-lncRNA

interactions were performed using SpongeScan (https://

www.repository.cam.ac.uk/). The regulatory network comprising

lncRNA, miRNA, and mRNA was assembled and displayed via

Cytoscape software (31).
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Verify protein and mRNA expression of
EMRGs

The protein expression profiles of EMRGs in tumor versus normal

cell lines were downloaded from Human Protein Atlas database

(https://www.proteinatlas.org/). Furthermore, we obtained HBE (a

human lung fibroblast cell line), PC-9, A549 and H1299 (three

human lung adenocarcinoma cell lines) supplied by Procell life

science &technology co. ltd. Subsequently, we used the TRIzol

Reagent and the Prime Script RT Kit (obtained from VWR

International) to extract the RNA from these cell lines, and reverse

transcribed it. Finally, we analyzed their gene expression by RT-qPCR

(32). Supplementary Table S1 shows the primers for EMRGs.
Results

Causal relationship between EMRGs and
LUAD

We have drawn a specific technology roadmap for this article

(Figure 1). The specific mechanism of EM is shown in Figure 2.

Through MR analysis, we found 245 gene symbols causally

associated with LUAD. All IVs showed F-statistics > 10, and the

findings were consistent across five different MR methods,

suggesting robust causal estimates (Supplementary Table S2). We

obtained the LUAD data from TCGA database, including 503

oncology patients and 59 normal patients (Table 1). A total of

9,950 EMRGs were initially identified in the TCGA-LUAD dataset,

from which 947 DEGs were filtered (Figure 3A). By intersecting

these with the MR results, 9 overlapping genes were obtained

(Supplementary Table S3) (Figure 3B). Furthermore, both

Cochran’s Q test and Egger’s intercept analysis revealed no

significant evidence of heterogeneity or horizontal pleiotropy

(Supplementary Table S4). Forest and scatter plots also indicated

minimal variability contributed by individual SNPs (Supplementary

Figures S1, S2).
Establish and validate the risk model

We developed a prognostic model using a machine learning-

based integrative approach and expression profiles of 46 DEGs.

Using the TCGA-LUAD and GEO datasets, Through LOOCV, 117

predictive models were systematically evaluated, and their C-index

scores were subsequently calculated (Figure 3E). Notably, the

stepCOX [both] + GBM combination achieved the highest C-

index. As a result, the algorithm was used for feature selection

and model construction, culminating in the identification of the five

most influential genes (Figure 3C). The chromosomal position of

each gene is shown in Figure 3D. The GBM model was applied to

generate risk estimates for each LUAD case, which were then split

into HRG&LRG according to the median threshold. Table 2

summarizes the clinical information for the HRG&LRG
frontiersin.org
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populations. KM curves revealed significantly longer OS in the LRG

versus the HRG across all cohorts (TCGA: P<0.0001; GSE30219:

P = 0.0077; GSE72094: P<0.0021; GSE50081: P = 0.018).

Consistently, time-dependent ROC analysis demonstrated strong

predictive performance, with 1-, 3-, 5-year AUCs of 0.736/0.760/
Frontiers in Immunology 05
0.737 (TCGA), 0.64/0.735/0.740 (GSE30219), 0.618/0.656/0.679

(GSE72094), and 0.704/0.684/0.680 (GSE50081) (Supplementary

Figures S3A–H). Scatter plots of risk scores and gene expression

heatmaps further distinguished HRG&LRG across cohorts

(Supplementary Figures S4A–D).
FIGURE 1

Flow chart of the study design. An overview of the analytical workflow including data collection, Mendelian randomization, machine learning-based
prognostic modeling, validation, and downstream tumor microenvironment and therapeutic analyses.
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Prediction nomogram for this model

The prognostic independence of EMRGs was examined using

univariate and multivariate Cox regression methods. Univariate results

showed that EMRGs were obviously associated with survival risk

(HR= 2.005, 95% CI = 1.749–2.298, P< 0.001) (Figure 4A). Even after

adjusting for potential confounding variables, multivariate analysis

affirmed EMRGs as independent prognostic indicators (HR = 1.906,

95% CI = 1.656–2.193, P< 0.001) (Figure 4B). Drawing on the

multivariate Cox analysis, we designed a nomogram to predict OS

at 1, 3, and 5 years in LUAD (Figure 4F). Our nomogram’s accuracy

was assessed through calibration curve analysis (Figure 4C), while

ROC curves and DCA confirmed the model’s enhanced predictive

capability over traditional clinical parameters (Figures 4D, E).

Scatter plots illustrate associations between clinical traits and risk

scores (Supplementary Figures S5A–D). A heatmap integrates the

expression patterns of 5 EMRGs with clinical data and risk groups
Frontiers in Immunology 06
(Supplementary Figure S5E). Stratified survival analysis across clinical

subgroups consistently supported the model’s predictive value

(Supplementary Figures S6A–K).
KEGG and GO enrichment analysis

Enrichment analyses of EMRGs were conducted across HRG&

LRG cohorts to explore their functional disparities. KEGG pathway

analysis revealed that top six obviously enriched pathways were

mainly associated with oncogenesis, immune modulation, and DNA

damage repair processes. These included DNA replication licensing,

pre-initiation complex assembly, outer and inner kinetochore

organization, TRAIP-mediated replisome disassembly, and

replication origin unwinding and elongation (Supplementary Figure

S7A) (Supplementary Table S5). Meanwhile, GO enrichment of

biological processes highlighted several immune and structural
frontiersin.or
FIGURE 2

Proposed mechanism of EMRGs in LUAD. Schematic representation of how the identified energy metabolism-related genes (EMRGs: WFS1, SPTBN1,
NCKAP1L, RUNX2, and LOXL2) regulate glycolysis, extracellular matrix remodeling, and m^6A methylation, thereby shaping the tumor
microenvironment (immune cell infiltration, fibroblast activation, and myeloid-derived suppressor cells) and ultimately influencing prognosis and
therapeutic responses in LUAD.
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remodeling functions, such as tissue repair, regulation of body fluid

dynamics, enhancement of cell adhesion, and organization of the

extracellular matrix and encapsulating structures (Supplementary

Figure S7B) (Supplementary Table S6).
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Tumor mutational burden

We calculated the TMB values for each patient. We found

significant differences in TMB between HRG&LRG (P<0.001). We
TABLE 1 Clinical information of the patients in the TCGA and GEO groups.

Characteristics
TCGA(n=503) GSE30219(n=85) GSE72094(n=442) GSE50081(n=127)

n % n % n % n %

Age

<=65 238 47.32 60 70.59 127 28.73 42 33.07

>65 255 50.70 25 29.41 294 66.52 85 66.93

Unknow 10 1.99 – – 21 4.75 – –

Status

Alive 321 63.82 40 47.06 298 67.42 76 59.84

Dead 182 36.18 45 52.94 122 27.60 51 40.16

Unknow – – – – 22 4.98 – –

Gender

Female 272 54.08 19 22.35 240 54.30 62 48.82

Male 231 45.92 66 77.65 202 45.70 65 51.18

Stage

StageI 270 53.68 – – 265 59.95 92 72.44

StageII 120 23.86 – – 69 15.61 35 27.56

StageIII 80 15.90 – – 63 14.25 – –

StageIV 25 4.97 – – 17 3.86 – –

Unknow 8 1.59 – – 28 6.33 – –

T stage

T1 168 33.40 71 83.53 – – 43 33.86

T2 269 53.48 12 14.12 – – 82 64.57

T3 45 8.95 2 2.35 – – 2 1.57

T4 18 3.58 – – – – – –

Unknow 3 0.60 – – – – –

M stage

M0 335 66.60 85 100 – – 127 100

M1 24 4.77 – – – – – –

Unknow 144 28.63 – – – – – –

N stage

N0 326 64.81 82 96.47 – – 94 74.02

N1 95 18.89 3 3.53 – – 33 25.98

N2 69 13.72 – – – – – –

N3 2 0.40 – – – – – –

Unknow 11 2.19 – – – – – –
GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; T stage, Tumor stage; N stage, Node stage; M stage, metastasis stage.
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further stratified patients into HRG&LRG, revealing a highly

significant survival disparity between the two groups (P < 0.001)

(Figures 5A, B). We developed waterfall plots based on different

subclusters, including the top 20 mutant genes, depicting a

mutation landscape of the ten most prevalent genes in the two

risk groups (Figures 5C, D).
Immune microenvironment analysis

TME analysis revealed notable immune cell distribution

differences between the risk groups. Specifically, the HRG showed

significantly higher infiltration of M0 macrophages (P < 0.0001),

neutrophils (P < 0.001), and activated mast cells (P < 0.05). In

contrast, the LRG had elevated levels of B lymphocytes (P < 0.0001),

resting memory CD4+ T cells (P < 0.001), monocytes (P < 0.05),

plasma cells (P < 0.05), and resting mast cells (P < 0.05) (Figure 6F).

Furthermore, among 13 immune-related functional signatures, the

HRG displayed significantly reduced activity in checkpoint pathways

(P < 0.001), cytolytic processes (P < 0.01), HLA molecule expression

(P < 0.001), inflammation-promoting signals (P < 0.01), as well as

both T cell co-inhibitory and co-stimulatory pathways (P < 0.001),

type II interferon responses (P < 0.001) (Figure 6G). Complementary

analysis revealed that the LRG exhibited notably elevated immune,

stromal, and ESTIMATE scores (immune score: P < 0.0001; stromal

score: P < 0.05; ESTIMATE scores: P < 0.0001), while the HRG
Frontiers in Immunology 08
exhibited significantly higher tumor purity than the LRG (P < 0.001)

(Figures 6A–D). These findings were further corroborated by various

deconvolution algorithms that identified robust associations

between immune cell infiltration and risk stratification

(Figure 6E), with extended results visualized in Supplementary

Figure S8.
Immune targets and chemotherapy

TIDE score analysis showed that in the HRG characterized by

EM-related features, the T cell dysfunction score (Supplementary

Figure S9A) was lower than those in the LRG, while the TIDE score

(Supplementary Figure S9B) and T cell exclusion score

(Supplementary Figure S9C) were higher. These results indicate

that tumors in the HRG may have higher levels of T cell infiltration

accompanied by greater functional impairment, potentially

contributing to enhanced immune evasion. Furthermore, we

calculated the IC50 of antitumor drugs for both HRG&LRG

patients. We screened 89 chemotherapeutic agents and identified

substantial differences in predicted IC50 values between HRG &

LRG (Supplementary Table S7). The HRG appears to exhibit greater

sensitivity to certain drugs, such as BI.2536 and BMS.536924.

Whereas the LRG is sensitive to Docetaxel_1007 and Topotecan.

The IC50 values of these drugs can help guide the selection of

appropriate treatments.
FIGURE 3

Identification of prognostic EMRGs. (A) Volcano plot of differentially expressed EMRGs. (B) Venn diagram integrating Mendelian randomization and
differential expression analyses. (C) Machine learning selection of 5 EMRGs associated with prognosis. (D) Circos plot showing chromosomal
locations and expression levels of the model genes. (E) Model performance: the C-index of 117 predictive models generated by ten-fold cross-
validation, evaluated across TCGA and GEO datasets.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1679464
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2025.1679464
Single-cell analysis of EMRGs

To explore the interaction between immune cells and EMRGs,

single-cell analysis was conducted. After quality control using

Seurat (nFeature: 300–5,000; nCount: 5,000–20,000), 23,451 genes
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and 118,602 cells were retained. nFeature was positively correlated

with nCount (r = 0.9), while percent.mt was negatively associated

with nCount (r = -0.11) (Supplementary Figures S10A–B). Using

UMAP and a clustering resolution of 0.5, 23 distinct cell subclusters

were identified (Figure 7A) (Supplementary Figure S10C),
TABLE 2 Clinical information for 503 TCGA patients in different risk categories.

Characteristics
High-risk group (n=251) Low-risk group (n=252)

n % n %

Age

<=65 128 51.00 110 43.65

>65 118 47.01 137 54.37

Unknow 5 1.99 5 1.98

Status

Alive 122 48.61 199 78.97

Dead 129 51.39 53 21.03

Gender

Female 125 49.80 147 58.33

Male 126 50.20 105 41.67

Stage

Stage I 109 43.43 161 63.89

Stage II 72 28.69 48 19.05

Stage III 53 21.12 27 10.71

Stage IV 15 5.98 10 3.97

Unknow 2 0.80 6 2.38

T stage

T1 71 28.29 97 38.49

T2 135 53.78 134 53.17

T3 30 11.95 15 5.95

T4 13 5.18 5 1.98

Unknow 2 0.80 1 0.40

M stage

M0 176 70.12 159 63.10

M1 14 5.58 10 3.97

Unknow 61 24.30 83 32.94

N stage

N0 142 56.57 184 73.02

N1 61 24.30 34 13.49

N2 45 17.93 24 9.52

N3 – – 2 0.79

Unknow 3 1.20 8 3.17
TCGA, The Cancer Genome Atlas; T stage, Tumor stage; N stage, Node stage; M stage, metastasis stage.
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annotated as Epithelial cells, B cells, Myeloid cells, Endothelial cells,

Fibroblasts, Mast cells, Plasma cells, Proliferative cells, and T&NK

cells (Figure 7B). EMRGs were mainly distributed in T&NK and

Myeloid cells (Figure 7C). PCA demonstrated minimal batch

variation, with the top nine principal components selected based

on the ElbowPlot criteria (Supplementary Figures S10D, E).
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CeRNA network of EMRGs

A competing endogenous RNA (ceRNA) network involving

lncRNA, miRNA, and mRNA was constructed, revealing that

numerous lncRNAs and miRNAs could potentially be regulated

by EMRGs. Offering mechanistic insights into LUAD, this network
FIGURE 4

Development and validation of the EMRG prognostic signature. (A, B) Univariate and multivariate Cox analyses of clinical characteristics and risk
scores in the TCGA cohort. (C) Calibration plot for predicting 1-, 2-, and 3-year overall survival. (D) Decision curve analysis (DCA) for 5-year survival.
(E) ROC curves comparing clinical factors with the EMRG signature. (F) Nomogram integrating the EMRG signature and clinical features to predict
patient prognosis.
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may inform the design of future therapeutic interventions

(Supplementary Figure S11) (Supplementary Table S8).
Verify protein and mRNA expression of
EMRGs

We analyzed the protein expression of EMRGs in both t- and n-

tissues (Figure 8A). In addition, RT-qPCR analysis revealed that

LOXL2 and SPTBN1 were predominantly expressed in normal cell

lines, whereas higher levels of NCKAP1L, RUNX2, and WFS1 were

detected in tumor cell lines (Figure 8B).
Discussion

Our study highlights the urgent need for robust, biology-

informed prognostic models that integrate molecular and clinical

data in LUAD (33). We employed 117 ML algorithm pairings and

MR analysis to establish a prognostic model involving five EMRGs.

This model consistently stratified patients by OS in TCGA and GEO

cohorts, with AUC values exceeding 0.70 across time points. The
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combination of stepwise Cox regression and GBM yielded the

highest C-index, underscoring the rigor of our multi-algorithm

approach. The nomogram constructed from this model showed

excellent calibration and clinical benefit in DCA, outperforming

clinical features alone. Furthermore, the model proved robust across

different age, stage, and smoking subgroups. Its strong association

with TMB supports a mechanistic link between metabolic

reprogramming and genomic instability. The five EMRGs in our

model—LOXL2, RUNX2, NCKAP1L, WFS1, and SPTBN1—have

been implicated in diverse cancer-related processes (34). LOXL2

regulates ECM remodeling and stiffness, a key factor in tumor

invasion and metastasis, often via ZEB1-mediated upregulation

(35). RUNX2 promotes glycolysis and enhances invasiveness

through HDAC-dependent osteopontin splicing in NSCLC (36).

NCKAP1L, mainly expressed in immune cells, regulates actin

dynamics and T cell activation, bridging metabolism and immune

modulation (37). The oncogenic SPTBN1–ALK fusion may drive

resistance to therapy by enhancing cytoskeletal signaling and tumor

adaptability (38).

Of note, growing evidence has highlighted the regulatory role of

N6-methyladenosine (m6A) RNA methylation in shaping cancer

metabolism and immune escape. Recent studies suggest that m6A
FIGURE 5

Tumor mutational burden (TMB) analysis in different risk groups. (A) Violin plot of TMB levels in high-risk (HRG) and low-risk groups (LRG).
(B) Survival analysis stratified by risk score and mutation frequency. (C, D) Waterfall plots of mutation profiles in LRG (C) and HRG (D).
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“writers”, “erasers”, and “readers” dynamically regulate the stability

and translation of EMRGs (39, 40). The scRNA-seq analysis

revealed specific gene expression in different cell types, suggesting

their involvement in transcriptional regulation, immune evasion,

and stromal remodeling in the TME. These effects can be

conceptualized in three mechanistic axes: In T/NK cells, EMRGs

impair cytotoxic function via immune checkpoint activation and

altered receptor signaling (41). In myeloid cells, they promote

immune tolerance through IL-1 family cytokines, PD-L1

expression, and IDO1-mediated suppression (42). In fibroblasts,

ECM regulators such as LOX and MMP11 reinforce tumor-

supportive stroma and impede immune infiltration (43–47).

Functional enrichment analysis further supported this, with the
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high-risk group enriched in ECM-receptor interaction and DNA

replication licensing pathways. The former mediates tumor-stroma

interactions and physical barriers to immunity, while the latter

reflects uncontrolled S-phase entry and genomic instability—both

hallmarks of aggressive LUAD (48, 49).

In addition to prognostication, our model offers therapeutic

insight. Apoptotic agents, particularly Docetaxel and Sepantronium

bromide, were more effective in the high-risk LUAD population

(50, 51). Mechanistically, immune-excluded tumors may lack the

immune-based resistance seen in “hot” tumors, making them more

reliant on intrinsic survival pathways (e.g., BCL2 family). Targeting

these may overcome resistance in metabolically reprogrammed

tumors. Conversely, low-risk patients responded better to CDK9
FIGURE 6

Tumor microenvironment (TME) analysis of risk subgroups. (A–D) Violin plots showing stromal scores, immune scores, ESTIMATE scores, and tumor
purity. (E) Bubble plots illustrating correlations between risk scores and immune cell abundance under six algorithms. (F) CIBERSORT analysis of
proportions of 22 immune cells in the two subgroups. (G) ssGSEA immune function score comparison between HRG and LRG (ns, not significant,
*P<0.05, **P<0.01, ***P<0.001, ****P < 0.0001).
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inhibitors such as CDK9_5038, CDK9_5576, and Dinaciclib,

suggesting distinct therapeutic vulnerabilities based on metabolic

phenotype. TIDE analysis further supported clinical utility: high-

risk patients had elevated T-cell dysfunction and TIDE scores,

indicating an immunosuppressive microenvironment and

potentially poorer ICI response (52, 53). Meanwhile, low-risk

patients exhibited stronger immune infiltration and HLA

expression, favoring ICI responsiveness. These findings

underscore the value of EMRG signatures in capturing the

interplay between tumor metabolism and immune dynamics,

aiding both prognosis and treatment selection (54, 55).

Our study introduces several innovations: MR was used to select

genes with causal associations, reducing bias inherent in

correlation-based models; multiple ML algorithms were

systematically tested for optimal performance; single-cell
Frontiers in Immunology 13
transcriptomic validation provided cellular-resolution insight; and

a clinically interpretable nomogram was built to bridge research and

clinical application. Compared to existing LUAD models, which

often rely on bulk RNA-seq or single-pathway markers, our multi-

omics framework offers enhanced robustness and translational

potential. Nonetheless, limitations exist. First, all training and

validation data were retrospective, introducing potential bias.

Second, while MR mitigates confounding, it relies on the quality

of eQTL datasets and may not eliminate pleiotropy. Our drug

sensitivity predictions provide useful hypotheses for potential

therapeutic options. However, these results are derived entirely

from in silico analysis and their clinical relevance remains

hypothetical. Further preclinical and clinical validation will be

required. Lastly, our scRNA-seq analysis was based on nine

LUAD samples, which is relatively small. This limited sample size
FIGURE 7

Single-cell transcriptome analysis of EMRGs. (A) Cell clusters identified at different resolution levels using the FindClusters function. (B) Cell type
annotation of identified clusters. (C) Distribution of the five EMRGs across different cell subtypes, highlighting their cell-specific expression patterns.
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may restrict the generalizability of cell-type specific conclusions.

Validation in larger single-cell cohorts will be important to confirm

our findings. We were unable to validate the link between EMRG-

defined subgroups and ICI responsiveness in independent LUAD

cohorts due to lack of available data. Therefore, our conclusions

regarding immunotherapy response remain indirect. Future

validation in ICI-treated cohorts is warranted.

In brief, we designed and confirmed the accuracy of an EMRG-

based model to predict LUAD outcomes using MR, ML, and single-

cell transcriptomic data. This model effectively stratifies patients by

survival risk and offers mechanistic insights and therapeutic

guidance, advancing personalized medicine in LUAD.
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Conclusion

Our prognostic model based on 5 EMRGs and validated its

performance in multiple LUAD cohorts, when combined with

clinical factors, the constructed nomogram further enhances its

value in prognostic assessment. HRG exhibits higher TMB,

impaired T cell function, and ECM remodeling, which may lead

to poor outcomes. Drug susceptibility analysis suggests that HRG

may benefit from docetaxel and sepanium bromide, while LRG

responds better to CDK9-targeted agents. The scRNA-seq reveals

different EMRG expression patterns across different cell types,

leading to a better understanding of tumor heterogeneity.
FIGURE 8

Experimental validation of EMRG expression. (A) mRNA expression profiles of EMRGs from the Human Protein Atlas (HPA). (B) RT-qPCR validation of
EMRG expression in LUAD cell lines compared with normal cell lines. *P < 0.05, **P < 0.01, ***P < 0.001.
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DCA Decision Curve Analysis
DEGs Differentially Expressed Genes
EM Energy Metabolism
EMRGs Energy Metabolism-Related Genes
eQTL Expression Quantitative Trait Loci
FDR False Discovery Rate
GBM Gradient Boosting Machine
GDSC Genomics of Drug Sensitivity in Cancer
GEO Gene Expression Omnibus
GO Gene Ontology
HPA Human Protein Atlas
HR Hazard Ratio
HRG High-Risk Group
IC50 Half Maximal Inhibitory Concentration
ICIs Immune Checkpoint Inhibitors
IV Instrumental Variable
IVW Inverse Variance Weighted
KEGG Kyoto Encyclopedia of Genes and Genomes
K-M Kaplan–Meier
LASSO Least Absolute Shrinkage and Selection Operator
ogy 18
LD Linkage Disequilibrium
LOOCV Leave-One-Out Cross-Validation
LRG Low-Risk Group
LUAD Lung Adenocarcinoma
MR Mendelian Randomization
NSCLC Non-Small Cell Lung Cancer
OR Odds Ratio
PCA Principal Component Analysis
plsRcox Partial Least Squares Regression for Cox Models
RF Random Forest
ROC Receiver Operating Characteristic
RSF Random Survival Forest
RT-qPCR Reverse Transcr ip t ion Quant i ta t ive Polymerase

Chain Reaction
scRNA-seq Single-Cell RNA Sequencing
SNP Single Nucleotide Polymorphism
TCGA The Cancer Genome Atlas
TIDE Tumor Immune Dysfunction and Exclusion
TIMER Tumor Immune Estimation Resource
TMB Tumor Mutational Burden
TME Tumor Microenvironment
UMAP Uniform Manifold Approximation and Projection.
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