

OPEN ACCESS

EDITED BY
Lilong Zhang,
Renmin Hospital of Wuhan University, China

REVIEWED BY
Lisa Jia Tran,
Ludwig Maximilian University of Munich,
Germany

*CORRESPONDENCE
Shengjie Chen

☑ chenshengjie1971@sina.com

RECEIVED 04 August 2025
ACCEPTED 08 September 2025
PUBLISHED 22 September 2025
CORRECTED 23 October 2025

CITATION

Hao D and Chen S (2025) Targeting tumorassociated macrophages in non-small cell lung cancer: mechanisms, prognosis, and therapeutic opportunities. Front. Immunol. 16:1679537. doi: 10.3389/fimmu.2025.1679537

COPYRIGHT

© 2025 Hao and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Targeting tumor-associated macrophages in non-small cell lung cancer: mechanisms, prognosis, and therapeutic opportunities

Dameng Hao^{1,2} and Shengije Chen^{1,2}*

¹Department of Cardiothoracic Surgery, the Affiliated Jiangbin Hospital of Jiangsu University, Zhenjiang, China, ²Medical School of Jiangsu University, Jiangsu University, Zhenjiang, China

Non-small cell lung cancer (NSCLC) remains the most prevalent and lethal form of lung cancer worldwide. Among the diverse components of the tumor microenvironment, tumor-associated macrophages (TAMs) are increasingly recognized as key regulators of NSCLC progression, metastasis, and treatment resistance. TAMs, particularly those polarized toward the M2-like phenotype, facilitate tumor growth through immunosuppression, angiogenesis, epithelialmesenchymal transition, and extracellular matrix remodeling. They promote immune evasion via PD-L1, IL-10, and TGF- β signaling, and confer chemoresistance through activation of the IL-6/STAT3 and P2X7/STAT6 pathways. Moreover, high infiltration of M2-TAMs and their expression of immune checkpoint ligands have been associated with poor prognosis and, paradoxically, with improved response to PD-1/PD-L1 blockade in certain patients. Emerging therapeutic strategies aim to reprogram TAM phenotypes, inhibit their recruitment, or selectively suppress their immunosuppressive functions. However, challenges such as macrophage plasticity, lack of specific biomarkers, and potential systemic toxicity remain significant barriers. This review provides a comprehensive overview of the biological functions, mechanistic roles, and clinical implications of TAMs in NSCLC, highlighting both their value as prognostic indicators and their potential as therapeutic targets in the era of precision oncology.

KEYWORDS

non-small-cell lung cancer, tumor-associated macrophages, tumor microenvironment, metastasis, angiogenesis, therapeutic resistance

1 Introduction

Lung cancer persists as the most commonly diagnosed malignancy and remains the foremost cause of cancer-related mortality globally (1). Despite significant advances in molecularly targeted therapies and immunotherapies that have improved clinical outcomes in NSCLC (2, 3), the absence of reliable early screening modalities and the vague nature of initial clinical manifestations contribute to most patients presenting with metastatic disease at diagnosis (4). This underscores an urgent need for innovative therapeutic strategies that can effectively intervene in the complex biological processes underpinning tumor progression.

Compelling evidence has highlighted the tumor microenvironment (TME) as a central driver of cancer development, invasion, and therapeutic resistance (5, 6). The TME encompasses a heterogeneous assemblage of non-malignant stromal and immune cells-including macrophages, endothelial cells, and lymphocytes-interacting within a dynamic network of cytokines and extracellular matrix components that collectively orchestrate tumor behavior (7, 8). Among these, tumor-associated macrophages (TAMs) have emerged as critical regulators of tumorigenesis (9, 10). Induced by tumor-derived cytokines, TAMs adopt an M2-like phenotype and acquire immunosuppressive and pro-tumoral functions, facilitating disease progression across diverse cancer types (11-13). Hence, elucidating the fundamental mechanisms underpinning TAM function is critical for provide promising treatment avenues for patients with NSCLC. This review synthesizes current knowledge on the functional and mechanistic contributions of TAMs in lung cancer, with a particular focus on their implications for NSCLC progression and therapeutic resistance.

2 Classification and biological functions of TAMs

Macrophages are multifunctional immune cells with a broad range of physiological roles, including maintaining tissue homeostasis, defending against invading pathogens, and promoting wound healing. Within tumors, most TAMs are enriched at the invasive front and avascular regions of the tumor mass (14, 15). Traditionally, macrophages were thought to be derived primarily from circulating monocytes that migrate into tissues and differentiate. However, recent evidence has demonstrated that a large proportion of tissue-resident macrophages originate from yolk sac progenitors (16, 17). These embryonic precursors undergo local proliferation and differentiation to generate specialized populations such as alveolar macrophages, microglia, and Kupffer cells. In cancer, these resident macrophages, together with recruited monocytes, are activated by diverse signals within the TME, thereby profoundly shaping tumor progression and metastasis (18-20). Increasing evidence underscores the critical role of circulating monocyte recruitment in the establishment of TAM populations (21). During tumorigenesis, inflammatory monocytes from the peripheral blood are attracted to the tumor site by chemokines such as CCL2, as well as cytokines including CSF-1 and VEGF (22–24). Once recruited, these monocytes differentiate into mature macrophages. CCL2, in particular, mediates the recruitment of CCR2-expressing monocytes from the bloodstream into the tumor bed, where they subsequently mature into TAMs (25, 26). Both tumor cells and TAMs amplify CCL2 production, thereby creating a positive feedback loop that further promotes TAM accumulation and proliferation. Tumor growth also promotes the differentiation of CCR2+ monocytes into TAMs (27, 28). Additional factors, such as the chemokine CXCL1 and cytokines including platelet-derived growth factor (PDGF) and transforming growth factor- β (TGF- β), also contribute to the polarization of TAMs (29–31).

The TME is characterized by nutrient deprivation, acidosis, and hypoxia, all of which play pivotal roles in regulating TAM polarization and function (32, 33). TAMs display remarkable phenotypic and functional heterogeneity, responding dynamically to contextual signals throughout tumor initiation, progression, and metastasis (34, 35). Conceptually, TAMs are broadly classified into two functional subsets: pro-inflammatory M1 and antiinflammatory M2 phenotypes (36, 37). M1 TAMs arise in response to IFN- γ and inflammatory cues such as TNF- α , IL-12, and IL-23, and are associated with Th1 immune responses and tumoricidal activity (37-39). These macrophages possess robust antigen-presenting capacity and are marked by CD80, CD86, and CD64 expression (40, 41). In contrast, M2 TAMs are driven by IL-4 and IL-13 signaling, leading to the secretion of IL-10, IL-1 receptor antagonist (IL-1RA), and chemokines that dampen immune activation (42, 43). They express high levels of Arg-1, CD206, and CD163, indicative of an immunosuppressive, pro-tumorigenic phenotype (44). M2 TAMs impair antigen presentation, support Th2 responses, and facilitate tumor progression by promoting metastasis, angiogenesis, and suppression of M1-mediated immunity (36). M2 TAMs drive malignancy progression via three principal mechanisms. First, they facilitate the entry of cancer cells into circulation and promote metastatic spread by activating paracrine signaling pathways (45). Second, these macrophages release a spectrum of immunoregulatory factors such as TGF-β, IL-10, Arg-1, and nitric oxide (NO) which sustain an immunosuppressive microenvironment conducive to tumor expansion (46). Third, they potentiate neovascularization, thereby enabling tumor proliferation and aiding tissue regeneration in the aftermath of oncologic therapies (47).

3 Mechanistic roles of TAMs in NSCLC

Within the dynamic tumor microenvironment, TAMs orchestrate a spectrum of oncogenic programs, including tumor cell proliferation (31), angiogenesis (48), drug resistance (49), and immune escape (50), through highly coordinated molecular circuits that collectively sustain NSCLC progression.

3.1 TAMs in the proliferation, invasion, and metastasis of NSCLC

Tumor recurrence and metastasis remain the predominant drivers of mortality in NSCLC, with TAMs emerging as pivotal regulators of these processes through multifaceted interactions with malignant and stromal components (51). Tumor cells secrete diverse chemokines that recruit macrophages and other inflammatory cells into the tumor stroma, where TAMs, in turn, release growth factors, cytokines, chemokines, and mediators such as VEGF, PDGF, IL-10, CXCLs, EGFR ligands, and FGFs. These substances exert direct mitogenic effects and stimulate angiogenesis, collectively enhancing NSCLC growth and dissemination (52, 53). TAM-derived epidermal growth factor (EGF) drives the formation of elongated tumor cell protrusions that augment invasion, reinforced by a CSF-1/EGF positive feedback loop that markedly amplifies metastatic behavior (54). Inflammatory mediators from TAMs activate NF-κB and STAT3, further sustaining tumor cell proliferation and survival (55). EGFR ligands are particularly relevant in NSCLC, where receptor dimerization triggers potent proliferative cascades. Notably, NOX4-driven M2-polarized macrophages exhibit elevated JNK activity and secrete heparinbinding EGF-like growth factor (Hb-EGF), thereby stimulating NSCLC proliferation, identifying TAMs as a key EGF source in the tumor microenvironment (56, 57).

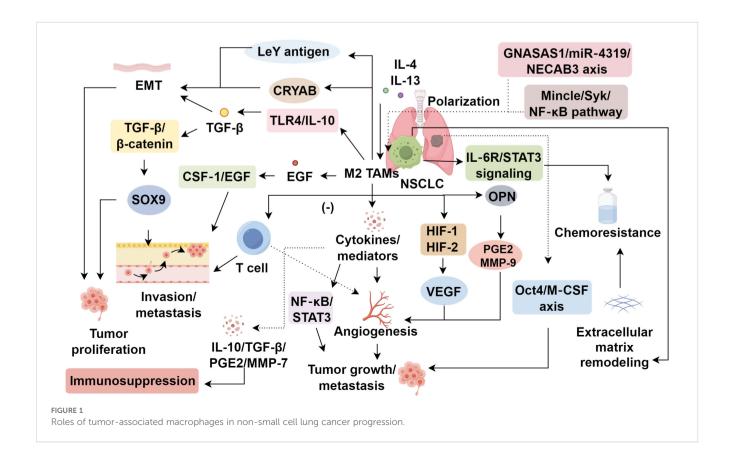
TAM polarization toward the M2 phenotype, driven by IL-4 or IL-13, dampens anti-tumor T cell responses and enhances tumorpromoting processes including angiogenesis, proliferation, and invasion (58). Through the TLR4/IL-10 axis and secretion of TGF-β, a master regulator of EMT, TAMs activate TGF-β/βcatenin signaling and upregulate SOX9, which facilitates NSCLC cell migration and invasion (59, 60). SOX9, in turn, orchestrates cytoskeletal reprogramming by promoting mesenchymal markers such as vimentin and fibronectin while repressing epithelial proteins including E-cadherin (61-63), leading to loss of polarity and increased cellular motility. Furthermore, TAMs secrete a variety of factors, including MMP-9, VEGF, COX-2, and urokinase plasminogen activator, which remodel the extracellular matrix and promote invasion (64). Microfluidic modeling of the tumor ecosystem has revealed that M2 macrophages elevate CRYAB expression in lung cancer cells, driving EMT and metastasis (65). TAMs also facilitate Ezrin phosphorylationmediated EMT in lung adenocarcinoma via FUT4-dependent fucosylation and synthesis of the LeY antigen (66). Phosphorylated Ezrin acts as a linker between the plasma membrane and actin cytoskeleton, promoting the formation of invadopodia and lamellipodia, which are essential for directional cell migration and metastasis. This reorganization of the actin cytoskeleton supports enhanced invasive behavior of NSCLC cells (67). Moreover, Oct4 upregulation in lung cancer cells induces M2 polarization of macrophages via M-CSF overexpression, establishing a pro-tumorigenic Oct4/M-CSF axis (68). Other regulatory pathways include the GNASAS1/miR-4319/NECAB3 axis, which modulates macrophage polarization to favor NSCLC progression (69), and the SR-A1/MAPK/IκB/NF-κB signaling

cascade, where SR-A1 deficiency in TAMs leads to SAA1 upregulation, enhancing both macrophage migration and tumor invasion (70). Besides, Li et al. (71) identified the C-type lectin receptor Mincle as a critical immunosuppressive factor in TAMs. Mincle activation promotes M2 polarization and tumorigenesis via the Syk/NF-κB axis, thereby representing a potential target for immunotherapy. Taken together, these findings underscore TAMs as central orchestrators of NSCLC progression, facilitating tumor growth and dissemination through reciprocal tumor–macrophage interactions, pro-oncogenic signaling, and dynamic reprogramming of the tumor microenvironment.

3.2 TAMs promote angiogenesis in NSCLC

TAMs are central regulators of tumor angiogenesis, a prerequisite for tumor growth and invasion (72). By supporting oxygen and nutrient supply and facilitating metabolic waste removal, TAM-induced neovascularization sustains tumor expansion. This process is orchestrated through the secretion of pro-angiogenic mediators and active remodeling of the TME (73). Key angiogenic effectors released by TAMs include VEGF, TNF-α, IL-1β, IL-8, PDGF, basic fibroblast growth factor (bFGF), thymidine phosphorylase, and matrix metalloproteinases (MMPs), establishing a direct link between TAM function and intratumoral vascularization (48). Notably, in vitro studies show that M2-polarized macrophages elevate VEGF levels and enhance angiogenic responses (74). Furthermore, bidirectional crosstalk between TAMs and NSCLC cells via placental growth factor (PLGF)/Flt-1 and TGF-β signaling intensifies vascular sprouting and tumor progression (75). TAM-derived osteopontin (OPN) promotes cyclooxygenase-2-dependent PGE2 production and MMP-9 expression, facilitating vascular remodeling and metastatic dissemination (76). Hypoxia within the TME acts as a dominant driver of TAM-mediated angiogenesis (77). Under hypoxic stress, hypoxia-inducible factors HIF-1 α and HIF-2 α are upregulated in TAMs, transcriptionally activating VEGF and PLGF expression and reinforcing pro-angiogenic signaling in NSCLC (78-80). HIF-1 α also enhances glycolytic metabolism and TIE2 expression in a subset of pro-angiogenic TAMs known as TIE2+ TAMs (81, 82). These cells are enriched in perivascular hypoxic regions and promote angiogenesis via the ANG2/TIE2 signaling axis (83). This pathway not only facilitates endothelial sprouting and vascular stabilization but also recruits additional TAMs to the angiogenic niche, forming a feed-forward loop that sustains tumor vascularization (84).

Beyond soluble factors, TAM-derived exosomes contribute to angiogenesis by transferring miR-155-5p and miR-221-5p to endothelial cells, thereby stimulating tumor-associated neovascularization (85). Within hypoxic domains, upregulation of HIFs reinforces the expression of VEGF, PLGF, and ANG2, while heightened TIE2 expression in TAMs amplifies vascular signaling cascades (86). Pharmacological interventions such as ginsenoside-Rh2 (G-Rh2) can reprogram TAM polarization from the protumoral M2 phenotype toward the M1 phenotype, suppressing


tumor cell migration and downregulating angiogenic factor expression (87). In NSCLC, M2-type TAMs are implicated in both angiogenesis and lymphangiogenesis by inducing VEGF-A and VEGF-C in tumor cells. Immunohistochemical analyses reveal that stromal expression of CD68 and CD163 positively correlates with VEGF-A/C levels, and the abundance of CD163⁺/CD68⁺ TAMs is significantly associated with poor prognosis in NSCLC patients (37, 48). Collectively, Collectively, these findings identify TAMs as critical enablers of tumor vascularization and present a compelling rationale for therapeutically targeting their angiogenic and lymphangiogenic functions in NSCLC (Figure 1).

3.3 TAMs promote drug resistance in NSCLC

One of the major challenges in NSCLC therapy is the development of resistance to chemotherapy and targeted agents (88). TAMs play a pivotal role in this process by promoting tumor growth, survival, and resistance mechanisms (89). Preclinical models have demonstrated that TAMs secrete IL-6, which drives chemoresistance through IL-6R/STAT3 signaling; for example, in colorectal cancer, TAM-derived IL-6 confers resistance to 5-fluorouracil (5-FU) (90). Similarly, Similarly, exposure to chemotherapeutic agents such as cyclophosphamide, paclitaxel, and doxorubicin in murine models of lung cancer promotes CD206⁺ TAM expansion, which facilitates tumor revascularization and relapse (91). In lung cancer, chemotherapy-

induced IL-34 further strengthens TAM-mediated resistance (92). Beyond cytokine release, TAM-driven extracellular matrix remodeling alters tumor-macrophage interactions and reduces tumor sensitivity to chemotherapy and radiotherapy (93, 94).

Clinically, M2-polarized TAMs have been associated with poor prognosis due to their capacity to secrete growth factors and inhibit apoptotic pathways, thereby reducing tumor susceptibility to cytotoxic therapy (95). In vitro, cisplatin-resistant NSCLC cell lines (A549R, H460R) exhibit elevated self-renewal capacity and release macrophage migration inhibitory factor (MIF), which skews macrophages toward an M2 phenotype and fosters metastatic progression (96). Zhang et al. revealed M2 TAM infiltration predicts post-chemotherapy recurrence and lymph node metastasis, suggesting their potential as early imaging biomarkers (97). More recently, P2X7 signaling has emerged as a key driver of TAM-mediated immunosuppression and therapeutic resistance (98). Engagement of P2X7 on macrophages activates the STAT6/ IRF4 transcriptional axis, reinforcing M2 polarization and enhancing the secretion of immunosuppressive mediators including IL-10, arginase-1, and TGF-B. This environment not only supports tumor progression but also directly impairs CD8⁺ T-cell effector functions and contributes to T-cell exhaustion, thereby reducing the efficacy of PD-1/PD-L1 immune checkpoint blockade (99). Inhibition or genetic deletion of P2X7 reverses this polarization, enhances inflammatory gene expression, and restores checkpoint inhibitor responsiveness in NSCLC models, highlighting the P2X7/STAT6 pathway as a mechanistic barrier to successful immunotherapy (100).

3.4 TAMs in shaping the immunosuppressive microenvironment of NSCLC

TAMs constitute a dominant immune cell population within the TME and play a pivotal role in coordinating innate and adaptive immunity. In NSCLC, TAMs are predominantly polarized toward an M2-like phenotype, which orchestrates immunosuppression via the secretion of cytokines, chemokines, and metabolic enzymes that collectively attenuate antigen presentation and inhibit effector Tcell responses (101, 102). These macrophages release IL-10, TGF-β, PGE2, and MMP-7, fostering a tolerogenic niche that impairs cytotoxic lymphocyte recognition and elimination of malignant cells (103). TGF- β is a key orchestrator of this suppressive environment; it dampens NK cell cytotoxicity, impedes dendritic cell (DC) migration, promotes Th2 differentiation, and transcriptionally represses cytotoxic mediators such as granzyme A/B, IFN- γ , and FasL (104–107). Moreover, TGF- β facilitates Treg induction and recruitment, further amplifying immune suppression (108), and synergistically enhances IL-10 production, thus skewing Th1/Th2 balance toward Th2 dominance (109). IL-10 inhibits NFκB signaling and curtails the secretion of pro-inflammatory cytokines (TNF-α, IL-6, IL-12) and IFN-γ, expediting immune escape (110-112). Simultaneously, TAM-expressed arginase 1 depletes extracellular L-arginine, curbing T-cell proliferation and downregulating TCR expression (113, 114). The combined effects of IL-10, TNF-α, and IFN-γ further induce B7-H4 on tumor cells, thereby promoting T-cell apoptosis and impeding cytotoxic lymphocyte-mediated tumor eradication (115, 116).

In parallel, immune checkpoint ligands such as PD-L1, PD-L2, CD86, and CD80 expressed by TAMs engage PD-1 and CTLA-4 on T cells, culminating in CD8⁺ T-cell exhaustion (117, 118). TAMderived TGF-B and PGE2 additionally inhibit DC maturation, thereby disrupting the interconnectivity of innate and adaptive responses (119, 120). Exosomes released by TAMs reprogram immature DCs toward tolerogenic phenotypes, further crippling antitumor immunity (121, 122). Within the NSCLC TME, Tøndell et al. uncovered elevated CD200R1/CD200 signaling between TAMs and T cells, as well as enhanced LILRB expression on M2-TAMs, nominating these as potential immunotherapeutic targets (123). Studies have revealed that PI3Ky functions as a critical switch regulating TAM phenotype: its activation promotes Akt-mTOR signaling that represses NF-κB but drives C/EBPβ-mediated transcription favoring immune suppression; conversely, PI3Ky inhibition reactivates NF-κB-driven proinflammatory genes and restores CD8⁺ T-cell cytotoxicity (124). Reprogramming strategies also include targeting the scavenger receptor MARCO or its ligand IL-37/IL-37R, which La Fleur et al. demonstrated reinstates T and NK cell function, curtails Treg activity, and enhances antitumor responses (125). Additionally, EGFR-AKT/ERK1/2 signaling has been shown to upregulate ILT4 in NSCLC cells, facilitating M2-TAM recruitment and dampening T-cell immunity; blocking ILT4 synergizes with PD-L1 inhibitors in EGFR wild-type, but not EGFR-mutant tumors-underscoring an EGFR-driven immune evasion mechanism (126).

4 Prognostic impact of TAMs in NSCLC

The heterogeneity of M2-polarized TAMs confers distinct prognostic implications across human malignancies (78, 127). In a study of 509 NSCLC specimens, Li et al. (128) demonstrated a positive correlation between TAM-derived osteopontin (TOPN) and PD-L1 expression within the tumor microenvironment. Both TOPN and PD-L1 were identified as independent prognostic factors for overall survival and disease-free survival in NSCLC patients. Mechanistically, TOPN upregulates PD-L1 expression in NSCLC cells via activation of the NFκB signaling pathway, and in vivo models confirmed that TOPNinduced PD-L1 facilitates tumor progression (128). In a parallel cohort of approximately 500 NSCLC patients, Liu et al. (129) found that TAMs represent the dominant subset of PD-L1-expressing immune infiltrates. PD-L1 expression on TAMs exhibited a strong positive correlation with both tumor cell PD-L1 levels and the extent of CD8+ T-cell infiltration. Strikingly, in patients undergoing anti-PD-1 therapy, high TAM-derived PD-L1 expression predicted improved overall survival (129), implying a potential predictive utility for immunotherapy responsiveness. Similarly, Gross et al. reported that PD-L1 expression on either TAMs or tumor cells was linked to improved survival outcomes in patients receiving adjuvant chemotherapy (130). However, PD-L1 expression on TAMs does not uniformly correlate with better prognosis across all settings. In the absence of immunotherapy, elevated PD-L1 on TAMs may also reflect a highly immunosuppressive TME, which contributes to poor tumor control, highlighting its potential prognostic ambiguity (131, 132). These findings provide a rationale for prospective studies and the development of chemo-immunotherapeutic strategies in lung cancer. The immunological landscape further complicates prognostication. Numerous studies indicate that M2-like TAMs often constitute over 80% of the macrophage compartment in NSCLC TMEs and are broadly linked to adverse clinical outcomes. Accordingly, routine evaluation of PD-L1 expression on TAMs serves not only as a prognostic biomarker but also as a predictive indicator for responsiveness to PD-1 blockade therapies in NSCLC (133).

5 Conclusion

Tumor-associated macrophages (TAMs) are deeply implicated in the pathogenesis and progression of NSCLC, contributing to tumor proliferation, angiogenesis, immune evasion, and resistance to therapy. The predominance of M2-like TAMs within the tumor microenvironment supports oncogenic signaling via secretion of VEGF, TGF- β , and IL-10, promotes epithelial–mesenchymal transition and metastasis, and suppresses cytotoxic immune responses through PD-L1 expression and arginase-1–mediated T-cell dysfunction. Mounting evidence also highlights their prognostic value, with high TAM density and PD-L1 expression correlating with disease progression and, paradoxically, response to immunotherapy in select contexts.

Despite emerging strategies to target TAMs such as reprogramming M2 to M1 phenotypes, disrupting recruitment signals, or inhibiting immunosuppressive mediators, several challenges remain. TAMs

exhibit profound plasticity, dynamically adapting to environmental cues, which complicates durable therapeutic intervention. The lack of specific biomarkers to distinguish functional TAM subsets hinders precision targeting, while broad depletion strategies risk impairing normal tissue immunity. Future studies should integrate single-cell profiling and spatial transcriptomics to decode TAM heterogeneity, and prioritize the development of biomarker-driven combinatorial approaches that safely and effectively reshape the immunological landscape of NSCLC.

Author contributions

DH: Writing – original draft. SC: Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. This work was supported by Affiliated Jiangbin Hospital of Jiangsu University.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

- 1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. (2024) 74:12–49. doi: 10.3322/caac.21820
- 2. MacManus M, Hegi-Johnson F. Overcoming immunotherapy resistance in NSCLC. Lancet Oncol. (2022) 23:191–3. doi: 10.1016/S1470-2045(21)00711-7
- 3. Barcellini L, Nardin S, Sacco G, Ferrante M, Rossi G, Barletta G, et al. Immune checkpoint inhibitors and targeted therapies in early-stage non-small-cell lung cancer: state-of-the-art and future perspectives. *Cancers (Basel)*. (2025) 17:652. doi: 10.3390/cancers.17040652
- 4. Desai A, Schwed K, Kalesinskas L, Yuan Q, Bryan J, Keane C, et al. Clinical outcomes of perioperative immunotherapy in resectable non-small cell lung cancer. *JAMA Netw Open*. (2025) 8:e2517953. doi: 10.1001/jamanetworkopen.2025.17953
- 5. Lv T, Fan R, Wu J, Gong H, Gao X, Liu X, et al. Tumor-associated macrophages: key players in the non-small cell lung cancer tumor microenvironment. *Cancer Med.* (2025) 14:e70670. doi: 10.1002/cam4.70670
- 6. Wang Y, Chen R, Wa Y, Ding S, Yang Y, Liao J, et al. Tumor immune microenvironment and immunotherapy in brain metastasis from non-small cell lung cancer. Front Immunol. (2022) 13:829451. doi: 10.3389/fimmu.2022.829451
- 7. Yang XR, Pi C, Zhang YC, Chen ZH, Zhang XC, Zhu DQ, et al. Heterogeneity in the immune microenvironment of bone metastasis in driver-positive non-small cell lung cancer. *Mol Carcinog.* (2023) 62:1001–8. doi: 10.1002/mc.23541
- 8. de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. *Cancer Cell.* (2023) 41:374–403. doi: 10.1016/j.ccell.2023.02.016
- 9. Chen X, Zhou J, Wang Y, Wang X, Chen K, Chen Q, et al. PIM1/NF-κB/CCL2 blockade enhances anti-PD-1 therapy response by modulating macrophage infiltration and polarization in tumor microenvironment of NSCLC. *Oncogene*. (2024) 43:2517–30. doi: 10.1038/s41388-024-03100-6
- 10. Zhu Y, Zhou Z, Du X, Lin X, Liang ZM, Chen S, et al. Cancer cell-derived arginine fuels polyamine biosynthesis in tumor-associated macrophages to promote immune evasion. *Cancer Cell.* (2025) 43:1045–1060.e1047. doi: 10.1016/j.ccell.2025.03.015

Correction note

This article has been corrected with minor changes. These changes do not impact the scientific content of the article.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

- 11. Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. *Acta Pharm Sin B.* (2020) 10:2156–70. doi: 10.1016/j.apsb.2020.04.004
- 12. Caronni N, La Terza F, Vittoria FM, Barbiera G, Mezzanzanica L, Cuzzola V, et al. IL-1 β (+) macrophages fuel pathogenic inflammation in pancreatic cancer. *Nature*. (2023) 623:415–22. doi: 10.1038/s41586-023-06685-2
- 13. Hong SM, Lee AY, Kim BJ, Lee JE, Seon SY, Ha YJ, et al. NAMPT-driven M2 polarization of tumor-associated macrophages leads to an immunosuppressive microenvironment in colorectal cancer. Adv~Sci~(Weinh).~(2024)~11:e2303177. doi: 10.1002/advs.202303177
- 14. Fu YJ, Shi YF, Wang LY, Zhao YF, Wang RK, Li K, et al. All-natural immunomodulatory bioadhesive hydrogel promotes angiogenesis and diabetic wound healing by regulating macrophage heterogeneity. *Adv Sci (Weinh)*. (2023) 10: e2206771. doi: 10.1002/advs.202206771
- 15. Kuan CH, Chang L, Ho CY, Tsai CH, Liu YC, Huang WY, et al. Immunomodulatory hydrogel orchestrates pro-regenerative response of macrophages and angiogenesis for chronic wound healing. *Biomaterials*. (2025) 314:122848. doi: 10.1016/j.biomaterials.2024.122848
- 16. Lazarov T, Juarez-Carreño S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. *Nature.* (2023) 618:698-707. doi: 10.1038/s41586-023-06002-x
- 17. Wang I, Zheng J, Zhao S, Wan Y, Wang M, Bosco DB, et al. CCR2(+) monocytes replenish border-associated macrophages in the diseased mouse brain. $Cell\ Rep.\ (2024)\ 43:114120.\ doi: 10.1016/j.celrep.2024.114120$
- 18. Güç E, Pollard JW. Redefining macrophage and neutrophil biology in the metastatic cascade. *Immunity*. (2021) 54:885–902. doi: 10.1016/j.immuni.2021.03.022
- 19. Cox N, Pokrovskii M, Vicario R, Geissmann F. Origins, biology, and diseases of tissue macrophages. *Annu Rev Immunol.* (2021) 39:313–44. doi: 10.1146/annurevimmunol-093019-111748
- 20. Zhang R, Meng Z, Wu X, Zhang M, Piao Z, Jin T. PD-L1/p-STAT3 promotes the progression of NSCLC cells by regulating TAM polarization. *J Cell Mol Med.* (2022) 26:5872–86. doi: 10.1111/jcmm.17610

- 21. Wang H, Shao Q, Wang J, Zhao L, Wang L, Cheng Z, et al. Decreased CXCR2 expression on circulating monocytes of colorectal cancer impairs recruitment and induces Re-education of tumor-associated macrophages. *Cancer Lett.* (2022) 529:112–25. doi: 10.1016/j.canlet.2022.01.004
- 22. Yang H, Zhang Q, Xu M, Wang L, Chen X, Feng Y, et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. *Mol Cancer*. (2020) 19:41. doi: 10.1186/s12943-020-01165-x
- 23. Benner B, Good L, Quiroga D, Schultz TE, Kassem M, Carson WE, et al. Pexidartinib, a novel small molecule CSF-1R inhibitor in use for tenosynovial giant cell tumor: A systematic review of pre-clinical and clinical development. *Drug Des Devel Ther.* (2020) 14:1693–704. doi: 10.2147/DDDT.S253232
- 24. Alitalo AK, Proulx ST, Karaman S, Aebischer D, Martino S, Jost M, et al. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis. *Cancer Res.* (2013) 73:4212–21. doi: 10.1158/0008-5472.CAN-12-4539
- 25. Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW, Gladney WL, et al. Tumorderived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. *Clin Cancer Res.* (2017) 23:137–48. doi: 10.1158/1078-0432.CCR-16-0870
- 26. Sedighzadeh SS, Khoshbin AP, Razi S, Keshavarz-Fathi M, Rezaei N. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. *Transl Lung Cancer Res.* (2021) 10:1889–916. doi: 10.21037/tlcr-20-1241
- 27. Casanova-Acebes M, Dalla E, Leader AM, LeBerichel J, Nikolic J, Morales BM, et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. *Nature*. (2021) 595:578–84. doi: 10.1038/s41586-021-03651-8
- 28. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, et al. The cellular and molecular origin of tumor-associated macrophages. *Science.* (2014) 344:921–5. doi: 10.1126/science.1252510
- 29. Zhang Y, Wang X, Gu Y, Liu T, Zhao X, Cheng S, et al. Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells. *Proc Natl Acad Sci U.S.A.* (2025) 122:e2420005122. doi: 10.1073/pnas.2420005122
- 30. Sezginer O, Unver N. Dissection of pro-tumoral macrophage subtypes and immunosuppressive cells participating in M2 polarization. *Inflammation Res.* (2024) 73:1411–23. doi: 10.1007/s00011-024-01907-3
- 31. Sumitomo R, Menju T, Shimazu Y, Toyazaki T, Chiba N, Miyamoto H, et al. M2-like tumor-associated macrophages promote epithelial-mesenchymal transition through the transforming growth factor β /Smad/zinc finger e-box binding homeobox pathway with increased metastatic potential and tumor cell proliferation in lung squamous cell carcinoma. *Cancer Sci.* (2023) 114:4521–34. doi: 10.1111/
- 32. Ziółkowska-Suchanek I. Mimicking tumor hypoxia in non-small cell lung cancer employing three-dimensional *in vitro* models. *Cells*. (2021) 10:141. doi: 10.3390/cells10010141
- 33. Su T, Huang S, Zhang Y, Guo Y, Zhang S, Guan J, et al. miR-7/TGF- β 2 axis sustains acidic tumor microenvironment-induced lung cancer metastasis. *Acta Pharm Sin B.* (2022) 12:821–37. doi: 10.1016/j.apsb.2021.06.009
- 34. Liu X, Zhang Z, Yuan J, Yu J, Chen D. Spatial interaction and functional status of CD68(+)SHP2(+) macrophages in tumor microenvironment correlate with overall survival of NSCLC. *Front Immunol*. (2024) 15:1396719. doi: 10.3389/fimmu.2024.1396719
- 35. Xu H, Fu X, Wang S, Ge Y, Zhang L, Li J, et al. Immunoglobulin-like transcript 5 polarizes M2-like tumor-associated macrophages for immunosuppression in non-small cell lung cancer. *Int J Cancer*. (2025) 156:2225–36. doi: 10.1002/ijc.35360
- 36. Rakaee M, Busund LR, Jamaly S, Paulsen EE, Richardsen E, Andersen S, et al. Prognostic value of macrophage phenotypes in resectable non-small cell lung cancer assessed by multiplex immunohistochemistry. *Neoplasia*. (2019) 21:282–93. doi: 10.1016/j.neo.2019.01.005
- 37. Yanagawa N, Shikanai S, Sugai M, Koike Y, Asai Y, Tanji T, et al. Prognostic and predictive value of CD163 expression and the CD163/CD68 expression ratio for response to adjuvant chemotherapy in patients with surgically resected lung squamous cell carcinoma. *Thorac Cancer*. (2023) 14:1911–20. doi: 10.1111/1759-7714.14937
- 38. Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, et al. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. *Cancer Immunol Immunother*. (2013) 62:1757–68. doi: 10.1007/s00262-013-1487-6
- 39. Zhang J, Lai C, Li B, Wang H, Yan H, Bao X, et al. Injectable HMME-loading emulsion hydrogel for ultrasound-triggered release and enhanced sonodynamic immunotherapy. *Adv Healthc Mater*. (2025) 2025:e00410. doi: 10.1002/adhm.202500410
- 40. Li Y, Li M, Zheng J, Ma Z, Yu T, Zhu Y, et al. Ultrasound-responsive nanocarriers delivering siRNA and fe(3)O(4) nanoparticles reprogram macrophages and inhibit M2 polarization for enhanced NSCLC immunotherapy. ACS Appl Mater Interfaces. (2024) 16:56634–52. doi: 10.1021/acsami.4c10036
- 41. Hawthorne BC, Engel S, McCarthy MBR, Cote MC, Mazzocca AD, Coyner KJ. Biologic adjuvants to rotator cuff repairs induce anti-inflammatory macrophage 2

polarization and reduce inflammatory macrophage 1 polarization. *In Vitro. Arthroscopy.* (2025) 41:32–41. doi: 10.1016/j.arthro.2024.04.031

- 42. Rynikova M, Adamkova P, Hradicka P, Stofilova J, Harvanova D, Matejova J, et al. Transcriptomic analysis of macrophage polarization protocols: vitamin D(3) or IL-4 and IL-13 do not polarize THP-1 monocytes into reliable M2 macrophages. *Biomedicines*. (2023) 11:608. doi: 10.3390/biomedicines11020608
- 43. Kaneko J, Okinaga T, Hikiji H, Ariyoshi W, Yoshiga D, Habu M, et al. Zoledronic acid exacerbates inflammation through M1 macrophage polarization. *Inflammation Regener.* (2018) 38:16. doi: 10.1186/s41232-018-0074-9
- 44. Wang Y, Welc SS, Wehling-Henricks M, Kong Y, Thomas C, Montecino-Rodriguez E, et al. Myeloid cell-specific mutation of Spi1 selectively reduces M2-biased macrophage numbers in skeletal muscle, reduces age-related muscle fibrosis and prevents sarcopenia. *Aging Cell.* (2022) 21:e13690. doi: 10.1111/acel.13690
- 45. Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P, Qian BZ, et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. *Cancer Discov.* (2015) 5:932–43. doi: 10.1158/2159-8290.CD-15-0012
- 46. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. *J Clin Invest.* (2007) 117:1155–66. doi: 10.1172/JCI31422
- 47. Chen L, Li J, Wang F, Dai C, Wu F, Liu X, et al. Tie2 expression on macrophages is required for blood vessel reconstruction and tumor relapse after chemotherapy. *Cancer Res.* (2016) 76:6828–38. doi: 10.1158/0008-5472.CAN-16-1114
- 48. Hwang I, Kim JW, Ylaya K, Chung EJ, Kitano H, Perry C, et al. Tumorassociated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. *J Transl Med.* (2020) 18:443. doi: 10.1186/s12967-020-02618-z
- 49. Peters S, Paz-Ares L, Herbst RS, Reck M. Addressing CPI resistance in NSCLC: targeting TAM receptors to modulate the tumor microenvironment and future prospects. *J Immunother Cancer*. (2022) 10:e004863. doi: 10.1136/jitc-2022-004863
- 50. Rawat S, Moglad E, Afzal M, Goyal A, Roopashree R, Bansal P, et al. Abida: Reprogramming tumor-associated macrophages: The role of MEK-STAT3 inhibition in lung cancer. *Pathol Res Pract.* (2025) 265:155748. doi: 10.1016/j.prp.2024.155748
- 51. Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. *J Hematol Oncol.* (2019) 12:76. doi: 10.1186/s13045-019-0760-3
- 52. Shen J, Sun X, Pan B, Cao S, Cao J, Che D, et al. IL-17 induces macrophages to M2-like phenotype via NF- κ B. Cancer Manag Res. (2018) 10:4217–28. doi: 10.2147/CMAR.S174899
- 53. Zhou B, Xu Y, Xu L, Kong Y, Li K, Chen B, et al. Inhibition of inflammation and infiltration of M2 macrophages in NSCLC through the ATF3/CSF1 axis: Role of miR-27a-3p. Int J Exp Pathol. (2023) 104:292-303. doi: 10.1111/iep.12490
- 54. Wingert S, Reusch U, Knackmuss S, Kluge M, Damrat M, Pahl J, et al. Preclinical evaluation of AFM24, a novel CD16A-specific innate immune cell engager targeting EGFR-positive tumors. *MAbs*. (2021) 13:1950264. doi: 10.1080/19420862.2021.1950264
- 55. Zhu C, Shen H, Zhu L, Zhao F, Shu Y. Plasminogen activator inhibitor 1 promotes immunosuppression in human non-small cell lung cancers by enhancing TGF- β 1 expression in macrophage. *Cell Physiol Biochem.* (2017) 44:2201–11. doi: 10.1159/000486025
- 56. Zhang J, Li H, Wu Q, Chen Y, Deng Y, Yang Z, et al. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. *Redox Biol.* (2019) 22:101116. doi: 10.1016/j.redox.2019.101116
- 57. Van Hiep N, Sun WL, Feng PH, Lin CW, Chen KY, Luo CS, et al. Heparin binding epidermal growth factor-like growth factor is a prognostic marker correlated with levels of macrophages infiltrated in lung adenocarcinoma. *Front Oncol.* (2022) 12:963896. doi: 10.3389/fonc.2022.963896
- 58. Cheng Y, Han X, Lai X, Wei X. Liposomal honokiol inhibits non-small cell lung cancer progression and enhances PD-1 blockade via suppressing M2 macrophages polarization. *Phytomedicine*. (2024) 135:156093. doi: 10.1016/j.phymed.2024.156093
- 59. Bi Q, Wang M, Luo L, Zhang B, Lv S, Wang Z, et al. Wenxia Changfu Formula inhibits NSCLC metastasis by halting TAMs-induced epithelial-mesenchymal transition via antagonisticallymodulating CCL18. *Chin J Nat Med.* (2025) 23:838–47. doi: 10.1016/S1875-5364(25)60912-5
- 60. Zhang S, Che D, Yang F, Chi C, Meng H, Shen J, et al. Correction: Tumor-associated macrophages promote tumor metastasis via the TGF- β /SOX9 axis in non-small cell lung cancer. *Oncotarget*. (2020) 11:4845–6. doi: 10.18632/oncotarget.27740
- 61. Feng Y, Zhu N, Bedi K, Li J, Perera C, Green M, et al. SOX9 suppresses colon cancer via inhibiting epithelial-mesenchymal transition and SOX2 induction. *J Clin Invest.* (2025) 135:e184115. doi: 10.1172/JCI184115
- 62. Tripathi SK, Biswal BK. SOX9 promotes epidermal growth factor receptor-tyrosine kinase inhibitor resistance via targeting β -catenin and epithelial to mesenchymal transition in lung cancer. *Life Sci.* (2021) 277:119608. doi: 10.1016/j.lfs.2021.119608
- 63. Huang JQ, Wei FK, Xu XL, Ye SX, Song JW, Ding PK, et al. SOX9 drives the epithelial-mesenchymal transition in non-small-cell lung cancer through the Wnt/ β -catenin pathway. *J Transl Med.* (2019) 17:143. doi: 10.1186/s12967-019-1895-2

- 64. Yuan R, Li S, Geng H, Wang X, Guan Q, Li X, et al. Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis. *Int Immunopharmacol.* (2017) 49:30–7. doi: 10.1016/j.intimp.2017.05.014
- 65. Guo Z, Song J, Hao J, Zhao H, Du X, Li E, et al. M2 macrophages promote NSCLC metastasis by upregulating CRYAB. *Cell Death Dis.* (2019) 10:377. doi: 10.1038/s41419-019-1618-x
- 66. Wang A, Lu C, Ning Z, Gao W, Xie Y, Zhang N, et al. Tumor-associated macrophages promote Ezrin phosphorylation-mediated epithelial-mesenchymal transition in lung adenocarcinoma through FUT4/LeY up-regulation. *Oncotarget*. (2017) 8:28247–59. doi: 10.18632/oncotarget.16001
- 67. Wang H, Xu K, Wang B, Liu J, Wang X, Xing M, et al. Microcystin-LR induces a wide variety of biochemical changes in the A549 human non-small cell lung cancer cell line: Roles for protein phosphatase 2A and its substrates. *Environ Toxicol.* (2017) 32:1065–78. doi: 10.1002/tox.22305
- Lu CS, Shiau AL, Su BH, Hsu TS, Wang CT, Su YC, et al. Oct4 promotes M2 macrophage polarization through upregulation of macrophage colony-stimulating factor in lung cancer. J Hematol Oncol. (2020) 13:62. doi: 10.1186/s13045-020-00887-1
- 69. Li Z, Feng C, Guo J, Hu X, Xie D. GNAS-AS1/miR-4319/NECAB3 axis promotes migration and invasion of non-small cell lung cancer cells by altering macrophage polarization. *Funct Integr Genomics*. (2020) 20:17–28. doi: 10.1007/s10142-019-00696-
- 70. Zhang Y, Wei Y, Jiang B, Chen L, Bai H, Zhu X, et al. Scavenger receptor A1 prevents metastasis of non-small cell lung cancer via suppression of macrophage serum amyloid A1. *Cancer Res.* (2017) 77:1586–98. doi: 10.1158/0008-5472.CAN-16-1569
- 71. Li C, Xue VW, Wang QM, Lian GY, Huang XR, Lee TL, et al. The mincle/syk/NF-кB signaling circuit is essential for maintaining the protumoral activities of tumorassociated macrophages. *Cancer Immunol Res.* (2020) 8:1004–17. doi: 10.1158/2326-6066.CIR-19-0782
- 72. Yan Q, Liu J, Liu Y, Wen Z, Jin D, Wang F, et al. Tumor-associated macrophage-derived exosomal miR21-5p promotes tumor angiogenesis by regulating YAP1/HIF-1 α axis in head and neck squamous cell carcinoma. *Cell Mol Life Sci.* (2024) 81:179. doi: 10.1007/s00018-024-05210-6
- 73. Wenes M, Shang M, Di Matteo M, Goveia J, Martín-Pérez R, Serneels J, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. *Cell Metab.* (2016) 24:701–15. doi: 10.1016/j.cmet.2016.09.008
- 74. Xia Y, Wei Y, Li ZY, Cai XY, Zhang LL, Dong XR, et al. Catecholamines contribute to the neovascularization of lung cancer via tumor-associated macrophages. *Brain Behav Immun*. (2019) 81:111–21. doi: 10.1016/j.bbi.2019.06.004
- 75. He C, Zhu K, Bai X, Li Y, Sun D, Lang Y, et al. Placental growth factor mediates crosstalk between lung cancer cells and tumor-associated macrophages in controlling cancer vascularization and growth. *Cell Physiol Biochem.* (2018) 47:2534–43. doi: 10.1159/000491650
- 76. Kale S, Raja R, Thorat D, Soundararajan G, Patil TV, Kundu GC. Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via α 9 β 1 integrin. *Oncogene*. (2014) 33:2295–306. doi: 10.1038/onc.2013.184
- 77. Wang W, Li T, Cheng Y, Li F, Qi S, Mao M, et al. Identification of hypoxic macrophages in glioblastoma with therapeutic potential for vasculature normalization. *Cancer Cell.* (2024) 42:815–832.e812. doi: 10.1016/j.ccell.2024.03.013
- 78. Cowman SJ, Fuja DG, Liu XD, Tidwell RSS, Kandula N, Sirohi D, et al. Macrophage HIF-1 α Is an independent prognostic indicator in kidney cancer. *Clin Cancer Res.* (2020) 26:4970–82. doi: 10.1158/1078-0432.CCR-19-3890
- 79. Li Y, Zhang MZ, Zhang SJ, Sun X, Zhou C, Li J, et al. HIF- 1α inhibitor YC-1 suppresses triple-negative breast cancer growth and angiogenesis by targeting PIGF/VEGFR1-induced macrophage polarization. *BioMed Pharmacother*. (2023) 161:114423. doi: 10.1016/j.biopha.2023.114423
- 80. Wu Z, Zhou J, Chen F, Yu J, Li H, Li Q, et al. 13-Methyl-palmatrubine shows an anti-tumor role in non-small cell lung cancer via shifting M2 to M1 polarization of tumor macrophages. *Int Immunopharmacol.* (2022) 104:108468. doi: 10.1016/j.intimp.2021.108468
- 81. Zhang Y, Brekken RA. Are TEMs canceled? Questioning the functional relevance of tie2-expressing macrophages. Cancer Res. (2022) 82:1172–3. doi: 10.1158/0008-5472.CAN-22-0330
- 82. Jiang X, Tian W, Granucci EJ, Tu AB, Kim D, Dahms P, et al. Decreased lymphatic HIF-2 α accentuates lymphatic remodeling in lymphedema. *J Clin Invest.* (2020) 130:5562–75. doi: 10.1172/JCI136164
- 83. Liu Z, Guo N, Zhang XJ. Long noncoding TUG1 promotes angiogenesis of HUVECs in PE via regulating the miR-29a-3p/VEGFA and Ang2/Tie2 pathways. *Microvasc Res.* (2022) 139:104231. doi: 10.1016/j.mvr.2021.104231
- 84. Park JS, Kim IK, Han S, Park I, Kim C, Bae J, et al. Normalization of tumor vessels by tie2 activation and ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. *Cancer Cell.* (2016) 30:953–67. doi: 10.1016/j.ccell.2016.10.018
- 85. Yang Y, Guo Z, Chen W, Wang X, Cao M, Han X, et al. M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2. *Mol Ther.* (2021) 29:1226–38. doi: 10.1016/j.ymthe.2020.11.024

- 86. Moeini P. Niedźwiedzka-rystwej P: tumor-associated macrophages: combination of therapies, the approach to improve cancer treatment. *Int J Mol Sci.* (2021) 22:7239. doi: 10.3390/ijms22137239
- 87. Li H, Huang N, Zhu W, Wu J, Yang X, Teng W, et al. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. *BMC Cancer*. (2018) 18:579. doi: 10.1186/s12885-018-4299-4
- 88. Meyer ML, Fitzgerald BG, Paz-Ares L, Cappuzzo F, Jänne PA, Peters S, et al. New promises and challenges in the treatment of advanced non-small-cell lung cancer. *Lancet.* (2024) 404:803–22. doi: 10.1016/S0140-6736(24)01029-8
- 89. Larroquette M, Guegan JP, Besse B, Cousin S, Brunet M, Le Moulec S, et al. Spatial transcriptomics of macrophage infiltration in non-small cell lung cancer reveals determinants of sensitivity and resistance to anti-PD1/PD-L1 antibodies. *J Immunother Cancer*. (2022) 10:e003890. doi: 10.1136/jitc-2021-003890
- 90. Yin Y, Yao S, Hu Y, Feng Y, Li M, Bian Z, et al. The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6. *Clin Cancer Res.* (2017) 23:7375–87. doi: 10.1158/1078-0432.CCR-17-1283
- 91. Lepland A, Malfanti A, Haljasorg U, Asciutto EK, Pickholz M, Bringas M, et al. Depletion of mannose receptor-positive tumor-associated macrophages via a peptide-targeted star-shaped polyglutamate inhibits breast cancer progression in mice. *Cancer Res Commun.* (2022) 2:533–51. doi: 10.1158/2767-9764.CRC-22-0043
- 92. Nakajima S, Mimura K, Saito K, Thar Min AK, Endo E, Yamada L, et al. Neoadjuvant chemotherapy induces IL34 signaling and promotes chemoresistance via tumor-associated macrophage polarization in esophageal squamous cell carcinoma. *Mol Cancer Res.* (2021) 19:1085–95. doi: 10.1158/1541-7786.MCR-20-0917
- 93. O'Connell BC, Hubbard C, Zizlsperger N, Fitzgerald D, Kutok JL, Varner J, et al. Eganelisib combined with immune checkpoint inhibitor therapy and chemotherapy in frontline metastatic triple-negative breast cancer triggers macrophage reprogramming, immune activation and extracellular matrix reorganization in the tumor microenvironment. *J Immunother Cancer*. (2024) 12:e009160. doi: 10.1136/jitc-2024-009160
- 94. Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. (2015) 27:462–72. doi: 10.1016/j.ccell.2015.02.015
- 95. Cheng C, Wang P, Yang Y, Du X, Xia H, Liu J, et al. Smoking-Induced M2-TAMs, via circEML4 in EVs, Promote the Progression of NSCLC through ALKBH5-Regulated m6A Modification of SOCS2 in NSCLC Cells. *Adv Sci (Weinh)*. (2023) 10: e2300953. doi: 10.1002/advs.202300953
- 96. Huang WC, Kuo KT, Wang CH, Yeh CT, Wang Y. Cisplatin resistant lung cancer cells promoted M2 polarization of tumor-associated macrophages via the Src/CD155/MIF functional pathway. *J Exp Clin Cancer Res.* (2019) 38:180. doi: 10.1186/s13046-019-1166-3
- 97. Zhang C, Yu X, Gao L, Zhao Y, Lai J, Lu D, et al. Noninvasive imaging of CD206-positive M2 macrophages as an early biomarker for post-chemotherapy tumor relapse and lymph node metastasis. *Theranostics*. (2017) 7:4276–88. doi: 10.7150/thno.20999
- 98. Bento CA, Arnaud-Sampaio VF, Glaser T, Adinolfi E, Coutinho-Silva R, Ulrich H, et al. P2X7 receptor in macrophage polarization and its implications in neuroblastoma tumor behavior. *Purinergic Signal*. (2025) 21:51–68. doi: 10.1007/s11302-024-10051-w
- 99. Si Q, Yang L, Liu J, Liu H, Bu R, Cui N. Nucleotide receptor P2X7/STAT6 pathway regulates macrophage M2 polarization and its application in CAR-T immunotherapy. *Immunobiology*. (2025) 230:152863. doi: 10.1016/j.imbio.2024.152863
- 100. Qin J, Zhang X, Tan B, Zhang S, Yin C, Xue Q, et al. Blocking P2X7-mediated macrophage polarization overcomes treatment resistance in lung cancer. *Cancer Immunol Res.* (2020) 8:1426–39. doi: 10.1158/2326-6066.CIR-20-0123
- 101. Li Y, Shen Z, Chai Z, Zhan Y, Zhang Y, Liu Z, et al. Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity. Gut. (2023) 72:2307–20. doi: 10.1136/gutjnl-2022-329147
- 102. Zhu S, Luo Z, Li X, Han X, Shi S, Zhang T. Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. *J Cancer.* (2021) 12:54–64. doi: 10.7150/jca.49692
- 103. Galván GC, Johnson CB, Price RS, Liss MA, Jolly CA, deGraffenried LA. Effects of obesity on the regulation of macrophage population in the prostate tumor microenvironment. *Nutr Cancer*. (2017) 69:996–1002. doi: 10.1080/01635581.2017.1359320
- 104. Du F, Qi X, Zhang A, Sui F, Wang X, Proud CG, et al. MRTF-A-NF- κ B/p65 axis-mediated PDL1 transcription and expression contributes to immune evasion of non-small-cell lung cancer via TGF- β . Exp Mol Med. (2021) 53:1366–78. doi: 10.1038/s12276-021-00670-3
- 105. Zhong Q, Lu Y, Xu W, Rong Z, Chang X, Qin L, et al. The differentiation of new human CD303(+) Plasmacytoid dendritic cell subpopulations expressing CD205 and/or CD103 regulated by Non-Small-Cell lung cancer cells. *Int Immunopharmacol.* (2021) 99:107983. doi: 10.1016/j.intimp.2021.107983
- 106. Chen W. TGF- β Regulation of T cells. Annu Rev Immunol. (2023) 41:483–512. doi: 10.1146/annurev-immunol-101921-045939
- 107. Jeong H, Koh J, Kim S, Yim J, Song SG, Kim H, et al. Cell-intrinsic PD-L1 signaling drives immunosuppression by myeloid-derived suppressor cells through IL-6/Jak/Stat3 in PD-L1-high lung cancer. *J Immunother Cancer*. (2025) 13:e010612. doi: 10.1136/jitc-2024-010612

108. Liu Y, Lao M, Chen J, Lu M, Luo S, Ou Q, et al. Short-term prognostic effects of circulating regulatory T-Cell suppressive function and vascular endothelial growth factor level in patients with non-small cell lung cancer and obstructive sleep apnea. Sleep Med. (2020) 70:88–96. doi: 10.1016/j.sleep.2020.02.009

- 109. Asselin-Paturel C, Echchakir H, Carayol G, Gay F, Opolon P, Grunenwald D, et al. Quantitative analysis of Th1, Th2 and TGF-beta1 cytokine expression in tumor, TIL and PBL of non-small cell lung cancer patients. *Int J Cancer.* (1998) 77:7–12. doi: 10.1002/(SICI)1097-0215(19980703)77:1<7::AID-IJC2>3.0.CO;2-Y
- 110. Yang L, Dong Y, Li Y, Wang D, Liu S, Wang D, et al. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/Notch1 pathway in non-small cell lung cancer. *Int J Cancer*. (2019) 145:1099–110. doi: 10.1002/ijc.32151
- 111. Pant J, Mittal P, Singh L. Therapeutic potential of terpenes in lung cancer: modulation of 4-oxo-retinoic acid, TNF-α, NF-κB, and HDAC2 pathways. *Curr Cancer Drug Targets.* (2025). doi: 10.2174/0115680096353438250130070422
- 112. Wen Y, Li K, Ni M, Jiang H, Wu H, Yu Q, et al. Dendritic polylysine with paclitaxel and triptolide codelivery for enhanced cancer ferroptosis through the accumulation of ROS. ACS Appl Mater Interfaces. (2024) 16:20143–56. doi: 10.1021/
- 113. Gao HX, Liu MH, Fan M, Zhou JJ, Li AQ, Chen MW. MiR-135a-5p/STAT6-mediated EMT regulates IL-4 secretion in non-small cell lung cancer to affect M2-like TAM polarization. *Int Immunopharmacol.* (2025) 155:114623. doi: 10.1016/j.intimp.2025.114623
- 114. Rotondo R, Barisione G, Mastracci L, Grossi F, Orengo AM, Costa R, et al. IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. *Int J Cancer*. (2009) 125:887–93. doi: 10.1002/ijc.24448
- 115. Liu JS, Cai YX, He YZ, Xu J, Tian SF, Li ZQ. Spatial and temporal heterogeneity of tumor immune microenvironment between primary tumor and brain metastases in NSCLC. *BMC Cancer*. (2024) 24:123. doi: 10.1186/s12885-024-11875-w
- 116. Wang L, Cao NN, Wang S, Man HW, Li PF, Shan BE. Roles of coinhibitory molecules B7-H3 and B7-H4 in esophageal squamous cell carcinoma. *Tumour Biol.* (2016) 37:2961–71. doi: 10.1007/s13277-015-4132-5
- 117. Kerzel T, Giacca G, Beretta S, Bresesti C, Notaro M, Scotti GM, et al. *In vivo* macrophage engineering reshapes the tumor microenvironment leading to eradication of liver metastases. *Cancer Cell.* (2023) 41:1892–1910.e1810. doi: 10.1016/j.ccell.2023.09.014
- 118. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. *Nat Rev Clin Oncol.* (2017) 14:399–416. doi: 10.1038/nrclinonc.2016.217
- 119. Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. *Blood.* (2011) 118:5498–505. doi: 10.1182/blood-2011-07-365825
- 120. Schmid MC, Khan SQ, Kaneda MM, Pathria P, Shepard R, Louis TL, et al. Integrin CD11b activation drives anti-tumor innate immunity. *Nat Commun.* (2018) 9:5379. doi: 10.1038/s41467-018-07387-4
- 121. Barnwal A, Gaur V, Sengupta A, Tyagi W, Das S, Bhattacharyya J. Tumor antigen-primed dendritic cell-derived exosome synergizes with colony stimulating factor-1 receptor inhibitor by modulating the tumor microenvironment and systemic

immunity. ACS Biomater Sci Eng. (2023) 9:6409-24. doi: 10.1021/acsbiomaterials.3c00469

- 122. Zhou M, He X, Mei C, Ou C. Exosome derived from tumor-associated macrophages: biogenesis, functions, and therapeutic implications in human cancers. biomark Res. (2023) 11:100. doi: 10.1186/s40364-023-00538-w
- 123. Tøndell A, Subbannayya Y, Wahl SGF, Flatberg A, Sørhaug S, Børset M, et al. Analysis of intra-tumoral macrophages and T cells in non-small cell lung cancer (NSCLC) indicates a role for immune checkpoint and CD200-CD200R interactions. *Cancers (Basel)*. (2021) 13:1788. doi: 10.3390/cancers13081788
- 124. Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, et al. PI $3K\gamma$ is a molecular switch that controls immune suppression. *Nature*. (2016) 539:437–42. doi: 10.1038/nature19834
- 125. La Fleur L, Botling J, He F, Pelicano C, Zhou C, He C, et al. Targeting MARCO and II.37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function. *Cancer Res.* (2021) 81:956–67. doi: 10.1158/0008-5472.CAN-20-1885
- 126. Chen X, Gao A, Zhang F, Yang Z, Wang S, Fang Y, et al. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation. *Theranostics*. (2021) 11:3392–416. doi: 10.7150/thno.52435
- 127. Kouketsu A, Sato I, Oikawa M, Shimizu Y, Saito H, Tashiro K, et al. Regulatory T cells and M2-polarized tumour-associated macrophages are associated with the oncogenesis and progression of oral squamous cell carcinoma. *Int J Oral Maxillofac Surg.* (2019) 48:1279–88. doi: 10.1016/j.ijom.2019.04.004
- 128. Li Y, Liu H, Zhao Y, Yue D, Chen C, Li C, et al. Tumor-associated macrophages (TAMs)-derived osteopontin (OPN) upregulates PD-L1 expression and predicts poor prognosis in non-small cell lung cancer (NSCLC). *Thorac Cancer*. (2021) 12:2698–709. doi: 10.1111/1759-7714.14108
- 129. Liu Y, Zugazagoitia J, Ahmed FS, Henick BS, Gettinger SN, Herbst RS, et al. Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy. *Clin Cancer Res.* (2020) 26:970–7. doi: 10.1158/1078-0432.CCR-19-1040
- 130. Gross DJ, Chintala NK, Vaghjiani RG, Grosser R, Tan KS, Li X, et al. Tumor and tumor-associated macrophage programmed death-ligand 1 expression is associated with adjuvant chemotherapy benefit in lung adenocarcinoma. *J Thorac Oncol.* (2022) 17:89–102. doi: 10.1016/j.jtho.2021.09.009
- 131. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. *Nature*. (2017) 545:495–9. doi: 10.1038/nature22396
- 132. Yin Y, Liu B, Cao Y, Yao S, Liu Y, Jin G, et al. Colorectal cancer-derived small extracellular vesicles promote tumor immune evasion by upregulating PD-L1 expression in tumor-associated macrophages. *Adv Sci (Weinh).* (2022) 9:2102620. doi: 10.1002/advs.202102620
- 133. Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, et al. Targeted xCT-mediated Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and Enhances the Efficacy of the Anti-PD-1/L1 Response. *Adv Sci (Weinh)*. (2023) 10: e2203973. doi: 10.1002/advs.202203973