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Background: Endometriosis (EM) is a chronic gynecological disorder that affects

5% to 10% of women of childbearing age, often causing pelvic pain and infertility.

Fibrosis is a hallmark of EM progression, yet its underlying molecular drivers

remain poorly understood. Emerging progress in single-cell and spatial

transcriptomic technologies offer new opportunities to unravel the cellular

heterogeneity and intercellular interactions driving fibrotic and immune

remodeling in EM lesions.

Methods: We performed an integrative multi-omics analysis combining single-

cell RNA sequencing (scRNA-seq) and spatial transcriptomics to dissect fibroblast

heterogeneity and cell–cell communication networks in EM. ScRNA-seq data

from 15 EM patients (GSE213216) were processed to identify transcriptionally

distinct fibroblast subpopulations. Functional enrichment (GO, GSEA), stemness

estimation (CytoTRACE), and trajectory inference were applied to reveal lineage

plasticity. CellChat was used to infer intercellular signaling networks, and spatial

transcriptomic data from two ectopic lesions (GSM6690475, GSM6690476) were

analyzed to validate the spatial distribution of key ligand–receptor interactions.

Results:We identified 35 cell clusters across EM lesions, with Fibroblast and T/NK

cells as dominant populations. Fibroblast were divided into five subtypes, which

were associated with extracellular matrix remodeling, immune interactions, and

metabolic regulation. Notably, the C2 CXCR4+ Fibroblast subpopulation

exhibited high proliferative capacity and stemness characteristics, and

mediated signaling pathways involved in immune and fibrotic responses

through FN1. Spatial transcriptomic analysis confirmed the local enrichment of

these Fibroblast in ectopic lesions, where they were associated with regions of

active signaling.
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Conclusion: This study revealed the transcriptional and spatial heterogeneity of

Fibroblast in EM syndrome, and identified the C2 CXCR4+ Fibroblast

subpopulation as a may represent key driver of fibrosis and immune regulation.

Our integrated omics approach provided new mechanistic insights into the

pathogenesis of EM and pointed out new targets for therapeutic intervention.
KEYWORDS

endometriosis, multi-omics, single-cell RNA sequencing, spatial transcriptomics,
Fibroblast, FN1
GRAPHICAL ABSTRACT
1 Introduction

Endometriosis (EM) is a common chronic gynecological disease

that affects 5% to 10% of women of childbearing age worldwide (1).

The clinical manifestations of the disease are diverse, mainly

including dysmenorrhea, chronic pelvic pain and infertility. The

disease may involve multiple organ systems, and its symptoms are

usually chronic and seriously affect the quality of life of sick women

(2, 3). It is also one of the causes of female infertility (4, 5). The exact
02
cause of endometriosis is still unclear, and there is no radical

treatment. The current treatment strategy is mainly through

hormone suppression and surgical intervention to relieve clinical

symptoms, especially pain symptoms. First-line drug therapy,

including progesterone and low-dose oral contraceptives, can

relieve symptoms in some patients. However, about one-third of

patients with endometriosis have little or no therapeutic effect (6).

Thus, further investigation into the cellular heterogeneity and

spatial organization within endometriotic lesions is essential to
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uncover the mechanisms underlying EM-associated fibrosis and to

identify potential therapeutic targets.

Fibrosis is closely associated with various diseases (7, 8). Vigano

et al. have defined EM as a pro-fibrotic state (9, 10). More and more

evidence suggests that fibrosis plays a crucial role in the

development of endometriosis, suggesting that the treatment of

fibrosis may be a promising non-hormone therapy strategy (11).

However, endometriosis-associated fibrosis is a complex

phenomenon, and its mechanism remains unclear. Platelets,

macrophages, ectopic endometrial cells, and sensory nerve fibers

have all been implicated in its progression (10, 12).

With the rapid advancement of bioinformatics technologies,

significant progress has been made in understanding diverse

diseases (13–15), particularly through single-cell RNA sequencing

(scRNA-seq) and multi-omics approaches, which provide powerful

tools for elucidating disease mechanisms and identifying potential

therapeutic targets (16–18). Marcos A. S. Fonseca et al. used

scRNA-seq to genera t e a ce l lu l a r a t l a s o f the EM

microenvironment, revealing dysregulated pro-inflammatory

pathways and upregulation of complement proteins in epithelial,

stromal, and proximal mesothelial cells (19). Other studies have

utilized scRNA-seq to uncover cellular changes in endometriotic

lesions, including specific subpopulations of immune-regulatory

macrophages, immune-tolerant dendritic cells, and unique vascular

changes associated with EM (20). ScRNA-seq has advanced our

understanding of cellular heterogeneity and intercellular

communication in EM, but lacks spatial context. Spatial

transcriptome technology (ST) can directly display gene

expression in situ on the basis of retaining tissue structure, which

makes up for the shortcomings of traditional methods (21, 22). By

integrating spatial transcriptomics with single-cell sequencing, we

were able to map communication networks within their spatial

context. Unlike studies that used scRNA-seq or spatial

transcriptomics alone, our combined approach offers a clearer

view of how spatially enriched fibroblast subpopulations

contribute to fibrosis and immune remodeling in endometriosis.
2 Materials and methods

2.1 Data acquisition and preprocessing

Single-cell RNA-seq data (GSE213216) were obtained from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/). The 10x

Genomics datasets were imported and processed as Seurat objects

using the Seurat R package (v4.3.0) (23). Doublets were removed

using DoubletFinder (v2.0.3) (24). Cells meeting the following

quality thresholds were retained: nFeature_RNA ranging from

300 to 5000, nCount_RNA between 500 and 40,000,

mitochondrial gene content below 25%, and hemoglobin gene

expression less than 5%.

Raw count matrices were log-transformed as log(x + 1). Data

normalization was performed using the NormalizeData function in
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Seurat. A total of 2,000 highly variable genes were selected with

FindVariableFeatures, followed by data scaling with ScaleData.

Dimensionality reduction was conducted via principal component

analysis (PCA), retaining the top 30 principal components (25, 26).

Batch effects across samples were corrected using the Harmony

package (v0.1.1). Cells were clustered using FindNeighbors and

FindClusters (27, 28), and visualized in two dimensions using

Uniform Manifold Approximation and Projection (UMAP) (29,

30). Cell cycle phase scores were computed using CellCycleScoring.

Cell types were annotated based on canonical marker gene

expression and previously published references.
2.2 Fibroblast subpopulation analysis

To investigate fibroblast heterogeneity in EM, fibroblast subsets

were extracted and re-clustered. The FindAllMarkers function was

employed to identify differentially expressed genes (DEGs) among

the subpopulations (31). Annotation of fibroblast subtypes was

based on their distinct marker profiles. Tissue-specific Ro/e values

and cell cycle phases were calculated as described previously (32).
2.3 Functional enrichment analysis

DEGs in EM fibroblast subpopulations were evaluated for

functional enrichment in Gene Ontology categories with

ClusterProfiler (v4.6.2) (33, 34). Additionally, Gene Set

Enrichment Analysis (GSEA) (35) utilized KEGG pathway gene

sets for the analysis to compare the functional characteristics across

different fibroblast subtypes (34, 36, 37). Functional terms were

ranked based on statistical significance.
2.4 Trajectory and stemness analysis

To infer fibroblast differentiation trajectories, Monocle2 and

Slingshot (v2.6.0) were used to carry out pseudotime analysis (38–

41). The stemness potential of each subpopulation was quantified

using CytoTRACE (21, 42, 43) and subpopulations were

ranked accordingly.
2.5 Transcription factor and metabolic
analysis

Gene regulatory network inference was conducted using the

pySCENIC package (v0.10.0) in Python 3.7 (37). Transcription

factor (TF) activity in each fibroblast subpopulation was assessed

using AUCell, and the top five TFs per subset were visualized using

ggplot2. Metabolic pathway activity was evaluated using the

scMetabolism R packag (44), and the five most enriched pathways

per fibroblast subset were presented as a heatmap.
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2.6 Cell culture

The ihESC and hEM15A cell lines were utilized in this study.

ihESCs were cultured in DMEM/F12 medium supplemented with

10% fetal bovine serum (FBS, Gibco, USA), 1% Penicillin-

Streptomycin (PS, Gibco, USA), and 1% GlutaMAX™ (Gibco,

USA). hEM15A cells were maintained in DMEM/F12 containing

10% FBS and 1% PS. All cells were incubated at 37 °C in a

humidified atmosphere with 5% CO2.
2.7 siRNA transfection

CXCR4-targeting siRNAs were transfected into ihESCs and

hEM15A cells using Lipofectamine™ RNAiMAX (Invitrogen,

USA) following the manufacturer’s instructions. A non-targeting

siRNA (NC siRNA) served as a negative control. Knockdown

efficiency was verified by measuring CXCR4 mRNA expression

using quantitative real-time PCR (qRT-PCR).
2.8 qRT-PCR analysis

Total RNA was isolated with TRIzol™ reagent (Invitrogen,

USA) and subsequently reverse-transcribed into cDNA using the

ABScript III RT Master Mix for qPCR with gDNA Remover

(ABclonal, China). Quantitative real-time PCR was conducted

employing 2× Universal SYBR Green Fast qPCR Mix

(ABclonal, China).
2.9 Cell proliferation assay

Cells transfected were seeded at 5 × 10³ per well in 96-well plates

and allowed to grow for 24 hours. Afterwards, 10 μL of CCK-8

reagent (Beyotime, China) was introduced into each well, and the

plates were incubated at 37 °C for 2 hours. Absorbance at 450 nm

was recorded using a microplate reader at 24, 48, 72, and 96 hours.

Cell proliferation was assessed by plotting growth curves from

optical density (OD) measurements, and proliferation differences

between groups were analyzed statistically.
2.10 Colony formation assay

Transfected cells were plated at a density of 1 × 10³ cells per well

in 6-well plates and cultured for two weeks. Afterward, colonies

were rinsed with PBS, fixed in 4% paraformaldehyde for 15 minutes,

and stained with 0.1% crystal violet for 10 minutes. The colonies

were then photographed under a microscope, and their numbers

were counted to evaluate cell proliferation ability.
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2.11 Transwell migration assay

Cell migration capacity was assessed using Transwell chambers

(8-mm pore size, Corning). Transfected cells were resuspended in

serum-free DMEM/F12 and seeded into the upper chamber, while

the lower chamber contained DMEM/F12 with 10% FBS as a

chemoattractant. After 24 hours of incubation, non-migrating

cells on the upper surface were gently removed. Migrated cells on

the lower surface were fixed with 4% paraformaldehyde, stained

with 0.1% crystal violet, and counted under a microscope in

randomly selected fields.
2.12 Intercellular communication analysis

To investigate intercellular communication among different cell

types in EM, we applied the CellChat R package (v1.6.1) (45–47).

Cell–cell interactions were inferred based on known ligand–

receptor pairs using scRNA-seq data (48–50). Both global

communication networks and fibroblast subpopulation-specific

interactions were quantified and visualized, enabling the

identificat ion of key signal ing pathways involved in

EM pathogenesis.
2.13 Spatial transcriptomics analysis of
endometriotic lesions

Spatial transcriptomic data from two ectopic lesion sections

(GSM6690475 and GSM6690476) were analyzed to investigate cell-

type localization and spatial organization. Cell type deconvolution

was performed using Robust Cell Type Decomposition (RCTD),

with scRNA-seq data serving as the reference. The dominant cell

type and proportions at each spatial spot were mapped to spatial

coordinates (51).

Spatial feature plots—including total UMI count (nCount

Spatial), gene count (nFeature Spatial), mitochondrial gene

percentage, stemness AUC, and cell cycle scores—were generated

to assess data quality and biological variability. Spatial expression

patterns of selected transcription factors and marker genes were

visualized across tissue sections.

Spatial domains were identified via unsupervised clustering

using the ISCHIA framework. Clustering results were displayed in

both tissue sections and UMAP space. Co-occurrence analysis was

conducted to assess the spatial proximity and interactions among

cell types.

Ligand–receptor interactions within the spatial context were

inferred using the stLearn package through both binary and

continuous coexpression analyses. Spatially enriched signaling

interactions were identified, and their localization patterns were

annotated to highlight potential functional niches.
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In parallel, the MISTyR framework was applied to construct

proximity-aware cell–cell communication networks. Based on

multi-scale modeling of tissue microenvironments, MISTyR

identified key interacting cell populations and their spatially

organized signaling hubs within the lesion tissue.
2.14 Statistical analysis

All analyses were performed using R (v4.2.0) and Python (v3.7).

Statistical significance between groups was evaluated using the

Wilcoxon rank-sum test or Spearman’s correlation as appropriate.

Significance levels were indicated as follows: ns, not significant;

*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
3 Results

3.1 Overview of single-cell transcriptomic
profiling in endometriotic lesions

We analyzed scRNA-seq data from the publicly available

GSE213216 dataset, focusing on 15 samples derived from

patients. These included five Endometriomas and ten

Endometriosis samples (detailed information for all samples was

provided in Supplementary Table 1). The overall workflow of this

study was illustrated in the graphical abstract.

After applying rigorous quality control, a total of 79,577 single cells

were retained and subjected to further analysis (Figure 1A). These

high-quality single cells were clustered into 35 distinct groups using

Seurat (Figure 1B). Based on the expression of established marker

genes, these clusters were further classified into 11 major cell

populations. The identified cell types encompassed myeloid cells,

plasmacytoid dendritic cells (pDCs), B cells, endothelial cells (ECs),

mast cells (MCs), plasma cells, proliferating cells, Fibroblast, smooth

muscle cells (SMCs), epithelial cells (EPCs), and a combined group of T

and NK cells (T/NK). The circular plot provided an overview of the

cellular landscape (Figure 1C), and individual UMAP panels illustrated

cell-type-specific distributions (Figure 1D).

When examining sample-wise contributions, we observed

considerable variability in cell type proportions across patients.

The bar plot in Figure 1E summarized these distributions.

Fibroblast and T/NK cells constituted the majority of the cell

populations across samples. Of particular interest was patient

GSM6574509, who exhibited a pronounced enrichment of B cells

alongside a relatively low proportion of Fibroblast, highlighting

significant variability between individual samples.

We compared the relative proportions of each cell type between

Endometriomas and Endometriosis samples to determine if cellular

compositions differed between lesion types (Figure 1F). For most

cell populations, the distribution was similar between the two

groups. As an example, T/NK cells consisted of 42.10%

Endometriosis-derived cells and 46.50% from Endometriomas,

while Fibroblast showed nearly equal contributions from both
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sources (41.80% from Endometriosis and 41.20% from

Endometriomas), suggesting broadly conserved cellular

architecture between lesion types.
3.2 DEGs and enrichment analysis of
different cell populations in EM

The top five marker genes were determined for each cell

subpopulation associated with endometriosis (Figure 2A).

Fibroblast highly expressed COL3A1, CFD, COL1A2, COL1A1,

and DCN, which were closely associated with extracellular matrix

formation and remodeling. Notably, marker genes typically

associated with MCs, such as TAGLN, ADIRF, and MYL9, also

showed high expression in Fibroblast, suggesting transcriptional

overlap between the two subpopulations.

DEG enrichment analysis was performed for each

subpopulation (Figures 2B, C). The results indicated that DEGs in

the fibroblast subpopulation were enriched in biological processes

such as extracellular matrix organization, extracellular structure

organization, and external encapsulating structure organization.

These processes were critical for EM synthesis, remodeling, and

the maintenance of tissue structure, and are fundamental to the

interaction between cells and their external environment.

Further analysis of the DEGs in the fibroblast subpopulation

(Figure 2D) revealed upregulated genes including FTL, MEF2C,

NFE2L2, SLC16A1, and LIMS1, and downregulated genes such as

RPL35, TM4SF1, RPS15, APOC1, and CTSD. Enrichment network

analysis (Figure 2E) demonstrated that these genes were

predominantly involved in pathways related to regulation of

signaling, cellular response to acidic chemicals, and vesicle

localization, suggesting that Fibroblast may also participate in

signal modulation and local metabolic adaptation within the

EM microenvironment.
3.3 ScRNA-seq revealed the heterogeneity
of fibroblast subpopulations in EM

Further classification of the EM fibroblast subpopulation

identified five Seurat clusters, which were named based on their

marker genes as follows: C0 FHL2+ Fibroblast, C1 SFRP2+ Fibroblast,

C2 CXCR4+ Fibroblast, C3 RAMP1+ Fibroblast, and C4 TFF3+

Fibroblast (Figure 3A). The results indicated that the C1 SFRP2+

Fibroblast and C3 RAMP1+ Fibroblast subpopulations

predominantly originated from the Endometriosis tissue type, while

the C0 FHL2+ Fibroblast and C2 CXCR4+ Fibroblast subpopulations

were mostly derived from the Endometriomas tissue type.

To further characterize the heterogeneity among fibroblast

subpopulations, the CNV score, cell stemness score, and G2M

score were assessed for each of the five EM fibroblast subtypes

(Figure 3B). The results showed that the C2 CXCR4+ Fibroblast had

the highest Cell Stemness Score, with relatively high CNV and G2M

scores as well. This suggests that this subpopulation may possess
frontiersin.org
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strong proliferative capacity and stem cell-like properties. Figure 3C

showed the proportions of fibroblast subpopulations across patient

samples, with C0 FHL2+ Fibroblast being the most abundant in

Endometriomas tissues.
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We further examined the distribution of fibroblast subpopulations

across cell cycle stages and tissue types (Figure 3D). The results revealed

that the C4 TFF3+ Fibroblast and C2CXCR4+ Fibroblast subpopulations

were more likely to be in the G2M phase of the cell cycle, suggesting a
FIGURE 1

Overview of all cells in EM. (A) The UMAP plot showed the distribution of 79,577 high-quality single cells, which were derived from 15 patient
samples used in this study. (B) The UMAP plot displayed the distribution of Seurat clusters. The high-quality EM single cells were classified into 35
Seurat clusters. (C) The circular plot provided a comprehensive view of the distribution of all cell types in EM. (D) The UMAP facet plot depicted the
specific distribution of each cell type within EM. (E) The proportional bar graph demonstrated the distribution of cell and tissue types in each sample.
Two tissue types were represented: Endometriomas and Endometriosis. (F) The proportional bar graphs presented the proportion of each cell type
across different tissue types.
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higher proliferative activity. Regarding tissue type preference, the C0

FHL2+ Fibroblast and C2CXCR4+ Fibroblast subpopulations were more

common in Endometriomas, while the C3 RAMP1+ Fibroblast, C1

SFRP2+ Fibroblast, and C4 TFF3+ Fibroblast subpopulations were

predominantly found in Endometriosis. These findings were

consistent with the previous analysis.
Frontiers in Immunology 07
3.4 DEGs and enrichment analysis of
fibroblast subpopulations in EM

To further investigate fibroblast heterogeneity in EM, we

analyzed marker genes, DEGs, and their enrichment. The

distribution and expression patterns of marker genes for each
FIGURE 2

Gene enrichment analysis of different cell types in EM. (A) The bubble plot showed the top 5 marker genes for each cell type in EM. (B, C) Based on
DEGs, the GOBP enrichment analysis results for each cell type in EM were presented. (D) The volcano plot displayed the top 5 upregulated and top
5 downregulated genes in the EM Fibroblast subpopulation. (E) The enrichment network plot showed pathways enriched in the EM fibroblast
subpopulation.
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FIGURE 3

Overview of Fibroblast subpopulations in EM. (A) The Fibroblast subpopulations were classified into five Seurat clusters, named based on their
marker genes as follows: C0 FHL2+ Fibroblast, C1 SFRP2+ Fibroblast, C2 CXCR4+ Fibroblast, C3 RAMP1+ Fibroblast, and C4 TFF3+ Fibroblast. The
circular plot displayed the distribution of these five Fibroblast subpopulations. The four small UMAP plots around the circle illustrated the Seurat
clusters of fibroblast subpopulations, different tissue types, cell cycle stages (G1, G2M, and S), and the distribution across different patient samples.
(B) The violin plots showed the CNV Score, Cell Stemness Score, and G2M Score for the five EM fibroblast subpopulations. (C) The bar graph
depicted the tissue type proportions for different EM patient samples and the relative abundance of each fibroblast subpopulation. (D) The heatmaps
displayed the cell cycle Ro/e values and tissue type Ro/e values for the five EM fibroblast subpopulations.
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subpopulation were shown in Figures 4A, B. Most subpopulations

showed high expression of their respective marker genes. However,

FHL2, the marker of the C0 subpopulation, was also highly

expressed in the C2 subpopulation, suggesting a potential

functional link between these two subpopulations.
Frontiers in Immunology 09
We then analyzed the upregulated and downregulated genes of

each fibroblast subpopulation and performed GO and KEGG

enrichment analysis (Figures 4C–E). In the C0 FHL2+ Fibroblast

subpopulation, upregulated genes such as RPS15, RPL28, RPL10,

RPL11, and RPS14 indicated active protein synthesis. These DEGs
FIGURE 4

DGEs and enrichment analysis of EM Fibroblast subpopulations. (A) The UMAP plots displayed the distribution of the five fibroblast subpopulations
marker genes in EM. (B) The violin plots illustrated the expression levels of the five marker genes across the EM fibroblast subpopulations. (C) The
volcano plots showed the top 5 upregulated and top 5 downregulated genes in the five EM fibroblast subpopulations. (D) The word clouds
represented the enrichment analysis results of the DEGs in the EM fibroblast subpopulations. (E) The GO enrichment analysis results for the DEGs of
the EM fibroblast subpopulations were presented. (F) The bubble plot displayed the stemness genes for each EM fibroblast subpopulation.
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were enriched in oxidative phosphorylation and aerobic respiration,

suggesting elevated energy metabolism. In the C1 SFRP2+ Fibroblast

subpopulation, the top upregulated genes included ACKR4, PTGES,

TNNT3, ECM1, and AKR1C2. Enrichment analysis showed

involvement in morphogenesis, signaling, migration, and

regulation of apoptotic signaling pathways. Notably, cytoplasmic

translation was a prominent process, implying a potential role of C1

SFRP2+ Fibroblast subpopulation in tissue remodeling and

cell migration.

The top five upregulated genes in the C2 CXCR4+ Fibroblast

subpopulation were ARHGAP15, DOK2, EVI2A, GPSM3, and LCK.

Enrichment analysis indicated that the C2 subpopulation was

involved in immune responses related to leukocytes and

lymphocytes, with a characteristic regulation of apoptotic

signaling pathways. Additionally, cytoplasmic translation was

notably enriched in this subpopulation, suggesting its potential

role in immune response and apoptosis regulation.

In the C3 RAMP1+ Fibroblast subpopulation, the top five

upregulated genes were ASIC2, WFDC1, LINGO1, CDCA7 and

DACH1. Enrichment analysis revealed that C3 was primarily

associated with morphogenesis and localization, with biological

processes including cytoplasmic translation and aerobic

respiration. These results suggest that the C3 subpopulation may

play a key rol e in ce l lu lar energy metabol i sm and

morphological remodeling.

For the C4 TFF3+ Fibroblast subpopulation, the top five

upregulated genes were LRCOL1, USHBP1, MYO5C, GCNT2, and

CEACAM1. Enrichment analysis linked C4 to leukocyte functions,

migration, adhesion, and endothelial activity. The response to

reactive oxygen species was also one of its prominent biological

processes. These findings highlight the important role of the C4

subpopulation in immune response, cell migration, and oxidative

stress. .The bubble plot displayed the stemness-associated genes for

each EM fibroblast subpopulation, showing that stemness-related

genes such as CTNNB1, MYC, and KLF4 were expressed to varying

degrees across all fibroblast subpopulations (Figure 4F).
3.5 Differentiation trajectory of EM
fibroblast subpopulations via pseudotime
analysis

Differentiation trajectories of EM fibroblast subpopulations

were inferred through pseudotime analysis with Monocle 2 and

Slingshot. The Monocle 2 results were shown in Figures 5A, B.

Violin plot analysis indicated that C2 CXCR4+ Fibroblast were

predominantly located at the early pseudotime stage, whereas C1

SFRP2+ Fibroblast were mainly distributed at the terminal end.

According to Monocle 2, the pseudotime path originated from the

bottom left and bifurcated into two trajectories—one heading

upward and the other downward—as it moved toward the top

right (Figure 5C). The distribution of different EM fibroblast

subpopulations along the Monocle 2 Pseudotime trajectory was

shown in the facet plot (Figure 5F), which revealed that the C3

RAMP1+ Fibroblast and C4 TFF3+ Fibroblast subpopulations were
Frontiers in Immunology 10
less concentrated in the lower right branch. Ridge plots were

generated to visualize the distribution of each EM fibroblast

subpopulation along pseudotime (Figures 5D, E). C0 FHL2+ and

C2 CXCR4+ Fibroblast clustered near the beginning of the

trajectory, while C1 SFRP2+ Fibroblast were mainly found at

the end.

The EM fibroblast subpopulations were categorized into five

states, and the proportion of each subpopulation in different states

was shown in Figure 5G. The analysis revealed that the C0 FHL2+

Fibroblast subpopulation accounted for 77.60% of state 1, while the

C2 CXCR4+ Fibroblast subpopulation accounted for 10.3% of state

1. This distribution likely reflects the difference in cell numbers, as

the C0 FHL2+ Fibroblast subpopulation contained 17,794 cells,

whereas the C2 CXCR4+ Fibroblast subpopulation contained

2,482 cells.

Additionally, Slingshot analysis was employed to investigate the

developmental trajectories of EM fibroblast subpopulations. Three

lineages were generated, all starting from the C2 CXCR4+ Fibroblast

subpopulation. The terminal ends of Lineage 1, Lineage 2, and

Lineage 3 corresponded to the C1 SFRP2+ Fibroblast, C3 RAMP1+

Fibroblast, and C4 TFF3+ Fibroblast subpopulations, respectively

(Figure 6A). Based on the Monocle 2 analysis results, we

hypothesized that the EM fibroblast subpopulations differentiated

from the C2 CXCR4+ Fibroblast. Notably, the C2 CXCR4+

Fibroblast subpopulation exhibited the highest Cell Stemness

Score, along with elevated CNV and G2M scores compared to the

other fibroblast subpopulations, piquing our interest in further

investigating the C2 CXCR4+ Fibroblast subpopulation.

Slingshot analysis of the two tissue types was shown in

Figure 6B, with results indicating a tendency for Endometriomas

to transition towards Endometriosis. The naming genes of the EM

fibroblast subpopulations were analyzed across the three lineages, as

depicted in Figure 6C. The results revealed that the expression of the

CXCR4 gene in the C2 subpopulation was highest at the early stages

of the trajectory, gradually decreasing as pseudotime progressed.

DEGs enrichment analysis for Lineage 3 was shown in Figure 6D.

Enrichment analysis of DEGs in the Lineage 3 trajectory revealed

that the C2 CXCR4+ Fibroblast subpopulation was closely

associated with biological processes such as muscle striated tissue

formation, skin structure, transforming myofibril, beta extracellular,

and transduction differentiation. These findings highlight the

potential roles of the C2 subpopulation in tissue repair,

extracellular matrix remodeling, and other functions.
3.6 Identification of TF-regulatory
submodules in EM fibroblast
subpopulations

We used the specific index (CSI) matrix to identify three

regulatory modules in the EM fibroblast subpopulations, namely

M1, M2, and M3 (Figure 7A). The expression levels of TFs in each

regulatory module across the fibroblast subpopulations were shown

in Figure 7B. Additionally, we calculated the Regulon activity score

(RAS) to define the specific correspondence between Regulons and
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FIGURE 5

Monocle2 analysis of EM Fibroblast subpopulations. (A) The UMAP plot showed the Monocle2 pseudotime results for the EM fibroblast
subpopulations. (B) The violin plot illustrated the pseudotime trajectories for each EM fibroblast subpopulation. The C2 subpopulation was
positioned at the start of the pseudotime trajectory, while the C1 subpopulation was located at the end. (C) The pseudotime trajectory plot depicted
the progression from the lower left to the upper right. At branch point 1, the trajectory diverged into two paths, with one further splitting at branch
point 2 into two distinct trajectories. (D) The ridge plot displayed the density changes of each EM fibroblast subpopulation along pseudotime. (E) The
facet plot provided a detailed view of the density changes of each EM fibroblast subpopulation along pseudotime. (F) The facet plot presented the
pseudotime trajectories for each EM fibroblast subpopulation. (G) The proportional bar graphs showed the specific proportions of each EM fibroblast
subpopulation across different pseudotime states.
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each fibroblast subpopulation. Figure 7C showed the RAS of each

Fibroblast subpopulation across regulatory modules. The results

indicated that TFs in the M1 module mainly regulated the C0

FHL2+ and C2 CXCR4+ Fibroblast. The distribution of the EM
Frontiers in Immunology 12
Fibroblast subpopulations based on the regulatory modules was

shown in Figure 7D.

To identify the core TFs of the EM Fibroblast subpopulations,

we used pySCENIC to analyze the gene regulatory networks
FIGURE 6

Slingshot analysis of EM Fibroblast subpopulations. (A) The Slingshot analysis identified three lineages among the fibroblast subpopulations. Lineage
1: C2 CXCR4+ Fibroblast → C0 FHL2+ Fibroblast → C1 SFRP2+ Fibroblast; Lineage 2: C2 CXCR4+ Fibroblast → C0 FHL2+ Fibroblast → C3 RAMP1+

Fibroblast; Lineage 3: C2 CXCR4+ Fibroblast → C0 FHL2+ Fibroblast → C4 TFF3+ Fibroblast. (B) The Slingshot analysis for the two tissue types
revealed only one lineage. (C) The scatter plots showed the variation of marker genes for each fibroblast subpopulation across the three Slingshot
trajectories. (D) GOBP enrichment analysis was performed on the DEGs of Lineage 3, and the enriched terms were displayed.
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FIGURE 7

Gene regulatory network and metabolic analysis of EM Fibroblast subpopulations. (A) The heatmap displayed the three regulatory modules (M1, M2,
M3) across the EM fibroblast subpopulations. (B) The bar plots illustrated the expression levels of each fibroblast subpopulation in different regulatory
modules. (C) The Regulon activity score (RAS) was used to identify the specific relationships between regulons and each cell type. (D) The UMAP
plots showed the distribution of EM fibroblast subpopulations based on regulatory modules. (E) The heatmap presented the top 5 transcription
factors (TFs) for the five EM Fibroblast subpopulations. (F) The ranking of TFs in the C2 CXCR4⁺ Fibroblast subpopulation was shown based on their
Regulon specificity score (RSS). (G) The ranking of TFs in G2M was shown based on their RSS. (H) The bar plots displayed the expression levels of the
top 5 TFs in different Fibroblast subpopulations for C2 CXCR4+ Fibroblast. (I) The heatmap showed the AUCell values of the top 10 metabolism-
related pathways across different EM Fibroblast subpopulations. (J) The bubble plot illustrated the scores of the top 10 metabolism-related pathways
in different EM Fibroblast subpopulations. (K) The AUCell values of the top 5 metabolism-related pathways across different tissue types were shown.
(L) The AUCell values of the top 5 metabolism-related pathways in different EM Fibroblast subpopulations were displayed. (*P < 0.05;****P < 0.0001).
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(Figure 7E). The results revealed that the top five TFs in the C2

CXCR4+ Fibroblast subpopulation were RUNX3, IKZF3, IKZF1,

SPI1, and IRF5. Figure 7H showed the expression of key TFs across

subpopulations. RUNX3, the leading TF in C2 CXCR4+ Fibroblast,

was l inked to EM malignant transformation through

hypermethylation (52). Additional analysis found RUNX3 had

the highest specificity in the G2M phase and exhibited elevated

expression in Endometriomas compared to Endometriosis

(Figures 7F–H), indicating its potential as a therapeutic target.

We further examined metabolic pathways in fibroblast

subpopulations and identified key processes such as oxidative

phosphorylat ion, g lutathione metabol ism, glycolys is/

gluconeogenesis, pyruvate metabolism, and cysteine and

methionine metabolism (Figure 7I). Their expression levels across

subpopulations appeared in Figures 7J, L. Glutathione metabolism

and glycolysis/gluconeogenesis showed higher activity in

Endometriosis tissues, whereas cysteine and methionine

metabolism were increased in Endometriomas (Figure 7K).
3.7 Functional validation of CXCR4 in
endometrium-associated cells

We investigated the biological role of CXCR4 in endometrium-

associated cells by knocking down its expression in ihESCs and

hEM15A cell lines and performing in vitro functional assays. qRT-

PCR analysis confirmed that CXCR4 mRNA levels were effectively

reduced in the siRNA group compared to controls (Figure 8A). The

CCK-8 assay suggested that CXCR4 knockdown impaired cell

proliferative capacity (Figure 8B), and colony formation assays

showed a decrease in clonogenic ability in both cell lines

(Figures 8C, D). To evaluate cell migration, Transwell assays

demonstrated a reduction in migrated cell numbers following

CXCR4 knockdown (Figures 8E, F), and wound healing assays

indicated slower wound closure at 48h in CXCR4 knockdown cells

compared with controls (Figures 8G–I). EdU incorporation assays

further suggested a reduction in the proportion of EdU-positive

cells after CXCR4 knockdown, indicating a potential inhibitory

effect on proliferation (Figures 8J, K).
3.8 Complex crosstalk network analysis of
EM fibroblast subpopulations

Final ly , we used CellChat to analyze the cell-cel l

communication networks between the EM Fibroblast

subpopulations and other cell types. A comprehensive interaction

map of all cell types was shown in Figure 9A. The results revealed

that C2 CXCR4+ Fibroblast had particularly strong interactions

with SMCs. Differentia l s ignal ing networks between

Endometriomas and Endometriosis suggested that EGF may be

more enriched in Endometriosis, while VEGF was similarly

enriched in both tissue types (Figure 9B).

Figure 9C presented an overview of outgoing and incoming

signaling across all EM cell types. Notably, C2 CXCR4+ Fibroblast
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played a key role in FN1, CLDN, and CD46 signaling pathways. The

incoming signaling pathways in EM Fibroblast subpopulations were

primarily associated with Pattern 2, involving pathways such as

CD99, FGF, and EGF (Figure 9D). In contrast, the outgoing

signaling pathways were primarily linked to Pattern 1, including

FN1, CD99, and ncWNT pathways (Figure 9E).

When C2 CXCR4+ Fibroblast were considered as the signal

source, the analysis of interaction frequency (Figure 9F) and

interaction strength (Figure 9G) revealed that this subpopulation

had stronger and more frequent interactions with T NK cells

and SMCs.
3.9 FN1 signaling pathway network analysis

Previous studies have highlighted the close association between

FN1 and EM (53). To further explore FN1 signaling in EM, we

visually analyzed the pathway and used centrality scores to assess

the importance of various cell types within the FN1 network. The

results revealed that fibroblast subpopulations exhibited higher

centrality scores compared to other cell types. Specifically, the C1

SFRP2+ Fibroblast subpopulation scored highly as Sender,

Mediator, and Influencer, while the C2 CXCR4+ Fibroblast

subpopulation scored highly as Sender and Influencer (Figure 10A).

CellChat analysis indicated that the fibroblast subpopulations

were the primary sources of FN1, signaling through autocrine and

paracrine mechanisms (Figure 10B). Figure 10C showed the

expression distributions of six genes in the FN1 signaling

pathway. FN1, CD44, and ITGB1 were highly expressed in

multiple cell types. Figure 10D illustrated the regulatory effects of

the C2 CXCR4+ Fibroblast subpopulation on various cell types

within this pathway.

CellChat inferred that the FN1-CD44 ligand-receptor

interaction plays a crucial role in communication between C2

CXCR4+ Fibroblast and other cell types (T NK, MCs, SMC, B,

pDCs, Proliferating, Plasma, and Myeloid cells). Significant ligand-

receptor interactions between the C2 CXCR4+ Fibroblast

subpopulation (as the signal sender) and various recipient cell

types were shown in Supplementary Figure 1A.
3.10 Spatial transcriptomic analysis of
endometriotic lesions

To investigate the spatial distribution of cell types in

endometriotic lesions, we analyzed spatial transcriptomic data

from tissue sections GSM6690475 and GSM6690476. We first

applied Robust Cell Type Decomposition (RCTD) to deconvolute

the cellular composition of GSM6690475 and visualized the

dominant cell type (first_type) for each spatial spot using an ST

map (Figure 11A). A separate ST map revealed the spatial

abundance of C2 CXCR4+ Fibroblast, showing their restricted

localization (Figure 11B). Spatial feature maps further illustrated

key quality control and biological indicators, including nCount

Spatial, nFeature Spatial, pMT, and stemness AUC (Figure 11C).
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The spatial expression of representative transcription factors and

marker genes, including RUNX3, CXCR4, CTNNB1, andMYC, was

also visualized, confirming their localized enrichment

patterns (Figure 11D).
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To explore higher-order spatial structure, we performed

unsupervised clustering using ISCHIA, which grouped all spatial

spots into 12 distinct clusters. These clusters were visualized both in

spatial context by ST map (Figure 11E) and in reduced dimensional
FIGURE 8

In vitro functional assays validated the role of CXCR4. (A) qRT-PCR analysis showed that CXCR4 knockdown significantly reduced mRNA expression
in ihESCs and hEM15A cells. (B) CCK-8 assay indicated that CXCR4 knockdown markedly suppressed the proliferative capacity of both cell lines.
(C, D) Colony formation assays revealed a significant reduction in clonogenic ability upon CXCR4 knockdown. (E, F) Transwell migration assays
demonstrated that the number of migrated cells was markedly decreased following CXCR4 knockdown, indicating impaired migratory ability.
(G–I) Wound healing assays showed that cells with CXCR4 knockdown exhibited slower wound closure compared with controls. (J, K) EdU
incorporation assays and quantitative analysis further confirmed the inhibitory effect of CXCR4 knockdown on cell proliferation in ihESCs and
hEM15A cells. (**P < 0.01; ***P < 0.001).
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space by UMAP plot (Figure 11F). A co-occurrence heatmap revealed

the spatial relationships among clusters, indicating that C2 CXCR4+

Fibroblast strongly co-occurred with SMCs and ECs, while showing

negative co-occurrence with plasma cells (Figure 11G). These findings
Frontiers in Immunology 16
aligned with previous CellChat-based interaction results, suggesting a

spatially coordinated immune–stromal microenvironment.

We further employed the stLearn Python package to analyze

ligand–receptor interactions within the spatial context. Focusing on
FIGURE 9

Cell crosstalk network across different cell types in EM. (A) The circle plot illustrated the number of cell-cell interactions among all cell types in EM.
(B) The signal network differences between Endometriomas and Endometriosis were ranked, with the top yellow signal pathways being more
enriched in Endometriomas and the bottom red pathways more enriched in Endometriosis. (C) The heatmap provided an overview of outgoing and
incoming signaling across all cell types. (D, E) The alluvial plots displayed the incoming communication patterns of target cells and outgoing
communication patterns of secreting cells among all EM cell types. (F) The circle plot showed the number of cell interactions with C2 CXCR4+

Fibroblast as the source. (G) The circle plot illustrated the interaction strengths of C2 CXCR4+ Fibroblast as the source of cell crosstalk.
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the FN1–ITGB1 ligand–receptor pair, we first performed global

screening using binary coexpression analysis across all spatial spots

to assess overall signaling intensity (Figure 11H). We then refined

the analysis to high-confidence regions by visualizing both binary

and continuous coexpression in statistically significant spots

(Figure 11I). Lastly, spot-level annotations were added to visualize

the spatial pattern of FN1–ITGB1 signaling (Figure 11J). The results
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demonstrated that this interaction was predominantly concentrated

at the tissue periphery, suggesting a localized stromal–integrin

signaling axis with potential roles in boundary formation or cell–

matrix remodeling.

To further validate and compare the spatial transcriptomic

architecture of endometriotic lesions, we analyzed tissue section

GSM6690476. Pie charts based on RCTD deconvolution showed the
FIGURE 10

FN1 signaling pathway network across cell types in EM. (A) The heatmap displayed the four centrality scores of FN1, highlighting the relative
importance of each cell type as a sender, receiver, mediator, and influencer. (B) The hierarchical plot illustrated the intercellular communication
network of FN1 signaling. The left and right sides respectively displayed the autocrine and paracrine signals toward fibroblasts and other cell types.
Solid and open circles represented source and target cell types, with circle sizes proportional to the number of cells in each type. (C) The violin plot
showed the expression distribution of six genes involved in the inferred FN1 signaling pathway network. (D) The bubble plot compared the key
ligands and receptors involved in the FN1 signaling pathway network between the C2 CXCR4+ Fibroblast subpopulation and other subpopulations.
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FIGURE 11

Spatial transcriptomic features of an endometriosis lesion from patient GSM6690475. (A) ST map showing the dominant cell type (first_type) per
spot as identified by RCTD. (B) ST map showing the relative abundance of C2 CXCR4+ fibroblast, with a color gradient from light red (low
abundance, 0.1) to deep red (high abundance, 0.5). (C) Spatial feature maps displaying nCount_Spatial, nFeature_Spatial, mitochondrial gene
percentage (pMT), and cell stemness AUC across the tissue section. (D) ST maps showing the spatial expression patterns of the top TF RUNX3, the
C2 fibroblast marker gene CXCR4, and stemness-related genes CTNNB1 and MYC. (E) ST map displaying the spatial distribution of the 12 clusters
across the tissue section based on ISCHIA clustering. (F) UMAP plot illustrating the transcriptomic similarity and separation among the 12 spatial
clusters. (G) Co-occurrence heatmap of spatial clusters. Red indicated positive co-occurrence, blue indicated negative co-occurrence, and grey
indicated no significant association. (H) Binary coexpression map of FN1–ITGB1 across all spots, indicating global ligand–receptor interaction
distribution. (I) Refined coexpression plots within significant spots: binary (left) and continuous (right) representations highlight regions with strong
interactions. (J) Spatial visualization with spot annotations showing that FN1–ITGB1 signaling was predominantly localized at the tissue periphery.
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proportional distribution of cell types at each spatial spot, and a

spatial map highlighted the dominant cell type across the tissue

(Figures 12A, B). Spatial feature plots revealed gradients in

sequencing quality and biological properties, including nCount

Spatial, nFeature Spatial, stemness AUC, and G2M score,

indicating spatial heterogeneity in proliferative and stem-like

propert ies (Figure 12C). The C2 CXCR4+ Fibroblast

subpopulation showed distinct spatial localization, reinforcing its

relevance to lesion architecture (Figure 12D).

Using stLearn, we visualized the spatial coexpression of FN1

and ITGB1 across all spots, significant spots, and annotated regions,

revealing spatially confined ligand–receptor activity (Figure 12E).

We further mapped the spatial distribution of sender and receiver

cells for three key FN1-mediated interactions—FN1–CD44, FN1–

ITGA3–ITGB1, and FN1–ITGA5–ITGB1—highlighting interaction

hotspots enriched at the stromal–epithelial interface (Figure 12F).

Finally, a MISTyR-inferred cell–cell interaction network at the

intratissue proximity level revealed strong context-dependent

communications, particularly involving C2 Fibroblast, suggesting

their centra l ro le in coordinat ing the local ce l lu lar

microenvironment (Figure 12G).
4 Discussion

This study conducted an in-depth molecular characterization of

EM-associated fibroblast subpopulations using scRNA-seq,

revealing the heterogeneity of different cell subpopulations and

their potential roles in EM progression. Through comprehensive

analysis of scRNA-seq data from EM patients, we confirmed the

complex cellular composition of the EM microenvironment, with

particular emphasis on the abundance of immune cells and

fibroblast subpopulations. Among the 35 identified cell clusters, T

NK cells and Fibroblast represented the dominant subpopulations,

further highlighting the close relationship between immune

responses and the onset and progression of EM.

Fibroblast subpopulations in EM exhibited significant

heterogeneity, and these fibroblast subpopulations were classified

into five subpopulations: C0 FHL2+, C1 SFRP2+, C2 CXCR4+, C3

RAMP1+, and C4 TFF3+. Notably, C2 CXCR4+ Fibroblast

subpopulation exhibited the highest Cell Stemness Score, along

with elevated CNV and G2M Scores, suggesting that this

subpopulation may be in a more active proliferative state and

could serve as the initiating subpopulation for fibroblast

differentiation. Moreover, Pseudotime analysis revealed the

developmental trajectory of the fibroblast subpopulations,

indicating that C2 CXCR4+ Fibroblast may act as precursor cells

for the other subpopulation, further highlighting their key role in

the fibrotic progression of EM. Additionally, the TF regulatory

network analysis of Fibroblast subpopulations identified RUNX3 as

one of the core TFs in C2 CXCR4+ Fibroblast. RUNX3 was found to

be closely associated with the malignant transformation of EM (52,
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54), with its expression level in Endometriomas being significantly

higher than in Endometriosis, emphasizing its potential as a

therapeutic target for EM.

FN1, a glycoprotein in the extracellular matrix, is involved in

key cellular processes, including cell adhesion, migration, wound

healing, coagulation, and even metastasis (55). Previous systematic

reviews and meta-analyses have suggested that the FN1 gene variant

rs1250248 may influence the development of EM (56).

Furthermore, the significant role of FN1 in EM has been

corroborated by studies such as that of Pagliardini et al. (57).

Beliard et al. proposed that FN1 may contribute to the persistence

of endometriotic lesions and found increased FN1 receptor

expression in the endometriotic glands of the peritoneal lesions

compared to the eutopic endometrium from healthy controls (58).

Recent research has indicated that EM-associated mesothelial cells

interact with ectopic endometrial stromal cells through the FN1-

integrin complex and suggested that these mesothelial cells may

induce progesterone resistance in ectopic stromal cells via the FN1-

PI3K-AKT pathway (59). However, the potential relationship

between FN1 and Fibroblast remains insufficiently explored.

This study found that FN1 was highly expressed in fibroblast

subpopulations associated with EM, particularly in the C1 SFRP2+

Fibroblast and C2 CXCR4+ Fibroblast subpopulation. Furthermore,

our research suggested that the FN1 signaling pathway may play a

key role in the fibrosis process and immune microenvironment

shaping in EM by regulating intercellular communication among

Fibroblast. CellChat analysis showed that C1 SFRP2+ and C2

CXCR4+ Fibroblast were main sources of FN1 and likely shaped

the EM microenvironment via key ligand-receptor pairs like FN1-

CD44, impacting immune and stromal cells. The strong links

between C2 CXCR4+ Fibroblast, T NK cells, and SMCs suggest

this group may play a role in immune regulation or evasion in EM.

Further analysis indicated that FN1-ITGB1 and FN1-CD44

signaling axes exhibited high interaction frequencies in the EM

microenvironment, implying that FN1 may play an essential role in

the fibrosis process of EM by mediating adhesion and signal

transduction between Fibroblast, immune cells, and smooth

muscle cells. The varying FN1 signaling activity across fibroblast

subpopulations indicated they had different roles in EM pathology.

C1 SFRP2+ Fibroblast likely contributed to EM remodeling, while

C2 CXCR4+ Fibroblast were more involved in ongoing

inflammation and immune regulation. Spatial transcriptomics

confirmed that C2 CXCR4+ Fibroblast were enriched in specific

tissue areas, with FN1 signaling—especially via FN1–ITGB1—

localized to the tissue edge and stromal–epithelial border.

Combined analyses with RCTD, stLearn, ISCHIA, and MISTyR

revealed that C2 CXCR4+ Fibroblast functioned as spatial hubs

coordinating fibrosis and immune responses. These findings

highlighted FN1 signaling as a crucial spatial and functional

factor in EM progression.

Our functional assays demonstrated that CXCR4 knockdown

impaired proliferation, clonogenicity, and migration in ihESC and
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FIGURE 12

Spatial transcriptomic features of an endometriosis lesion from patient GSM6690476. (A) Pie charts showing the proportion of each cell type at
individual spatial spots based on RCTD results. (B) Spatial map displaying the dominant cell type (first_type) at each spot based on RCTD
deconvolution results. (C) ST maps showing the distribution and intensity of nCount_Spatial, nFeature_Spatial, cell stemness AUC, and G2M Score
across the tissue. (D) Spatial distribution map showing the C2 CXCR4+ Fibroblast subpopulation. (E) Binary LR coexpression plots of FN1 and ITGB1
from stlearn: all spots, significant spots, and with spot annotations. (F) Spatial distribution of sender (left) and receiver (right) cells for three key FN1-
mediated interactions: FN1–CD44, FN1–ITGA3–ITGB1, and FN1–ITGA5–ITGB1. (G) Cell–cell interaction network inferred by the MISTyR intraview
model (spatial scale, importance ≥ 0.2), with nodes representing RCTD-identified cell types and edge thickness denoting interaction strength.
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hEM15A cells. These results support the biological relevance of our

single-cell and spatial findings, but further validation in primary

tissues and in vivo animal models is still required.

We acknowledge that the number of samples included for both

single-cell and spatial transcriptomics analyses is limited. While this

may constrain the generalizability of our findings and underestimate

inter-patient variability, the observed patterns were consistent across

multiple patients and analyses. Future studies with larger cohorts will

be critical to validate and extend these findings. Based on previous

studies and our comprehensive multi-omics analysis, we propose that

FN1 plays a key role in the fibrotic process of endometriosis, which

regulates the inflammatory response through key fiber cell subsets and

through interaction with immune cells. Our findings provide a

rationale for clinical translation, as FN1 plays a pivotal role in

fibroblast-mediated fibrosis and immune remodeling. Targeting FN1

interactions with receptors such as ITGB1 or CD44 may constitute a

promising non-hormonal therapeutic strategy, warranting further

preclinical evaluation and potential clinical development.
5 Conclusion

This study employed an integrated multi-omics approach

combining scRNA-seq and spatial transcriptomics to characterize

the heterogeneity and functional diversity of fibroblast

subpopulations in endometriosis. We identified FN1 signaling,

particularly within the C2 CXCR4+ Fibroblast subpopulation, as a

central mediator of fibrosis and immune remodeling in ectopic

lesions. These findings enhance our understanding of the cellular

and molecular mechanisms driving EM progression and highlight

FN1 as a potential target. Further studies are warranted to elucidate

the complex fibroblast-immune interactions and to validate FN1-

targeted interventions for improved management of endometriosis.
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