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Background: Glioma, the most prevalent primary brain tumor, exhibits

dysregulated ribosome biogenesis closely linked to malignant behavior.

However, the role of ribosome biogenesis in glioma and prognosis remains

incompletely understood. This study aimed to construct a molecular signature

based on ribosome biogenesis-related genes to predict patient survival and

therapeutic response in glioma.

Methods: Utilizing The Cancer Genome Atlas (TCGA) glioma cohort data, we

constructed a ribosome biogenesis-related genes (RBRGs) signature using

LASSO regression and multivariate Cox analyses, and subsequently validating

its prognostic value in independent cohorts. We systematically evaluated the

signature’s associations with clinicopathological features, tumor immunity,

genomic instability, tumor stemness, and therapeutic sensitivity. The

oncogenic role of the key gene UTP20 was experimentally validated in U87

and U251 glioma cell lines through MTS, colony formation, and transwell assays.

Results: We established a four-gene RBRGs signature (NOP10, UTP20, SHQ1, and

PIH1D2). Elevated RBRGs score significantly correlated with shortened overall

survival and adverse clinical characteristics, including advanced age, high WHO

grade, IDH wild-type status, and absence of 1p/19q codeletion. A nomogram

incorporating the RBRGs score demonstrated excellent predictive performance

(C-index = 0.841). RBRGs-associated genes were enriched in immune regulatory

pathways. The high-risk group exhibited increased infi l tration of

immunosuppressive cells (macrophages, myeloid-derived suppressor cells

[MDSCs], and cancer-associated fibroblasts [CAFs]), upregulation of

immunosuppressive checkpoints, and resistance to immunotherapy.

Furthermore, the RBRGs signature correlated with genomic alterations,

heterogeneity, tumor stemness, and therapeutic sensitivity. Crucially, UTP20

knockdown significantly suppressed glioma cell proliferation and invasion in vitro.
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Conclusion: The RBRGs signature was successfully developed and validated as

an independent prognostic biomarker and predictor of therapeutic response in

glioma, highlighting its extensive association with tumor heterogeneity.

Furthermore, this study identified UTP20 as a key oncogenic driver that

facilitates glioma progression.
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Introduction

Gliomas, the most common primary malignant tumors of the

central nervous system, originate from neuroglial precursor cells and

can differentiate into multiple subtypes, including astrocytomas,

oligodendrogliomas, ependymomas, and oligoastrocytomas (1).

According to the molecular-histopathological stratification defined

by the WHO 2021 classification framework for central nervous

system tumors (CNS5), gliomas are categorized into low-grade

(WHO grades I–II) and high-grade (III–IV) types. Among them,

glioblastoma (GBM, grade IV) is the most aggressive and lethal

phenotype, characterized by its ability to infiltrate brain tissue by

crossing the blood-brain barrier, and it demonstrates significant

resistance to treatment (2). Paradoxically, despite revolutionary

advancements in contemporary multimodal neuro-oncological

approaches, including surgical resection, targeted molecular

therapies, and radiation and chemotherapy regimens, the five-year

overall survival rate for patients with high-grade gliomas remains

exceedingly low (with the five-year overall survival rate for

glioblastoma patients being less than 10%) (3, 4). This underscores

the urgent need for the identification of novel molecular biomarkers

and the establishment of molecularly stratified prognostic

frameworks to overcome current therapeutic limitations.

The emergence of multi-omics technologies, particularly single-

cell transcriptomics and spatial genomics, has been widely applied

in cancer treatment prediction, facilitating not only enhanced

survival prediction accuracy via machine learning-optimized

algorithms but also the identification of glioma-specific

therapeutic targets (5, 6). Importantly, these models have become

indispensable for quantifying dynamic tumor-immune interactions

and predicting responses to immune checkpoint blockade, thereby

accelerating the transition from empirical therapies to molecularly

stratified treatment strategies in neuro-oncology.

Ribosome biogenesis, an evolutionarily conserved cellular

program coordinating ribosomal RNA transcription, post-

transcriptional processing, and ribosomal subunit assembly,

serves as a master regulator of cellular proliferative homeostasis.

Its dysregulation is now recognized as a hallmark of neoplastic

transformation (7). Tumor cells exploit this machinery via

pathological hyperactivation, as exemplified in glioblastoma by

RPS6-driven enhancement of cancer stemness programs that
02
promote invasive progression and therapeutic resistance (8).

Mechanistically, m6A-related RNA modifiers and serine/arginine-

rich splicing factors cooperatively boost ribosome biogenesis,

establishing feedforward pathways that perpetuate treatment

resistance in glioma subtypes (9–11). Despite these critical

insights into gliomagenesis, systematic investigation of ribosome

biogenesis-related genes (RBRGs) as clinically actionable prognostic

biomarkers in glioma remains largely unexplored.

Leveraging the comprehensive multi-omics datasets from The

Cancer Genome Atlas (TCGA) consortium, this investigation

established a robust prognostic signature centered on ribosome

biogenesis-related genes, identifying four pivotal biomarkers

(NOP10, UTP20, SHQ1, and PIH1D2). These genes exhibited

significant transcriptional upregulation in glioma tissues

compared to normal brain parenchyma. Patients classified into

the high-risk group showed markedly poorer clinical outcomes,

underscoring the prognostic significance of dysregulated ribosome

biogenesis in glioma pathobiology. Subsequent integrative analyses

revealed strong associations between the RBRGs score and distinct

features of the tumor immune microenvironment (TIME),

particularly the infiltration patterns of tumor-associated

macrophages (TAMs), myeloid-derived suppressor cells (MDSCs),

and cancer-associated fibroblasts (CAFs), highlighting its potential

clinical utility in predicting sensitivity to immunotherapy.

Furthermore, substantial divergences in genomic alteration

landscapes and pharmacological sensitivity profiles were identified

between the defined RBRGs subgroups, providing a novel

theoretical framework for advancing personalized precision

medicine approaches in glioma management.
Materials and methods

Data source

Transcriptomic profiles and corresponding clinical prognostic

records for glioma patients were curated from comprehensive

public repositories, including The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/), the Chinese Glioma Genome Atlas

(CGGA) (http://www.cgga.org.cn/), and the Gene Expression

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) (Table 1).
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A cohort of 331 ribosome biogenesis-related genes, identified based

on a prior publication (12) was subsequently analyzed for their

association with tumor characteristics (Supplementary Table S1).
Derivation of a ribosome biogenesis-
related genes signature

Utilizing the TCGA glioma cohort, a prognostic signature based

on ribosome biogenesis-related genes was constructed through an

integrated analytical framework. Initial survival screening via the R

package “survival” identified prognosis-associated genes, followed

by least Absolute Shrinkage and Selection Operator regression using

R package “glmnet” applied to RBRG-overlapping candidates to

mitigate overfitting. Subsequent univariate and multivariate Cox

regression analyses, conducted using the R “survival” package,

refined the model parameters, establishing a multivariate-derived

RBRGs signature. The chromosomal positions of the four core

RBRGs (NOP10, UTP20, SHQ1, and PIH1D2) were visualized

using R package “RCircos”, and inter-gene correlations were

assessed through Spearman analysis implemented via R package

“circlize”. Patients were classified into RBRGs-high and -low groups

based on the median RBRGs score. Risk stratification and predictive

accuracy were evaluated using risk factor scatter plots generated

with R package “ggplot2”, Kaplan-Meier survival analysis

performed with R packages “survminer” and “survival”, and time-

dependent receiver operating characteristic (ROC) curves

constructed using R packages “timeROC” and “ggplot2”.

Validation of the RBRGs signature was systematically

conducted across independent cohorts. Differential expression

analysis of the four core RBRGs (NOP10, UTP20, SHQ1, and

PIH1D2) and RBRGs score in glioma versus normal brain tissue

was first confirmed in TCGA and GSE16011 transcriptomic

datasets. The prognostic robustness of the multivariate-derived

RBRGs was subsequently assessed in three independent glioma

cohorts (CGGA301, CGGA325, and GSE43378) through three-

tiered analytical validation: (1) risk factor scatter plots, (2)

Kaplan-Meier survival estimation with log-rank testing, and (3)

time-dependent ROC curve analysis quantifying predictive

accuracy at multiple time points, with all methods implemented

as previously described.
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Clinical relevance of the RBRGs signature
and construction of nomogram

The clinical relevance of the RBRGs signature was investigated

through stratified analysis of RBRGs distributions across key

clinicopathological variables, including gender, age, WHO grade,

IDH mutational status, and 1p/19q codeletion status, within the

TCGA and CGGA693 glioma cohorts. A prognostic nomogram was

established by integrating multiple variables, including the RBRGs

score, age, WHO grade, IDH mutation status, and 1p/19q

codeletion status, using the TCGA cohort via the SangerBox

platform (http://vip.sangerbox.com/), thereby enabling

individualized survival prediction in glioma patients. Nomogram

calibration was evaluated by comparing observed and predicted

survival probabilities, while dynamic predictive accuracy over time

was assessed using time-dependent ROC analysis implemented via

R packages “timeROC” and “ggplot2”.
Functional enrichment analysis

Functional annotation of the RBRGs signature was performed

through integrated transcriptomic profiling of TCGA glioma

cohorts, stratified by the median RBRGs score, while retaining

genes with an expression level ≥10 counts in at least 10% of the

samples. Differential gene expression analysis between RBRGs-high

and -low groups was conducted using the R package “DESeq2”,

generating false discovery rate (FDR)-adjusted significant

differentially expressed genes (DEGs). The RBRGs-associated

differentially expressed genes (DEGs) were subjected to Gene

Ontology (GO) enrichment analysis using the R package

“clusterProfiler”, with gene identifier conversion performed via R

package “org.Hs.eg.db”. Functional relevance was quantified

through Z-score calculations using R package “GOplot”, and the

results were visualized as multi-panel bar and circle plots generated

with R package “ggplot2”. Complementary pathway-level insights

were derived via gene set enrichment analysis (GSEA) using

hallmark gene sets curated from the molecular signatures

database (MSigDB) Collections (https://www.gsea-msigdb.org/

gsea/msigdb/); enrichment statistics computed by R package

“clusterProfiler” were rendered as publication-quality plots

through R package “ggplot2”.
Tumor microenvironment analysis

Comprehensive characterization of the glioma immune

microenvironment was performed through multi-algorithmic

deconvolution of TCGA transcriptomes. Immune cells infiltration

landscapes were quantified using the CIBERSORTx (Cell-type

Identification By Estimating Relative Subsets Of RNA Transcripts,

extended version) (https://cibersortx.stanford.edu/) platform with

LM22 reference matrix, revealing differential abundances of 22

leukocyte subsets between RBRGs-stratified groups. Concurrently,
TABLE 1 Details of the cohorts used in this study.

Database Function Total

TCGA Training set tumor (n=765), normal (n=5)

CGGA301 Prognostic validation set tumor (n=301)

CGGA325 Prognostic validation set tumor (n=325)

GSE43378 Prognostic validation set tumor (n=50)

GSE16011 Expression validation set tumor (n=276), normal (n=8)

PRJNA482620 Prognostic validation set tumor (n=34)

GSE91061 Prognostic validation set tumor (n=109)
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correlations between the four core RBRGs (NOP10, UTP20, SHQ1,

and PIH1D2) and immune fractions were established. The tumor

immune dysfunction and exclusion (TIDE) framework further

delineated tumor immune evasion features through comparative

assessment of myeloid-derived suppressor cells (MDSCs) and

cancer-associated fibroblasts (CAFs) distributions. Stromal and

immune compartmentalization was objectively measured via

ESTIMATE scores, followed by correlation analysis with the four

core RBRGs. Predefined immune subtypes underwent Kaplan-

Meier survival validation to confirm prognostic stratification

utility (13). Single-cell resolution of the four core RBRGs

expression was achieved by interrogating the GSE131928 cohort

through tumor immune single-cell hub 2 (TISCH2) (http://

t isch.comp-genomics.org/) , mapping cel l type-specific

transcriptional patterns across the glioma ecosystem.
Immunotherapy predictive capability
analysis

Predictive utility of the RBRGs signature for immunotherapy

response was systematically evaluated through multi-platform

interrogation of glioma immunity networks. The seven stages of

the cancer-immunity cycle, comprising antigen release, dendritic

cell presentation, T cell priming and activation, immune trafficking,

tumor infiltration, cancer cell recognition, and cytotoxic killing,

were profiled using the tracking tumor immunophenotype (TIP)

database (http://biocc.hrbmu.edu.cn/TIP/) to quantify immune

dysregulation associated with RBRGs. Spearman correlation

analysis leveraging TCGA transcriptomes established significant

associations between four core RBRGs (NOP10, UTP20, SHQ1, and

PIH1D2) and clinically actionable immune checkpoint molecules.

Multi-dimensional stratification integrating RBRGs thresholds with

expression levels of key checkpoint regulators (CTLA4, PDCD1,

CD274, HAVCR2, PDCD1LG2, TNFRSF4, and TNFRSF18)

revealed distinct survival outcomes validated by Kaplan-Meier

analysis. External validation using TIDE algorithm, GSE91061

and PRJNA482620 cohorts further confirmed the RBRGs

signature’s capacity to discriminate immunotherapy resistance.
Genetic mutation, genomic heterogeneity,
and tumor stemness analyses

Multi-dimensional genomic profiling of TCGA glioma

encompassed mutation spectrum characterization, tumor

heterogeneity quantification, and stemness evaluation. Somatic

mutation landscapes were analyzed using the R package

“maftools”, which identified the top 15 significantly mutated

genes within each RBRGs subgroup based on integrated variant

data retrieved from the GDC portal (https://portal.gdc.cancer.gov/).

Kaplan-Meier analysis compared overall survival disparities

between mutant- versus wild-type carriers of key drivers (EGFR,

PTEN, NF1, IDH1, CIC, and ATRX), with parallel assessment of

the four core RBRGs expression (NOP10, UTP20, SHQ1, and
Frontiers in Immunology 04
PIH1D2) shifts across genotypes. Tumor mutation burden (TMB)

was quantified from non-synonymous variants using the R package

“maftools”, while microsatellite instability (MSI) indices were

calculated based on established published criteria (14). Genomic

instability metrics, including tumor purity, ploidy, homologous

recombination deficiency (HRD) scores, and neoantigen load

(13), were correlated with RBRGs score. Finally, five established

stemness indices (RNAss, EREG-METHss, DMPss, ENHss, and

EREG-EXPss) (15) were investigated for their association with the

RBRGs score, revealing mechanistic links between ribosome

biogenesis and malignant cellular plasticity.
Chemotherapy and radiotherapy sensitivity
analyses

Therapeutic sensitivity profiling combined computational

prediction of chemosensitivity with correlation analysis of

radiotherapy response. For conventional chemotherapy, dose-

response landscapes of first-line glioma agents were modeled using

the core algorithm of R package “oncoPredict”, whichmechanistically

integrates drug pharmacokinetics with TCGA transcriptomic

signatures. This analysis revealed statistically significant differential

sensitivities between RBRGs subgroups. Regarding radiotherapy,

Response evaluation criteria in solid tumors (RECIST)-categorized

treatment outcomes were leveraged to compare the RBRGs score

distributions among non-responders (progressive/stable disease)

versus responders (partial/complete response) within irradiated

TCGA cohorts, with SangerBox-derived visualizations quantifying

the RBRGs signature’s association with therapeutic resistance.
Cell culture and siRNA transfection

Glioma cell lines U87, U251 were cultured in Dulbecco’s

modified Eagle’s medium (DMEM, Gibco) supplemented with 10%

fetal bovine serum (FBS, Gibco) and 1% penicillin-streptomycin at 37

°C in 5% CO2. siRNAs were purchased from Sangon Biotech. The

sequences of the siRNAs were provided in Supplementary Table S2.

Glioma cells were seeded in 12-well plates and transfection was

initiated when the cell density reached approximately 70%.

Transfection was performed using Lipofectamine 2000 (Invitrogen,

1668019) according to the manufacturer’s instructions.
RNA isolation and qPCR

Total RNA was extracted using Trizol reagent (Invitrogen,

A33251), and reverse transcription was conducted using M-MLV

Reverse Transcriptase (Promega, M1701). Quantitative real-time

PCR was carried out in triplicate using the SYBR Green Master Mix

(Yeasen, 11203ES08). The relative gene expression was assessed by

normalizing the expression of each target gene to GAPDH and

calculated using the 2^(-△△Ct) method. The following primers

were provided in Supplementary Table S2.
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Western blot analysis

Western blot analysis was performed as previously described

(16). Briefly, glioma cells were lysed using 1× SDS sample buffer (25

mM Tris-HCl, pH 6.8, 1% SDS, 5% Glycerol) supplemented with

protease inhibitor cocktail. Equal amounts of protein were

separated by 8% SDS-PAGE and transferred to PVDF membrane

(Millipore, IPVH00010). The membranes were blocked with 5%

skimmed milk and then incubated overnight at 4 °C with primary

antibodies: UTP20 (Proteintech, 18830-1-AP) and b-actin (Abmart,

P30002). Following primary antibody incubation, the membranes

were incubated with the secondary antibody at room temperature

for 1 hour. Protein bands were visualized using the Super ECL

detection reagent (Pierce, 32106).
Cell proliferation, colony formation and
invasion assays

Cell proliferation was evaluated using the MTS assay (Promega,

G3580), in accordance with the manufacturer’s instructions.

Absorbance at 490 nm was measured at 0, 24, 48, 72, and 96 h to

determine cell viability. For the colony formation assay, 1×10³ cells

were plated in 6-well plates and cultured for 14 days. Following the

incubation, the cells were fixed with 4% paraformaldehyde and

stained with 0.1% crystal violet to visualize the colonies. In the

invasion assay, 5×104 cells were placed into Transwell inserts with

an 8 mm pore size, pre-coated with Matrigel. After 24 hours of

incubation, the invasive cells were stained with 0.1% crystal violet,

examined under a microscope, and the number of invading cells

was quantified using ImageJ software.
Statistical analysis

All statistical analyses were processed on R Studio (v4.3.3) or

GraphPad Prism (v10.1.2) platforms, and P value < 0.05 indicated

statistically significant differences. The quantitative results were

presented as the mean ± standard deviation (SD). Wilcoxon rank

sum test was used for unpaired samples, t-test was used for paired

samples, and ANOVA was used for comparisons between multiple

groups. Log-rank test was used for Kaplan-Meier survival analysis.

Spearman test was used for Correlation analysis.
Results

Construction of a ribosome biogenesis-
related gene signature in glioma

The workflow of this study was depicted in Figure 1. To develop a

prognostic signature based on ribosome biogenesis-related genes in

glioma, we utilized the TCGA glioma cohort as the training dataset.

Initial analysis identified 7,006 genes associated with increased risk

and 8,247 genes associated with decreased risk (Figure 2A).
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Intersection of the 7,006 high-risk genes with 331 known RBRGs

yielded 68 overlapping candidates (Figure 2B). Subsequent

application of LASSO regression refined this set to 22 potential

prognostic genes (Figure 2C). Univariate and multivariate Cox

proportional hazards regression analyses identified four core

RBRGs (NOP10, UTP20, SHQ1, and PIH1D2) as independent

prognostic biomarkers (Figures 2D, E). These genes were

incorporated into a risk score model defined by the formula:

RBRGs score = (0.35 × NOP10 expression) + (0.50 × UTP20

expression) + (0.47 × SHQ1 expression) + (0.19 × PIH1D2

expression). Genomic Map indicated the chromosomal locations of

these genes as follows: NOP10 at 15q14, UTP20 at 12q24.31, SHQ1 at

3q26.3, and PIH1D2 at 17p13.1 (Figure 2F). Circos plot analysis

revealed significant positive correlations among the expression levels

of these four genes within glioma tissues (Figure 2G).

Patients stratified into RBRGs-high and -low groups based on

the median RBRGs score exhibited significantly divergent clinical

outcomes. Kaplan-Meier survival analysis demonstrated markedly

inferior overall survival (OS) for the RBRGs-high group compared

to the -low group (Figure 2H). A scatter plot further illustrated that

higher RBRGs score correlated strongly with increased mortality

and shorter survival times (Figure 2I). The predictive power of the

RBRGs signature was robustly validated using time-dependent

ROC analysis, yielding AUC values of 0.743, 0.781, and 0.757 for

1-, 3-, and 5-year OS, respectively (Figure 2J). These results confirm

the strong prognostic capacity of this RBRGs signature in glioma.
Validation of the RBRGs signature in
glioma

We first validated the expression patterns of the signature

components (NOP10, UTP20, SHQ1, and PIH1D2) and the

integrated RBRGs score in glioma versus normal tissues. Analysis

of TCGA and GSE16011 cohorts demonstrated significant

upregulation in tumor tissues compared to normal controls

(Figures 3A, B). To assess the prognostic robustness, we evaluated

the RBRGs signature across three independent glioma cohorts

(CGGA301, CGGA325, and GSE43378). Consistent with the

training data, patients with high-risk score exhibited significantly

shorter overall survival than those with low scores in all validation

sets, accompanied by substantially elevated mortality rates. Time-

dependent ROC analysis further confirmed the RBRGs signature’s

predictive power, with AUC values exceeding 0.700 for 3- and 5-

year survival predictions across all cohorts (Figures 3C–E).

Collectively, these results demonstrated the signature’s consistent

prognostic accuracy across diverse patient populations.
Optimization of the glioma prognostic
model

To enhance the predictive accuracy of our RBRGs signature, we

investigated key clinicopathological factors influencing the prognosis

of glioma patients. Comparative analysis of TCGA and CGGA693
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cohorts revealed significant associations between the RBRGs score

and critical prognostic variables, including patient age, WHO grade,

IDH mutation status, and 1p/19q codeletion, while no significant

correlation was observed with gender (Figures 4A, B). Integrating

these covariates with the RBRGs score, we constructed a

comprehensive nomogram for individualized survival prediction

(Figure 4C). The model demonstrated high discriminative power,

with a concordance index (C-index) of 0.841 (95% CI: 0.820-0.862),

supported by calibration curve (Figure 4D). Time-dependent ROC

analysis further validated its robustness, showing AUC values > 0.700

for 1- to 5-year overall survival predictions (Figure 4E). Clinically

relevant decision curve analysis (DCA) revealed superior net benefit

of the nomogram compared to the RBRGs signature alone and

negative/positive QC lines, particularly at 3- and 5-year time points

(Figures 4F–H). Collectively, the integration of clinicopathological

variables with the molecular signature significantly enhances

prognostic precision and clinical utility in glioma management.
Functional crosstalk between the RBRGs
signature and immune signaling pathways

Building on the established role of RBRGs signature in glioma

pathogenesis, we systematically interrogated their functional

engagement with immune pathways through transcriptomic

profiling of RBRGs-high versus -low groups. Differential

expression analysis identified 888 significantly dysregulated genes

(871 upregulated, 17 downregulated; threshold: |log2 FC| > 1, P.adj

< 0.05; Figure 5A), with Gene Ontology (GO) analysis revealing

compartmental enrichment in nucleosome, protein-DNA complex,

and CENP-A containing nucleosome (Figure 5B). Molecular
Frontiers in Immunology 06
functions were dominated by structural constituent of chromatin,

protein heterodimerization activity, and platelet-derived growth

factor binding (Figure 5B). Biologically, these genes orchestrated

immune activation through positive regulation of megakaryocyte

differentiation, mucosal immune response, and innate immune

response in mucosa (Figure 5C). KEGG pathway analysis

confirmed enrichment in oncogenic-immune cascades, with

systemic lupus erythematosus and neutrophil extracellular trap

formation emerging as key nodes (Figure 5D). Gene set

enrichment analysis (GSEA) further validated robust associations

with cytokine-cytokine receptor interaction, IL-17 signaling

pathway, and cell cycle, establishing a molecular paradigm

wherein ribosome biogenesis-related genes modulate glioma

progression through reciprocal immunoregulation (Figures 5E–G).
The RBRGs signature shapes an
immunosuppressive glioma
microenvironment

Capitalizing on the established link between RBRGs signature and

immune pathways, we deployed the CIBERSORTx deconvolution

algorithm to dissect immune cells distribution disparities across risk

strata. Patients with high RBRGs score exhibited significant enrichment

of immunosuppressive populations including M0/M1 macrophages,

neutrophils, regulatory T cells (Tregs), gd T cells, and resting memory

CD4+ T cells, whereas those with low scores showed dominance of

monocytes, activated NK cells, and mast cells (Figure 6A). Critically,

the four core RBRGs NOP10, UTP20, SHQ1, and PIH1D2,

demonstrated positive correlations with M0/M1 macrophages,

neutrophils, Tregs, and gd T cells, but inverse associations with
FIGURE 1

Flow chart of this study.
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FIGURE 2

Construction of a Ribosome biogenesis-related gene signature based on the TCGA glioma cohort. (A) Volcano map displayed the genes that
affected the survival of glioma patients. (B) Venn diagram showing the intersection of 331 RBRGs with risky genes from TCGA. (C) LASSO regression
analysis narrowing down to 22 candidate genes. (D) Univariate and (E) multivariate Cox regression selecting 4 independent prognostic genes. (F)
Genomic map showing specific localization of NOP10, UTP20, SHQ1, and PIH1D2 in chromosomes. (G) Circos plot showing the correlation among
these 4 genes. (H) Kaplan–Meier survival analysis of glioma patients in the RBRGs-high and -low groups using the TCGA cohort. (I) Scatter plot
demonstrating survival time and number of deaths in the two groups. (J) Time-dependent ROC curves demonstrating the predictive accuracy of
RBRGs for 1-, 3-, and 5-year survival in glioma patients.
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monocytes and CD4+ naïve T cells (Figure 6B). TIDE algorithm

analysis further confirmed elevated myeloid-derived suppressor cells

(MDSCs) and cancer-associated fibroblasts (CAFs) enrichment in the

RBRGs-high group (Figures 6C, D). ESTIMATE quantification

revealed significantly increased Stromal, Immune, and ESTIMATE

scores in the RBRGs-high group, with strong positive correlations

between these scores and four core RBRGs expression (Figures 6E, F).

Immunophenotypic stratification aligned with clinical outcomes:

patients with low RBRGs score predominantly exhibited immune-

favorable C5 subtype versus pro-tumorigenic C4 subtype in the

RBRGs-high group (Figures 6G, H). Single-cell RNA sequencing

localized PIH1D2, UTP20, and SHQ1 predominantly to malignant
Frontiers in Immunology 08
cells, while NOP10 co-expressed in monocytes/macrophages and

exhausted T cells, suggesting direct tumor-immune crosstalk

(Figures 6I, J). This multi-platform analysis establishes the RBRGs

signature as a master regulator of immunosuppressive niche formation

in glioma.
The RBRGs signature precisely predicts
immunotherapy efficacy

To investigate the regulatory role of RBRGs within the tumor

immune microenvironment, we systematically compared cancer
FIGURE 3

Validation of RBRGs expression levels and prognostic value was based on multiple cohorts. (A, B) TCGA and GSE16011 cohorts were used to validate
the expression levels of NOP10, UTP20, SHQ1, PIH1D2, and RBRGs in normal and glioma tissues, respectively. (C–E) The Kaplan-Meier curves,
scatter plots, and time-dependent ROC curves were utilized to validate the prognostic value of RBRGs in glioma using the CGGA301, CGGA325, and
GSE43378 cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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immunity cycle dynamics between RBRGs-high and -low groups in

glioma. Results demonstrated that although glioma patients with high

RBRGs score exhibited increased cancer antigen release, their antigen

presentation and processing capacity was significantly impaired

(Figures 7A, B). Concurrently, while high-RBRGs tumors recruited

more immune cells to the peritumoral region, they displayed

substantially reduced infiltration efficiency into the tumor

parenchyma (Figures 7C–E). Notably, despite comparable T cell

recognition capabilities toward cancer cells between the two groups,

cytotoxic killing efficacy was markedly constrained in the RBRGs-high
Frontiers in Immunology 09
group (Figures 7F, G). Further investigation established a positive

correlation between the RBRGs signature and immunosuppressive

checkpoints, with multiple inhibitory genes significantly upregulated

in the RBRGs-high group (Figure 7H). Specifically, NOP10, UTP20,

SHQ1, and PIH1D2 showed strong positive correlations with these

immunosuppressive markers (Figure 7I). Kaplan-Meier survival

analyses confirmed significantly poorer prognosis in RBRGs high-

risk patients overexpressing CD274, PDCD1, PDCD1LG2, and

TNFRSF18 (Figures 7J–M). Ultimately, validation using the TIDE

algorithm and glioma immunotherapy cohort PRJNA482620, along
FIGURE 4

Clinical relevance of RBRGs and optimization of the model. (A, B) Differences in clinicopathologic characteristics of glioma patients between the
RBRGs-high and -low groups utilized the TCGA and CGGA databases, including sex, age, WHO grade, IDH status, and 1p/19q codeletion. (C) Five
variables, RBRGs, age, WHO grade, IDH status, and 1p/19q codeletion, were used to construct the Nomogram model based on the TCGA glioma
cohort. (D) Calibration curves. (E) Time-dependent AUC curves. (F–H) DCA curves for 1-, 3-and 5-year, respectively. *p < 0.05, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1680667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1680667
with cross-cancer immunotherapy data from the melanoma cohort

GSE91061, demonstrated that patients with high RBRGs expression

exhibited elevated TIDE scores, shorter survival durations, and reduced

immunotherapy response rates. These findings collectively support the

RBRGs signature as a potential predictor of immunotherapy resistance

(Figures 7N–P).
Integrative analysis of the RBRGs signature
and genomic alterations

Given the established association between genetic alterations

and gliomagenesis, we further investigated the role of RBRGs in
Frontiers in Immunology 10
genetic mutations and glioma progression through comprehensive

mutational profiling. Waterfall plot analysis revealed that mutations

in key driver genes (EGFR, PTEN, and NF1) correlated with shorter

overall survival in glioma patients, concurrent with elevated

expression of core RBRGs components (NOP10, UTP20, SHQ1,

and PIH1D2) within these mutational subgroups, with the notable

exception of sustained PIH1D2 expression in the NF1-mutant

subgroup (Figures 8A–C). Conversely, mutations in IDH1, CIC,

and ATRX emerged as favorable prognostic markers,

demonstrating significantly reduced expression of these RBRGs

elements, with the notable exception of sustained UTP20

expression in the CIC-mutant subgroup and sustained NOP10

expression in the ATRX-mutant subgroup (Figures 8D, E).
FIGURE 5

Biological functions of RBRGs. (A) Volcano plot showing differentially expressed genes between RBRGs-high and -low groups using the TCGA
glioma cohort. (B) Radiographic histograms demonstrating RBRGs-related genes were subjected to GO enrichment analysis, including MF and CC.
(C) Z-score plot demonstrating RBRGs-related genes were performed for GO enrichment analysis, including BP. (D) Chordal plot showing KEGG
analysis of RBRGs-related genes. (E–G) GSEA analysis of RBRGs-related genes.
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FIGURE 6

Role of RBRGs in the tumor microenvironment. (A) Differences in infiltration of immune cells between RBRGs-high and -low groups based on the
CIBERSORTx algorithm. (B) Heatmap showing the correlation of NOP10, UTP20, SHQ1, and PIH1D2 with immune cells. (C–E) Differences in MDSC,
CAF, and ESTIMATE scores between RBRGs-high and -low groups. (F) Heatmap showing the correlation of NOP10, UTP20, SHQ1, and PIH1D2 with
ESTIMATE score. (G) Differences in immune subtypes between RBRGs-high and -low groups. (H) Kaplan-Meier curve showing the effect of immune
subtype on overall survival of glioma patients. C1: wound healing, C3: inflammatory, C4: lymphocyte depleted, C5: immunologically quiet.
(I, J) Single-cell analysis demonstrating the expression levels of NOP10, UTP20, SHQ1, and PIH1D2 in different cells based on the GSE131928 cohort.
*p < 0.05, **p < 0.01, ***p < 0.001.
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Role of the RBRGs signature in tumor
stemness, genomic heterogeneity, and
drug sensitivity prediction

Our investigation delineates the multifaceted role of the RBRGs

signature in modulating oncogenic stemness, genomic
Frontiers in Immunology 12
heterogeneity, and therapeutic vulnerability. The RBRGs signature

demonstrated significant positive correlations with established

stemness indices, including DNA stemness score (DNAss),

epiregulin methylation score (EREG-METHss), differentially

methylated probes score (DMPss), enhancer score (ENHss), and

epiregulin expression score (EREG-EXPss), but negatively with
FIGURE 7

RBRGs predicted the efficacy of immunotherapy. Differences in cancer-immunity cycle between patients in the RBRGs-high and -low groups were based on
the TCGA glioma cohort. (A) Step 1: release of cancer cell antigens. (B) Step 2: cancer antigen presentation. (C) Step 3: priming and activation. (D) Step 4:
trafficking of immune cells to tumors. (E) Step 5: infiltration of immune cells into tumors. (F) Step 6: recognition of cancer cells by T cells. (G) Step7: killing of
cancer cells. (H) Differential expression of immunosuppressive checkpoints in RBRGs-high and -low groups. (I) Heatmap demonstrating the correlation of
NOP10, UTP20, SHQ1, and PIH1D2 with multiple immunosuppressive checkpoints. (J-M) Kaplan-Meier curves demonstrating RBRGs combined with CD274,
PDCD1, PDCD1LG2, or TNFRSF18 respectively, to predict overall survival in glioma patients. (N) Differences in TIDE scores between RBRGs-high and -low
groups. (O, P) Differences in survival between patients in the RBRGs-high and -low groups receiving immunotherapy were analyzed based on the glioma
PRJNA482620 and melanoma GSE91061 cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 8

Genetic mutations. (A) The oncoplot depicted genetic mutations differences in glioma patients between RBRGs-high and -low groups. (B) Kaplan-
Meier curves demonstratingthe difference in overall survival of glioma patients between the EGFR, NF1 and PTEN mutation and wild-type groups.
(C) Differential expression of NOP10, UTP20, SHQ1, and PIH1D2 between EGFR, NF1and PTEN mutant and wild-type groups, respectively.
(D) Kaplan-Meier curves demonstrating the difference in overall survival of glioma patients between the IDH1, CIC and ATRX mutation and wild-type
groups. (E) Differential expression of NOP10, UTP20, SHQ1, and PIH1D2 between IDH1, CIC and ATRX mutant and wild-type groups, respectively.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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RNAss (Figures 9A, B). Further analysis revealed divergent

associations between the RBRGs signature and genomic

heterogeneity metrics: while positively correlated with tumor

mutation burden (TMB), homologous recombination deficiency

(HRD), and loss of heterozygosity (LOH), it exhibited inverse

relationships with mutant-allele tumor heterogeneity (MATH)

and microsatellite instability (MSI), findings consistently validated
Frontiers in Immunology 14
in the RBRGs-high group (Figures 9C, D). Drug sensitivity profiling

demonstrated that patients with elevated RBRGs score exhibited

higher half-maximal inhibitory concentrations (IC50) for erlotinib,

yet lower IC50 values for gemcitabine, 5-fluorouracil, teniposide,

vinblastine, cisplatin, paclitaxel, temozolomide, irinotecan, and

oxaliplatin (Figure 9E). Moreover, glioma patients exhibiting

disease progression or stable disease (PD/SD) following
FIGURE 9

Tumor stemness, genomic heterogeneity, and drug sensitivity analyses. (A) Correlation of RBRGs with stemness-related metrics (DNAss, EREG-
METHss, DMPss, ENHss, RNAss, EREG-EXPss). (B) Differences in stemness metrics between RBRGs-high and -low groups. (C) Correlation of RBRGs
with genomic heterogeneity metrics (TMB, MATH, MSI, Ploidy, HRD, LOH). (D) Differences in TMB, HRD, LOH, MSI, and MATH between groups. (E)
Sensitivity differences to chemotherapeutic agents between RBRGs-high and -low groups. (F) Differences in RBRGs expression between PD/SD and
PR/CR glioma patients treated with radiotherapy. *p < 0.05, ***p < 0.001.
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radiotherapy presented significantly elevated RBRGs score

compared to those achieving partial or complete response (PR/

CR), underscoring its uti l i ty in predict ing treatment

refractoriness (Figure 9F).
UTP20 as a key driver of glioma
tumorigenesis

Given the potential clinical significance of the RBRGs signature

in glioma, we focused on UTP20, the gene with the highest hazard

ratio in the multivariate Cox regression model and whose functional

role in glioma remains poorly understood. To investigate its role in

glioma progression, we established UTP20-knockdown models in

glioma cell lines. qPCR and Western blot analyses confirmed

effective knockdown of UTP20 expression in both U87 and U251
Frontiers in Immunology 15
glioma cells (Figures 10A, B). Functional assays revealed that

UTP20 knockdown markedly inhibited glioma cell proliferation,

as demonstrated by MTS assays and colony formation experiments

(Figures 10C–F). Moreover, transwell invasion assays showed that

silencing UTP20 significantly reduced the invasive capacity of

glioma cells (Figures 10G–H). Collectively, these findings suggest

that UTP20, as a component of the ribosome biogenesis-

related gene signature, plays a critical oncogenic role in

glioma progression.
Discussion

Glioma is a common primary malignancy of the central nervous

system, with peak incidence observed in middle-aged to elderly

individuals (45–70 years) (17), and continues to be associated with a
FIGURE 10

Knockdown of UTP20 expression inhibited proliferation and invasion of glioma U251 and U87 cells in vitro. (A) UTP20 mRNA levels in U87 and U251
cells after knockdown. (B) Western Blot showing UTP20 protein levels in U87 and U251 cells after knockdown. (C, D) MTS assay for cell proliferation
in U87 and U251 after UTP20 knockdown. (E) Colony formation assay showing the number of colonies in U87 and U251 after UTP20 knockdown.
(F) Quantification of colonies formed in U87 and U251 cells after UTP20 knockdown. (G) Transwell invasion assay showing cell migration in U87 and
U251 cells. (H) Quantification of cell migration in U87 and U251 cells. ***p < 0.001. One-way ANOVA with Tukey’s test for (A, F), and (H) Two-way
ANOVA with Tukey’s test for (C, D).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1680667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1680667
dismal prognosis (18). This unfavorable outcome stems from the

tumor’s intrinsic biological aggressiveness, marked by diffuse

infiltration into neural parenchyma, as well as significant therapeutic

challenges, including the restrictive nature of the blood-brain barrier,

pronounced intra- and intertumoral heterogeneity, and the frequent

development of resistance to standard treatment regimens. Collectively,

these factors underscore the limitations of current therapeutic

approaches. As such, the identification and validation of novel

molecular biomarkers is not merely a tool for prognostic

stratification, but a foundational step for advancing precision

oncology and fostering the development of effective, mechanism-

based therapies against this treatment-resistant malignancy.

Ribosome biogenesis has emerged as a fundamental post-

transcriptional regulatory axis in glioma pathobiology, orchestrating

malignant progression through metabolic reprogramming,

proliferative signaling, and maintenance of cellular stemness.

Coordinated dysregulation of RB components actively drives

oncogenic transformation; for example, NSUN5 upregulation

accelerated protein synthesis in glioblastoma (GBM) (19), whereas

WDR12 silencing disrupted ribosome biogenesis and inhibits

proliferation in glioma stem cells (GSCs) (20). As a critical ribosomal

protein, RPS14 promoted tumorigenesis through activation of p53-

dependent signaling pathways (21), MRPS23 promoted neoplastic

survival and motility (22), and RPL34 knockdown implicated

JAK/STAT3 signaling as essential for glioma cell proliferation and

migration (23). Notably, RB also sustained the tumor-supportive

microenvironment by enabling cellular reprogramming; for instance,

ribosomal incorporation and RPS6 overexpression induced stem-like

phenotypic transitions in GBM cells, enhancing resistance to therapy

(24). Collectively, these findings position ribosome biogenesis not

merely as a metabolic facilitator, but as a central regulatory hub that

integrates the defining hallmarks of glioma. Dissecting its control

mechanisms may uncover fundamental drivers of gliomagenesis and

reveal actionable therapeutic targets.

This integrative analysis of TCGA-derived clinical and molecular

profiles established ribosome biogenesis-related genes as pivotal

determinants of glioma prognosis, with the four-gene signature

(NOP10, UTP20, SHQ1, and PIH1D2) demonstrating significant

overexpression in tumor tissues and robust survival stratification

capacity. Beyond validating ribosomal metabolism as a critical driver

in glioma pathogenesis, the model mechanistically connects tumor

metabolic reprogramming with clinical outcomes, offering a clinically

actionable framework for risk stratification and personalized

therapeutic decision-making. Notably, this approach surpasses

traditional prognostic models by incorporating multidimensional

features of tumor microenvironment dynamics, immunotherapy

responsiveness, genomic heterogeneity landscapes, stemness

indices, and pharmacological vulnerability profiles (25), thereby

achieving enhanced predictive accuracy and biological relevance.

This comprehensive investigation of ribosome biogenesis within the

extended spectrum of tumorigenic mechanisms not only uncovers

novel molecular drivers of gliomagenesis but establishes a precision

oncology framework focused on targeting RB-mediated dependencies

in diverse glioma subtypes.
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A pivotal innovation of this study resides in the development of a

clinically integrated nomogram that combines the RBRG-based risk

signature with key clinicopathological variables, including age, WHO

grade, IDH mutational status, and 1p/19q codeletion, yielding

significantly enhanced prognostic discrimination (C-index = 0.841).

The model exhibited strong temporal predictive performance, with

time-dependent ROC analyses yielding AUC values consistently

above 0.700 across 1- to 5-year survival intervals. Critically,

decision curve analysis (DCA) substantiated that incorporating the

RBRG signature into the nomogram significantly improves net

clinical benefit over conventional prognostic tools for 3- and 5-year

survival prediction, thereby establishing it as a quantitatively

validated and clinically actionable instrument for individualized

therapeutic decision-making in neuro-oncology practice.

The profoundly immunosuppressive glioma microenvironment,

characterized by regulatory T cell-mediated impairment of cytotoxic

lymphocyte function (26), is critically modulated by ribosome

biogenesis pathways. Our findings establish the RBRGs signature as

central orchestrators of this immunosuppressive microenvironment,

with elevated RBRGs scores significantly correlating with increased

infiltration of tumor-promoting macrophages, myeloid-derived

suppressor cells (MDSCs), and cancer-associated fibroblasts (CAFs).

Mechanistically, overexpression of RPS3A drives E2F1-dependent

transcriptional activation of CSF1, which recruits tumor-associated

macrophages and induces M2 polarization via autophagy-mediated

reprogramming, a process that directly facilitates glioma progression

(27). In contrast, the conserved RNA-binding protein SRBD1 exhibits

tumor-suppressive effects through ectopic expression, which reduces

M2 TAM density and inhibits tumor growth (28), highlighting the dual

regulatory capacity of ribosomal machinery.Importantly, M2-polarized

cells sustain immunosuppression by secreting IL-10, TGF-b, and VEGF
(29), creating a self-amplifying circuit wherein ribosome biogenesis-

related genes serve as master regulators that maintain the pro-tumoral

microenvironment through coordinated immune cell recruitment,

phenotypic polarization, and cytokine dysregulation, thereby revealing

novel actionable therapeutic targets for immune-based treatments.

The evolving recognition of the central nervous system’s lymphatic

architecture has intensified focus on immunotherapeutic strategies for

therapy-resistant glioma. Notably, interventions such as Veledimex-

regulated IL-12 gene therapy have demonstrated clinical promise by

promoting CD8+ T cell recruitment in recurrent GBM (30), while

combined PD-1/VEGF inhibition (31) and the FDA-approved anti-

VEGF monoclonal antibody bevacizumab (32) validated multimodal

targeting strategies. Paradoxically, our findings revealed that ribosome

biogenesis fundamentally constrains these therapeutic advances, as

elevated RBRGs score correlated significantly with diminished

immunotherapy response rates and attenuated overall clinical benefit,

indicating direct involvement in immune evasion pathways. This

immunosuppressive hub functions via mitochondrial rRNA

regulatory elements that orchestrate tumor microenvironment

complexity and prognostic determinants (33), while nucleolar protein

14 (NOP14) concurrently modulated CD8+ T cell infiltration and

epithelial-mesenchymal transition (EMT) networks (34). Critically, this

mechanistic convergence also positions ribosome biogenesis-related
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genes as master regulators of therapeutic resistance. They intrinsically

limit the efficacy of emerging modalities including immune checkpoint

blockade (ICB) (35) and anti-angiogenic agents, while also

undermining promising gene therapies currently under clinical

investigation (36). Consequently, targeting ribosome biogenesis

emerges not merely as a complementary strategy but as an essential

precondition for overcoming the immunosuppressive barriers that

currently constrain neuro-oncological immunotherapy.

A key advancement of this study was the functional

characterization of UTP20 as a clinically relevant oncogenic driver in

glioma. We revealed that UTP20 facilitated tumor progression by

promoting cellular proliferation and invasion, thereby extending the

known oncogenic activity of its homolog 1A6/DRIM, previously shown

to enhance cell growth via RNA polymerase I-mediated transcriptional

activation (37). Previous investigations have established that DRIM,

functioning as both a nuclear protein and cytoskeleton-associated

factor, promotes angiogenesis by activating endothelial cell

phosphorylation pathways, specifically affecting downstream effectors

p-FAK and p-STAT3 (38). Our work provided the first mechanistic

evidence demonstrating that UTP20 knockdown in glioma cell models

directly inhibited tumor growth and proliferation capacity. This finding

not only underscored UTP20’s fundamental role in oncogenic

programs but also established its tissue-specific functional

significance in central nervous system malignancies. Crucially, our

experimental validation substantiates the computational prognostic

framework while mechanistically positioning UTP20 as a

therapeutically actionable vulnerability, thereby revealing its

druggable potential through direct demonstration of tumorigenic

dependency in glioma pathogenesis.

This work established a first-in-class integrative prognostic model

for glioma that harnesses machine learning algorithms to synthesize

genomic signatures, tumor microenvironment dynamics, and

experimental validation into a cohesive predictive framework,

delivering exceptional accuracy in patient risk stratification. Beyond

its computational advancement, the model offers mechanistic insight

into previously elusive aspects of glioma biology, particularly

ribosome biogenesis-driven metabolic reprogramming and immune

evasion, and establishes a clinically translatable platform for precision

neuro-oncology. Future multi-center validation efforts will be critical

to advancing its clinical adoption, facilitating the translation of

molecular discoveries into personalized therapeutic strategies.
Limitations

Although this study has yielded promising preliminary results,

several limitations remain. First, the model was developed based on

retrospective cohort data, and its clinical applicability requires

further validation through prospective clinical studies. Second,

additional key ribosome biogenesis-related genes (RBRGs) should

be incorporated to improve the robustness and generalizability of

the model. Moreover, the biological functions of the identified genes

have not been fully elucidated, particularly in vivo. To address this

gap, we plan to establish a U87 stable cell line with UTP20

knockdown and utilize an orthotopic intracranial xenograft model
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in nude mice to investigate the in vivo impact of UTP20 on glioma

cells. We will further examine whether UTP20 regulates glioma

function by modulating the translation of specific mRNAs through

a series of experimental approaches, including nascent protein

synthesis assays, polysome profiling, ribosome component

isolation, ribosome sequencing, and UTP20 RIP-seq. Notably, the

mechanisms by which ribosomal biogenesis influences the tumor

immune microenvironment, especially immune cell infiltration,

remain unclear, warranting further mechanistic investigations.
Conclusion

In this study, a glioma prognostic model incorporating

ribosome biogenesis-related genes was constructed and validated.

By systematically integrating clinical parameters, immune

microenvironment features, genomic heterogeneity, and drug

sensitivity, the model demonstrated strong predictive performance. It

offers an effective tool for risk stratification in glioma patients and

provides a theoretical foundation for developing individualized

treatment strategies. Experimental validation further confirmed the

pivotal role of UTP20 in glioma progression, underscoring its potential

as a novel therapeutic target and biomarker. Overall, this study

emphasizes the value of integrating molecular signatures with

machine learning approaches to enhance prognostic accuracy and

inform clinical decision-making in glioma.
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