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Adoptive T cell transfer has emerged as a pillar of modern cancer immunotherapy.
Propelled by viral and non-viral-based technologies, such as CRISPR-Cas9, genetic
engineering offers novel opportunities for both emerging cellular therapies and the
improvement of more established approaches such as chimeric antigen receptor
(CAR) modified T cells. First-generation genetically modified T-cell therapeutics
remain limited by the intrinsic constraints imposed by T-cell biology, such as T-cell
exhaustion, poor trafficking into hostile tumor beds, toxicity, and challenges
associated with tumor antigenic escape. Several of such limitations can be
addressed by further engineering, expanding significantly the potential of cell
therapy. This review focuses on the promise of using currently available cellular
engineering technologies to genetically engineer single T cells at multiple different
loci and/or confer several novel functions to circumvent the shortcomings of
adoptive immunotherapy to treat cancer. Various methodologies and rationales for
the design of these advanced engineered cellular products are described, along
with emerging clinical data supporting the use of multiplex-engineered T cells. The
limitations of advanced cell engineering and the remaining gaps that need to be
filled to optimize the efficacy of adoptive T-cell immunotherapies are
also discussed.

KEYWORDS
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1 Introduction

T-cell transfer to treat cancer was pioneered through allogeneic hematopoietic
transplantation (AHCT) in the 1970s, followed by tumor-infiltrating lymphocyte (TIL)
therapy and other ex vivo expanded antigen or pathogen-specific T-cell products (1-3).
Although therapies using unmodified T cells remain highly relevant today, the
development of multiple gene engineering tools to impart novel or improved functions
to immune cells is transforming the field. The rapid and widespread adoption of autologous
chimeric antigen receptor (CAR)-modified T cells for the treatment of B-cell malignancies
reflects this transformative potential. Through synthetic biology, CAR T cells can recognize
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cell surface proteins outside the major histocompatibility complex
(MHC) context, adding a new dimension to the use of T cells as
therapeutic agents. In parallel, the ever-expanding definition of the
MHC ligandome in several cancers has enabled the discovery of
cancer-specific T-cell receptors (TCR) that can be used for
transgenic TCR T-cell therapies (4-7). Despite this remarkable
progress, both unmodified T cells and currently approved CAR or
transgenic TCR T cells face limitations. For example, autologous
CAR T cells approved for the treatment of B-cell malignancies are
toxic and can fail because of either intrinsic T-cell dysfunction and
poor persistence or because neoplastic cells evolve to suppress the
expression of the target antigen. Furthermore, they are costly and
require complex logistics to deliver treatment on time. The use of
allogeneic T cells can, in principle, address several shortcomings of
autologous therapies by manufacturing large batches of ready-to-
use “off-the-shelf” products from healthy donors. However, it is
limited by bidirectional alloreactivity that can lead to adoptively
transferred T-cell rejection and nonspecific host tissue damage in
the form of graft-versus-host disease (8). Several of these
shortcomings can be addressed through multiplex gene
engineering, whereby several modifications are incorporated into
individual T cells to improve their functionality in different
contexts. This can be achieved through various approaches,
including polycistronic vectors that enable simultaneous
expression of multiple transgenes (single engineering step to
impart multiple functions) or more modular strategies that
combine different individual gene edits (multiplex engineering) to
consolidate a single function (e.g., targeting multiple antigens) or to
confer different functions (e.g., specific antigen targeting and
resistance to T-cell exhaustion). Herein, we review various
approaches that can be used to perform multigene editing and/or
confer multiple novel functions to therapeutic T- cells and describe
how they can be applied to T-cell therapy. Three main themes will
be developed: 1) multi-engineering to address the limitations of
T-cell biology, 2) multi-engineering to better engage cancer cells,
and 3) multi-engineering to prevent excessive toxicity. Finally,
published clinical study reports in which multiplex gene-
engineered therapeutic products were used will be reviewed.

2 Methodologies for T-cell
engineering

Various methods for the genetic modification and engineering
of T cells include approaches to insert exogenous genetic material
(e.g., transgenes) into the genome or alter the sequence of a given
gene to modulate expression or modify protein sequence. Other
strategies involve the transfer of non-genome-integrating genetic
material (plasmids, mRNA) to confer novel functions to T cells
(9-11). T cell gene engineering methods can be broadly assigned to
two main categories: those that involve the non-targeted insertion
of genetic material into the host genome (viral vectors, transposons,
etc.) and targeted gene editing technologies, which involve site-
specific nucleases such as meganucleases (12), Zinc Finger
Nucleases (ZFN) (13), Transcription Activator-Like Effector
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Nucleases (14) (TALEN), and clustered regulatory interspaced
short palindromic repeats (CRISPR)-Cas9-based technologies
(15). Non-targeted methods leverage natural viral and non-viral
mechanisms, permitting the integration of genetic material into
host genomes at multiple loci. These include (gammaretroviruses
(16) and lentiviruses (17)), and transposon-based systems such as
Sleeping Beauty (18) and PiggyBac (19). Other viruses, such as
adenoviruses (20) and adeno-associated viruses (AAV) (21) can
deliver genetic material into cells, and non-viral methods are
increasingly used to deliver various cargoes (nucleic acids,
proteins, etc.). The delivery of these cargoes relies on various
methods, such as lipofection (22), electroporation (23),
nanoparticles (24), and cell-penetrating peptides (CPPs) (25, 26).
The methodologies for gene editing and intracellular delivery, as
well as their respective advantages and disadvantages, are
summarized in Figure 1 and Table 1.

2.1 Genetic modification tools

Meganucleases, or homing endonucleases, are early gene-
editing tools that recognize long DNA sequences (14-40 bp) with
high specificity and minimal off-target effects (12); however, they
are difficult to reprogram for new target sequences (27). Engineered
variants, such as megaTALs (TALE fused to meganucleases), have
been applied to T-cell editing, such as T-cell receptor alpha constant
(TRAC) region disruption. Zinc-finger nucleases (ZFNs),
introduced in 1996 (28), combine zinc finger DNA-binding
domains with FokI nucleases to induce targeted DNA breaks (29).
They showed genome-editing potential in eukaryotic cells (30) and
were used for CCR5 disruption in human T cells (31). However,
ZFNs are complex and costly to design (32-34), leading to the
development of TALENs in 2010 (14, 35). TALENs recognize
individual nucleotides with high precision, target longer
sequences than ZFNs, and offer a simpler design; however, their
large size (~3 kb) limits their multiplex gene-editing
applications (36).

Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)-Cas9 has emerged as a flexible and scalable gene-
editing system that enables efficient multiplex editing via a simple
guide-RNA (sgRNA) design. Discovered as bacterial repetitive
sequences (37) and later identified as part of bacterial adaptive
immunity (38), CRISPR-Cas9 enables the RNA-guided targeting of
almost any DNA sequence with high efficiency (15). Unlike ZFNs
and TALENs, CRISPR-Cas9 does not require target-specific protein
engineering and induces double-strand breaks (DSBs) that are
repaired by cellular pathways such as non-homologous end
joining (NHE]) or homology-directed repair (HDR) (39). Thus, it
remains a promising tool for precise multiplex genome engineering
(39, 40). However, CRISPR-Cas9-induced DSBs can cause off-target
mutations and chromosomal translocations, compromising
genome integrity (41) (see quality control considerations below).
NHE] is error-prone and reduces precision (42), whereas HDR is
inefficient, particularly in non-dividing cells. Strategies to enhance
HDR include tumor suppressor p53-binding protein 1(53BP1)
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Gene editing technologies and cell delivery methods. Summary of the various gene engineering methods used for T-cell modification. Figure
constructed with visual elements from BioRender (https://BioRender.com/qtcywde).

inhibition and RAD18 (Radiation-sensitive 18) (43, 44), modified
CRISPR systems, small molecules modulating DNA repair, and co-
localization of repair templates with Cas9 (45).

In 2016, base editing was introduced by Liu et al. to enable
precise single-nucleotide changes without DSBs or donor DNA
templates. Cytosine and adenine base editors allow direct base

conversions and reduce genomic rearrangements (46), although
they are limited to transitions and are prone to off-target
deamination and bystander editing. Prime editing (PE) was
developed to address these limitations, enabling diverse
substitutions, small insertions, and deletions without DSBs using
Cas9 nickase fused to reverse transcriptase and pegRNA to direct

TABLE 1 Advantages and disadvantages of different gene engineering approaches.

Methods Advantages

- Permanent edits (CRISPR-Cas9, ZFN, TALEN)
- High efficiency (CRISPR-Cas9, Base/Prime editors)
- No DSBs (Base/Prime editors)

Site-Specific
Nucleases
(Targeted)

- Stable expression (Gammaretrovirus, Lentivirus)

- Infect non-dividing (Lentivirus, Adenovirus)
Viral Delivery

- Safer integration (Lentivirus)

- Transient expression (Adenovirus, AAV)

- High efficiency (Gammaretrovirus, Lentivirus, Adenovirus, AAV)

Disadvantages

- Genomic instability/off-targets (CRISPR-Cas9, ZFN, TALEN)
- Imprecise repair via NHE] (CRISPR-Cas9, ZFN, TALEN)

- Chromosomal translocations (CRISPR-Cas9, ZFN, TALEN)
- Large size delivery issue (TALEN, Prime editors)

- Complex design (ZFN, TALEN, Meganuclease)

- Insertional mutagenesis (Gammaretrovirus, Lentivirus)
- Require dividing cells (Gammaretrovirus)

- Immunogenicity (Adenovirus)

- Limited cargo (AAV)

- Cost (Gammaretrovirus, Lentivirus, Adenovirus, AAV)

- Low immunogenicity (Electroporation, Lipofection, Nanoparticle,

CPPs)

- Simple, low-cost (Electroporation, Lipofection, Nanoparticle, CPPs)

Non-viral Delivery
Transposons)
- Transient expression (Electroporation, CCPs)
-Stable expression possible (Transposons)

- Large cargo capacity (Electroporation, Nanoparticles, CCPs,

- Lower efficiency (Lipofection, Nanoparticle, CPPs)

- Cytotoxicity (Electroporation, Lipofection)

- Equipment needed (Electroporation)

- Limited in vivo applicability (Electroporation, Lipofection, Nanoparticle,
CPPs)

Clustered regularly interspaced short palindromic repeats (CRISPR), Zinc-finger nuclease (ZFN), Transcription activator-like effector nuclease (TALEN), Double-stranded breaks (DSB), Non-

homologous end-joining (NHE]), Adeno associated virus (AAV), Cell penetrating peptide (CPP).
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edits (47). Despite their high precision, challenges include low
efficiency in some cells, large construct sizes, and pegRNA
mispriming (47). Prime editing evolved from PE1 with natural
reverse transcriptase to PE2 using engineered enzymes, and PE3
added a second nick to increase efficiency but with increased indels,
which PE3b mitigated by timing the second nick (48). PE4 and PE5
further enhance precision with DNA repair inhibitors (49), and
enhanced Prime Editors (ePE) improve pegRNA stability and
editing yield (50). These developments have progressively
improved the efficiency, specificity, safety, and suitability of prime
editing for multiplex gene-editing applications.

In addition to DNA-targeting tools, RNA-targeting
technologies, such as CRISPR-Casl3, have emerged as powerful
alternatives for modulating T-cell function without permanent
genomic changes (51). Casl3 cleaves single-stranded RNA
transcripts to transiently and reversibly regulate gene expression
(52). In a striking demonstration of Casl3-based knockdown
possibilities in T cells, Tieu et al. revealed that the co-
transduction of Casl3d and multiple sgRNAs could reduce the
expression of multiple target genes simultaneously, enabling the
suppression of multiple immune checkpoints or entire metabolic
pathways (53). This system can also be used for combinatorial
screens and can be modified to permit drug-controlled Casl13d
expression and graded target gene suppression, which may be
advantageous over complete ablation in certain settings.
Catalytically inactive Cas9 (dCas9) can be fused to transcriptional
activators, leading to specific gene expression (CRISPR activation)
in CAR T cells (54) without altering the DNA sequence at the
targeted loci. The fusion of dCas9 E to epigenetic modulators
enables targeted chromatin remodeling and gene expression
changes without DNA breaks (55, 56). Early studies in primary T
cells revealed that this approach could stabilize Foxp3 expression in
mouse regulatory T cells and delay replicative senescence in
stimulated human T cells through the expression of telomerase
reverse transcriptase (TERT) (57, 58). Although all are at the pre-
clinical stage, these RNA- and epigenetic-targeting approaches offer
great promise for the precise control of T cell phenotypes while
reducing the risks associated with permanent genomic alterations.

2.2 Gene editing delivery methods

The insertion of new genetic material or genome editing
requires the delivery of different cargoes, depending on the
method used. Gene delivery methods can be classified into viral
and non-viral approaches, each with specific advantages and
disadvantages. Gammaretroviruses allow stable integration but
require dividing cells to do so. While insertional mutagenesis is a
theoretical concern for any retroviral vectors, experimental
evidence in mature T lymphocytes suggests that these cells are
relatively resistant to transformation (59). Long-term follow-up
studies of patients treated with gammaretroviral-modified T cells
have not reported malignant transformation (60, 61). Lentiviruses, a
retroviral subclass, can transduce both dividing and non-dividing
cells (62) and support stable gene expression, in addition to
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enabling multiplex gene editing (63) and the insertion of large
polycistronic constructs. Lentiviral vectors offer key advantages for
CAR T-cell therapy, including efficient T-cell transduction, durable
expression, and a safer integration profile than gammaretroviruses
(64). Third-generation lentiviral systems further enhance safety by
separating viral components and using self-inactivating elements
(65, 66). Importantly, no significant genotoxicity or malignant
transformation has been reported in clinical CAR T-cell
applications using lentiviral vectors (67), although concerns
regarding insertional mutagenesis remain (68).

Adenoviruses are non-integrating viruses in the host genome
and provide transient gene expression. However, they can elicit
strong immune responses directed against the viral vector, which
may limit their therapeutic efficacy (69). AAVs are less
immunogenic and can support longer transgene expression
durations; however, they are limited by their small cargo capacity
and high production costs (70). Although less of a concern for other
cellular engineering approaches, the risk of immunogenicity is a
preoccupation whenever a foreign (natural or synthetic) molecule is
introduced into a therapeutic cellular product. Cas9 nucleases
(bacterial proteins) can elicit T-cell and humoral responses, and
pre-existing immunity is prevalent in the population (71, 72).
Despite the possibility of reducing immunogenicity through
protein engineering (73), current clinical protocols using Cas9
modified T cells insist on transient exposure to Cas9 and the
absence of the protein in the final product. Synthetic proteins
(artificial receptors for example) may also be recognized as non-
self and impact the persistence of the transferred T cells (74, 75).
Even if heavily treated cancer patients may not be able to mount
immune responses against foreign proteins as well as normal
individuals, multiplex editing and/or the introduction of multiple
artificial transgenes could increase the risk of early rejection.

Transposon-based systems, such as Sleeping Beauty, offer non-
viral, nuclease-free integration with low cost and large cargo
capacity (18, 76-78). However, they face limitations in
transfection efficiency, delivery synchronization, and the risk of
semi-random integration (79, 80).

Non-viral methods such as electroporation, nucleofection,
CPPs, lipofection, nanoparticles, and transposons offer low
immunogenicity, simplified production, and reduced biosafety
risks (10, 23, 81-83), but often result in lower efficiency and
transient expression, unless paired with integration systems.
Among non-viral methods, electroporation and nucleofection are
efficient for delivering genetic material into primary T cells,
supporting the simultaneous delivery of multiple components (84,
85). This makes them ideal for multiplex editing strategies in T-cell
engineering. Electroporation is a widely used method for delivering
ribonucleoproteins (RNPs) or mRNA for CRISPR-based gene
editing, allowing the effective delivery of Cas proteins and gRNAs
without viral vectors (86). Despite being scalable to suit clinical
purposes and yielding a high number of genetically modified T cells,
electroporation and nucleofection can lead to significant
cytotoxicity, especially when applied to minimally cultured or
naive T cells, potentially compromising the quality of the final
product (10, 23, 83). Editing is typically performed prior to, or early
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after, T-cell activation (within 24-48 h) to maximize repair
efficiency and viability (87, 88). This is important when both
CRISPR-Cas9 and gammaretro-lentiviral methods are used on the
same T cells for multiplex engineering purposes. Early editing with
CRISPR-Cas9 avoids the cleavage of integrated vectors if CRISPR
targets overlap with viral vector sequences (88). Recent clinical
studies have highlighted that editing resting or minimally activated
T-cells reduces chromosomal abnormalities linked to DSBs,
supporting carefully timed editing workflows for safety and
efficacy in clinical manufacturing (see Section 2.3). Another non-
viral method for gene delivery into T cells is the use of CPPs which
are short peptides that can traverse cell membranes and facilitate
the intracellular delivery of various cargos, including nucleic acids
and proteins. This approach has been investigated for the delivery of
CRISPR/Cas9 components into T cells. For example, CPPs such as
PepFectl4, LAH5, TAT peptide, Transportan-10, and MPG have
been successfully applied to deliver CRISPR/Cas9 plasmids or RNP
complexes into primary human T cells (89-92). Although
promising, CPP-mediated delivery still faces challenges, such as
potential cytotoxicity, limited efficiency compared to viral or
electroporation-based methods, and the need for optimization to
achieve robust genome editing in clinical-grade T cell products (93—
95). Hence, combining gene-editing tools (e.g., CRISPR-Cas9, base
editors, transposons) with gene delivery platforms, such as lentiviral
vectors, allows the creation of customized multi-edited or multi-
functional T-cell products.

2.3 Genotoxicity and quality control in T-
cell gene engineering

Multiplex gene editing in T cells offers substantial therapeutic
potential but also raises significant concerns about genotoxicity due
to the induction of multiple DNA double-strand breaks (DSBs).
These breaks can lead to chromosomal translocations, large
deletions, and complex rearrangements, such as chromothripsis,
which compromise genome stability, reduce cell viability, and may
even induce transformation or cancer (88, 96). Several strategies
have been developed to reduce the risk of genotoxicity. These
include the use of nucleases with different cutting patterns (such
as Cas9 and Casl2a/b), temporal separation of sgRNA delivery, and
favoring ribonucleoprotein (RNP) delivery over plasmids to limit
the active time of nucleases. Promoting HDR over NHE], carefully
designing sgRNAs, and transiently inhibiting NHEJ using small
molecules, such as NU7441, can further improve genomic safety
(96). Additionally, studies have shown that performing gene editing
within 24 to 48h after T cell activation reduces p53-dependent DNA
damage responses, thereby enhancing editing efficiency and cell
recovery (88). It is also important to consider the risk of damaging
the integrated vector sequences when combining multiplex editing
and lentiviral transduction. Cas9 activity near or within a vector can
disrupt transgene expression or cause loss of function (88).
Therefore, delaying transduction until 48-72 hours post-editing is
often beneficial, although this must be balanced by the activation
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status and susceptibility of T cells to infection. To evaluate the
genotoxic impact of the editing process, assessment of cellular stress
and DNA damage response (DDR) markers, such as p53, YH2AX,
and apoptosis indicators, is essential, as DDR plays a central role in
detecting and repairing DNA damage, maintaining genome
stability, and preventing mutagenesis and tumorigenesis (97).
Chromosomal rearrangements caused by CRISPR-Cas9-induced
double-strand breaks (DSBs), especially during multiplex editing
with multiple sgRNAs, are concerning (96). To mitigate these risks,
high-fidelity Cas9 variants and novel editing platforms, such as base
and prime editors, are being actively explored. Base editing enables
precise nucleotide substitutions without double-strand breaks
(DSBs), reduces genotoxic risks such as deletions, translocations,
and p53 activation (46, 98), and is especially suited for multiplex or
subtle edits. Off-target effects are also a major consideration in both
CRISPR and base editing technologies, and require comprehensive
assessment using techniques, such as GUIDE-seq, CIRCLE-seq, or
deep whole-genome sequencing to evaluate specificity (99, 100).

This review focuses on multiplex gene editing, as it is
increasingly moving into the clinical stage. Hence, safety concerns
must be stratified and addressed according to the number and type
of edits. CRISPR-Cas9-mediated double-strand breaks (DSBs) can
activate the p53 pathway, induce chromosomal translocations, and
drive immune responses, with the frequency of deleterious events
increasing when multiple loci are targeted (101). Base and prime
editors reduce DSB-related risks but will require long-term
surveillance to monitor low-frequency off-target effects (102).
Long-term surveillance is required to monitor the potential clonal
expansion of edited T cells. The maximum number of gene edits or
off-target lesions that a T-cell can sustain before functional
impairment or death is unknown and likely depends on the genes
being targeted. However, “over-engineering” remains a theoretical
issue. Strategies that do not induce double-stranded DNA breaks,
such as base and prime editing, appear to be ideal for the genetic
editing of multiple genes through a single engineering step. Multiple
gene knockdown with limited genetic risk may also be achieved
using traditional viral vectors encoding multiple miRNAs (103) and
Casl3-based approaches (as described above).

However, viral vectors require vigilance and well-designed quality
control (QC) strategies. One key parameter is the vector copy number
(VCN), as high VCNs (>5-10 copies per genome) in lentiviral and
gammaretroviral systems are linked to an increased risk of insertional
mutagenesis and oncogene activation (104). Therefore, clinical
protocols aim for a VCN of 1-5 copies per cell to balance
transgene expression with genomic safety (105). Additionally,
verifying full-length transgene integration and expression is
essential when using viral vectors, which is typically assessed using
digital droplet PCR (ddPCR), long-read sequencing, or functional
assays (106). These assays are usually required to complete other QC
assessments necessary to evaluate the identity, purity, potency, and
sterility of the final cellular product. The regulatory landscape for cell
and gene therapies is rapidly evolving and can vary according to
jurisdiction, mandating careful planning of quality control strategies
by advanced T-cell product developers.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1680410
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Jafarzadeh et al.

3 Multiplex-engineering to address
the limitations of adoptive T-cell
immunotherapy

Effective adoptive T-cell immunotherapy depends on the
intrinsic quality of T-cells, which is influenced by several factors,
including the previous treatments received by the patient
(autologous therapies), the manufacturing process, and the
context following adoptive transfer (repeated antigen exposure
leading to exhaustion, homeostatic cytokine availability, and
tumor microenvironments) (107, 108). Here, we discuss the
requirements for effective and safe cancer T-cell therapy,
including T-cell fitness, effective recognition of cancer cells,
function within cancer microenvironments, and mitigation of
immune-related adverse effects. We specifically reviewed the
strategies involving multi-engineering to address one or several of
these requirements for effective tumor eradication (Figure 2).

3.1 Addressing the limitations of T-cell
biology

3.1.1 T-cell dysfunction

Conventional T cells develop as long-lived cells, each bearing a
unique TCR, and are responsible for the detection of infected and
transformed cells through TCR-mediated recognition of MHC-
associated peptides. The activation and further differentiation of T
cells are influenced by several other signals, including
co-stimulation, cytokines, and metabolites (108). Upon repeated
antigenic exposure, depending on the context, T cells develop
features of terminal effector differentiation and loss of memory
potential, senescence, and/or exhaustion, which limit their efficacy.
A review of these mechanisms is beyond the scope of this review,
but multiplex T-cell engineering offers an opportunity to influence
T-cell fate and to prevent or correct the development of
T-cell dysfunction.

Once T cells or CAR-T cells recognize their antigen and receive
proper activating signals, they undergo various transcriptional,
epigenetic, and metabolic changes that commit them to different
fates, from early memory (stem cell memory T cells - Tscm or
central memory T cells - Tcm) to effector memory (Tem) to
terminally differentiated effector T cells (Teff). Early memory T
cells are long-lived and have the capacity to self-renew, whereas Teft
cells gradually undergo functional decline and eventually apoptosis.
Several pre-clinical and clinical lines of evidence support that early
memory T cells outperform Teff in adoptive immunotherapy,
including the CAR-T cell field (109-117). Studies on CAR T cells
have revealed the importance of activation signals in T-cell
differentiation. The choice of co-stimulatory domain (CD28 vs.
41BB, for example) impacts memory fate and CAR T-cell efficacy in
certain contexts, and CAR design that avoids tonic signaling
prevents the development of T-cell dysfunction (118). Beyond
receptor design, an ingenious strategy to skew therapeutic CAR-T
cell differentiation towards a memory phenotype through advanced
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genome editing is to strike at the epigenetic level, allowing
chromatin accessibility of the genes that regulate memory
formation and lead to the acquisition of an early memory
phenotype (119). As multiple inhibitors of T memory formation
have been identified in the chromatin machinery, their deletion
using CRISPR-Cas9 technology has shown impressive results in
several studies. For example, CRISPR-Cas9 inactivation of the
H3K9 trimethyltransferase SUV39H1 in CAR-T cells promoted a
self-renewing and stem-like phenotype that allowed for the long-
term persistence of CAR-T cells and protection against tumor
relapse (120). In addition, deletion of de novo DNA
methyltransferase 3 alpha (DNMT3A) provided overall resistance
to CAR-T cell exhaustion, which exhibited enhanced proliferation,
in vivo persistence, and tumor control in prolonged tumor exposure
(121). Other promising targets include the master transcription
factors of Teff fate, such as NR4A receptors (122) and PR domain
zinc finger protein 1 (PRDM1), which encodes BLIMP-1.
Disruption of PRDM1 using CRISPR-Cas9 promoted the
expansion of less-differentiated memory CAR-T cells in vivo and
enhanced T-cell persistence in multiple tumor models (119). Using
a model of tonic CAR signaling leading to T-cell exhaustion,
retroviral overexpression of c-Jun, an AP-1 factor, enhanced CAR
T-cell expansion and functionality, decreased terminal effector
differentiation, and improved antitumor potency in five different
in vivo tumor models (123). Repeatedly stimulated and proliferating
T cells eventually acquire features of cellular senescence (activation
of the DNA damage response and cell cycle arrest, increased [3-
galactosidase activity, and dysfunctional mitochondria) (107).
While often described as irreversible, subsets of T cells displaying
cellular senescence features can be revived by targeting senescence-
associated pathways, such as p38 MAP kinase and p16™* (124-
126). Repeated antigen exposure and suboptimal activation signals
can also lead to T-cell exhaustion, characterized by decreased
effector functions such as cytokine secretion and cytotoxicity,
limited proliferation rate and self-renewal capacity, and
upregulation of inhibitory co-receptors (or immune checkpoints)
such as PD-1, TIM-3, LAG-3, and TIGIT, among many others
(107). Several ligands for immune checkpoints and other inhibitory
molecules are expressed by tumor cells and other cells within the
tumor microenvironment. Therefore, T-cell exhaustion is a cardinal
feature of cancer immunology, and immune checkpoint-blocking
antibodies have become the standard of care for a wide spectrum of
malignancies. The success of immune checkpoint blockade hinges
on T-cell populations at the early stages of the exhaustion process
(127, 128), and the blockade of PD-1 can temporarily revive
exhausted T cells but may be unable to restore a memory
phenotype (129). However, clinical trials using antibody-mediated
PD-1 blockade in combination with CAR-T cells did not improve
outcomes relative to those reported with CAR T cells alone (130,
131). In contrast, CRISPR-Cas9 mediated multi-editing of T cells
for CAR expression and PD-1 inactivation has shown encouraging
results in both preclinical (132) and clinical studies (133). Gene
editing of other targets, such as LAG3 (134) and CTLA4 (135),
blocks the suppressive signals from the tumor microenvironment
and enhances the effector functions of CAR-T cells (116). Advances
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T-cell engineering for improved cancer targeting. The therapeutic and biological objectives pursued through T-cell engineering and a summary,
with examples, of strategies integrated in multifunction T cells reported in pre-clinical or clinical studies. Figure constructed with visual elements

from BioRender (https://BioRender.com/h5481mb).

in gene-editing technology allow for the targeting of multiple
immune checkpoints and can yield superior reinvigoration
relative to single blockade in human T cells (136, 137). In
addition to the strategy described above, which leverages Casl3-
based methods to target multiple immune checkpoints, one study
showed the possibility of efficient multiplex genomic editing of
CART cells via a single CRISPR protocol by incorporating multiple
gRNAs into a CAR lentiviral vector to target PD-1 and CTLA4
simultaneously (138). The same concept was applied to target PD1,
TIM3 and LAG3 in CAR-T cells using short hairpin RNA cluster to
enhance tumor control (136, 139-141). In another study, CRISPR/
Cas9 RNP electroporation was used to knock out PD-1, LAG-3, and
TIM-3 in CD8" T-cells. Edited T cells demonstrated improved
expansion and persistence in a mouse model, delayed tumor
growth, and enhanced survival without added toxicity (142).
Alternative strategies include targeting intracellular checkpoints,
such as cytokine-inducible SH2-Containing Protein (CISH), or
upstream regulators of multiple immune-checkpoint expressions
(143, 144).

3.1.2 Alloreactivity and drug resistance

A cardinal feature of T cells is the recognition of MHC-associated
alloantigens and self from non-self. Therefore, adoptively transferred
allogeneic T cells that retain the potential to recognize
histocompatibility antigens pose a safety risk. Conversely,
therapeutic T cells that are susceptible to immune rejection
compromise the efficacy of cellular products. Multiplex engineering
offers several strategies for the development of allogeneic T-cell
therapy and the coherent integration of T-cell products into
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complex treatment schemes. The development of allogeneic T cell
therapeutics is appealing for several reasons: T cells harvested from
healthy donors are less dysfunctional than autologous T cells
obtained from cancer patients, the manufacturing of large batches
of allogeneic T cells is less costly per dose than autologous therapies,
and “off-the-shelf”, ready-to-use cell therapies could lead to faster
access for patients (8). The transfer of partially histoincompatible T
cells has both advantages and disadvantages in the context of
adoptive immunotherapy. While targeting alloantigens is a long-
proven strategy to treat several blood cancers in the context of AHCT,
either through unmanipulated or genetically modified T cells (4),
histocompatibility is a barrier limiting the development of allogeneic
T-cell therapies (4). Recognition of alloantigens on host cells by
adoptively transferred T cells may result in graft-versus-host disease
(GVHD), and allogeneic therapeutic T cells may be rapidly rejected
by immunocompetent host T cells. A conceptually simple approach
to CAR T cell therapy is to ablate or reduce the expression of genes
responsible for TCR-MHC recognition of alloantigens (138, 145,
146). A recent study has shown the potential of multiplex editing for
the optimization of therapeutic T cell products by simultaneously
knocking out four genes (TRAC or CD3E, Beta-2 microglobulin -
B2M, Class II Major Histocompatibility Complex Transactivator —
CIITA, and Poliovirus receptor) to eliminate the risk of GVHD, as
well as rejection by both T lymphocytes and NK cells (147). Gene
editing was performed using two methods: CRISPR/Cas9 nuclease
and adenine base editor (ABE). ABE-edited CAR-T cells showed
higher manufacturing yields, superior in vitro effector functions
under continuous antigen stimulation, reduced activation of p53
and DNA damage response pathways at baseline, improved tumor
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control, and extended overall survival compared to their Cas9-edited
counterparts. This further emphasizes that, beyond the choice of
genes to edit, the methods used for gene editing may be equally
important to the success of therapeutic T cells.

T-cell therapies are increasingly used for complex therapeutic
regimens and medical conditions. This suggests that optimal T cell
function and efficacy may be affected by the concurrently
administered drugs that affect T cell physiology. One of the
classical indications for adoptive T-cell immunotherapy is the
restoration of immunity in the context of post-transplant
immunosuppression. Inactivation of the glucocorticoid receptor
or FKBP12 has been shown to confer T-cell resistance to
corticosteroids and tacrolimus, respectively, and as such, may be
integrated into multiple types of T-cell therapies for patients
requiring broad immunosuppression (148-150). Similarly, the
deletion of CD52 expression protects engineered T cells against
the ablating effects of the monoclonal antibody alemtuzumab,
which is commonly used for a variety of indications, including T-
cell depletion in AHCT (151). Suppression of cell surface receptor
expression is also relevant for CAR T-cell therapy targeting T-
lineage malignancies. The pan-T-cell markers CD5 and CD7 can be
effectively targeted using anti-CD5 or CD7 CAR. To avoid T-cell
fratricide, CD5 or CD7 can be edited in anti-CD5 or anti-CD7 CAR
T cells. The loss of CD7 or CD5 does not compromise normal T-cell
physiology and, in the case of CD5, may even be beneficial. The type
I transmembrane glycoprotein CD5 is a negative regulator of TCR
signaling, and recent evidence has revealed that CD5 deletion
improves CAR T-cell efficacy in pre-clinical models (152).

3.2 Engaging cancer with multifunction
and multi-edited T cells

Modulating intrinsic T-cell physiology, conferring drug
resistance, and mitigating alloreactivity are relevant to the design
of T-cell immunotherapies. However, optimized cellular
immunotherapies must also consider the biology of cancer cells
and their environments. This section reviews how multi-functional
and multiplex T-cell editing can address the crucial issues of cancer
cell immune escape, trafficking into tumor beds, and resistance to
hostile tumor environments. Most cellular engineering designs used
thus far rely on a single engineering step consisting of the viral
transduction of vectors containing multiple genes, conferring
multiple functions. However, multimodal (viruses and nucleases)
and non-viral methods are increasingly being used. Early phase
clinical trials are being conducted to test several of these strategies,
with clinical results increasingly available (see Section 4 below).

3.2.1 Avoiding antigen escape

Antigen loss is a common mechanism of tumor-immune
resistance. Targeting a single antigen, whether MHC-associated or
not, can lead to immune-mediated selection of resistant cancer cell
variants. Several strategies can be considered for multi-antigen
targeting in adoptive T-cell immunotherapy. Co-infusion
(simultaneous or sequential) of multiple single-specificity T cells
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(TCR transgenic or CAR) appears safe and promising in clinical
trials (153-156).In parallel, refinements in genetic engineering can
confer multi-antigen specificity. In the CAR field. Several designs
exist in the CAR field, including the co-expression of two distinct
CARs (dual CARs), and the engineering of a single construct with
two different single-chain variable fragments (scFv) (tandem CAR)
(reviewed in (157)). The manufacture of CAR T cells from antigen-
specific T cells offers the possibility of simultaneously targeting
MHC-associated and MHC-independent antigens at the same time.
Recent preclinical studies on dual targeting of acute myeloid
leukemia with a transgenic NPM1-antigen-specific TCR and a
CD33 CAR revealed that double transgenic receptor expression
led to better cytotoxicity and tumor control relative to single
receptor-expressing T cells (158). Although promising, this may
not be applicable to all antigenic receptor pairings. The expression
of two receptors may lead to reduced activity of one of the receptors,
potentially affecting T-cell function and the efficacy of antigen
recognition compared to single-specificity T cells. (159, 160).
Immune-mediated selection of resistant cancer variants is a well-
described phenomenon in the CD19 CAR T cell field, where several
mechanisms for CD19 loss have been characterized, including point
mutations, defective splicing, lineage switching, and epitope
masking (161). Consequently, several groups have developed
dual- or triple-expression CAR approaches to enable the
simultaneous targeting of several B cell lineage antigens (CD22,
CD20, and CD79a) (162-164) or combine CD19 targeting with
antigens that are not strictly recognized as lineage-specific, such as
CD123 or CD70 (165, 166). Likewise, several teams have devised
multi-antigen targeting to circumvent the issue of B-cell maturation
antigen (BCMA) loss of expression in multiple myeloma. Currently
approved BCMA-directed CAR T cell products have provided
impressive results but are not considered curative (167). The use
of tandem CARs targeting BCMA and Transmembrane activator
and CAML interactor (TACI) or BCMA and G protein-coupled
receptor class C group 5 member D (GPRC5D) with a dual CAR
approach in pre-clinical models showed better efficacy and reduced
antigen escape (168, 169).

3.2.2 Migration into tumors

One of the main limitations of adoptive T-cell immunotherapy,
especially in solid tumors, is the inefficient trafficking and poor
infiltration of these cells at the tumor site, as shown in multiple
preclinical studies (170-172). Clinical evidence also suggests limited
T-cell accumulation in some solid tumors, although detailed
patient-level data remain limited (173, 174). The first strategy to
address this issue is to equip therapeutic T cells with chemokine
receptors that attract T cells to the tumor bed. Initial candidates for
overexpression have been the chemokine receptors CCR2 and
CXCR2 (receptors for CCL2 and CXCLS8/IL-8, respectively) for
CAR and transgenic TCR T cells, as well as TILs, which revealed
increased tumor infiltration in several models (175-181). Other
chemokine receptor strategies that target different axes relevant to
the tumor microenvironment have been developed. Co-expression
of CCR4 improved the homing ability of anti-CD30 CAR-T cells to
Hodgkin tumor sites by enhancing their migration toward CCR4
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ligands CCL17 and CCL22, which are highly expressed in the tumor
microenvironment (182). The modification of CAR-T cells
targeting the lung adenocarcinoma antigen MUCI for the
chemokine receptor CCR6 enhanced migration toward tumor
sites rich in CCL20 and CAR-T cell efficacy (183). Other
examples include T cells engineered to express the chemokine
receptor CXCR5 to improve migration in CXCLI3 rich lung as
well as head and neck cancer microenvironments, and CXCR6
expression that improved migration and function in hypoxic
CXCL16-rich pancreatic tumor milieus (184, 185). Finally,
fractalkine (CX3CL1) offers another promising route to enhance
CX3CRI1-driven migration. Fractalkine, unlike many other
chemokines, exists in both membrane-bound and soluble forms,
creating an effective gradient to attract CX3CR1+ T-cells. In
melanoma and pancreatic cancer models, T cells transduced with
CX3CRI demonstrated improved T-cell trafficking to tumors and
inhibition of tumor growth (186). The chemokine paradigm can
also be exploited using armored T cells engineered to secrete
chemokines to attract other immune cells. CCL19 can attract
dendritic cells and T cells into tumor beds and has been
investigated in CAR T cells for solid tumors (187). In addition to
altered chemokine cues, certain tumors have a dense and fibrotic
extracellular matrix (ECM) that acts as a physical barrier to
therapeutic T-cells. To overcome this obstacle, researchers have
engineered CAR T cells to express ECM-degrading enzymes, such
as heparanase, which targets and cleaves heparan sulfate
proteoglycans, a key structural component of the tumor stroma.
In a preclinical study, heparanase-expressing CAR T cells
demonstrated significantly improved tumor infiltration and
antitumor activity in solid tumor models, with no observed
increase in off-target effects (188). Extending this strategy, CAR-T
cells engineered to express mature metalloproteinase-8 (mMMP-8)
showed enhanced infiltration into tumor tissues and improved
antitumor efficacy by degrading collagen fibers within the
extracellular matrix, thereby facilitating deeper tumor penetration
(189). Furthermore, CAR-T cells secreting relaxin-2 demonstrated
increased efficacy and infiltration in stromal-rich solid tumors by
remodeling the tumor microenvironment and reducing fibrosis,
ultimately promoting better T-cell migration and antitumor
responses (190).

3.2.3 Resisting the tumor microenvironment
Tumor cells, stromal elements, defective angiogenesis, and
infiltrating immunosuppressive immune cells all contribute to
making tumor microenvironments inhospitable through
metabolites and a lack of nutrients, cytokines, and cell-cell
contacts. Strategies to counteract these deleterious effects can be
grouped into three categories: 1) changing the microenvironment
through the secretion of immune-stimulatory or homeostatic
cytokines (T cells redirected for universal cytokine-mediated
killing -TRUCK) or other biomolecules, such as immune
checkpoint blockers, cytokine traps, or bi-specific engagers; 2)
making therapeutic T cells insensitive to inhibitory signals; or 3)
engineering T cells to transform inhibitory interactions into
immune-stimulatory signals through switch receptors (191-193).
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Gain-of-function cytokines or other biomolecule secretions are
usually achieved through viral transduction and can provide
homeostatic, chemotactic, or immunostimulatory signals
(comprehensively reviewed in (191)). Among the best described
immunostimulatory cytokines used in TRUCKSs are IL-12 and IL-
18, which have been shown to remodel the tumor
microenvironment in several experimental systems by increasing
the infiltration of inflammatory immune cells, such as M1
macrophages, NK cells, and T cells. While constitutive IL-18
secretion appears manageable in clinical trials, constitutive IL-12
is toxic (see Section 3.3), leading to refinement in vector design to
restrain IL-12 secretion to activated T cells. However, even when
driven by a nuclear factor of activated T cells (NFAT) promoter, IL-
12 secretion by T cells was toxic (194). Pre-clinical data suggest that
insertion of IL-12 at the PDC1 (PD-1) locus could likewise restrict
IL-12 secretion to antigen-experienced T cells and lead to more
modest secretion relative to NFAT-driven expression (195).
Homeostatic cytokines, such as IL-7, IL-15, and IL-21, may
promote T-cell persistence and result in better outcomes in
certain preclinical models (196). To confer multiple functions
simultaneously, cytokine production can be combined with other
modifications. For example, EGFRvIII-targeted CAR-T cells have
been engineered to co-express IL-15, IL-18, and CXCR2 using
gammaretroviral delivery. This enhances CAR-T cell migration,
survival, and antitumor activity in breast cancer models by reducing
exhaustion and apoptosis without causing toxicity (197). Several
clinical studies using cytokine armoring are ongoing and will
provide important insights into the impact of cytokine secretion
and, hopefully, generate hypotheses for the next wave of therapeutic
T-cell armoring. Evolution to improve cytokine signaling and the
specificity of the response includes built-in CAR designs to
incorporate signaling modules and transgenic orthogonal
receptors devised to signal following the administration of
synthetic cytokines that are otherwise incapable of signaling
through natural receptors (198-200). Loss-of-function strategies
can also be leveraged to improve T-cell therapy in the tumor
microenvironment. Certain metabolites, such as adenosine, are
present at high concentrations in neoplastic environments and
exert immunoregulatory effects. Compared to pharmacological
blockade or shRNA-mediated knockdown, CRISPR-Cas9-
mediated deletion of the adenosine Aja receptor in CAR T cells
improved therapeutic efficacy in preclinical cancer models (201).
TGE-B is a pleiotropic key immunoregulatory cytokine in tumors.
Dominant-negative receptors and gene-editing approaches have
improved T-cell function in pre-clinical models and are good
candidates for incorporation into multiplex engineering strategies
(202-205). Adenosine and TGF-B are among the many soluble
inhibitors found in cancer microenvironments, and future studies
should address whether multiplexing resistance to these mediators
enables further gains. Another approach is to subvert inhibitory
signals using switch receptors. For example, fusing the extracellular
domain of the TGF-B receptor (TGFBRI) with the intracellular
portion of the co-stimulator 4-1BB or IL-2/IL-15 receptor results in
resistance to the effects of TGF-B and improved antitumor efficacy
(193, 206). The PD-1/CD28 switch receptors are based on this

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1680410
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Jafarzadeh et al.

concept. Several preclinical models and emerging clinical data
support that CAR T cells co-engineered for the expression of a
PD-1/CD28 switch receptor improve the therapeutic efficacy of T-
cell therapies (207-211). This principle is being expanded to other
immune checkpoint receptors, such as TIM-3 and TIGIT (212,
213). Tools to improve therapeutic T cells in tumor
microenvironments are diverse and are increasingly available for
devising multiplex-engineering strategies.

3.3 Preventing excessive toxicities

CAR T-cell therapy has changed the treatment of hematologic
malignancies; however, its clinical application is often hindered by
various toxicities. Among the most common and severe adverse effects
are cytokine release syndrome (CRS), marked by systemic
inflammation, fever, hypotension, and the potential for multiorgan
failure due to excessive cytokine secretion by CAR T cells and other
immune cells (214). Neurotoxicity, also known as immune effector
cell-associated neurotoxicity syndrome (ICANS), presents with
neurological symptoms such as confusion, seizures, and
encephalopathy, likely caused by endothelial activation and blood-
brain barrier disruption (215). On-target/off-tumor toxicity occurs
when CAR T cells attack healthy tissues expressing the target antigen,
leading to collateral damage to healthy tissues. B-cell aplasia is a
specific on-target toxicity observed with CD19-directed CAR-T
therapies, causing the depletion of normal B cells and increased
infection risk (216). Tumor lysis syndrome (TLS) may follow rapid
tumor cell destruction, causing metabolic imbalances and renal
impairment (217). Additionally, macrophage activation syndrome
(MAS) or hemophagocytic lymphohistiocytosis (HLH) represents a
severe hyperinflammatory state linked to CAR T-cell therapy (218). In
solid tumors, direct organ damage caused by the expression of the
target antigen by epithelial or stromal cells may lead to significant
toxicity (219). Although less frequent, off-target toxicity arises from
unintended gene editing or cross-reactivity and may harm non-target
tissues (220-222).

Various safety strategies have been developed to reduce these
risks (Figure 3). First, suicide switches, such as inducible caspase-9
(iCasp9), allow for rapid T-cell elimination upon administration of
a small molecule and have been tested mainly in hematologic
cancers (223). Clinical studies have validated iCasp9 in early
phase trials, demonstrating reproducible elimination of infused
cells and control of adverse events, with multiple dosing cycles
feasible without cumulative toxicity (223, 224). Second, elimination
markers, including truncated EGFR and CD20, provide targets for
(225, 226). Clinical
evaluation of elimination markers has shown efficient CAR T cell

antibody-mediated depletion mechanisms

depletion in vivo, confirming their potential to mitigate severe
toxicities when necessary (227, 228). Next, logic-gated CARs that
require dual antigen recognition enhance tumor specificity and
reduce oft-tumor effects (229). Preclinical validation of logic-gated
CARs has demonstrated improved tumor selectivity and reduced
off-tumor cytotoxicity, providing evidence of their translational
potential (229, 230). Synthetic Notch (SynNotch) receptors enable
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the spatial restriction of CAR expression (231), whereas inhibitory
CARs (iCARs) attenuate activation upon engagement with antigens
on healthy tissues (232). Preclinical studies of SynNotch and iCAR
systems have shown reduced systemic toxicity while maintaining
antitumor efficacy (231, 232). Moreover, tunable systems, including
tetracycline-responsive promoters and small-molecule “ON-
switch” CARs, offer external control of CAR activity (233, 234).
ON-switch CARs have been functionally validated in preclinical
models, showing controlled T cell activation and mitigation of
cytokine-mediated toxicity (235, 236). Additionally, tumor-
selective protease-activated CARs and activation-inducible
TRUCKSs (for IL-12 production for instance as described above)
confine potentially toxic cytokine secretion to the tumor
microenvironments, and similarly, promoters such as NR4A2 and
RGS16 have been designed to drive CAR or cytokine expression
specifically in the tumor microenvironment, ensuring that the
transgene is predominantly active only in tumor tissue, thereby
enhancing safety and minimizing off-tumor effects (194, 237-240).
Clinical or preclinical validation of TRUCKs and promoter-
restricted CARs has demonstrated reduced off-tumor activity and
lower systemic cytokine release (240-243). Finally, dual CAR
systems, multi-step activation designs, and so-called masked
CARs that rely on intra-tumoral proteolytic removal of a peptide
blocking the CAR’s antigen-binding site for localized activation
further restrict activation to malignant contexts (229, 239).

The tumor environment can be further leveraged through
metabolic switches. The best example of this is hypoxia (244). For
example, the incorporation of hypoxia-responsive elements (HREs)
within transgene promoters, combined with oxygen-dependent
degradation domains (ODDs) derived from HIFla, enables
selective transgene expression and stabilization only under low-
oxygen conditions, which are prevalent in tumors. Hypoxia-sensing
CAR T cells (HypoxiCAR) have demonstrated significant mitigation
of systemic toxicities while preserving robust antitumor efficacy in
preclinical models (244, 245). While clinical data are still emerging,
preclinical studies have confirmed that HypoxiCAR significantly
reduces systemic cytokine release and off-tumor toxicity while
retaining antitumor activity (246, 247). Similarly, CAR-T cells
engineered with multiple HREs in their promoters (e.g., 5H1P-
CEA CARs) showed enhanced tumor specificity and reduced
activity in normoxic environments, leading to improved safety
profiles (248). Furthermore, the fusion of cytokines, such as IL-12,
to ODD domains (CAR19/hIL120DD) ensure controlled cytokine
release restricted to hypoxic tumor microenvironments, minimizing
systemic inflammatory side effects (249). These innovations
complement existing molecular safety switches and underscore the
potential of microenvironment-responsive CAR designs to optimize
therapeutic windows and reduce adverse events.

Preclinical development should incorporate sensitive
biomarkers to detect early signs of toxicity and evaluate next-
generation platforms in the context of tumor heterogeneity,
antigen escape, and the tumor microenvironment. Collectively,
these strategies build a safety framework that is necessary to
optimize both the efficacy and tolerability of engineered CAR T-
cell therapies.
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3.4 Integrating T-cell biology and tumor
biology into therapies

Several T cell therapies have integrated many of the concepts
described above into single T cell products. Representative
examples that led to the clinical trials summarized in the next
section illustrate the vast potential of contemporary cellular
engineering methods.

Using a combination of viral and non-viral gene engineering
approaches, several groups have pursued the objective of creating
safe, rejection and fratricide-resistant, allogeneic “off-the-shelf”
CAR T cells to treat T-cell leukemia. Targeting the universal T-
cell marker CD?7, this strategy involves the expression of anti-CD7
CAR through lentiviral transduction, CRISPR-Cas9 for CD7, and
TCR alpha chain (TRAC) ablation to avoid fratricide and GVHD,
respectively (250). This approach has been refined with the use of
base editing and the addition of CD52 deletion to evade
alemtuzumab-based lymphodepletion and has been tested in early
phase clinical trials (251, 252). Base editing technologies have high
potential for multiplex editing of therapeutic T cells. It was recently
demonstrated that the simultaneous knock-in of a CAR transgene
and knockout of four genes, B2M, to suppress MHC class I
expression, CD52, TRAC, and PD-1, could be achieved without
genotoxicity (253). Pushing even further, it is reported that a
combination of adenine base editing and Cas12b nuclease could
generate “stealth” knock-in CAR T cells resistant to allorejection,
GVHD, adenosine, PD-L1, and TGF-f} through the editing of B2M,
CIITA (to suppress MHC-class II expression), CD3E (to suppress
TCR expression), Adenosine A2a receptor (ADORA2A), PD-1, and
TGFBR2 genes (254). Along the same lines, other groups used
either non-viral or viral (transduction of multiple sgRNAs) to
perform multi-editing in CAR T cells, similarly focusing on the
ablation of the TCR/MHC axis and immune checkpoints (138, 255,
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256). Multiplex editing has also been applied in transgenic TCR
therapy. Deletion of TIM-3, LAG-3, and 2B4 genes by CRISPR-
Cas9 led to superior functionality and resistance to exhaustion of
transgenic TCR NY-ESO-1-specific T cells in preclinical myeloma
models. The modular nature of electroporation-delivered CRISPR-
Cas9-sgRNA complexes allowed for the comparison of single versus
multiple edits, outlining the role of each immune checkpoint
molecule (257). Taken together, multiple studies support
multiplex editing as a reliable and clinically applicable approach
for adoptive T-cell immunotherapy.

4 Multi-engineered T cells in the clinic

Despite the rapidly growing corpus of preclinical data on
multiplex-engineered or multifunctional T cells, and several
ongoing clinical trials, a relatively limited number of clinical
study results have been published. This is especially true for
clinical studies investigating engineered T cells using more than
one method or at different gene loci (summarized in Table 2).

4.1 Overview of clinical trials using multi-
edited T cells

To date, the published clinical data on multiplex-edited
therapeutic T cells principally relate to two key concepts we
previously described: resistance to exhaustion through the editing
of immune checkpoint genes and the avoidance of alloreactivity,
especially to facilitate the persistence of allogeneic products.

Although all early phase, highly heterogeneous (engineering
approaches, diseases, allogeneic vs. autologous, number and impact
of previous or concomitant therapies, multiple dose levels, etc.) and
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TABLE 2 Summary of clinical studies involving multiplex-edited T cells.

Disease

Engineering approach

Number of patients
baseline disease status

10.3389/fimmu.2025.1680410

Clinical and safety outcomes

Autologous T cells

Best response: stable disease in 2/3 patients, with secondary
progression in one (liposarcoma).

Myeloma, Transgenic TCR-lentivirus 3 adults Persistence of T cells: 3-9 months (260)

Lipo-sarcoma CRISPR-Cas9 editing of: TRAC/ Advanced disease, multi-refractory Grade 3-4 cytopenia, no other high-grade adverse events
TRBC, PD-1 Chromosomal translocation detected, no functional

consequence
5/6 complete response at day 28, 3/5 responders MRD-
Allogeneic T cells 6 adults negative at 4.3 months (longest follow-up: 228 days).

B-ALL Dual CD19/CD22 CAR-lentivirus Advanced disease, 2-8 previous lines Median persistence of T cells: 42 days (288)
CRISPR-Cas9 editing of: TRAC, of therapy, 4/6 with bone marrow All patients had CRS (grade 1-3), 3/6 patients had grade 3
CD52 blast count >50% at enrolment. infections

No genotoxicity
Allogeneic T cells
CD70 CAR insertion in TRAC ORR 33%, PFS 2.9 months. One durable complete response

Renal cell locus — CRISPR-Cas9 and AAV 16 adults (>36 months).

carcinoma vector Metastatic disease, 1-6 previous lines CTX130 persistence: 28 days (289)
CRISPR-Cas9 editing of: CD70, of therapy. CRS (grade 2 maximum) at highest cell doses. 3/16 had
B2M. grade 3 infections
(CTX130) cells

Response evaluated at day 28 - 2/3 achieved MRD-negativity
Allogeneic T cells 3 pediatri tient and proceeded to AHCT.
CD7 CAR - lentivirus P? 1 1r1c patien S Persistence of T cells at day 28 and until 1 month post

T-ALL . Active disease at time of treatment, (252)

Base editing of: TRBC, CD52, and maltiple lines of prior therapies AHCT.
CD7 High grade cytopenia and CRS

1/3 fatality due to infection

ORR 100%, PFS 19.5 months. 18/21 complete remissions, 11
Autologous T cells 2 ladults relapses (3-21 months post treatment)

NHL CRISPR-Cas9, one-step CD19 CAR Relapsed/refractory disease Maximal CRS - grade 2, limited ICANS (132,
(linear double strand DNA) 590% stage 11TV Persistence until day 125 shown for 3 patients 290)
insertion at the PD-1 gene locus 19-30% CAR integration, 80-90% PD-1 locus edited. Off

target locus identified, no functional consequences

4/6 patients reached complete remission and bridged to

AHCT (2 relapsed after AHCT), 2/6 had progressive disease
Allogeneic T cells correlated with poor therapeutic T-cell expansion

B-ALL CD19 CAR - lentivirus 6 pediatric patients Persistence at day 28 for 2/6 (291)
CRISPR-Cas9 editing of: TRAC, Relapsed/active disease at treatment No high-grade CRS, one case of severe neurotoxicity, high-

CD57 grade cytopenia in all patients.
Translocation and off-target genetic editing estimated at <
1%
ORR 46%, 32% complete responses (including one persisting

Peripheral and ' 39 adults at 12 months Wit?l no other treatment) .

Allogeneic T cells . No CTX130 persistence beyond day 28 for most patients

cutaneous T- Relapsed/refractory disease R X R . . (292)
CTX130 T cells (as above) K . Grade 3-5 side effects included neutropenia (36%), infections

cell lymphoma Average of 4 previous therapies . . .

(26%), cardiac failure (6%), hemophagocytic

lymphohistiocytosis (8%) and CRS (3%)

ORR 67%, 71% of responders MRD negative, 71% of patients

bridged to AHCT

Median duration of response 4.1 months, PFS at 6 months
Allogeneic T cells 21 (7 pediatric, 14 adult patients) 27%.

B-ALL CD19 CAR -lentivirus Median of 4 previous lines of Persistence of T cells less than 28 days except for three (293)
TALEN editing of: CD52, TRAC treatment (62% had previous AHCT) | patients (2 >42 days, 1>120 days)

Grade 3-5 side effects included CRS (14%) infections (39%,
including two deaths), cytopenia (75%, day 28 - 52% day
42).

X Best response — stable disease in 7/15 (3-4 weeks) and 2/15

Mesothelin- A]logenel'c T cells L 15 adults (8-12 weeks). PFS for stable disease, 7.1 weeks.

X Mesothelin CAR - lentivirus i . X K

expressing . 8 different cancer histologies CAR T-cell persistence: 1 month (133)
CRISPR-Cas9 editing of: TRAC, R . . i .

neoplasms PD1 Median of 10 previous therapies Low rates of CRS, possible on-target toxicity (pleural,

pericardial effusions, ascites) in 3/15 patients.
(Continued)
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TABLE 2 Continued

Disease Engineering approach

Number of patients
baseline disease status

10.3389/fimmu.2025.1680410

Clinical and safety outcomes

Allogeneic T cells
CD19 CAR -lentivirus

9 patients (16-65 years old)

First 6 patients -B2M editing: no measurable therapeutic
effect following B2M ablation (evidence of NK cell rejection).
Limited expansion/persistence

B-ALL, NHL 258
CRISPR-Cas9 editing of: TRAC, Active relapsed refractory disease 3 patients ~-HLA-A/B editing: improved expansion, (258)
B2M, HLA-A/B suggestion of improved anti-neoplastic activity
Grade 3-5 cytopenia, no other significant side effects
s O g 1 s e 4.
nths). Durati e: 11.
CD19 CAR + CD20 safety switch - 33 adults ! Fesp
. Improved efficacy with higher doses.

NHL lentivirus Relapsed/refractory (294)

TALEN mediated editing of: CD52,
TRAC deletion

Median of 3 previous lines of therapy

CAR T-cell persistence up to 4 months
Grade 3-5 side effects in 94% including cytopenia (up to
82%), CMV reactivation (12%).

B or T-cell lymphobastic leukemia (B-ALL, T-ALL), non-hodgkin lymphoma (NHL). T-cell receptor (TCR). Chimeric Antigen Receptor (CAR). Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR). T Cell Receptor Alpha Constant (TRAC), T Cell Receptor Beta Constant (TRBC). Beta-2 microglobulin (B2M). Programmed death-1 (PD-1). Adeno-associated
virus (AAV). Transcription Activator-Like Effector Nuclease (TALEN). Human Leucocyte Antigen (HLA). Minimal residual disease (MRD), cytokine release syndrome (CRS), overall response

rate (ORR), progression-free survival (PFS).

generally including small numbers of patients, these clinical studies
offer crucial insights. Many pioneering studies have included detailed
assessments of genotoxicity, which are overall reassuring for both
CRISPR-Cas9 and base editing approaches. Although off-target
editing and chromosomal anomalies have been reported in some
studies, no functional impact has been noted. While firm conclusions
about safety will require a longer follow-up (few studies report
outcomes beyond a few months), these early results support the
further development of advanced engineering methods. Compared
to standard CAR T cells, multiplex-edited CD19 CAR T cells appear to
confer a similar risk of adverse events, such as CRS and cytopenia, the
latter being largely attributed to the lymphodepleting regimen.
Similarly, early evidence of efficacy is difficult to interpret in the
absence of a control group, which is expected in phase I-II or proof-of-
concept studies. As previously reported, hematological cancers
respond better to T-cell therapy than solid cancers. Other currently
investigated designs, including TRUCK or migration-enhanced T cells
(as described above), may improve the response in solid cancers and
feed a new wave of multiplex engineered T cells in solid tumors (as
discussed in Section 4.2). A note of caution regarding allogeneic
products is the relatively limited persistence of engineered cells, as
reported in several studies. Suppression of all MHC I molecule
expression through B2-microglobulin editing may be conducive to
NK cell-mediated rejection to a greater extent than selective HLA-A/B
editing (as (258)). Preclinical studies suggest that other strategies to
mitigate allogeneic T cell rejection by NK cells include the ablation of
the adhesion ligands CD54 and CD58 and may be considered in
multiplex engineering designs (195). Multi-engineered T cells may
have a survival disadvantage in certain settings. Loss of TCR
expression has been shown to affect persistence in one of the studies
(133). Successful TRAC-edited mesothelin CAR T cells did not persist
as long as unedited T cells, suggesting a plausible homeostatic role for
TCR signaling (259). In addition, PD-1 editing may precipitate T-cell
dysfunction and loss, as suggested in the first study reporting on
multiplex and CRISPR-Cas9 engineered T cells in human (260), and
in line with a previous study in PD-1 knock-out mice (261). Hence,
multiplex engineering allows for the counteraction of certain
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constraints of T-cell immunology but may unveil both predictable
and unsuspected vulnerabilities.

4.2 Multiplex editing to address the
challenge of solid tumor T-cell
immunotherapy

Long-term remissions, complete responses, or bridging to
potential curative therapies following engineered T-cell
administration, have mostly been described for hematopoietic
neoplasms. This is also true for multiplex-edited T cells and
approaches targeting multiple antigens. Although not thoroughly
discussed here because the therapeutic T cells tested had not
undergone multiplex editing, recently published clinical studies
investigating CRISPR-Cas9 edited cancer patient T cells or TILs
from cancer patients are reassuring about the feasibility and safety
of gene-engineered T cells. In the first study, lung cancer patients
received autologous peripheral blood PD-1 edited T cells
manufactured from peripheral blood (262). Detailed analysis
revealed no major genotoxicity, and the treatment was well
tolerated. In a landmark study that included clinical results,
autologous NY-ESO-1 transgenic TCR T cells were generated
following lentivirus delivery to patient T cells previously edited at
the TRAC and TCR beta chain (TRBC) gene loci to avoid TCR
chain mispairing and at the PDCDI1 (PD-1) locus using the
CRISPR-Cas9 approach (260). In another study using
gammaretrovirus-mediated neo-antigen-specific TCR transgenic
expression in patients with metastatic colon cancer, three out of
seven patients had objective responses (156). Multiantigen targeting
with personalized neoantigen-specific TCR is thus feasible but poses
significant financial and logistical challenges that may be partly
alleviated with non-viral methods. Such strategy was used in
another trial, where personalized neo-antigen-specific TCR were
inserted in situ at the TRAC locus and reinjected in patients with
metastatic cancer. Approximately one-third of patients had stable
disease following treatment, and no significant toxicity was
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observed (155). The discovery of “public” cancer-specific antigens,
such as KRAS®'?Y will further facilitate the design of multi-antigen
targeting in solid tumors (263-265). In lymphoblastic leukemia,
patients who received CD19/CD22 (tandem or sequential) had a
higher complete response and minimal residual disease-negative
rates than those who received CD19 CAR T cells alone (266).
Although additional evidence will be required to firmly conclude on
the efficacy of the various CD19/CD22 approaches (267, 268), the
concept of multi-antigen targeting using CAR T cells may be
translated to solid tumors with recent pre-clinical data suggesting
that a tandem mesothelin-MUCI16 CAR is superior to monospecific
CARs (269).

Other improvements in TILs have also been tested in the clinic.
The production and injection of CISH-deleted gastrointestinal
tumor-derived TILs has recently been reported. Gene-edited TILs
were successfully manufactured in 86% (19/22) of the recruited
patients, and 12 patients were treated. Side effects were as expected
and unrelated to the TIL product; six patients had stable disease,
and one patient with microsatellite instability achieved a complete
response (144). Other approaches are currently under clinical
investigation, including PD-1 deletion and cytokine signaling
modulation (dominant-negative TGF-3 receptor, etc.) to improve
T-cell function, as well as several armored T-cell products aimed at
altering the hostile tumor microenvironment (as described above),
but very limited published clinical data are available.

Although disappointing compared to the results in
hematopoietic neoplasms, engineered T-cell therapies for solid
tumors are feasible. It is to be expected that clinical trial designs
will have to account for the multi-layered complexity of solid
tumors by enabling the simultaneous and coherent targeting of
multiple antigens, intrinsic T-cell dysfunction and extrinsic
constraints of the tumor microenvironment. While multiplex T-
cell engineering can address some of this complexity, multi-product
treatment schemes and optimization of the integration of cellular
products relative to other treatments (timing, repeated dosing, etc.)
will be required.

5 Conclusions and perspectives

This review focuses on the concepts and methodologies
underlying the development of multifunctional and multiplex-
edited T cells in the context of adoptive immunotherapy for
cancer and emphasizes the rationale behind pioneering early
clinical studies in the field. Other developments, such as in vivo
gene editing, will also expand the field of cancer immunotherapy
but would require a dedicated review. The development of
therapeutic T-cell products, enhanced through multi-engineering
and/or capable of meditating several different functions, is
progressing rapidly. Although it was impossible to describe all the
work being done in the field, the master principles driving the
evolution of T-cell adoptive immunotherapy have remained
centered on a few key concepts: These include the preservation of
T-cell fitness, attempts to override tumor escape mechanisms,
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avoidance of toxicities, and adaptations required to perform in
certain clinical situations (allogeneic therapy, concomitant drug use,
etc.). However, there has been a noticeable shift from polycistronic
viral vectors to more modular approaches using several different
methodologies (viral and non-viral) to perform multiple gene
editing. Contemporary gene-editing methods offer flexibility and
new capabilities for performing multiplex gene modifications.
Whether the future will see the replacement of virus-mediated
genetic engineering by non-viral gene-editing methods or co-
existence is unclear at this stage. Nevertheless, ever-improving
technologies for genetically engineering immune cells have paved
the way for the rapid clinical development of enhanced T-cell
therapeutics. As for other cell therapies, this development will
have to be matched with increased capacity in GMP-reagent
manufacturing and cell production, as well as a rapidly adapting
regulatory environment to enable the conduct of clinical studies and
eventual incorporation into the standard of care (270).

To that effect, this review focused on the biological rationales for
multi-editing and the remarkable innovations that made this
possible, but we recognize that an equal challenge will be to
implement these elaborate and costly therapies. Therefore,
innovations in process development and implementation are
required to sustainably translate advanced cell therapies.
Contemporary manufacturing reviews consistently identify
lentiviral vector (LVV) production and release testing as
persistent bottlenecks due to multi-plasmid upstream complexity,
stringent analytics, and constrained global capacity, even as newer
producer-cell-line platforms improve yields (271-273). Two
complementary strategies have gained traction to mitigate these
pressures. First, closed, automated manufacturing improving
reproducibility and possibility to manufacture in both centralized
and point-of-care settings (272, 274-276). Second, non-viral or
reduced-viral gene-transfer/editing approaches (transposon
systems such as Sleeping Beauty or piggyBac; CRISPR RNP
electroporation) remove or downsize the reliance on LVV. These
platforms can compress manufacturing timelines and alleviate
vector-related cost pressures while maintaining product potency
(277, 278). In addition to manufacturing, quality control analyses
and quality assurance systems remain complex and costly, requiring
innovations to facilitate clinical translation/implementation
without compromising safety. Together, non-viral editing plus
closed-system automation constitutes a pragmatic path to
industrialization one that improves scalability and reproducibility
while directly addressing the economic bottlenecks documented
across centers (271, 279-281).

The main objective of this review was to highlight how genetic
engineering of T cells translates our notions of T cell and tumor
biology into therapies. However, cellular engineering of other cell
types has the potential to significantly improve adoptive cancer
immunotherapy. Therapeutic NK cells benefit significantly from
multi-engineering, particularly through the expression of
homeostatic cytokines for expansion and persistence (282),
enabling a vast arsenal of NK-based therapies (reviewed in (282-
284)). Among these, NK-cell and other multiplexed engineered
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immune cells can be derived from induced pluripotent stem cells
(285). Another layer of innovation involves the combination of
engineered T cells with other cell types. For example, data from
several groups suggest that the editing of CD33 in stem cells
enables the use of anti-CD33 CAR T cells to treat acute myeloid
leukemia in the context of AHCT. In this case, both normal
myeloid precursors and leukemia cells express CD33, limiting
the use of CD33-directed therapies. Shielding the transplanted
stem and progenitor normal myeloid cells through the ablation of
CD33 expression enables the normal restoration of myelopoiesis
despite the co-administration of anti-CD33 CAR T cells to treat
residual leukemia cells (286, 287). Hence, advanced therapeutic
products could evolve toward the inclusion of multiple cell types
engineered differently and co-administered. At present, it is
unclear whether the simultaneous or sequential co-infusion of
single-specificity T cells (e.g. CD19 and CD22 CAR T cells) will
be superior or inferior to dual-specificity cellular therapeutics.
Hence, whether multi-engineering of single cells will provide “all
in one” packages to treat more effectively defined cancer types than
combination therapies including one or several immune cell types
carrying single modifications remains to be proven in clinical trials.
Although the combination of several distinct immune cell products
allows for flexibility in treatment schemes, multi-edited T cells may
have an advantage in terms of regulatory compliance (i.e.,
validation of a single product versus several). The number of
concepts and potential cell products to be tested is increasing
and will require carefully designed clinical trials.
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