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Background: Glioma, the most prevalent primary brain tumor, exhibits
dysregulated ribosome biogenesis closely linked to malignant behavior.
However, the role of ribosome biogenesis in glioma and prognosis remains
incompletely understood. This study aimed to construct a molecular signature
based on ribosome biogenesis-related genes to predict patient survival and
therapeutic response in glioma.

Methods: Utilizing The Cancer Genome Atlas (TCGA) glioma cohort data, we
constructed a ribosome biogenesis-related genes (RBRGs) signature using
LASSO regression and multivariate Cox analyses, and subsequently validating
its prognostic value in independent cohorts. We systematically evaluated the
signature’s associations with clinicopathological features, tumor immunity,
genomic instability, tumor stemness, and therapeutic sensitivity. The
oncogenic role of the key gene UTP20 was experimentally validated in U87
and U251 glioma cell lines through MTS, colony formation, and transwell assays.
Results: We established a four-gene RBRGs signature (NOP10, UTP20, SHQ1, and
PIH1D2). Elevated RBRGs score significantly correlated with shortened overall
survival and adverse clinical characteristics, including advanced age, high WHO
grade, IDH wild-type status, and absence of 1p/19g codeletion. A nomogram
incorporating the RBRGs score demonstrated excellent predictive performance
(C-index = 0.841). RBRGs-associated genes were enriched in immune regulatory
pathways. The high-risk group exhibited increased infiltration of
immunosuppressive cells (macrophages, myeloid-derived suppressor cells
[MDSCs], and cancer-associated fibroblasts [CAFs]), upregulation of
immunosuppressive checkpoints, and resistance to immunotherapy.
Furthermore, the RBRGs signature correlated with genomic alterations,
heterogeneity, tumor stemness, and therapeutic sensitivity. Crucially, UTP20
knockdown significantly suppressed glioma cell proliferation and invasion in vitro.
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Conclusion: The RBRGs signature was successfully developed and validated as
an independent prognostic biomarker and predictor of therapeutic response in
glioma, highlighting its extensive association with tumor heterogeneity.
Furthermore, this study identified UTP20 as a key oncogenic driver that
facilitates glioma progression.

glioma, ribosome biogenesis, UTP20, prognostic outcome, therapeutic susceptibility

Introduction

Gliomas, the most common primary malignant tumors of the
central nervous system, originate from neuroglial precursor cells and
can differentiate into multiple subtypes, including astrocytomas,
oligodendrogliomas, ependymomas, and oligoastrocytomas (1).
According to the molecular-histopathological stratification defined
by the WHO 2021 classification framework for central nervous
system tumors (CNS5), gliomas are categorized into low-grade
(WHO grades I-II) and high-grade (III-IV) types. Among them,
glioblastoma (GBM, grade IV) is the most aggressive and lethal
phenotype, characterized by its ability to infiltrate brain tissue by
crossing the blood-brain barrier, and it demonstrates significant
resistance to treatment (2). Paradoxically, despite revolutionary
advancements in contemporary multimodal neuro-oncological
approaches, including surgical resection, targeted molecular
therapies, and radiation and chemotherapy regimens, the five-year
overall survival rate for patients with high-grade gliomas remains
exceedingly low (with the five-year overall survival rate for
glioblastoma patients being less than 10%) (3, 4). This underscores
the urgent need for the identification of novel molecular biomarkers
and the establishment of molecularly stratified prognostic
frameworks to overcome current therapeutic limitations.

The emergence of multi-omics technologies, particularly single-
cell transcriptomics and spatial genomics, has been widely applied
in cancer treatment prediction, facilitating not only enhanced
survival prediction accuracy via machine learning-optimized
algorithms but also the identification of glioma-specific
therapeutic targets (5, 6). Importantly, these models have become
indispensable for quantifying dynamic tumor-immune interactions
and predicting responses to immune checkpoint blockade, thereby
accelerating the transition from empirical therapies to molecularly
stratified treatment strategies in neuro-oncology.

Ribosome biogenesis, an evolutionarily conserved cellular
program coordinating ribosomal RNA transcription, post-
transcriptional processing, and ribosomal subunit assembly,
serves as a master regulator of cellular proliferative homeostasis.
Its dysregulation is now recognized as a hallmark of neoplastic
transformation (7). Tumor cells exploit this machinery via
pathological hyperactivation, as exemplified in glioblastoma by
RPS6-driven enhancement of cancer stemness programs that
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promote invasive progression and therapeutic resistance (8).
Mechanistically, m6A-related RNA modifiers and serine/arginine-
rich splicing factors cooperatively boost ribosome biogenesis,
establishing feedforward pathways that perpetuate treatment
resistance in glioma subtypes (9-11). Despite these critical
insights into gliomagenesis, systematic investigation of ribosome
biogenesis-related genes (RBRGs) as clinically actionable prognostic
biomarkers in glioma remains largely unexplored.

Leveraging the comprehensive multi-omics datasets from The
Cancer Genome Atlas (TCGA) consortium, this investigation
established a robust prognostic signature centered on ribosome
biogenesis-related genes, identifying four pivotal biomarkers
(NOP10, UTP20, SHQI, and PIH1D2). These genes exhibited
significant transcriptional upregulation in glioma tissues
compared to normal brain parenchyma. Patients classified into
the high-risk group showed markedly poorer clinical outcomes,
underscoring the prognostic significance of dysregulated ribosome
biogenesis in glioma pathobiology. Subsequent integrative analyses
revealed strong associations between the RBRGs score and distinct
features of the tumor immune microenvironment (TIME),
particularly the infiltration patterns of tumor-associated
macrophages (TAMs), myeloid-derived suppressor cells (MDSCs),
and cancer-associated fibroblasts (CAFs), highlighting its potential
clinical utility in predicting sensitivity to immunotherapy.
Furthermore, substantial divergences in genomic alteration
landscapes and pharmacological sensitivity profiles were identified
between the defined RBRGs subgroups, providing a novel
theoretical framework for advancing personalized precision
medicine approaches in glioma management.

Materials and methods
Data source

Transcriptomic profiles and corresponding clinical prognostic
records for glioma patients were curated from comprehensive
public repositories, including The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov/), the Chinese Glioma Genome Atlas
(CGGA) (http://www.cgga.org.cn/), and the Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) (Table 1).
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TABLE 1 Details of the cohorts used in this study.

Database = Function Total

TCGA Training set tumor (n=765), normal (n=5)
CGGA301 Prognostic validation set tumor (n=301)

CGGA325 Prognostic validation set tumor (n=325)

GSE43378 Prognostic validation set tumor (n=50)

GSE16011 Expression validation set tumor (n=276), normal (n=8)
PRJNA482620 | Prognostic validation set tumor (n=34)

GSE91061 Prognostic validation set tumor (n=109)

A cohort of 331 ribosome biogenesis-related genes, identified based
on a prior publication (12) was subsequently analyzed for their
association with tumor characteristics (Supplementary Table S1).

Derivation of a ribosome biogenesis-
related genes signature

Utilizing the TCGA glioma cohort, a prognostic signature based
on ribosome biogenesis-related genes was constructed through an
integrated analytical framework. Initial survival screening via the R
package “survival” identified prognosis-associated genes, followed
by least Absolute Shrinkage and Selection Operator regression using
R package “glmnet” applied to RBRG-overlapping candidates to
mitigate overfitting. Subsequent univariate and multivariate Cox
regression analyses, conducted using the R “survival” package,
refined the model parameters, establishing a multivariate-derived
RBRGs signature. The chromosomal positions of the four core
RBRGs (NOP10, UTP20, SHQI1, and PIHID2) were visualized
using R package “RCircos”, and inter-gene correlations were
assessed through Spearman analysis implemented via R package
“circlize”. Patients were classified into RBRGs-high and -low groups
based on the median RBRGs score. Risk stratification and predictive
accuracy were evaluated using risk factor scatter plots generated
with R package “ggplot2”, Kaplan-Meier survival analysis
performed with R packages “survminer” and “survival”, and time-
dependent receiver operating characteristic (ROC) curves
constructed using R packages “timeROC” and “ggplot2”.

Validation of the RBRGs signature was systematically
conducted across independent cohorts. Differential expression
analysis of the four core RBRGs (NOP10, UTP20, SHQI, and
PIH1D2) and RBRGs score in glioma versus normal brain tissue
was first confirmed in TCGA and GSE16011 transcriptomic
datasets. The prognostic robustness of the multivariate-derived
RBRGs was subsequently assessed in three independent glioma
cohorts (CGGA301, CGGA325, and GSE43378) through three-
tiered analytical validation: (1) risk factor scatter plots, (2)
Kaplan-Meier survival estimation with log-rank testing, and (3)
time-dependent ROC curve analysis quantifying predictive
accuracy at multiple time points, with all methods implemented
as previously described.
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Clinical relevance of the RBRGs signature
and construction of nomogram

The clinical relevance of the RBRGs signature was investigated
through stratified analysis of RBRGs distributions across key
clinicopathological variables, including gender, age, WHO grade,
IDH mutational status, and 1p/19q codeletion status, within the
TCGA and CGGA693 glioma cohorts. A prognostic nomogram was
established by integrating multiple variables, including the RBRGs
score, age, WHO grade, IDH mutation status, and 1p/19q
codeletion status, using the TCGA cohort via the SangerBox
platform (http://vip.sangerbox.com/), thereby enabling
individualized survival prediction in glioma patients. Nomogram
calibration was evaluated by comparing observed and predicted
survival probabilities, while dynamic predictive accuracy over time
was assessed using time-dependent ROC analysis implemented via
R packages “timeROC” and “ggplot2”.

Functional enrichment analysis

Functional annotation of the RBRGs signature was performed
through integrated transcriptomic profiling of TCGA glioma
cohorts, stratified by the median RBRGs score, while retaining
genes with an expression level 210 counts in at least 10% of the
samples. Differential gene expression analysis between RBRGs-high
and -low groups was conducted using the R package “DESeq2”,
generating false discovery rate (FDR)-adjusted significant
differentially expressed genes (DEGs). The RBRGs-associated
differentially expressed genes (DEGs) were subjected to Gene
Ontology (GO) enrichment analysis using the R package
“clusterProfiler”, with gene identifier conversion performed via R
package “org.Hs.eg.db”. Functional relevance was quantified
through Z-score calculations using R package “GOplot”, and the
results were visualized as multi-panel bar and circle plots generated
with R package “ggplot2”. Complementary pathway-level insights
were derived via gene set enrichment analysis (GSEA) using
hallmark gene sets curated from the molecular signatures
database (MSigDB) Collections (https://www.gsea-msigdb.org/
gsea/msigdb/); enrichment statistics computed by R package
“clusterProfiler” were rendered as publication-quality plots
through R package “ggplot2”.

Tumor microenvironment analysis

Comprehensive characterization of the glioma immune
microenvironment was performed through multi-algorithmic
deconvolution of TCGA transcriptomes. Immune cells infiltration
landscapes were quantified using the CIBERSORTx (Cell-type
Identification By Estimating Relative Subsets Of RNA Transcripts,
extended version) (https://cibersortx.stanford.edu/) platform with
LM22 reference matrix, revealing differential abundances of 22
leukocyte subsets between RBRGs-stratified groups. Concurrently,
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correlations between the four core RBRGs (NOP10, UTP20, SHQ1,
and PIH1D2) and immune fractions were established. The tumor
immune dysfunction and exclusion (TIDE) framework further
delineated tumor immune evasion features through comparative
assessment of myeloid-derived suppressor cells (MDSCs) and
cancer-associated fibroblasts (CAFs) distributions. Stromal and
immune compartmentalization was objectively measured via
ESTIMATE scores, followed by correlation analysis with the four
core RBRGs. Predefined immune subtypes underwent Kaplan-
Meier survival validation to confirm prognostic stratification
utility (13). Single-cell resolution of the four core RBRGs
expression was achieved by interrogating the GSE131928 cohort
through tumor immune single-cell hub 2 (TISCH2) (http://
tisch.comp-genomics.org/), mapping cell type-specific
transcriptional patterns across the glioma ecosystem.

Immunotherapy predictive capability
analysis

Predictive utility of the RBRGs signature for immunotherapy
response was systematically evaluated through multi-platform
interrogation of glioma immunity networks. The seven stages of
the cancer-immunity cycle, comprising antigen release, dendritic
cell presentation, T cell priming and activation, immune trafficking,
tumor infiltration, cancer cell recognition, and cytotoxic killing,
were profiled using the tracking tumor immunophenotype (TIP)
database (http://biocc.hrbmu.edu.cn/TIP/) to quantify immune
dysregulation associated with RBRGs. Spearman correlation
analysis leveraging TCGA transcriptomes established significant
associations between four core RBRGs (NOP10, UTP20, SHQ1, and
PIH1D2) and clinically actionable immune checkpoint molecules.
Multi-dimensional stratification integrating RBRGs thresholds with
expression levels of key checkpoint regulators (CTLA4, PDCDI,
CD274, HAVCR2, PDCDILG2, TNFRSF4, and TNFRSF18)
revealed distinct survival outcomes validated by Kaplan-Meier
analysis. External validation using TIDE algorithm, GSE91061
and PRJNA482620 cohorts further confirmed the RBRGs
signature’s capacity to discriminate immunotherapy resistance.

Genetic mutation, genomic heterogeneity,
and tumor stemness analyses

Multi-dimensional genomic profiling of TCGA glioma
encompassed mutation spectrum characterization, tumor
heterogeneity quantification, and stemness evaluation. Somatic
mutation landscapes were analyzed using the R package
“maftools”, which identified the top 15 significantly mutated
genes within each RBRGs subgroup based on integrated variant
data retrieved from the GDC portal (https://portal.gdc.cancer.gov/).
Kaplan-Meier analysis compared overall survival disparities
between mutant- versus wild-type carriers of key drivers (EGFR,
PTEN, NFI, IDHI, CIC, and ATRX), with parallel assessment of
the four core RBRGs expression (NOP10, UTP20, SHQI, and
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PIH1D?2) shifts across genotypes. Tumor mutation burden (TMB)
was quantified from non-synonymous variants using the R package
“maftools”, while microsatellite instability (MSI) indices were
calculated based on established published criteria (14). Genomic
instability metrics, including tumor purity, ploidy, homologous
recombination deficiency (HRD) scores, and neoantigen load
(13), were correlated with RBRGs score. Finally, five established
stemness indices (RNAss, EREG-METHss, DMPss, ENHss, and
EREG-EXPss) (15) were investigated for their association with the
RBRGs score, revealing mechanistic links between ribosome
biogenesis and malignant cellular plasticity.

Chemotherapy and radiotherapy sensitivity
analyses

Therapeutic sensitivity profiling combined computational
prediction of chemosensitivity with correlation analysis of
radiotherapy response. For conventional chemotherapy, dose-
response landscapes of first-line glioma agents were modeled using
the core algorithm of R package “oncoPredict”, which mechanistically
integrates drug pharmacokinetics with TCGA transcriptomic
signatures. This analysis revealed statistically significant differential
sensitivities between RBRGs subgroups. Regarding radiotherapy,
Response evaluation criteria in solid tumors (RECIST)-categorized
treatment outcomes were leveraged to compare the RBRGs score
distributions among non-responders (progressive/stable disease)
versus responders (partial/complete response) within irradiated
TCGA cohorts, with SangerBox-derived visualizations quantifying
the RBRGs signature’s association with therapeutic resistance.

Cell culture and siRNA transfection

Glioma cell lines U87, U251 were cultured in Dulbecco’s
modified Eagle’s medium (DMEM, Gibco) supplemented with 10%
fetal bovine serum (FBS, Gibco) and 1% penicillin-streptomycin at 37
°C in 5% CO2. siRNAs were purchased from Sangon Biotech. The
sequences of the siRNAs were provided in Supplementary Table S2.
Glioma cells were seeded in 12-well plates and transfection was
initiated when the cell density reached approximately 70%.
Transfection was performed using Lipofectamine 2000 (Invitrogen,
1668019) according to the manufacturer’s instructions.

RNA isolation and qPCR

Total RNA was extracted using Trizol reagent (Invitrogen,
A33251), and reverse transcription was conducted using M-MLV
Reverse Transcriptase (Promega, M1701). Quantitative real-time
PCR was carried out in triplicate using the SYBR Green Master Mix
(Yeasen, 11203ES08). The relative gene expression was assessed by
normalizing the expression of each target gene to GAPDH and
calculated using the 2A(- A /ACt) method. The following primers
were provided in Supplementary Table S2.
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Western blot analysis

Western blot analysis was performed as previously described
(16). Briefly, glioma cells were lysed using 1x SDS sample buffer (25
mM Tris-HCI, pH 6.8, 1% SDS, 5% Glycerol) supplemented with
protease inhibitor cocktail. Equal amounts of protein were
separated by 8% SDS-PAGE and transferred to PVDF membrane
(Millipore, IPVH00010). The membranes were blocked with 5%
skimmed milk and then incubated overnight at 4 °C with primary
antibodies: UTP20 (Proteintech, 18830-1-AP) and B-actin (Abmart,
P30002). Following primary antibody incubation, the membranes
were incubated with the secondary antibody at room temperature
for 1 hour. Protein bands were visualized using the Super ECL
detection reagent (Pierce, 32106).

Cell proliferation, colony formation and
invasion assays

Cell proliferation was evaluated using the MTS assay (Promega,
G3580), in accordance with the manufacturer’s instructions.
Absorbance at 490 nm was measured at 0, 24, 48, 72, and 96 h to
determine cell viability. For the colony formation assay, 1x10° cells
were plated in 6-well plates and cultured for 14 days. Following the
incubation, the cells were fixed with 4% paraformaldehyde and
stained with 0.1% crystal violet to visualize the colonies. In the
invasion assay, 5x10* cells were placed into Transwell inserts with
an 8 um pore size, pre-coated with Matrigel. After 24 hours of
incubation, the invasive cells were stained with 0.1% crystal violet,
examined under a microscope, and the number of invading cells
was quantified using Image] software.

Statistical analysis

All statistical analyses were processed on R Studio (v4.3.3) or
GraphPad Prism (v10.1.2) platforms, and P value < 0.05 indicated
statistically significant differences. The quantitative results were
presented as the mean * standard deviation (SD). Wilcoxon rank
sum test was used for unpaired samples, ¢-test was used for paired
samples, and ANOVA was used for comparisons between multiple
groups. Log-rank test was used for Kaplan-Meier survival analysis.
Spearman test was used for Correlation analysis.

Results

Construction of a ribosome biogenesis-
related gene signature in glioma

The workflow of this study was depicted in Figure 1. To develop a
prognostic signature based on ribosome biogenesis-related genes in
glioma, we utilized the TCGA glioma cohort as the training dataset.
Initial analysis identified 7,006 genes associated with increased risk
and 8,247 genes associated with decreased risk (Figure 2A).
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Intersection of the 7,006 high-risk genes with 331 known RBRGs
yielded 68 overlapping candidates (Figure 2B). Subsequent
application of LASSO regression refined this set to 22 potential
prognostic genes (Figure 2C). Univariate and multivariate Cox
proportional hazards regression analyses identified four core
RBRGs (NOP10, UTP20, SHQI, and PIHID2) as independent
prognostic biomarkers (Figures 2D, E). These genes were
incorporated into a risk score model defined by the formula:
RBRGs score = (0.35 x NOP10 expression) + (0.50 x UTP20
expression) + (0.47 x SHQI expression) + (0.19 x PIHID2
expression). Genomic Map indicated the chromosomal locations of
these genes as follows: NOP10 at 15q14, UTP20 at 12q24.31, SHQI at
3q26.3, and PIHID2 at 17p13.1 (Figure 2F). Circos plot analysis
revealed significant positive correlations among the expression levels
of these four genes within glioma tissues (Figure 2G).

Patients stratified into RBRGs-high and -low groups based on
the median RBRGs score exhibited significantly divergent clinical
outcomes. Kaplan-Meier survival analysis demonstrated markedly
inferior overall survival (OS) for the RBRGs-high group compared
to the -low group (Figure 2H). A scatter plot further illustrated that
higher RBRGs score correlated strongly with increased mortality
and shorter survival times (Figure 2I). The predictive power of the
RBRGs signature was robustly validated using time-dependent
ROC analysis, yielding AUC values of 0.743, 0.781, and 0.757 for
1-, 3-, and 5-year OS, respectively (Figure 2]). These results confirm
the strong prognostic capacity of this RBRGs signature in glioma.

Validation of the RBRGs signature in
glioma

We first validated the expression patterns of the signature
components (NOP10, UTP20, SHQI, and PIHID2) and the
integrated RBRGs score in glioma versus normal tissues. Analysis
of TCGA and GSE16011 cohorts demonstrated significant
upregulation in tumor tissues compared to normal controls
(Figures 3A, B). To assess the prognostic robustness, we evaluated
the RBRGs signature across three independent glioma cohorts
(CGGA301, CGGA325, and GSE43378). Consistent with the
training data, patients with high-risk score exhibited significantly
shorter overall survival than those with low scores in all validation
sets, accompanied by substantially elevated mortality rates. Time-
dependent ROC analysis further confirmed the RBRGs signature’s
predictive power, with AUC values exceeding 0.700 for 3- and 5-
year survival predictions across all cohorts (Figures 3C-E).
Collectively, these results demonstrated the signature’s consistent
prognostic accuracy across diverse patient populations.

Optimization of the glioma prognostic
model

To enhance the predictive accuracy of our RBRGs signature, we

investigated key clinicopathological factors influencing the prognosis
of glioma patients. Comparative analysis of TCGA and CGGA693

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1680667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Li et al.

10.3389/fimmu.2025.1680667

Data Source

a
E GEO
=g«

TCGA
(NIH)Z

CGGA

~ g
S
-

Ribosomal biogenesis

NATIONAL CANCER INSTITUTE
Center for Cancer Genomics

\ Prognostic Stratification

TCGA Predict Model

Validation, Modeling, and Evaluation

et

&8sy
Expression verification

RBRGs construction Prognosis verification

2 I

Prediction Accuracy

o

Function investigation

SO0

Colony Formation Assay

Mutation

Tumor Signature Analysis

{

¢ +%4

<

Heterogeneity

Migration Assay

Invasion Assay

\\‘ ///

oo Y e -
R | 4 P L
Ll T

Drug Sensitivity

FIGURE 1
Flow chart of this study.

cohorts revealed significant associations between the RBRGs score
and critical prognostic variables, including patient age, WHO grade,
IDH mutation status, and 1p/19q codeletion, while no significant
correlation was observed with gender (Figures 4A, B). Integrating
these covariates with the RBRGs score, we constructed a
comprehensive nomogram for individualized survival prediction
(Figure 4C). The model demonstrated high discriminative power,
with a concordance index (C-index) of 0.841 (95% CI: 0.820-0.862),
supported by calibration curve (Figure 4D). Time-dependent ROC
analysis further validated its robustness, showing AUC values > 0.700
for 1- to 5-year overall survival predictions (Figure 4E). Clinically
relevant decision curve analysis (DCA) revealed superior net benefit
of the nomogram compared to the RBRGs signature alone and
negative/positive QC lines, particularly at 3- and 5-year time points
(Figures 4F-H). Collectively, the integration of clinicopathological
variables with the molecular signature significantly enhances
prognostic precision and clinical utility in glioma management.

Functional crosstalk between the RBRGs
signature and immune signaling pathways

Building on the established role of RBRGs signature in glioma
pathogenesis, we systematically interrogated their functional
engagement with immune pathways through transcriptomic
profiling of RBRGs-high versus -low groups. Differential
expression analysis identified 888 significantly dysregulated genes
(871 upregulated, 17 downregulated; threshold: [log, FC| > 1, P.adj
< 0.05; Figure 5A), with Gene Ontology (GO) analysis revealing
compartmental enrichment in nucleosome, protein-DNA complex,
and CENP-A containing nucleosome (Figure 5B). Molecular
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functions were dominated by structural constituent of chromatin,
protein heterodimerization activity, and platelet-derived growth
factor binding (Figure 5B). Biologically, these genes orchestrated
immune activation through positive regulation of megakaryocyte
differentiation, mucosal immune response, and innate immune
response in mucosa (Figure 5C). KEGG pathway analysis
confirmed enrichment in oncogenic-immune cascades, with
systemic lupus erythematosus and neutrophil extracellular trap
formation emerging as key nodes (Figure 5D). Gene set
enrichment analysis (GSEA) further validated robust associations
with cytokine-cytokine receptor interaction, IL-17 signaling
pathway, and cell cycle, establishing a molecular paradigm
wherein ribosome biogenesis-related genes modulate glioma
progression through reciprocal immunoregulation (Figures 5E-G).

The RBRGs signature shapes an
immunosuppressive glioma
microenvironment

Capitalizing on the established link between RBRGs signature and
immune pathways, we deployed the CIBERSORTx deconvolution
algorithm to dissect immune cells distribution disparities across risk
strata. Patients with high RBRGs score exhibited significant enrichment
of immunosuppressive populations including M0/M1 macrophages,
neutrophils, regulatory T cells (Tregs), Y0 T cells, and resting memory
CD4" T cells, whereas those with low scores showed dominance of
monocytes, activated NK cells, and mast cells (Figure 6A). Critically,
the four core RBRGs NOP10, UTP20, SHQI1, and PIH1D2,
demonstrated positive correlations with M0/M1 macrophages,
neutrophils, Tregs, and Y0 T cells, but inverse associations with
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Validation of RBRGs expression levels and prognostic value was based on multiple cohorts. (A, B) TCGA and GSE16011 cohorts were used to validate
the expression levels of NOP10, UTP20, SHQ1, PIH1D2, and RBRGs in normal and glioma tissues, respectively. (C—E) The Kaplan-Meier curves,
scatter plots, and time-dependent ROC curves were utilized to validate the prognostic value of RBRGs in glioma using the CGGA301, CGGA325, and

GSE43378 cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

monocytes and CD4" naive T cells (Figure 6B). TIDE algorithm
analysis further confirmed elevated myeloid-derived suppressor cells
(MDSCs) and cancer-associated fibroblasts (CAFs) enrichment in the
RBRGs-high group (Figures 6C, D). ESTIMATE quantification
revealed significantly increased Stromal, Immune, and ESTIMATE
scores in the RBRGs-high group, with strong positive correlations
between these scores and four core RBRGs expression (Figures 6E, F).
Immunophenotypic stratification aligned with clinical outcomes:
patients with low RBRGs score predominantly exhibited immune-
favorable C5 subtype versus pro-tumorigenic C4 subtype in the
RBRGs-high group (Figures 6G, H). Single-cell RNA sequencing
localized PIHID2, UTP20, and SHQ1 predominantly to malignant
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cells, while NOP10 co-expressed in monocytes/macrophages and
exhausted T cells, suggesting direct tumor-immune crosstalk
(Figures 6I, J). This multi-platform analysis establishes the RBRGs
signature as a master regulator of immunosuppressive niche formation

in glioma.

The RBRGs signature precisely predicts
immunotherapy efficacy

To investigate the regulatory role of RBRGs within the tumor
immune microenvironment, we systematically compared cancer
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immunity cycle dynamics between RBRGs-high and -low groups in
glioma. Results demonstrated that although glioma patients with high
RBRGs score exhibited increased cancer antigen release, their antigen
presentation and processing capacity was significantly impaired
(Figures 7A, B). Concurrently, while high-RBRGs tumors recruited
more immune cells to the peritumoral region, they displayed
substantially reduced infiltration efficiency into the tumor
parenchyma (Figures 7C-E). Notably, despite comparable T cell
recognition capabilities toward cancer cells between the two groups,
cytotoxic killing efficacy was markedly constrained in the RBRGs-high
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group (Figures 7F, G). Further investigation established a positive
correlation between the RBRGs signature and immunosuppressive
checkpoints, with multiple inhibitory genes significantly upregulated
in the RBRGs-high group (Figure 7H). Specifically, NOP10, UTP20,
SHQI, and PIHID2 showed strong positive correlations with these
immunosuppressive markers (Figure 7I). Kaplan-Meier survival
analyses confirmed significantly poorer prognosis in RBRGs high-
risk patients overexpressing CD274, PDCD1, PDCDILG2, and
TNFRSF18 (Figures 7]-M). Ultimately, validation using the TIDE
algorithm and glioma immunotherapy cohort PRINA482620, along
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FIGURE 5
Biological functions of RBRGs. (A) Volcano plot showing differentially expressed genes between RBRGs-high and -low groups using the TCGA
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(C) Z-score plot demonstrating RBRGs-related genes were performed for GO enrichment analysis, including BP. (D) Chordal plot showing KEGG
analysis of RBRGs-related genes. (E-G) GSEA analysis of RBRGs-related genes.

with cross-cancer immunotherapy data from the melanoma cohort  genetic mutations and glioma progression through comprehensive

GSE91061, demonstrated that patients with high RBRGs expression
exhibited elevated TIDE scores, shorter survival durations, and reduced
immunotherapy response rates. These findings collectively support the
RBRGs signature as a potential predictor of immunotherapy resistance
(Figures 7N-P).

Integrative analysis of the RBRGs signhature
and genomic alterations

Given the established association between genetic alterations
and gliomagenesis, we further investigated the role of RBRGs in
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mutational profiling. Waterfall plot analysis revealed that mutations
in key driver genes (EGFR, PTEN, and NF1) correlated with shorter
overall survival in glioma patients, concurrent with elevated
expression of core RBRGs components (NOP10, UTP20, SHQI,
and PIH1D2) within these mutational subgroups, with the notable
exception of sustained PIH1D2 expression in the NFI1-mutant
subgroup (Figures 8A-C). Conversely, mutations in IDH1, CIC,
and ATRX emerged as favorable prognostic markers,
demonstrating significantly reduced expression of these RBRGs
elements, with the notable exception of sustained UTP20
expression in the CIC-mutant subgroup and sustained NOP10
expression in the ATRX-mutant subgroup (Figures 8D, E).
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RBRGs predicted the efficacy of immunotherapy. Differences in cancer-immunity cycle between patients in the RBRGs-high and -low groups were based on
the TCGA glioma cohort. (A) Step 1: release of cancer cell antigens. (B) Step 2: cancer antigen presentation. (C) Step 3: priming and activation. (D) Step 4:
trafficking of immune cells to tumors. (E) Step 5: infiltration of immune cells into tumors. (F) Step 6: recognition of cancer cells by T cells. (G) Step7: killing of
cancer cells. (H) Differential expression of immunosuppressive checkpoints in RBRGs-high and -low groups. (I) Heatmap demonstrating the correlation of
NOP10, UTP20, SHQ1, and PIH1D2 with multiple immunosuppressive checkpoints. (J-M) Kaplan-Meier curves demonstrating RBRGs combined with CD274,
PDCD1, PDCD1LG2, or TNFRSF18 respectively, to predict overall survival in glioma patients. (N) Differences in TIDE scores between RBRGs-high and -low
groups. (O, P) Differences in survival between patients in the RBRGs-high and -low groups receiving immunotherapy were analyzed based on the glioma
PRINA482620 and melanoma GSE91061 cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Role of the RBRGs signature in tumor
stemness, genomic heterogeneity, and
drug sensitivity prediction

Our investigation delineates the multifaceted role of the RBRGs

signature in modulating oncogenic stemness, genomic
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heterogeneity, and therapeutic vulnerability. The RBRGs signature

demonstrated significant positive correlations with established

stemness indices, including DNA stemness score (DNAss),
epiregulin methylation score (EREG-METHss), differentially
methylated probes score (DMPss), enhancer score (ENHss), and

epiregulin expression score (EREG-EXPss), but negatively with
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Genetic mutations. (A) The oncoplot depicted genetic mutations differences in glioma patients between RBRGs-high and -low groups. (B) Kaplan-
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(C) Differential expression of NOP10, UTP20, SHQ1, and PIH1D2 between EGFR, NFland PTEN mutant and wild-type groups, respectively.

(D) Kaplan-Meier curves demonstrating the difference in overall survival of glioma patients between the IDH1, CIC and ATRX mutation and wild-type
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RNAss (Figures 9A, B). Further analysis revealed divergent
associations between the RBRGs signature and genomic
heterogeneity metrics: while positively correlated with tumor
mutation burden (TMB), homologous recombination deficiency
(HRD), and loss of heterozygosity (LOH), it exhibited inverse
relationships with mutant-allele tumor heterogeneity (MATH)
and microsatellite instability (MSI), findings consistently validated

10.3389/fimmu.2025.1680667

in the RBRGs-high group (Figures 9C, D). Drug sensitivity profiling
demonstrated that patients with elevated RBRGs score exhibited
higher half-maximal inhibitory concentrations (IC50) for erlotinib,
yet lower IC50 values for gemcitabine, 5-fluorouracil, teniposide,
vinblastine, cisplatin, paclitaxel, temozolomide, irinotecan, and
oxaliplatin (Figure 9E). Moreover, glioma patients exhibiting
disease progression or stable disease (PD/SD) following
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Tumor stemness, genomic heterogeneity, and drug sensitivity analyses. (A) Correlation of RBRGs with stemness-related metrics (DNAss, EREG-
METHss, DMPss, ENHss, RNAss, EREG-EXPss). (B) Differences in stemness metrics between RBRGs-high and -low groups. (C) Correlation of RBRGs
with genomic heterogeneity metrics (TMB, MATH, MSI, Ploidy, HRD, LOH). (D) Differences in TMB, HRD, LOH, MSI, and MATH between groups. (E)
Sensitivity differences to chemotherapeutic agents between RBRGs-high and -low groups. (F) Differences in RBRGs expression between PD/SD and
PR/CR glioma patients treated with radiotherapy. *p < 0.05, ***p < 0.001.
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radiotherapy presented significantly elevated RBRGs score
compared to those achieving partial or complete response (PR/
CR), underscoring its utility in predicting treatment
refractoriness (Figure 9F).

UTP20 as a key driver of glioma
tumorigenesis

Given the potential clinical significance of the RBRGs signature
in glioma, we focused on UTP20, the gene with the highest hazard
ratio in the multivariate Cox regression model and whose functional
role in glioma remains poorly understood. To investigate its role in
glioma progression, we established UTP20-knockdown models in
glioma cell lines. qPCR and Western blot analyses confirmed
effective knockdown of UTP20 expression in both U87 and U251

10.3389/fimmu.2025.1680667

glioma cells (Figures 10A, B). Functional assays revealed that
UTP20 knockdown markedly inhibited glioma cell proliferation,
as demonstrated by MTS assays and colony formation experiments
(Figures 10C-F). Moreover, transwell invasion assays showed that
silencing UTP20 significantly reduced the invasive capacity of
glioma cells (Figures 10G-H). Collectively, these findings suggest
that UTP20, as a component of the ribosome biogenesis-
related gene signature, plays a critical oncogenic role in
glioma progression.

Discussion

Glioma is a common primary malignancy of the central nervous
system, with peak incidence observed in middle-aged to elderly
individuals (45-70 years) (17), and continues to be associated with a
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FIGURE 10

Knockdown of UTP20 expression inhibited proliferation and invasion of glioma U251 and U87 cells in vitro. (A) UTP20 mRNA levels in U87 and U251
cells after knockdown. (B) Western Blot showing UTP20 protein levels in U87 and U251 cells after knockdown. (C, D) MTS assay for cell proliferation
in U87 and U251 after UTP20 knockdown. (E) Colony formation assay showing the number of colonies in U87 and U251 after UTP20 knockdown.
(F) Quantification of colonies formed in U87 and U251 cells after UTP20 knockdown. (G) Transwell invasion assay showing cell migration in U87 and
U251 cells. (H) Quantification of cell migration in U87 and U251 cells. ***p < 0.001. One-way ANOVA with Tukey's test for (A, F), and (H) Two-way

ANOVA with Tukey's test for (C, D).
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dismal prognosis (18). This unfavorable outcome stems from the
tumor’s intrinsic biological aggressiveness, marked by diffuse
infiltration into neural parenchyma, as well as significant therapeutic
challenges, including the restrictive nature of the blood-brain barrier,
pronounced intra- and intertumoral heterogeneity, and the frequent
development of resistance to standard treatment regimens. Collectively,
these factors underscore the limitations of current therapeutic
approaches. As such, the identification and validation of novel
molecular biomarkers is not merely a tool for prognostic
stratification, but a foundational step for advancing precision
oncology and fostering the development of effective, mechanism-
based therapies against this treatment-resistant malignancy.

Ribosome biogenesis has emerged as a fundamental post-
transcriptional regulatory axis in glioma pathobiology, orchestrating
malignant progression through metabolic reprogramming,
proliferative signaling, and maintenance of cellular stemness.
Coordinated dysregulation of RB components actively drives
oncogenic transformation; for example, NSUN5 upregulation
accelerated protein synthesis in glioblastoma (GBM) (19), whereas
WDRI2 silencing disrupted ribosome biogenesis and inhibits
proliferation in glioma stem cells (GSCs) (20). As a critical ribosomal
protein, RPS14 promoted tumorigenesis through activation of p53-
dependent signaling pathways (21), MRPS23 promoted neoplastic
survival and motility (22), and RPL34 knockdown implicated
JAK/STATS3 signaling as essential for glioma cell proliferation and
migration (23). Notably, RB also sustained the tumor-supportive
microenvironment by enabling cellular reprogramming; for instance,
ribosomal incorporation and RPS6 overexpression induced stem-like
phenotypic transitions in GBM cells, enhancing resistance to therapy
(24). Collectively, these findings position ribosome biogenesis not
merely as a metabolic facilitator, but as a central regulatory hub that
integrates the defining hallmarks of glioma. Dissecting its control
mechanisms may uncover fundamental drivers of gliomagenesis and
reveal actionable therapeutic targets.

This integrative analysis of TCGA-derived clinical and molecular
profiles established ribosome biogenesis-related genes as pivotal
determinants of glioma prognosis, with the four-gene signature
(NOP10, UTP20, SHQI, and PIHID2) demonstrating significant
overexpression in tumor tissues and robust survival stratification
capacity. Beyond validating ribosomal metabolism as a critical driver
in glioma pathogenesis, the model mechanistically connects tumor
metabolic reprogramming with clinical outcomes, offering a clinically
actionable framework for risk stratification and personalized
therapeutic decision-making. Notably, this approach surpasses
traditional prognostic models by incorporating multidimensional
features of tumor microenvironment dynamics, immunotherapy
responsiveness, genomic heterogeneity landscapes, stemness
indices, and pharmacological vulnerability profiles (25), thereby
achieving enhanced predictive accuracy and biological relevance.
This comprehensive investigation of ribosome biogenesis within the
extended spectrum of tumorigenic mechanisms not only uncovers
novel molecular drivers of gliomagenesis but establishes a precision
oncology framework focused on targeting RB-mediated dependencies
in diverse glioma subtypes.
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A pivotal innovation of this study resides in the development of a
clinically integrated nomogram that combines the RBRG-based risk
signature with key clinicopathological variables, including age, WHO
grade, IDH mutational status, and 1p/19q codeletion, yielding
significantly enhanced prognostic discrimination (C-index = 0.841).
The model exhibited strong temporal predictive performance, with
time-dependent ROC analyses yielding AUC values consistently
above 0.700 across 1- to 5-year survival intervals. Critically,
decision curve analysis (DCA) substantiated that incorporating the
RBRG signature into the nomogram significantly improves net
clinical benefit over conventional prognostic tools for 3- and 5-year
survival prediction, thereby establishing it as a quantitatively
validated and clinically actionable instrument for individualized
therapeutic decision-making in neuro-oncology practice.

The profoundly immunosuppressive glioma microenvironment,
characterized by regulatory T cell-mediated impairment of cytotoxic
lymphocyte function (26), is critically modulated by ribosome
biogenesis pathways. Our findings establish the RBRGs signature as
central orchestrators of this immunosuppressive microenvironment,
with elevated RBRGs scores significantly correlating with increased
infiltration of tumor-promoting macrophages, myeloid-derived
suppressor cells (MDSCs), and cancer-associated fibroblasts (CAFs).
Mechanistically, overexpression of RPS3A drives E2F1-dependent
transcriptional activation of CSF1, which recruits tumor-associated
macrophages and induces M2 polarization via autophagy-mediated
reprogramming, a process that directly facilitates glioma progression
(27). In contrast, the conserved RNA-binding protein SRBD1 exhibits
tumor-suppressive effects through ectopic expression, which reduces
M2 TAM density and inhibits tumor growth (28), highlighting the dual
regulatory capacity of ribosomal machineryImportantly, M2-polarized
cells sustain immunosuppression by secreting IL-10, TGF-f3, and VEGF
(29), creating a self-amplifying circuit wherein ribosome biogenesis-
related genes serve as master regulators that maintain the pro-tumoral
microenvironment through coordinated immune cell recruitment,
phenotypic polarization, and cytokine dysregulation, thereby revealing
novel actionable therapeutic targets for immune-based treatments.

The evolving recognition of the central nervous system’s lymphatic
architecture has intensified focus on immunotherapeutic strategies for
therapy-resistant glioma. Notably, interventions such as Veledimex-
regulated IL-12 gene therapy have demonstrated clinical promise by
promoting CD8" T cell recruitment in recurrent GBM (30), while
combined PD-1/VEGF inhibition (31) and the FDA-approved anti-
VEGF monoclonal antibody bevacizumab (32) validated multimodal
targeting strategies. Paradoxically, our findings revealed that ribosome
biogenesis fundamentally constrains these therapeutic advances, as
elevated RBRGs score correlated significantly with diminished
immunotherapy response rates and attenuated overall clinical benefit,
indicating direct involvement in immune evasion pathways. This
immunosuppressive hub functions via mitochondrial rRNA
regulatory elements that orchestrate tumor microenvironment
complexity and prognostic determinants (33), while nucleolar protein
14 (NOP14) concurrently modulated CD8" T cell infiltration and
epithelial-mesenchymal transition (EMT) networks (34). Critically, this
mechanistic convergence also positions ribosome biogenesis-related
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genes as master regulators of therapeutic resistance. They intrinsically
limit the efficacy of emerging modalities including immune checkpoint
blockade (ICB) (35) and anti-angiogenic agents, while also
undermining promising gene therapies currently under clinical
investigation (36). Consequently, targeting ribosome biogenesis
emerges not merely as a complementary strategy but as an essential
precondition for overcoming the immunosuppressive barriers that
currently constrain neuro-oncological immunotherapy.

A key advancement of this study was the functional
characterization of UTP20 as a clinically relevant oncogenic driver in
glioma. We revealed that UTP20 facilitated tumor progression by
promoting cellular proliferation and invasion, thereby extending the
known oncogenic activity of its homolog 1A6/DRIM, previously shown
to enhance cell growth via RNA polymerase I-mediated transcriptional
activation (37). Previous investigations have established that DRIM,
functioning as both a nuclear protein and cytoskeleton-associated
factor, promotes angiogenesis by activating endothelial cell
phosphorylation pathways, specifically affecting downstream effectors
p-FAK and p-STAT3 (38). Our work provided the first mechanistic
evidence demonstrating that UTP20 knockdown in glioma cell models
directly inhibited tumor growth and proliferation capacity. This finding
not only underscored UTP20’s fundamental role in oncogenic
programs but also established its tissue-specific functional
significance in central nervous system malignancies. Crucially, our
experimental validation substantiates the computational prognostic
framework while mechanistically positioning UTP20 as a
therapeutically actionable vulnerability, thereby revealing its
druggable potential through direct demonstration of tumorigenic
dependency in glioma pathogenesis.

This work established a first-in-class integrative prognostic model
for glioma that harnesses machine learning algorithms to synthesize
genomic signatures, tumor microenvironment dynamics, and
experimental validation into a cohesive predictive framework,
delivering exceptional accuracy in patient risk stratification. Beyond
its computational advancement, the model offers mechanistic insight
into previously elusive aspects of glioma biology, particularly
ribosome biogenesis-driven metabolic reprogramming and immune
evasion, and establishes a clinically translatable platform for precision
neuro-oncology. Future multi-center validation efforts will be critical
to advancing its clinical adoption, facilitating the translation of
molecular discoveries into personalized therapeutic strategies.

Limitations

Although this study has yielded promising preliminary results,
several limitations remain. First, the model was developed based on
retrospective cohort data, and its clinical applicability requires
further validation through prospective clinical studies. Second,
additional key ribosome biogenesis-related genes (RBRGs) should
be incorporated to improve the robustness and generalizability of
the model. Moreover, the biological functions of the identified genes
have not been fully elucidated, particularly in vivo. To address this
gap, we plan to establish a U87 stable cell line with UTP20
knockdown and utilize an orthotopic intracranial xenograft model
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in nude mice to investigate the in vivo impact of UTP20 on glioma
cells. We will further examine whether UTP20 regulates glioma
function by modulating the translation of specific mRNAs through
a series of experimental approaches, including nascent protein
synthesis assays, polysome profiling, ribosome component
isolation, ribosome sequencing, and UTP20 RIP-seq. Notably, the
mechanisms by which ribosomal biogenesis influences the tumor
immune microenvironment, especially immune cell infiltration,
remain unclear, warranting further mechanistic investigations.

Conclusion

In this study, a glioma prognostic model incorporating
ribosome biogenesis-related genes was constructed and validated.
By systematically integrating clinical parameters, immune
microenvironment features, genomic heterogeneity, and drug
sensitivity, the model demonstrated strong predictive performance. It
offers an effective tool for risk stratification in glioma patients and
provides a theoretical foundation for developing individualized
treatment strategies. Experimental validation further confirmed the
pivotal role of UTP20 in glioma progression, underscoring its potential
as a novel therapeutic target and biomarker. Overall, this study
emphasizes the value of integrating molecular signatures with
machine learning approaches to enhance prognostic accuracy and
inform clinical decision-making in glioma.
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