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Streptococcus suis (SS), particularly serotype 2 (SS2), is a significant zoonotic
pathogen causing severe disease in swine and humans. High genetic diversity
and antibiotic resistance complicate vaccine development. We firstly synthesize
the pivotal advances in SS subunit vaccine design over the past ten years, thereby
establishing a foundation for guiding future rational vaccine development.
Promising candidates, including pS-Lpp-SaoA (delivered via OMVs), SaoA (via
live vectors), IgAl protease, rlde-10, rlde-14009-1, Enolase, 6-GPD, 38-BP-Enol,
and multi-antigen formulations (MRP/GAPDH/DLD or SLY/Enolase/Sbp), elicit
robust immune responses (high IgG/IgA titers) and confer up to 100% protection
against lethal SS2 challenge in murine and porcine models. Cross-protection
against heterologous serotypes (e.g., SaoA and Enolase delivered via S.
Choleraesuis) is observed. Future efforts should prioritize: discovery of
conserved antigens, optimization of delivery platforms/adjuvants, and
translational validation in pigs to achieve broad, durable immunity.

Streptococcus suis, subunit vaccines, adjuvants, cross-protection, vaccine delivery

1 Introduction

Streptococcus suis especially serotype 2 (SS2) is a globally distributed zoonotic pathogen
causing significant economic losses in the swine industry and posing a threat to human
health (1). Since its initial report in the Netherlands in 1951 (2), SS2 has been identified in
humans, particularly in those who consumed contaminated pork in some Asian countries,
leading to severe conditions such as sepsis, pneumonia, meningitis, and toxic shock (3, 4).
Notably, outbreaks in China in 1998 and 2005 resulted in numerous fatalities (5). It is also a
highly diverse pathogen with multiple serotypes circulating globally, making vaccine
development challenging. In North America, SS2 and SS3 are dominant, while SS9 is
more common in Europe, $56,SS7 predominate in Australia (6) and SS2, SS7, and SS9 are
frequently reported in human cases in Asia (7), as shown in Figure 1. This significant
regional serotype diversity poses a major challenge for developing vaccines capable of
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FIGURE 1

Global distribution of predominant Streptococcus suis serotypes in human infections. Pie charts illustrate the relative frequency of SS serotypes most
commonly associated with human cases across major geographic regions. The notable regional variation in serotypes underscores the challenge in

developing a universally effective vaccine.

providing broad cross-protection (8). Traditional inactivated
vaccines offer limited cross-protection, with protection rates
around 70% against homologous strains and lower against
heterologous strains (9).

SS2 exhibits varying antibiotic resistance patterns across
regions, complicating control efforts. In Europe, resistance to
lincosamides, macrolides, and tetracyclines is common, while [3-
lactams remain effective (10, 11). In Asia, resistance to these
antibiotics is high and increasing, with emerging resistance to
sulfonamides, aminoglycosides, and fluoroquinolones (12). North
America shows similar resistance profiles to Europe but with lower
resistance to B-lactams and amphenicols (13). From 2005 to 2021,
sporadic human cases were consistently reported in Shenzhen,
China, with strains showing resistance to multiple antibiotics
(14). The high pathogenicity and multidrug resistance of SS2 pose
a severe challenge to public health, highlighting the need for
effective vaccines.

It employs a variety of virulence factors to infect pigs and
humans (15-17), including adhesins (e.g., MRP, EF, FBPS, Lmb)
(18), the toxin suilysin (SLY) (19), and immune evasion factors (e.g.,
IgdE, IdeSsuis, HP1022) (20). These virulence markers may
contribute to its complex pathogenesis and ability to resist host
defenses (21, 22). By 2015, despite extensive research, traditional SS
vaccines (notably inconsistent bacterins and safety-challenged live-
attenuated candidates) had largely failed to deliver reliable, cross-
protective solutions against this economically devastating swine
pathogen and emerging zoonotic threat (7). While subunit vaccines
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emerged as a promising alternative due to their safety profile and
identification of numerous candidate antigens (21-23), critical
barriers remained unresolved: efficacy was often limited to
homologous strains, heavily dependent on specific adjuvants to
induce essential opsonizing antibodies, and crucially lacked proven
broad-spectrum protection across the pathogen’s highly diverse
serotypes and sequence types.

Addressing these gaps, this review synthesizes advances from
the past decade in SS subunit vaccine development, focusing on
antigen discovery, rational design for immune targeting, the
optimization of delivery platforms (e.g., viral vectors, bacterial
vectors, OMVs) (24) and adjuvant strategies. It serves as a
foundation for accelerating novel vaccines that overcome
historical limitations.

2 Single subunit vaccines

Subunit vaccines have become a key strategy against SS, as they
can induce strong and specific immune responses against this
pathogen. The core of these vaccines lies in utilizing highly
immunogenic antigens derived from SS, produced through the
single expression in systems such as E. coli or other engineered
bacterial strains or viral expression systems. Nevertheless, it is
critical to emphasize that these antigens must not only be highly
immunogenic but also highly conserved across different SS strains
to ensure broad protection.
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2.1 Sao antigen

The Sao protein (Surface-anchored protein), a highly conserved
antigen (>94.2% homology across major S. suis serotypes), has been
a focal point in SS vaccine research (Table 1). Its immunogenicity,
conversely, is critically dependent on the delivery platform and
adjuvant formulation. Initial evaluation of recombinant Sao-L
(rSao-L) produced in bioreactors established its immunogenicity,
inducing robust antigen-specific antibodies and cellular responses
(increased CD8+ and CD4+/CD8+ DP T cells) in pigs, conferring a
60% reduction in lesions upon heterologous challenge; otherwise,
this level of protection, although statistically significant, indicated
substantial room for improvement. Furthermore, the reliance on a
water-in-oil-in-water (w/o/w) emulsion adjuvant raised potential
safety concerns regarding granuloma formation at the injection
site (25).

In a subsequent refinement, a maternal vaccination strategy was
employed: sows were immunized with a combination of
recombinant Sao protein (rSao) and an inactivated bacterin. This
approach significantly improved protection in piglets,
demonstrating a 75-81% reduction in lesions upon challenge.
This protection was mediated by the transfer of passive immunity
from vaccinated sows to their offspring via colostrum. However, a
limitation was observed, as the antibody titers in piglets waned by 6
weeks post-partum (26). A technologically advanced approach
using engineered OMVs displaying lipidated SaoA (Lpp-SacA
fusion) leveraged intrinsic adjuvanticity, inducing superior,
balanced immune responses and exceptional protection (up to
100% survival) in mice without external adjuvant, although
porcine evaluation is pending (27). Live-attenuated Salmonella
vectors (e.g., rSC0016, rSC0012) effectively delivered SaoA,
inducing robust mucosal and systemic immunity and conferring
strong homologous and heterologous (SS7) protection in pigs, with
rSC0012 showing an improved safety profile (28, 29). The rSC0016
vector has been successfully utilized to deliver a variety of
heterologous antigens, such as SaoA and Enolase from S. suis (28)
and P42/P97 from Mpycoplasma hyopneumoniae, inducing

TABLE 1 Summary of adjuvants’ advantages and disadvantages.

Adjuvant name Advantages

Freund’s Complete/Incomplete

Adjuvants levels

Quil-A

TiterMax Gold

for CPS
Stimune Enhances IgG responses; provides good protection
ISA 206 VG Suitable for multi-epitope vaccines; provides good

protection
Aluminum Hydroxide (AIOH) Low cost; widely used
Montanide ISA206 Low cost; widely used

Polygen™ Low cost; widely used
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Strong enhancement of immune responses; high IgG

Enhances mucosal and systemic immune responses

Significant enhancement of IgG responses, especially
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protective immune responses in both murine and porcine models
(30, 31). This underscores its potential as a versatile and effective
vaccine platform for swine respiratory diseases. Paradoxically,
despite inducing cross-reactive opsonophagocytic antibodies
(OPA) against multiple serotypes (SS2, SS7, SS9, SS1/2) via the
Salmonella vector, monovalent SaoA provided limited protection
(e.g., only 20% survival against SS9 in mice). This disconnect
between OPA titers and in vivo efficacy highlights the antigen’s
formulation-dependent variability and suggests potential issues
with antibody functionality or undiscovered serotype-specific
epitope variations (32). Thus, while Sao protein shows promise as
a conserved target, achieving consistent, broad cross-protection and
optimal safety remains challenging, contingent on advanced
delivery platforms, including significant challenges in biosafety,
manufacturing scalability, and regulatory acceptance, which must
be addressed before they can replace traditional bacterins in
the field.

2.2 Capsular polysaccharide antigen

Capsular polysaccharide (CPS) from S. suis is a key virulence
factor, but its poor immunogenicity has posed significant challenges
for vaccine development. Calzas et al. (33) found that CPS-specific
antibody responses in infected animals are often absent or only
slightly elevated compared to non-infected animals, primarily
consisting of low-titer IgM. In contrast, experimental infections
using live virulent SS2 strains (such as the European P1/7 or North
American 89-1591) consistently induced robust immune responses
in both mice and pigs. These responses were characterized by
strong, isotype-switched IgG antibodies targeting bacterial
proteins and exhibited memory features upon re-challenge. While
the antibody response directed against the CPS was markedly
impaired. This anti-CPS response was weak or often undetectable,
predominantly consisting of low-titer IgM. Ciritically, it showed no
significant isotype switching to IgG in either animal model and
elicited only a minimal memory boost upon re-exposure (33). This

Disadvantages

Potential for local inflammatory reactions; generally not suitable for
human use

Potential for local reactions; dose optimization needed
High cost; may require cold chain storage

Dependent on antigen type; may need combination with other
adjuvants

Potential for local reactions; formulation optimization needed

Limited immune enhancement; higher doses may be needed
Limited immune enhancement; formulation optimization needed

Limited immune enhancement; formulation optimization needed
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CPS-specific unresponsiveness was independent of the infecting
strain’s geographic origin or TLR2 signaling, underscoring the
inherent poor immunogenicity of S. suis CPS in vivo and directly
explaining the limitations of traditional bacterins.

To address these challenges, researchers have explored CPS
glycoconjugate vaccines. Goyette-Desjardins et al. demonstrated the
successful development and protective efficacy of a SS2 capsular
polysaccharide glycoconjugate vaccine. By coupling purified,
depolymerized, and oxidized CPS to tetanus toxoid (TT) and
formulating it with emulsifying adjuvants (Stimune or TiterMax
Gold), they induced robust, T cell-dependent immune responses in
mice and pigs. This included high levels of IgM and isotype-
switched IgG antibodies (including IgG1, IgG2b, IgG2c, 1gG3 in
mice and IgGl in pigs) specific to the CPS, which exhibited
functional in vitro opsonophagocytic activity (64-98% bacterial
killing in mice). Crucially, the conjugate vaccine provided
significant protection (70% survival) against a lethal
intraperitoneal challenge with virulent SS2 in pigs, comparable to
a commercial bacterin vaccine (72% survival), and significantly
reduced clinical signs (abnormal behavior, lameness) and bacterial
recovery from joints (34). Additionally, serotype 3 CPS was shown
to induce robust opsonizing IgG responses in mice when
adjuvanted with TiterMax Gold, while CPS from other serotypes
(7, 8, and 9) failed to elicit significant antibody responses (21).

2.3 IgAl protease and IgM protease antigen

IgAl protease and IgM protease have emerged as promising
candidates for S. suis vaccines due to their roles in bacterial
pathogenesis and immune evasion. Recombinant IgA1 protease
(rIgAP) from SS2 has been shown to induce high levels of IgG
antibodies and provide complete protection against lethal SS2
challenge in mice when combined with a Marcol 52-based
adjuvant (35). This finding confirms that IgAl protease is
expressed on the bacterial surface, making it a potential surface
protective antigen. Thus, its efficacy in pigs remains unconfirmed,
highlighting the need for further research to evaluate its potential in
relevant animal models (36). Similarly, the IgM protease Ide-S.suis,
which disrupts the classical complement pathway by cleaving IgM,
has been shown to provide protection against a highly virulent
serotype 9 strain in pigs (37) showed that Ide-S.suis, an IgM
protease, disrupts the classical complement pathway by cleaving
IgM, aiding bacterial evasion in pigs. Vaccination with the
recombinant IgM-degrading enzyme (rIde) induced specific IgG
antibodies and reduced bacterial survival in blood, leading to 100%
survival in vaccinated piglets challenged with a lethal dose of S. suis
cps9 strain (38). But vaccinated pigs exhibited signs of morbidity,
such as fever and lameness, indicating partial protection.

Expanding on these insights, the IgM protease vaccine based on
the Ide-S.suis gene has been shown to induce serotype-independent
protection in pigs against multiple S. suis strains expressing group A
IgM protease (39). This vaccine was effective in both piglet and gilt

Frontiers in Immunology

10.3389/fimmu.2025.1680732

vaccination studies, providing protection against various strains,
including stl, st2, st9, and st14. No protection was observed against
strains expressing group B IgM protease, highlighting the need for a
more comprehensive antigenic coverage. The study also developed a
qPCR test to classify S. suis strains based on their IgM protease
groups, which could aid in predicting vaccine efficacy. Additionally,
research by Dolbec et al. (40) has further explored the potential of
IgM-targeting strategies in vaccine development, emphasizing the
necessity of enhancing IgM-focused approaches to improve host
defense against S. suis. While IgA, IgG, and IgM proteases have
shown promise as vaccine candidates, several limitations remain,
including serotype-specific efficacy and incomplete protection
against certain strains. Further in vivo studies in relevant animal
models are needed to improve cross-protection and confirm
overall efficacy.

2.4 ABC transporter antigens

PstB was identified as a highly conserved protein with nearly
100% amino acid sequence identity across various S. suis isolates.
Immunization with recombinant PstB (rPstB) induced high levels
of IFN-y and IL-4, indicating strong Thl and Th2 immune
responses. Mice immunized with rPstB showed significant
protection against challenges with SS2 (87.5% survival), SS7
(62.5% survival), and SS9 (87.5% survival). A multi-epitope
construct of PstB provided poor protection (12.5% survival)
against all tested serotypes (41).

S-ABC was found to be highly conserved across multiple SS
strains, with 97% amino acid sequence identity. Mice immunized
with recombinant S-ABC (rS-ABC) exhibited strong antigen-
specific antibody responses and significant production of IFN-y
and IL-4, indicating robust Th1l and Th2 immune responses. The
vaccine conferred high levels of protection against challenges with
SS2 (87.5% survival) and 9 (100% survival), and moderate
protection against serotype 7 (50% survival). In contrast, a multi-
epitope construct of S-ABC provided lower protection (25%-
37.5%). These results demonstrate that full-length rS-ABC is a
promising candidate for a universal subunit vaccine against
multiple SS serotypes, though further research is needed to
optimize its efficacy and explore its potential in broader serotype
coverage (42).

Moreover, Zhang et al. (2021) (43) synthesized oligosaccharides
resembling the CPS of S. suis serotypes 2, 3, 9, and 14, identifying lead
antigens with the potential to elicit immune responses. While this
work laid the groundwork for glycoconjugate vaccine development, it
remains in the early stages, with no in vivo efficacy data yet available.
Similarly, Singh et al. (2022) (44) reported the synthesis of
oligosaccharides for S. suis serotype 18, overcoming challenges in
synthesizing the penta-saccharide repeating unit. This research
provides a foundation for future glycoconjugate vaccine
development but has not yet evaluated the immunogenicity or
protective efficacy of the synthesized antigens in vivo.
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2.5 The enolase antigen

Recombinant S. suis Enolase (SsEno) and Dipeptidyl Peptidase
IV (DPPIV) subunit vaccines, although expressed by 86% and 88%
of field strains respectively and inducing strong antibody responses
in mice, failed to provide significant protection against a lethal
serotype 2 challenge in an outbred (CD-1) mouse model (45). This
lack of protection was consistent regardless of the adjuvant used
(Quil—A®, PolygenTM, Stimune®, or Montanide™ ISA 50 V2),
demonstrating that adjuvant optimization alone could not confer
efficacy to these antigens under these experimental conditions.
However, a study by Li et al. using a recombinant S. Choleraesuis
vector (rSC0016) carrying the enolase antigen achieved 100%
protection against SS2 and SS9, and 80% protection against SS7
in mice. This study evaluated a live attenuated Salmonella enterica
serovar Choleraesuis vector (rSC0016) delivering a conserved
surface protein enolase as a potential universal vaccine against
multiple serotypes of S. suis. The enolase, a highly conserved
surface protein present in all S. suis serotypes, was expressed by
the rSC0016(pS-Enolase) vaccine strain. The results showed that the
vaccine strain effectively colonized the lymphatic tissues of mice
and elicited strong mucosal, humoral, and cellular immune
responses against enolase (46).

This study evaluated a live attenuated Salmonella enterica
serovar Choleraesuis vector (rSC0016) delivering a conserved
surface protein enolase as a potential universal vaccine against
multiple serotypes of SS. The enolase, a highly conserved surface
protein present in all SS serotypes, was expressed by the rSC0016
(pS-Enolase) vaccine strain. The results showed that the vaccine
strain effectively colonized the lymphatic tissues of mice and elicited
strong mucosal, humoral, and cellular immune responses against
enolase. These findings suggest that the rSC0016(pS-Enolase)
vaccine is a promising candidate for a universal vaccine against
multiple SS serotypes, offering a balance between host safety
and immunogenicity.

Drawing from these observations, Li et al. (32) constructed a
dual-antigen expression cassette using S. Choleraesuis, which
provided broad protection against multiple S. suis serotypes (2, 7,
9, and 1/2) in mice, with protection rates ranging from 80% to
100%. This dual-antigen approach, combining Sao and Enolase,
demonstrated the potential to enhance protective immunity by
leveraging the strengths of multiple conserved antigens. The
results highlight the importance of combining antigens to develop
a universal vaccine against multiple S. suis serotypes, suggesting that
a multi-antigen strategy may be more effective in providing broad-
spectrum protection.

2.6 Other subunit antigens

Other subunit vaccines, such as 6-PGD, PDH, SsnA, EF-Tu,
PrsA, and SBP2, have shown significant immunogenicity and
varying degrees of protection in mice and rabbits.

Researchers developed a live attenuated Salmonella enterica
serovar Choleraesuis vaccine vector (rSC0011), incorporating
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regulated delayed attenuation and regulated delayed antigen
synthesis, to deliver the 6-phosphogluconate dehydrogenase (6-
PGD) protein from SS2. The vaccine strain rSC0011 exhibited
significant attenuation and enhanced colonization in mice
lymphoid tissues compared to the licensed vaccine strain C500.
Mice immunized with rSC0011(pS6-PGD) developed strong
immune responses, including high levels of serum IgG and
mucosal IgA antibodies against 6-PGD and Salmonella antigens.
The vaccine conferred 90% protection against intraperitoneal
challenge with a lethal dose of SS2, demonstrating its potential as
an effective vaccine candidate (47).

Pyruvate dehydrogenase (PDH), a biofilm-associated protein of
SS, is also a subunit vaccine candidate. The recombinant PDH (rPDH)
was expressed and purified from E. coli and used to immunize mice
with the ISA206 adjuvant. Results showed that PDH had high
sequence conservation among different S. suis serotypes and strong
immunogenicity, inducing high levels of specific antibodies (up to
1:409,600 titer) and significant expression of immune-related genes
(CD4, CD8, IEN-y, and IL-6) in mice spleens. Mice immunized with
rPDH or inactivated bacteria exhibited 70% and 60% survival rates,
respectively, against a lethal dose of S. suis ZY05719, with reduced
pathological damage in vital organs like liver, brain, and spleen.
Additionally, PDH antiserum significantly inhibited S. suis growth
and biofilm formation in vitro. Conversely, the study was limited to a
single serotype 2, and its efficacy across other serotypes remains to be
determined (48). Additionally, vaccines based on other proteins like
SsnA (49), EF-Tu (50), PrsA (51), and SBP2 (52) have shown varying
degrees of protection in mice and rabbits. In especial, the rSsnA +
ALOH vaccine achieves a protection rate of 91.25% against SS in mice,
significantly reducing mortality and bacterial counts. Some proteins,
like PrsA and SBP2, have shown partial cross-protection against
multiple serotypes. Nonetheless, most studies are limited to murine
models, and their efficacy in natural hosts (e.g., pigs) remains untested.

In the viral vector domain, the BoHV-4/GMD vaccine achieved
a protection rate of 71.4% against SS2 challenge, while BoOHV-4/SLY
provided only 12.5% protection. The study demonstrated that
BoHV-4/GMD induced higher levels of antibody-mediated
phagocytic activity against SS2, SS7, and SS9 compared to BoHV-
4/SLY. Although the study provides promising results for BoHV-4/
GMD as a potential vaccine candidate, the findings are limited by
the use of a rabbit model, which may not fully replicate the immune
response in pigs. Additionally, the study did not directly evaluate
the protective efficacy against SS7 and SS9 due to the lack of a
suitable rabbit model for these serotypes (53).

3 Multi-subunit vaccines

Multi-subunit vaccines have shown promise in providing
broader protection against S. suis by combining multiple antigens
to enhance immune responses and increase cross-protection across
difterent serotypes (Figure 2). Initial efforts focused on membrane-
associated proteins such as Ldh, Dldh, Pec, and Sbp, with Sbp
showing the most promising results, eliciting strong humoral
immune responses and providing protection against lethal
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FIGURE 2

Comprehensive classification and evaluation of Streptococcus suis subunit vaccines and associated animal models. This figure summarizes various
vaccine strategies including single antigen vaccines and multi-subunit formulations.

challenges in mice (54). Subsequent studies identified additional
proteins (SSU0185, SSU1215, SSU1355, SSU1773, SSU1915)
through functional genomic screening, which induced robust
immune responses, including IgG antibodies and cell-mediated
immunity, and provided significant protection against virulent S.
suis. The efficacy of these vaccines was highly dependent on the
choice of adjuvants, with Carbopol-AddaVax and Emulsigen-D
showing particular promise (55).

Innovative delivery methods have also shown potential. For
instance, intranasal administration of the V5 multi-subunit vaccine,
comprising SrtA, SspA, SLY (56), MRP, and ScpCL virulence factors
with CpG ODN adjuvant, promoted robust mucosal immunity in
mice, leading to significant clearance of S. suis from the nasopharynx
and high homologous protection against systemic SS2 challenge (57).
Despite these successes, some candidates like DPPIV and enolase
(SsEno) failed to provide protection in mice, highlighting the need for
further optimization (45). Proteomic and bioinformatic analyses
identified 131 predicted surface proteins in S. suis human isolates,
providing a resource for vaccine candidate testing, though in vivo
immunogenicity and protective capacity were not evaluated (58).

Engineering approaches have shown potential in enhancing
vaccine efficacy. BP formulations such as 38-BP-Enol and SSU1-BP-
SSU2 induced significant antigen-specific humoral immune
responses, with IgG titers reaching up to 1.0x107, and provided
100% survival in vaccinated mice compared to 70% in control
groups (59). Similarly, proteins like IF-2 and 1022 provided cross-
protection against lethal doses of SS2 and SS9, with high antibody
titers and significant protection in challenge experiments (60). Yet,
a multicomponent vaccine composed of six conserved immunogens
failed to demonstrate significant protection in piglets challenged
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with S. suis cpsl4 (61). In contrast, a trivalent protein vaccine
(JointS) combined with a TLR4 agonist (MPLA) provided complete
protection against SS2 infection in mice and good protection in
piglets (62). Additionally, an engineered E. coli strain secreting S.
suis antigens using the Tat pathway showed higher survival rates
and milder clinical symptoms in vaccinated mice (63). Yet, the risk
of gene transfer and environmental contamination must be
carefully assessed. Multi-epitope vaccines (e.g., MVSS) (64) and
MEASs (65) have also shown strong immunogenicity and partial
protection in mouse models, with some formulations
demonstrating superior efficacy. These studies highlight the
potential of multi-subunit vaccines but also underscore the need
for further optimization to achieve broad-spectrum protection.

4 Animal models in SS vaccine

In the development of subunit vaccines for S. suis, a variety of
animal models have been employed to evaluate efficacy,
immunogenicity, and protection. These models include mice,
pigs, rabbits, and zebrafish, each with distinct roles, advantages,
and limitations, as shown in Figure 3.

Mice are the most prevalent model used for preliminary efficacy
screening, immune response profiling (antibody titers, cytokine
levels), and challenge studies (66). The advantages of using mice
include their low cost, short reproductive cycle, and ease of genetic
manipulation. Additionally, well-characterized immune toolKkits,
such as the BALB/c and C57BL/6 strains, facilitate high-
throughput screening of antigens and adjuvants. For instance,
studies involving OMVs and Salmonella vectors have benefited
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FIGURE 3

Animal models utilized in the development of Streptococcus suis subunit vaccines. The figure illustrates the key animal models employed to assess
immunogenicity, protective efficacy, and safety of vaccine candidates. For each model, its advantages, limitations and applications are summarized,

reflecting their distinct roles in vaccine evaluation.

from the scalability and genetic tractability of mice. Still, mice are
not the natural host for SS, and their pathophysiology may not
accurately mirror the disease in swine or humans. This limitation is
particularly evident in conditions like SS meningitis, which is poorly
modeled in mice. Furthermore, vaccines optimized in mice often
fail to translate effectively to pigs, highlighting the limited
translational relevance for cross-serotype protection.

Pigs are critical for translational validation, especially in evaluating
maternal vaccination and field-relevant serotype challenges. As the
natural host for SS, pigs recapitulate clinical pathology, including sepsis
and meningitis, making them essential for assessing passive immunity
(e.g., sow-to-piglet antibody transfer) and the efficacy of field strains
(67). On the other hand, the use of pigs is constrained by high costs,
ethical considerations, and logistical complexity. Additionally, the
genetic heterogeneity of pigs may introduce variability in vaccine
responses, complicating the interpretation of results.

Rabbits have niche applications (68), particularly in the study of
viral vector vaccines like BoHV-4. Their larger size facilitates
surgical procedures and phlebotomy, making them useful for
immunogenicity studies of human-zoonotic strains. Despite these
advantages, rabbits are not natural hosts for SS, and their immune
mechanisms may not reflect those of swine. Moreover, rabbits have
limited utility for multi-serotype challenges, as there are no
established rabbit models for certain serotypes like SS7 and SS9.

Frontiers in Immunology

Zebrafish represent an emerging model for rapid in vivo
screening, exemplified by studies involving the joints trivalent
vaccine combined with a TLR4 agonist. The transparency of
zebrafish enables real-time imaging of immune responses, and
their high fecundity and genetic tractability make them suitable
for large-scale screening (69). Conversely, their evolutionary
distance from mammals and the lack of adaptive immunity
complexity limit their applicability for SS pathology and cross-
protection studies.

5 Adjuvants for SS vaccine

Adjuvants play a crucial role in enhancing the immunogenicity
and efficacy of bacterial vaccines (70). Over the years, various
adjuvants have been explored in the development of subunit
vaccines of SS2, with some showing significant enhancement of
immune responses, while others have demonstrated limited or no
effect, as displayed in Table 1. Freund’s Complete and Incomplete
Adjuvants have been widely used in experimental studies and have
shown strong enhancement of immune responses. For example, in
studies involving the Sao protein and CPS-TT conjugates (34),
Freund’s adjuvants induced high levels of IgG antibodies and robust
Th1/Th2 immune responses, leading to significant protection
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TABLE 2 Summary of antigens conferring 100% protection against SS2 and evaluation of immune protection in the full text.
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against lethal challenges in mice and pigs. Quil-A, a saponin-based
adjuvant, has been effective in enhancing mucosal and systemic
immune responses (45). In studies using recombinant SaoA
delivered via a Salmonella vector, Quil-A significantly boosted
IgG and IgA levels, providing strong protection against SS2 and
SS7. TiterMax Gold has shown significant enhancement of
opsonizing IgG responses, particularly in CPS-based vaccines. For
instance, CPS3 adjuvanted with TiterMax Gold induced strong
opsonic IgG responses in mice, highlighting its potential for
enhancing vaccine efficacy (21). Stimune has also been used in
CPS-TT conjugate vaccines, inducing high levels of IgG antibodies
and providing significant protection against lethal challenges in
pigs. ISA 206 VG has been effective in enhancing IgG responses in
multi-epitope vaccines, providing significant protection against SS2
and SS9 in mice (48).

On the other hand, some adjuvants have shown limited or no
effect. Aluminum Hydroxide (AIOH), while commonly used, has
shown limited efficacy in enhancing immune responses in some
studies. For example, in CPS-based vaccines, AIOH failed to induce
significant antibody responses, highlighting its potential limitations
(49). Montanide ISA206, in some studies involving enolase and
other subunit vaccines, did not provide significant protection,
despite inducing high IgG titers. PolygenTM has also shown
limited enhancement of immune responses in some studies (45),
particularly in subunit vaccines like rDPPIV, where it failed to
provide significant protection against SS2 challenge. Future
research should focus on optimizing adjuvant formulations and
exploring novel adjuvants to improve vaccine efficacy and safety.

6 Conclusions

Over the past decade, as depicted in Figure 2 and Table 2, the
evaluation of subunit vaccines for SS has identified several antigens
that provide complete (100%) protection against lethal SS2
challenge in mouse and piglet models. Notably, only three
antigens, SaoA, Ide r10, and Ide r10049, have demonstrated 100%
protection in piglets, while other promising candidates like pS-Lpp-
SaoA (delivered via OMVs), IgA1 protease, rlde-14009-1, Enolase,
6-GPD, 38-BP-Enol, and various combinations (e.g., MRP/
GAPDH/DLD or SLY/Enolase/Sbp) have shown 100% protection
in mice. However, most of these candidates have yet to achieve
100% protection in pigs. To bridge the efficacy gap between murine
models and natural hosts, future research needs to focus intently on
validation in pigs using physiologically relevant challenge models
and route of immunization. Identifying immune correlates of
protection, such as opsonic antibodies or mucosal IgA responses,
in swine will be essential for guiding rational vaccine design and
adjuvant selection. Future efforts should focus on identifying new
immunogenic proteins and adjuvants to develop vaccines that can
provide broader protection in target species such as swine.
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