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Inflammatory skin diseases, including atopic dermatitis, psoriasis, and chronic
spontaneous urticaria, substantially impair patients’ quality of life. Despite
therapeutic advances, current treatments often fail to achieve durable
remission, underscoring the need for more precise interventions. Mast cells
(MCs), traditionally recognized for their roles in IgE-mediated allergic responses,
exhibit marked functional heterogeneity that shapes their pathogenic
contributions to chronic skin inflammation. Recent single-cell and spatial
transcriptomic analyses have identified discrete MC subsets with distinct
inflammatory signatures and tissue-specific distributions, highlighting the
complexity of their regulation within disease-specific microenvironments. A
key mediator of non-IgE-dependent activation is Mas-related G protein—
coupled receptor X2 (MRGPRX2), which engages diverse ligands and triggers
receptor-biased signaling pathways, thereby promoting pathological
neuroimmune interactions. Although MRGPRX2-targeted small molecules and
antibodies have shown preclinical potential, major translational challenges
remain, including the limitations of existing animal models and the lack of
validated biomarkers. This review delineates MC heterogeneity, summarizes
recent insights into MRGPRX2-mediated mechanisms, critically appraises
current precision-targeted therapeutic strategies, and proposes solutions to
overcome translational barriers. It is suggested that integrating advanced
humanized models, longitudinal multi-omics profiling, and standardized
functional assays may accelerate clinical translation and support the
development of MC-targeted precision medicine.
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1 Introduction

According to the Global Burden of Disease Study 2021, skin
diseases rank as the seventh leading cause of disability worldwide
(1). Among these, the global prevalence of atopic dermatitis (AD)
has been estimated at 129 million and continues to rise (2).
Inflammatory dermatoses such as AD, psoriasis (PsO), chronic
urticaria (CU), and its subtype chronic spontaneous urticaria (CSU)
are frequently characterized by refractory pruritus and pain. These
symptoms substantially impair sleep quality, emotional well-being,
and social functioning and are associated with a higher risk of
psychiatric comorbidities, including anxiety and depression (3-5).
Consequently, they represent key contributors to the reduced
quality of life observed in affected individuals. Despite the clinical
availability of second-generation antihistamines, glucocorticoids,
and biologics targeting IL-4Ro. (e.g., dupilumab) or IgE (e.g.,
omalizumab), significant therapeutic limitations persist. Standard-
dose antihistamines demonstrate limited efficacy in CSU, with
approximately 40% of patients failing to achieve symptom control
even at fourfold increased doses (6). Although omalizumab is
effective in a subset of patients, symptom recurrence is common
after treatment discontinuation. The absence of validated
biomarkers to predict relapse risk limits its utility as a stand-
alone option for long-term disease management (6). These
limitations underscore the need for a more comprehensive
understanding of the underlying pathogenesis of inflammatory
dermatoses. Recent investigations have therefore renewed focus
on mast cells (MCs), which are increasingly recognized as central
effector cells with substantial functional heterogeneity in the context
of skin inflammation.

Recent advances in single-cell RNA sequencing (scRNA-seq)
and spatial profiling technologies have revealed pronounced
phenotypic and functional heterogeneity among MCs within the
cutaneous microenvironment. This heterogeneity is reflected in the
variable expression of inflammatory mediators (e.g., cytokines,
chemokines, proteases), differential responsiveness to stimuli,
distinct tissue localization, and migratory behavior (7). These
insights have provided a conceptual foundation for exploring
non-IgE-mediated activation pathways in skin inflammation. MC
activation is now recognized to extend beyond the classical IgE-
FceRI axis, involving diverse receptor interactions and complex
intracellular signaling networks. Among these, Mas-related G
protein—coupled receptor X2 (MRGPRX2) has been identified as
a central mediator of non-IgE-dependent MC activation, due to its
uniquely negatively charged ligand-binding pocket. MRGPRX2 is
critically implicated in drug-induced pseudoallergic reactions, also
referred to as atypical hypersensitivity, especially those triggered by
neuromuscular blocking agents and fluoroquinolone antibiotics, as
well as in neurogenic pruritus (8). Recent progress in high-
resolution structural analyses (e.g., cryo-electron microscopy) and
the development of selective small-molecule antagonists has
established a mechanistic basis for MRGPRX2-targeted precision
therapies. However, most current studies rely on rodent models and
short-term pharmacological evaluations. The absence of cross-
species validation—particularly in non-human primates and
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humanized systems—continues to limit the assessment of long-
term efficacy, safety, and disease context relevance. These evidence
gaps present significant obstacles to the clinical translation of
MRGPRX2-targeted interventions.

2 Methodology

This narrative mini-review incorporated systematic elements to
ensure comprehensive coverage and critical integration. Literature
searches were conducted in PubMed and Web of Science and
supplemented by targeted queries in Google Scholar, covering
publications from 2017 to 2025. Search terms included

» o«

combinations of “mast cells,” “functional heterogeneity,”

“MRGPRX2,” “neuroimmune crosstalk,” “chronic spontaneous

» o« » «

urticaria,” “atopic dermatitis,” “allergic contact dermatitis,” and
“precision medicine.” Boolean operators (e.g., AND, OR) were
applied to optimize search breadth and relevance. Only peer-
reviewed original articles and reviews addressing mechanistic
insights or translational relevance were included. Non-peer-
reviewed, non-English, or thematically unrelated publications
were excluded. The primary objective was to synthesize emerging
evidence on mast cell heterogeneity and MRGPRX2-associated
pathways and to position these findings within evolving

frameworks for precision-targeted therapy.

3 Functional heterogeneity of MCs in
cutaneous inflammation

MCs are tissue-resident immune cells of bone marrow origin
(9). They are traditionally categorized into two primary subtypes
based on granule protease expression: MCr (tryptase” chymase™),
predominantly found in cutaneous connective tissue, and MCr
(tryptase” chymase’), primarily localized to mucosal compartments
(10, 11).

However, this dichotomous classification does not adequately
capture the phenotypic plasticity and functional heterogeneity of
MCs under inflammatory conditions. Recent single-cell
transcriptomic analyses have delineated six high-confidence MC
subsets (MC1-MC6) (12). Among them, MC2 exhibits a pro-
inflammatory profile, characterized by high expression of IL-13
and prostaglandin-endoperoxide synthase 2, whereas MC4 is
enriched for genes such as vascular endothelial growth factor A
(VEGFA), colony-stimulating factor 1 (CSF1), interferon gamma
receptor 1 (IFNGRI1), and interleukin-18 receptor 1 (IL18R1),
suggesting roles in angiogenesis and immune regulation (12).

Functional diversity becomes more pronounced in disease-
specific contexts. Transcriptomic analysis has revealed an
accumulation of cathepsin B-positive MCs (CTSB* MCs) in
psoriatic lesions, whose density correlates positively with Psoriasis
Area and Severity Index (PASI) scores (13). In autoimmune
blistering diseases such as bullous pemphigus, VEGFA" MCs,
which express VEGFA, CXCL8, and C5ARI1, have been
implicated in vascular activation and leukocyte recruitment. In
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contrast, TNF" MCs, enriched in stress-responsive genes such as
TNF, HSPA1B, and FOS, are thought to mediate tissue damage and
amplify inflammatory cascades (14). Collectively, these findings
underscore the subtype specificity, spatial heterogeneity, and
microenvironment-driven phenotypic remodeling of MCs across
cutaneous inflammatory disorders. Nonetheless, current
nomenclature systems remain inconsistent, and spatial
transcriptomic approaches lack methodological standardization.
Cross-validation using multicenter datasets and harmonized
analytical pipelines is urgently needed. Developing high-
throughput, spatiotemporally resolved platforms remains a critical
challenge in the study of chronic inflammatory skin diseases.

The functional specialization of MC subpopulations is closely
associated with their tissue-specific localization. In human skin, the
MCs express high levels of MRGPRX2, which is activated by
substance P (SP) to mediate non-IgE-dependent neurogenic
pruritus (15). Under chronic inflammatory conditions, MCs co-
localize with sensory nerve terminals to form tightly integrated
neuroimmune units that contribute to feedback regulation (15).Ina
contact hypersensitivity (CHS) model in C57BL/6 mice, MCs have
been shown to enhance CD8" T cell activation via MHC class I-
restricted antigen presentation, while concurrently limiting effector
responses through PD-L1-mediated suppression (16). This dual
role—promoting cytotoxic responses while restraining excessive
inflammation—illustrates the complex pro-inflammatory and
immunomodulatory capacities of MCs in cutaneous immunity.

Beyond phenotypic diversity, MC function is modulated by
tissue-specific microenvironmental signals and epigenetic
mechanisms. Proteomic analyses have demonstrated that MCs
from various tissues (e.g., skin and adipose tissue) share core
lineage markers, including KIT and CPA3. In contrast, local cues
induce differential protein expression, including fatty acid-binding
protein 4 (FABP4) and MRGPRX2, which are selectively expressed
in adipose tissue and skin, respectively (17). Interleukin-33 (IL-33)
amplifies MC activation through FceRI and MRGPRX2 signaling
cascades—primarily p38/NF-xB and ERK/PI3K—thereby
enhancing mediator release, prolonging kinase activation, and
dynamically tuning activation thresholds according to
microenvironmental conditions (18). Epigenetic regulation further
contributes; DNMT3A-mediated DNA methylation suppresses
inflammatory activity (19), while histone deacetylase (HDAC)
inhibitors such as valproic acid attenuate FceRI expression (20)
and reduce IL-6 production (21). Additionally, deletion of the solute
carrier Slc37a2 disrupts intracellular glucose-6-phosphate (G6P)
homeostasis, impairs mTORCI1-dependent granule protein
synthesis, and limits regranulation capacity (22).

Collectively, these findings support a “nature-nurture” model
in which MC phenotypes are determined by intrinsic
developmental programs shaped by extrinsic neural, immune,
metabolic, and epigenetic inputs (23). However, most available
data are derived from animal or in vitro models. The lack of
longitudinal lineage tracing and human-specific functional
validation remains a significant barrier to the clinical translation
of these mechanistic insights into MC-targeted precision therapies.
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4 MRGPRX2-mediated non-IgE
activation and its central role in
cutaneous inflammation

MRGPRX2, a central mediator of non-IgE-dependent MC
activation, contributes to chronic cutaneous inflammation
through its broad recognition of cationic ligands, including SP,
the host-defense peptide LL-37, and pharmacological agents such as
morphine (24). Cryo-EM analysis revealed shallow, solvent-
accessible pockets that accommodate structurally and
electrostatically diverse ligands. Key acidic residues (Glul64,
Aspl84, Asp254) mediate electrostatic interactions, while
hydrophobic contacts enhance stability. This conformational
flexibility underlies its broad ligand specificity (25). Upon
activation, MRGPRX2 triggers G protein signaling and recruits f3-
arrestin, leading to receptor internalization. This serves as a
regulatory mechanism to modulate receptor responsiveness (26).
Notably, ligand-specific biased signaling has been observed,
whereby distinct ligands preferentially engage divergent
downstream pathways. For example, Icatibant and AG-30/5C
function as G protein-biased agonists that induce MC
degranulation via MRGPRX2, without engaging B-arrestin
recruitment or triggering receptor internalization (27). In
contrast, compound 48/80 and codeine function as balanced
agonists, concurrently triggering both G protein-and B-arrestin-
mediated pathways and promoting receptor desensitization
(Figure 1) (28). This phenomenon of conformational-functional
coupling, in which ligand-induced conformational states determine
specific signaling outputs, may underlie the divergent biological
effects of individual ligands (29). However, the relevance of these
mechanisms within inflamed tissues remains to be clarified through
integrated structural and functional profiling.

To elucidate the pathophysiological relevance of MRGPRX2
signaling, animal models have been employed to characterize its
functional roles. Mas-related G-protein-coupled receptor member
B2 (MrgprB2), the murine ortholog of human MRGPRX2, mediates
non-histaminergic itch in models of allergic contact dermatitis
(ACD). In MrgprB2-deficient mice, contact allergen-induced
scratching is markedly attenuated, implicating this receptor in
hapten-induced pruritus (30, 31). Importantly, although MrgprB2
is the functional murine ortholog of human MRGPRX2, the two
receptors display markedly different sensitivities to SP, with a 360-
fold difference in ECs, values (mouse: 54 uM; human: 152 nM) (32).
These findings underscore the importance of cautious
interpretation of rodent data and highlight the need for validation
in humanized models to ensure translational relevance in drug
screening and therapeutic development targeting MRGPRX2.

Beyond species-specific divergence, MRGPRX2 signaling is
subject to dynamic modulation by the inflammatory
microenvironment. In psoriatic lesions, MCs exhibit increased
spatial proximity to CGRP"' nerve fibers, accompanied by
upregulated expression of TACRI (neurokinin-1 receptor),
indicating enhanced sensitivity to neuropeptide-mediated
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FIGURE 1

Biased signaling pathways of MRGPRX2 in mast cell responses. Three distinct modes of MRGPRX2-biased agonism are depicted: (A) G protein-
biased activation: Ligands such as AG-30/5C and Icatibant preferentially activate G protein-mediated signaling. Gaq-PLCB-IP3/DAG activation
induces intracellular Ca2+ influx and mast cell degranulation, leading to the release of histamine, R-hexosaminidase, and other proinflammatory
mediators that trigger neurogenic inflammation and pruritus. The Gai-PI3K-AKT pathway promotes chemotaxis by reducing intracellular cAMP levels
through inhibition of adenylate cyclase. Suppression of PKA further enhances Ca2+ influx and amplifies Gag-dependent degranulation. (B) -
arrestin-biased activation: Agonists such as SP preferentially recruit 3-arrestins, facilitating receptor conformational changes and internalization.
Internalized receptors are either degraded via lysosomes or recycled to the plasma membrane for reactivation. (C) Balanced agonism: Codeine and
C48/80 simultaneously activate G protein-and B-arrestin—-mediated pathways, resulting in degranulation, chemotaxis, and receptor internalization.
These responses are implicated in chronic pruritus and cutaneous inflammation. PLCB, Phospholipase C beta ; IP3, Inositol 1,4,5-trisphosphate; DAG,
Diacylglycerol; AC, Adenylate Cyclase; cAMP, Cyclic Adenosine Monophosphate; PKA, Protein Kinase A; GRy, G beta-gamma subunit; PI3K,
Phosphoinositide 3-Kinase; PIP3, Phosphatidylinositol (3,4,5)-trisphosphate; AKT, Protein Kinase B; SP, Substance P; C48/80, Compound 48/80.
Symbols: 1 increase; | decrease; — activation; - inhibition. The figure was created in https://BioRender.com.

signaling (13). Similarly, in AD, engagement of MRGPRX2 by SP
induces tryptase release and triggers PAR-2-dependent, histamine-
independent neurogenic inflammation (33, 34). This excitatory
pathway is negatively regulated by both cytokine-mediated and
neuromodulatory mechanisms. Chronic exposure to IL-33
suppresses MRGPRX2 transcription and surface expression in
MCs, suggesting a cytokine-driven feedback loop that attenuates
receptor responsiveness under persistent inflammatory conditions
(35). Concurrently, the endocannabinoid system imposes an
additional inhibitory influence: Cannabinoid receptor type 1
(CB1) and CB2 receptors, expressed on MCs and peripheral
nerve terminals, dampen neuronal excitability, neuropeptide
release, and mast cell degranulation, thereby constituting an
intrinsic homeostatic mechanism that restrains sustained
MRGPRX2-dependent activation (34). This equilibrium between
excitatory and inhibitory neuroimmune signals is further perturbed
by microbial stimuli. In a murine model of AD, Staphylococcus
aureus d-toxin induces IL-4-dependent, MRGPRX2-mediated [3-
hexosaminidase release from MCs in an IgE-independent manner
—an effect abrogated by the selective MRGPRX2 antagonist QWF
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(36). These observations implicate microbial dysbiosis as a driver of
heightened MRGPRX2-dependent activation, linking epithelial
barrier disruption to neuroimmune dysregulation and non-
histaminergic itch.Notably, although disease-specific triggers—
such as neuropeptide sensitization in PsO, microbial dysbiosis in
AD, and hapten-induced pruritus in ACD—differ in etiology, these
mechanisms converge on a shared MRGPRX2-neuroimmune axis.
This common pathway underscores the pivotal role of MRGPRX2
in chronic cutaneous inflammation and supports its therapeutic
targeting in histamine-refractory dermatoses.

5 Recent advances in precision-
targeted therapies for MCs
5.1 Small molecule targeting strategies

Small molecules have emerged as a promising approach for

modulating IgE-independent MC activation due to their favorable
tissue distribution, oral bioavailability, and structural tunability
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(37). Several MRGPRX2-targeted agents have demonstrated
preclinical activity and translational potential. EP262, the first
selective oral MRGPRX2 antagonist to enter Phase II clinical
trials, inhibited MC degranulation in preclinical models in a dose-
dependent manner. Phase I trials reported a favorable safety profile,
with no dose-limiting toxicity and only transient headache and mild
elevations in alanine aminotransferase (ALT). EP262 is currently
being evaluated in ongoing Phase II trials in patients with CSU
(CALM-CSU, NCT06077773), chronic inducible urticaria
(NCT06050928) and AD (NCT06144424) (38). GEI1111, a small
molecule identified through structure-based optimization,
selectively inhibited MRGPRX2-mediated degranulation and
attenuated the release of monocyte chemoattractant protein-1
(MCP-1) and prostaglandin D, (PGD,) (39). C9, the first
reported MRGPRX2-selective inverse agonist, effectively blocked
both basal and ligand-induced G protein/f-arrestin-dependent
signaling and inhibited degranulation induced by SP, PAMP-12,
and rocuronium in primary human MCs and LAD2 cells (26).
Notably, C9 showed minimal cross-reactivity with FceRI or murine
MrgprB2, confirming high target specificity. PSB-172656 has been
shown to selectively inhibit MRGPRX2-mediated MC
degranulation without affecting IgE-FceRI-dependent responses
(40). Compound B (GSK) inhibited SP-induced tryptase and
histamine release in human skin MCs and demonstrated anti-
pruritic efficacy in a humanized MRGPRX2 mouse model (41).
Clarithromycin, a clinically approved macrolide, was found to
modulate the FceRI/MRGPRX2-Ca®"/MAPK axis via activation
of the inhibitory receptor CD300f, supporting its potential for
repurposing in MC-driven disorders (15, 42).

In parallel, several histamine H, receptor (H,4R) antagonists
have shown dual anti-pruritic and anti-inflammatory effects,
although clinical development remains limited (43). JNJ-39758979
demonstrated a trend toward itch reduction in a Phase Ila trial for
AD, but development was discontinued due to off-target
neutropenia (44). ZPL-3893787 achieved a 50% reduction in
Eczema Area and Severity Index (EASI-50) but did not meet
statistical significance for itch improvement (45). Izuforant (LEO
152020), a next-generation H4R antagonist, exhibited favorable
pharmacokinetics and dose-dependent eosinophil suppression in
Phase I trials (46). However, in a randomized, double-blind Phase
IIa study for cholinergic urticaria (NCT04853992), it failed to meet
the primary endpoint, with significance observed only in the
Physician Global Assessment of Severity (PGA-S) (47).

Despite promising early-phase data, the pharmacodynamic
mechanisms of these agents remain incompletely characterized,
particularly regarding the balance between direct receptor
antagonism and downstream immunomodulation. Moreover, current
approaches do not leverage the functional heterogeneity of MCs to
achieve subpopulation-specific targeting—for example, the previously
mentioned histone B" MCs in PsO or VEGFA™ MCs in aspergillosis.
Most agents also lack long-term safety data. The observed dissociation
between clinical endpoints—such as improvement in EASI without
corresponding itch relief—highlights the need for more mechanistically
informative biomarkers. These limitations collectively hinder the
clinical translation of MC-targeted precision therapies.
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5.2 Antibody-based therapies and
nanodelivery platforms

Antibody-based therapies targeting sialic acid-binding
immunoglobulin-like lectin 8 (Siglec-8) and Siglec-6 represent
both a clinically validated approach and a promising emerging
strategy for MC-directed interventions. Siglec-8 is an inhibitory
receptor predominantly expressed on the surface of human MCs
and eosinophils. Its selective activation induces eosinophil
apoptosis and suppresses MC degranulation, thereby exerting
anti-inflammatory and immunomodulatory effects (48, 49).
Lirentelimab (AK002), a humanized monoclonal antibody against
Siglec-8, has demonstrated clinical efficacy in a randomized,
placebo-controlled Phase II trial for eosinophilic gastritis, as well
as in an open-label proof-of-concept study involving patients with
antihistamine-refractory chronic spontaneous and inducible
urticaria (50, 51). The agent exhibited a generally favorable safety
profile, with mild to moderate infusion-related reactions reported in
approximately 60% of participants, and no serious immunotoxicity
was observed (50). However, the frequency of infusion reactions
underscores the need for improved immunogenicity and
delivery optimization.

In contrast, Siglec-6 has emerged as a promising target for MC
modulation with a distinct molecular mechanism. Unlike Siglec-8,
Siglec-6 forms broader signaling complexes with both the o and 3
subunits of the high-affinity IgE receptor (FceRI) and directly
interacts with the mature form of the stem cell factor receptor
(KIT), thereby suppressing stem cell factor (SCF)-induced MC
activation (52). This expanded protein interaction network enables
Siglec-6 to regulate activation pathways beyond immune receptor
tyrosine-based activation motif (ITAM)-dependent signaling,
particularly the KIT/SCF axis (52). These mechanistic features
suggest that Siglec-6 may offer broader regulatory capacity and
enhanced target specificity, providing a rationale for the
development of more selective therapeutic strategies.

To overcome the limitations of antibody delivery in peripheral
tissues such as the skin—including poor tissue penetration, off-
target effects, and systemic toxicity—nanodelivery platforms are
increasingly being investigated to enhance the precision and efficacy
of MC-targeted therapies. A recent study published in Nature
Nanotechnology reported the development of a bispecific Siglec-
6/FceRIa. antibody-coated nanoparticle system (53). This
engineered platform significantly reduced CD63 surface
expression and degranulation in a humanized MC model,
providing functional validation of Siglec-6 as a potent inhibitory
target. These findings also underscore the potential of nanocarrier-
based systems to enable tissue-specific targeting and functional
modulation of MCs.

6 Prospects for precision medicine
research on MCs

In inflammatory skin diseases, MCs demonstrate substantial
subpopulation heterogeneity, diverse activation mechanisms, and
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complex therapeutic response profiles. Beyond their classical role as
IgE-dependent effector cells, MCs are increasingly recognized as
context-dependent immunomodulators that coordinate
neuroimmune interactions and regulate sensory pathways
associated with pruritus, pain, and inflammation. Nonetheless,
several key barriers hinder clinical translation. These include the
lack of dynamic tools for identifying MC subsets, incomplete
mapping of regulatory signaling networks, limited translatability
of current animal models, and inconsistent standards for biomarker
detection across studies. Future efforts should aim to systematically
address these challenges to establish scalable and clinically
actionable MC-targeted precision strategies.

6.1 From static classification to dynamic
trajectory analysis

Current investigations of MCs predominantly rely on tissue samples
collected at single time points, limiting the ability to capture dynamic
transitions in MC phenotypes during the initiation, progression, and
resolution of inflammation. For instance, a neurogenic inflammatory
microenvironment was simulated by continuously supplementing
cultures with SP, resulting in the gradual enrichment of MRGPRX2"
MCs in vitro (10). This observation indicates that microenvironmental
cues dynamically regulate MC phenotypes. In pathological settings,
single-cell transcriptomics, RNA velocity, and spatial transcriptomics
have been applied to delineate trajectories from quiescent to VEGFA™
activated MC subpopulations. Activated MCs were predominantly
localized at the tumor-normal interface and colocalized with IL1B*
macrophages, indicating that local inflammatory cues can drive in situ
phenotypic reprogramming. These observations illustrate that MC
phenotypes are not only spatially heterogeneous but also subject to
dynamic modulation within disease-specific microenvironments,
highlighting the need for spatiotemporally resolved tracking strategies
in future research (54). Future studies should utilize technologies with
high spatial and temporal resolution to comprehensively map MC
subpopulation dynamics. Promising strategies include spatial
transcriptomic platforms such as multiplexed error-robust fluorescence
in situ hybridization (MERFISH) and expansion microscopy (ExM),
along with in vivo optogenetic tools, to construct a spatiotemporal-
functional framework for delineating MC state transitions. Furthermore,
integrating longitudinal clinical cohorts with multi-omics datasets—
including transcriptomic, epigenomic, and proteomic layers—may
facilitate the identification of key environmental regulators (e.g.,
Slc37a2, TET2) involved in MC phenotypic remodeling (22, 55). Such
approaches are essential for elucidating how genetic predisposition and
environmental exposures interact to shape MC functional plasticity in
chronic inflammatory conditions.

6.2 Mechanistic framework for signaling
pathway intervention

MRGPRX2, a multifunctional G protein-coupled receptor
(GPCR), activates both G protein-dependent signaling and B-
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arrestin-mediated endocytosis (29). This bifurcated signaling profile
provides opportunities for selective therapeutic modulation while
complicating pathway-specific regulation (26). Future research
combining cryo-electron microscopy and molecular dynamics
simulations is expected to elucidate the structural determinants that
link ligand binding to downstream signaling outcomes, thereby
facilitating the rational design of biased ligands. A naturally
occurring missense variant of MRGPRX2 (V282M) has been shown
to exhibit a loss-of-function phenotype for G protein-mediated
degranulation while retaining constitutive 3-arrestin activity, which is
significantly inhibited by the inverse agonist C9 (26). However, their
impact on antagonist binding and pharmacodynamic responses
remains undefined. A multicenter genetic cohort study is warranted
to establish correlations between mutational profiles and therapeutic
responses. These efforts will be instrumental in developing a mutation—-
function atlas to guide individualized treatment strategies.

6.3 Establishing a closed-loop framework
for high-fidelity experimental and
functional evaluation

Establishing a high-fidelity humanized experimental model is
essential for accurately delineating the role of the human MRGPRX2
pathway in MC-mediated pathological responses. Current platforms—
including MRGPRX2 knock-in (KI) mice generated via genetic
modification (56), bone marrow-derived mast cells (BMMCs)
ectopically expressing the human receptor (9), and humanized
models derived from hematopoietic stem cells (57) —only partially
replicate native human MRGPRX2 functionality. Each exhibits critical
limitations: KI mice differ in ligand sensitivity and signal transduction
fidelity; BMMCs lack appropriate tissue distribution and maturation
profiles; and hematopoietic stem cell-derived models often show
restricted receptor expression in specific tissues, limiting mechanistic
extrapolation. Recent insights further underscore the complexity of
modeling MRGPRX2-mediated signaling in human dermatoses such
as AD and ACD. In these contexts, receptor activity is influenced not
only by neuropeptides but also by microbial metabolites and chronic
cytokine exposure—factors that are challenging to recapitulate in
conventional rodent systems (31, 58). These multifactorial inputs
modulate MRGPRX2 expression and alter downstream inflammatory
mediator profiles, thereby limiting the extrapolative validity of existing
preclinical models. To overcome these constraints, future experimental
models should more faithfully recapitulate the phenotypic and
functional characteristics of human MCs, thereby enhancing their
translational applicability to clinical research. One strategy involves
CRISPR/Cas9-mediated generation of humanized MRGPRX2 knock-
in mouse models, which preserve native tissue architecture while
enabling in vivo assessment of human-specific signaling (59).
Alternatively, MCs derived from induced pluripotent stem cells
(iPSCs) and co-cultured with three-dimensional skin or intestinal
organoids (60) can simulate immune-tissue interactions, allowing for
the dynamic evaluation of MC responses to environmental stimuli. In
addition, emerging MC-microbiota co-culture models have provided
insights into the microbiome-MC axis in chronic inflammation and
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immune homeostasis, offering platforms for the development of
complex comorbidity models.

Despite advances in model fidelity, the evaluation of MC-targeted
interventions remains limited by the lack of standardized functional
metrics and validated detection methods. MRGPRX2 expression and
serum levels of its ligands, such as SP, have been proposed as potential
biomarkers of MC activation (38). Emerging evidence indicates that
serum MRGPRX2 levels positively correlate with disease activity
(UAS?) in treatment-naive patients with CSU, and elevated SP levels
have also been observed in CSU cohorts (61, 62). However, substantial
variability in sample types (e.g., biopsy vs. microdialysate) and assay
platforms (e.g., ELISA vs. Simoa) limits cross-study comparability.
Functional MRGPRX2 variants, including gain-of-function mutations
such as N16H, N62S, and S313R—identified in patients with
hypersensitivity to quinolones and vancomycin—have been shown to
enhance MC activation in a drug-specific manner (63). These findings
highlight the role of MRGPRX2 genetic variability in modulating
pharmacodynamic responses to specific drugs and underscore the
need for mechanism-based diagnostic strategies to predict and
manage hypersensitivity reactions.

A unified functional assessment system is therefore warranted,
incorporating metrics such as degranulation kinetics, cytokine profiles,
signaling activation efficiency, and clinical endpoints (e.g., pruritus
severity and quality-of-life indices) to enhance the translational
coherence between basic and clinical research. Strategically, these
efforts should be aligned with the development of multicenter
prospective cohorts and dermatology biobanks, enabling longitudinal
monitoring of therapeutic efficacy, safety, and reversibility. Ultimately,
translational pipelines must evolve beyond single-model, single-marker
paradigms toward multi-scale, scenario-specific validation systems that
bridge mechanistic insight with clinical outcomes and support the
implementation of personalized MC-targeted therapies.
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