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Non-small cell lung cancer (NSCLC) remains the most prevalent and lethal form

of lung cancer worldwide. Among the diverse components of the tumor

microenvironment, tumor-associated macrophages (TAMs) are increasingly

recognized as key regulators of NSCLC progression, metastasis, and treatment

resistance. TAMs, particularly those polarized toward the M2-like phenotype,

facilitate tumor growth through immunosuppression, angiogenesis, epithelial–

mesenchymal transition, and extracellular matrix remodeling. They promote

immune evasion via PD-L1, IL-10, and TGF-b signaling, and confer

chemoresistance through activation of the IL-6/STAT3 and P2X7/STAT6

pathways. Moreover, high infiltration of M2-TAMs and their expression of

immune checkpoint ligands have been associated with poor prognosis and,

paradoxically, with improved response to PD-1/PD-L1 blockade in certain

patients. Emerging therapeutic strategies aim to reprogram TAM phenotypes,

inhibit their recruitment, or selectively suppress their immunosuppressive

functions. However, challenges such as macrophage plasticity, lack of specific

biomarkers, and potential systemic toxicity remain significant barriers. This

review provides a comprehensive overview of the biological functions,

mechanistic roles, and clinical implications of TAMs in NSCLC, highlighting

both their value as prognostic indicators and their potential as therapeutic

targets in the era of precision oncology.
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1 Introduction

Lung cancer persists as the most commonly diagnosed

malignancy and remains the foremost cause of cancer-related

mortality globally (1). Despite significant advances in molecularly

targeted therapies and immunotherapies that have improved

clinical outcomes in NSCLC (2, 3), the absence of reliable early

screening modalities and the vague nature of initial clinical

manifestations contribute to most patients presenting with

metastatic disease at diagnosis (4). This underscores an urgent

need for innovative therapeutic strategies that can effectively

intervene in the complex biological processes underpinning

tumor progression.

Compelling evidence has highlighted the tumormicroenvironment

(TME) as a central driver of cancer development, invasion, and

therapeutic resistance (5, 6). The TME encompasses a heterogeneous

assemblage of non-malignant stromal and immune cells—including

macrophages, endothelial cells, and lymphocytes—interacting within a

dynamic network of cytokines and extracellular matrix components

that collectively orchestrate tumor behavior (7, 8). Among these,

tumor-associated macrophages (TAMs) have emerged as critical

regulators of tumorigenesis (9, 10). Induced by tumor-derived

cytokines, TAMs adopt an M2-like phenotype and acquire

immunosuppressive and pro-tumoral functions, facilitating disease

progression across diverse cancer types (11–13). Hence, elucidating

the fundamental mechanisms underpinning TAM function is critical

for provide promising treatment avenues for patients with NSCLC.

This review synthesizes current knowledge on the functional and

mechanistic contributions of TAMs in lung cancer, with a particular

focus on their implications for NSCLC progression and

therapeutic resistance.
2 Classification and biological
functions of TAMs

Macrophages are multifunctional immune cells with a broad

range of physiological roles, including maintaining tissue

homeostasis, defending against invading pathogens, and promoting

wound healing. Within tumors, most TAMs are enriched at the

invasive front and avascular regions of the tumor mass (14, 15).

Traditionally, macrophages were thought to be derived primarily

from circulatingmonocytes that migrate into tissues and differentiate.

However, recent evidence has demonstrated that a large proportion

of tissue-resident macrophages originate from yolk sac progenitors

(16, 17). These embryonic precursors undergo local proliferation and

differentiation to generate specialized populations such as alveolar

macrophages, microglia, and Kupffer cells. In cancer, these resident

macrophages, together with recruited monocytes, are activated by

diverse signals within the TME, thereby profoundly shaping tumor

progression and metastasis (18–20). Increasing evidence underscores

the critical role of circulating monocyte recruitment in the

establishment of TAM populations (21). During tumorigenesis,
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inflammatory monocytes from the peripheral blood are attracted to

the tumor site by chemokines such as CCL2, as well as cytokines

including CSF-1 and VEGF (22–24). Once recruited, these

monocytes differentiate into mature macrophages. CCL2, in

particular, mediates the recruitment of CCR2-expressing

monocytes from the bloodstream into the tumor bed, where they

subsequentlymature into TAMs (25, 26). Both tumor cells and TAMs

amplify CCL2 production, thereby creating a positive feedback loop

that further promotes TAM accumulation and proliferation. Tumor

growth also promotes the differentiation of CCR2+ monocytes into

TAMs (27, 28). Additional factors, such as the chemokine CXCL1

and cytokines including platelet-derived growth factor (PDGF) and

transforming growth factor-b (TGF-b), also contribute to the

polarization of TAMs (29–31).

The TME is characterized by nutrient deprivation, acidosis, and

hypoxia, all of which play pivotal roles in regulating TAM

polarization and function (32, 33). TAMs display remarkable

phenotypic and functional heterogeneity, responding dynamically

to contextual signals throughout tumor initiation, progression, and

metastasis (34, 35). Conceptually, TAMs are broadly classified into

two functional subsets: pro-inflammatory M1 and anti-

inflammatory M2 phenotypes (36, 37). M1 TAMs arise in

response to IFN-g and inflammatory cues such as TNF-a, IL-12,
and IL-23, and are associated with Th1 immune responses and

tumoricidal activity (37–39). These macrophages possess robust

antigen-presenting capacity and are marked by CD80, CD86, and

CD64 expression (40, 41). In contrast, M2 TAMs are driven by IL-4

and IL-13 signaling, leading to the secretion of IL-10, IL-1 receptor

antagonist (IL-1RA), and chemokines that dampen immune

activation (42, 43). They express high levels of Arg-1, CD206, and

CD163, indicative of an immunosuppressive, pro-tumorigenic

phenotype (44). M2 TAMs impair antigen presentation, support

Th2 responses, and facilitate tumor progression by promoting

metastasis, angiogenesis, and suppression of M1-mediated

immunity (36). M2 TAMs drive malignancy progression via three

principal mechanisms. First, they facilitate the entry of cancer cells

into circulation and promote metastatic spread by activating

paracrine signaling pathways (45). Second, these macrophages

release a spectrum of immunoregulatory factors such as TGF-b,
IL-10, Arg-1, and nitric oxide (NO) which sustain an

immunosuppressive microenvironment conducive to tumor

expansion (46). Third, they potentiate neovascularization, thereby

enabling tumor proliferation and aiding tissue regeneration in the

aftermath of oncologic therapies (47).
3 Mechanistic roles of TAMs in NSCLC

Within the dynamic tumor microenvironment, TAMs

orchestrate a spectrum of oncogenic programs, including tumor

cell proliferation (31), angiogenesis (48), drug resistance (49), and

immune escape (50), through highly coordinated molecular circuits

that collectively sustain NSCLC progression.
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3.1 TAMs in the proliferation, invasion, and
metastasis of NSCLC

Tumor recurrence and metastasis remain the predominant

drivers of mortality in NSCLC, with TAMs emerging as pivotal

regulators of these processes through multifaceted interactions with

malignant and stromal components (51). Tumor cells secrete

diverse chemokines that recruit macrophages and other

inflammatory cells into the tumor stroma, where TAMs, in turn,

release growth factors, cytokines, chemokines, and mediators such

as VEGF, PDGF, IL-10, CXCLs, EGFR ligands, and FGFs. These

substances exert direct mitogenic effects and stimulate angiogenesis,

collectively enhancing NSCLC growth and dissemination (52, 53).

TAM-derived epidermal growth factor (EGF) drives the formation

of elongated tumor cell protrusions that augment invasion,

reinforced by a CSF-1/EGF positive feedback loop that markedly

amplifies metastatic behavior (54). Inflammatory mediators from

TAMs activate NF-kB and STAT3, further sustaining tumor cell

proliferation and survival (55). EGFR ligands are particularly

relevant in NSCLC, where receptor dimerization triggers potent

proliferative cascades. Notably, NOX4-driven M2-polarized

macrophages exhibit elevated JNK activity and secrete heparin-

binding EGF-like growth factor (Hb-EGF), thereby stimulating

NSCLC proliferation, identifying TAMs as a key EGF source in

the tumor microenvironment (56, 57).

TAM polarization toward the M2 phenotype, driven by IL-4 or

IL-13, dampens anti-tumor T cell responses and enhances tumor-

promoting processes including angiogenesis, proliferation, and

invasion (58). Through the TLR4/IL-10 axis and secretion of

TGF-b, a master regulator of EMT, TAMs activate TGF-b/b-
catenin signaling and upregulate SOX9, which facilitates NSCLC

cell migration and invasion (59, 60). SOX9, in turn, orchestrates

cytoskeletal reprogramming by promoting mesenchymal markers

such as vimentin and fibronectin while repressing epithelial

proteins including E-cadherin (61–63), leading to loss of polarity

and increased cellular motility. Furthermore, TAMs secrete a

variety of factors, including MMP-9, VEGF, COX-2, and

urokinase plasminogen activator, which remodel the extracellular

matrix and promote invasion (64). Microfluidic modeling of the

tumor ecosystem has revealed that M2 macrophages elevate

CRYAB expression in lung cancer cells, driving EMT and

metastasis (65). TAMs also facilitate Ezrin phosphorylation-

mediated EMT in lung adenocarcinoma via FUT4-dependent

fucosylat ion and synthesis of the LeY antigen (66) .

Phosphorylated Ezrin acts as a linker between the plasma

membrane and actin cytoskeleton, promoting the formation of

invadopodia and lamellipodia, which are essential for directional

cell migration and metastasis. This reorganization of the actin

cytoskeleton supports enhanced invasive behavior of NSCLC cells

(67). Moreover, Oct4 upregulation in lung cancer cells induces M2

polarization of macrophages via M-CSF overexpression,

establishing a pro-tumorigenic Oct4/M-CSF axis (68). Other

regulatory pathways include the GNASAS1/miR-4319/NECAB3

axis, which modulates macrophage polarization to favor NSCLC

progression (69), and the SR-A1/MAPK/IkB/NF-kB signaling
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cascade, where SR-A1 deficiency in TAMs leads to SAA1

upregulation, enhancing both macrophage migration and tumor

invasion (70). Besides, Li et al. (71) identified the C-type lectin

receptor Mincle as a critical immunosuppressive factor in TAMs.

Mincle activation promotes M2 polarization and tumorigenesis via

the Syk/NF-kB axis, thereby representing a potential target for

immunotherapy. Taken together, these findings underscore TAMs

as central orchestrators of NSCLC progression, facilitating tumor

growth and dissemination through reciprocal tumor–macrophage

interactions, pro-oncogenic signaling, and dynamic reprogramming

of the tumor microenvironment.
3.2 TAMs promote angiogenesis in NSCLC

TAMs are central regulators of tumor angiogenesis, a

prerequisite for tumor growth and invasion (72). By supporting

oxygen and nutrient supply and facilitating metabolic waste

removal, TAM-induced neovascularization sustains tumor

expansion. This process is orchestrated through the secretion of

pro-angiogenic mediators and active remodeling of the TME (73).

Key angiogenic effectors released by TAMs include VEGF, TNF-a,
IL-1b, IL-8, PDGF, basic fibroblast growth factor (bFGF),

thymidine phosphorylase, and matrix metalloproteinases

(MMPs), establishing a direct link between TAM function and

intratumoral vascularization (48). Notably, in vitro studies show

that M2-polarized macrophages elevate VEGF levels and enhance

angiogenic responses (74). Furthermore, bidirectional crosstalk

between TAMs and NSCLC cells via placental growth factor

(PLGF)/Flt-1 and TGF-b signaling intensifies vascular sprouting

and tumor progression (75). TAM-derived osteopontin (OPN)

promotes cyclooxygenase-2–dependent PGE2 production and

MMP-9 expression, facilitating vascular remodeling and

metastatic dissemination (76). Hypoxia within the TME acts as a

dominant driver of TAM-mediated angiogenesis (77). Under

hypoxic stress, hypoxia-inducible factors HIF-1a and HIF-2a are

upregulated in TAMs, transcriptionally activating VEGF and PLGF

expression and reinforcing pro-angiogenic signaling in NSCLC

(78–80). HIF-1a also enhances glycolytic metabolism and TIE2

expression in a subset of pro-angiogenic TAMs known as TIE2+

TAMs (81, 82). These cells are enriched in perivascular hypoxic

regions and promote angiogenesis via the ANG2/TIE2 signaling

axis (83). This pathway not only facilitates endothelial sprouting

and vascular stabilization but also recruits additional TAMs to the

angiogenic niche, forming a feed-forward loop that sustains tumor

vascularization (84).

Beyond soluble factors, TAM-derived exosomes contribute to

angiogenesis by transferring miR-155-5p and miR-221-5p to

endothelial cells, thereby stimulating tumor-associated

neovascularization (85). Within hypoxic domains, upregulation of

HIFs reinforces the expression of VEGF, PLGF, and ANG2, while

heightened TIE2 expression in TAMs amplifies vascular signaling

cascades (86). Pharmacological interventions such as ginsenoside-

Rh2 (G-Rh2) can reprogram TAM polarization from the pro-

tumoral M2 phenotype toward the M1 phenotype, suppressing
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tumor cell migration and downregulating angiogenic factor

expression (87). In NSCLC, M2-type TAMs are implicated in

both angiogenesis and lymphangiogenesis by inducing VEGF-A

and VEGF-C in tumor cells. Immunohistochemical analyses reveal

that stromal expression of CD68 and CD163 positively correlates

with VEGF-A/C levels, and the abundance of CD163+/CD68+

TAMs is significantly associated with poor prognosis in NSCLC

patients (37, 48). Collectively, Collectively, these findings identify

TAMs as critical enablers of tumor vascularization and present a

compelling rationale for therapeutically targeting their angiogenic

and lymphangiogenic functions in NSCLC (Figure 1).
3.3 TAMs promote drug resistance in
NSCLC

One of the major challenges in NSCLC therapy is the

development of resistance to chemotherapy and targeted agents

(88). TAMs play a pivotal role in this process by promoting tumor

growth, survival, and resistance mechanisms (89). Preclinical

models have demonstrated that TAMs secrete IL-6, which drives

chemoresistance through IL-6R/STAT3 signaling; for example, in

colorectal cancer, TAM-derived IL-6 confers resistance to 5-

fluorouracil (5-FU) (90). Similarly, Similarly, exposure to

chemotherapeutic agents such as cyclophosphamide, paclitaxel,

and doxorubicin in murine models of lung cancer promotes

CD206 + TAM expan s i on , wh i ch f a c i l i t a t e s t umor

revascularization and relapse (91). In lung cancer, chemotherapy-
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induced IL-34 further strengthens TAM-mediated resistance (92).

Beyond cytokine release, TAM-driven extracellular matrix

remodeling alters tumor–macrophage interactions and reduces

tumor sensitivity to chemotherapy and radiotherapy (93, 94).

Clinically, M2-polarized TAMs have been associated with poor

prognosis due to their capacity to secrete growth factors and inhibit

apoptotic pathways, thereby reducing tumor susceptibility to

cytotoxic therapy (95). In vitro, cisplatin-resistant NSCLC cell

lines (A549R, H460R) exhibit elevated self-renewal capacity and

release macrophage migration inhibitory factor (MIF), which skews

macrophages toward an M2 phenotype and fosters metastatic

progression (96). Zhang et al. revealed M2 TAM infiltration

predicts post-chemotherapy recurrence and lymph node

metastasis, suggesting their potential as early imaging biomarkers

(97). More recently, P2X7 signaling has emerged as a key driver of

TAM-mediated immunosuppression and therapeutic resistance

(98). Engagement of P2X7 on macrophages activates the STAT6/

IRF4 transcriptional axis, reinforcing M2 polarization and

enhancing the secretion of immunosuppressive mediators

including IL-10, arginase-1, and TGF-b. This environment not

only supports tumor progression but also directly impairs CD8+

T-cell effector functions and contributes to T-cell exhaustion,

thereby reducing the efficacy of PD-1/PD-L1 immune checkpoint

blockade (99). Inhibition or genetic deletion of P2X7 reverses this

polarization, enhances inflammatory gene expression, and restores

checkpoint inhibitor responsiveness in NSCLC models,

highlighting the P2X7/STAT6 pathway as a mechanistic barrier to

successful immunotherapy (100).
FIGURE 1

Roles of tumor-associated macrophages in non-small cell lung cancer progression.
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3.4 TAMs in shaping the
immunosuppressive microenvironment of
NSCLC

TAMs constitute a dominant immune cell population within

the TME and play a pivotal role in coordinating innate and adaptive

immunity. In NSCLC, TAMs are predominantly polarized toward

an M2-like phenotype, which orchestrates immunosuppression via

the secretion of cytokines, chemokines, and metabolic enzymes that

collectively attenuate antigen presentation and inhibit effector T-

cell responses (101, 102). These macrophages release IL-10, TGF-b,
PGE2, and MMP-7, fostering a tolerogenic niche that impairs

cytotoxic lymphocyte recognition and elimination of malignant

cells (103). TGF-b is a key orchestrator of this suppressive

environment; it dampens NK cell cytotoxicity, impedes dendritic

cell (DC) migration, promotes Th2 differentiation, and

transcriptionally represses cytotoxic mediators such as granzyme

A/B, IFN-g, and FasL (104–107). Moreover, TGF-b facilitates Treg

induction and recruitment, further amplifying immune suppression

(108), and synergistically enhances IL-10 production, thus skewing

Th1/Th2 balance toward Th2 dominance (109). IL-10 inhibits NF-

kB signaling and curtails the secretion of pro-inflammatory

cytokines (TNF-a, IL-6, IL-12) and IFN-g, expediting immune

escape (110–112). Simultaneously, TAM-expressed arginase 1

depletes extracellular L-arginine, curbing T-cell proliferation and

downregulating TCR expression (113, 114). The combined effects of

IL-10, TNF-a, and IFN-g further induce B7-H4 on tumor cells,

thereby promoting T-cell apoptosis and impeding cytotoxic

lymphocyte-mediated tumor eradication (115, 116).

In parallel, immune checkpoint ligands such as PD-L1, PD-L2,

CD86, and CD80 expressed by TAMs engage PD-1 and CTLA-4 on

T cells, culminating in CD8+ T-cell exhaustion (117, 118). TAM-

derived TGF-b and PGE2 additionally inhibit DC maturation,

thereby disrupting the interconnectivity of innate and adaptive

responses (119, 120). Exosomes released by TAMs reprogram

immature DCs toward tolerogenic phenotypes, further crippling

antitumor immunity (121, 122). Within the NSCLC TME, Tøndell

et al. uncovered elevated CD200R1/CD200 signaling between

TAMs and T cells, as well as enhanced LILRB expression on M2-

TAMs, nominating these as potential immunotherapeutic targets

(123). Studies have revealed that PI3Kg functions as a critical switch
regulating TAM phenotype: its activation promotes Akt–mTOR

signaling that represses NF-kB but drives C/EBPb-mediated

transcription favoring immune suppression; conversely, PI3Kg
inhibition reactivates NF-kB–driven proinflammatory genes and

restores CD8+ T-cell cytotoxicity (124). Reprogramming strategies

also include targeting the scavenger receptor MARCO or its ligand

IL-37/IL-37R, which La Fleur et al. demonstrated reinstates T and

NK cell function, curtails Treg activity, and enhances antitumor

responses (125). Additionally, EGFR–AKT/ERK1/2 signaling has

been shown to upregulate ILT4 in NSCLC cells, facilitating M2-

TAM recruitment and dampening T-cell immunity; blocking ILT4

synergizes with PD-L1 inhibitors in EGFR wild-type, but not

EGFR-mutant tumors—underscoring an EGFR-driven immune

evasion mechanism (126).
Frontiers in Immunology 05
4 Prognostic impact of TAMs in
NSCLC

The heterogeneity of M2-polarized TAMs confers distinct

prognostic implications across human malignancies (78, 127). In a

study of 509 NSCLC specimens, Li et al. (128) demonstrated a positive

correlation between TAM-derived osteopontin (TOPN) and PD-L1

expression within the tumor microenvironment. Both TOPN and PD-

L1 were identified as independent prognostic factors for overall survival

and disease-free survival in NSCLC patients. Mechanistically, TOPN

upregulates PD-L1 expression in NSCLC cells via activation of the NF-

kB signaling pathway, and in vivo models confirmed that TOPN-

induced PD-L1 facilitates tumor progression (128). In a parallel cohort

of approximately 500 NSCLC patients, Liu et al. (129) found that

TAMs represent the dominant subset of PD-L1–expressing immune

infiltrates. PD-L1 expression on TAMs exhibited a strong positive

correlation with both tumor cell PD-L1 levels and the extent of CD8+

T-cell infiltration. Strikingly, in patients undergoing anti–PD-1

therapy, high TAM-derived PD-L1 expression predicted improved

overall survival (129), implying a potential predictive utility for

immunotherapy responsiveness. Similarly, Gross et al. reported that

PD-L1 expression on either TAMs or tumor cells was linked to

improved survival outcomes in patients receiving adjuvant

chemotherapy (130). However, PD-L1 expression on TAMs does not

uniformly correlate with better prognosis across all settings. In the

absence of immunotherapy, elevated PD-L1 on TAMs may also reflect

a highly immunosuppressive TME, which contributes to poor tumor

control, highlighting its potential prognostic ambiguity (131, 132).

These findings provide a rationale for prospective studies and the

development of chemo-immunotherapeutic strategies in lung cancer.

The immunological landscape further complicates prognostication.

Numerous studies indicate that M2-like TAMs often constitute over

80% of the macrophage compartment in NSCLC TMEs and are

broadly linked to adverse clinical outcomes. Accordingly, routine

evaluation of PD-L1 expression on TAMs serves not only as a

prognostic biomarker but also as a predictive indicator for

responsiveness to PD-1 blockade therapies in NSCLC (133).
5 Conclusion

Tumor-associated macrophages (TAMs) are deeply implicated in

the pathogenesis and progression of NSCLC, contributing to tumor

proliferation, angiogenesis, immune evasion, and resistance to therapy.

The predominance of M2-like TAMs within the tumor

microenvironment supports oncogenic signaling via secretion of

VEGF, TGF-b, and IL-10, promotes epithelial–mesenchymal

transition and metastasis, and suppresses cytotoxic immune responses

through PD-L1 expression and arginase-1–mediated T-cell dysfunction.

Mounting evidence also highlights their prognostic value, with high

TAMdensity and PD-L1 expression correlating with disease progression

and, paradoxically, response to immunotherapy in select contexts.

Despite emerging strategies to target TAMs such as reprogramming

M2 to M1 phenotypes, disrupting recruitment signals, or inhibiting

immunosuppressive mediators, several challenges remain. TAMs
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exhibit profound plasticity, dynamically adapting to environmental

cues, which complicates durable therapeutic intervention. The lack of

specific biomarkers to distinguish functional TAM subsets hinders

precision targeting, while broad depletion strategies risk impairing

normal tissue immunity. Future studies should integrate single-cell

profiling and spatial transcriptomics to decode TAM heterogeneity,

and prioritize the development of biomarker-driven combinatorial

approaches that safely and effectively reshape the immunological

landscape of NSCLC.
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