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Background: Endometriosis (EM) is a chronic gynecological disorder that affects
5% to 10% of women of childbearing age, often causing pelvic pain and infertility.
Fibrosis is a hallmark of EM progression, yet its underlying molecular drivers
remain poorly understood. Emerging progress in single-cell and spatial
transcriptomic technologies offer new opportunities to unravel the cellular
heterogeneity and intercellular interactions driving fibrotic and immune
remodeling in EM lesions.

Methods: We performed an integrative multi-omics analysis combining single-
cell RNA sequencing (scRNA-seq) and spatial transcriptomics to dissect fibroblast
heterogeneity and cell-cell communication networks in EM. ScCRNA-seq data
from 15 EM patients (GSE213216) were processed to identify transcriptionally
distinct fibroblast subpopulations. Functional enrichment (GO, GSEA), stemness
estimation (CytoTRACE), and trajectory inference were applied to reveal lineage
plasticity. CellChat was used to infer intercellular signaling networks, and spatial
transcriptomic data from two ectopic lesions (GSM6690475, GSM6690476) were
analyzed to validate the spatial distribution of key ligand—-receptor interactions.
Results: We identified 35 cell clusters across EM lesions, with Fibroblast and T/NK
cells as dominant populations. Fibroblast were divided into five subtypes, which
were associated with extracellular matrix remodeling, immune interactions, and
metabolic regulation. Notably, the C2 CXCR4™ Fibroblast subpopulation
exhibited high proliferative capacity and stemness characteristics, and
mediated signaling pathways involved in immune and fibrotic responses
through FN1. Spatial transcriptomic analysis confirmed the local enrichment of
these Fibroblast in ectopic lesions, where they were associated with regions of
active signaling.
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GRAPHICAL ABSTRACT

1 Introduction

Endometriosis (EM) is a common chronic gynecological disease

10.3389/fimmu.2025.1680849

Conclusion: This study revealed the transcriptional and spatial heterogeneity of
Fibroblast in EM syndrome, and identified the C2 CXCR4* Fibroblast
subpopulation as a may represent key driver of fibrosis and immune regulation.
Our integrated omics approach provided new mechanistic insights into the
pathogenesis of EM and pointed out new targets for therapeutic intervention.
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cause of endometriosis is still unclear, and there is no radical
treatment. The current treatment strategy is mainly through
hormone suppression and surgical intervention to relieve clinical

that affects 5% to 10% of women of childbearing age worldwide (1).
The clinical manifestations of the disease are diverse, mainly
including dysmenorrhea, chronic pelvic pain and infertility. The
disease may involve multiple organ systems, and its symptoms are
usually chronic and seriously affect the quality of life of sick women
(2, 3). It is also one of the causes of female infertility (4, 5). The exact
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symptoms, especially pain symptoms. First-line drug therapy,
including progesterone and low-dose oral contraceptives, can
relieve symptoms in some patients. However, about one-third of
patients with endometriosis have little or no therapeutic effect (6).
Thus, further investigation into the cellular heterogeneity and
spatial organization within endometriotic lesions is essential to
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uncover the mechanisms underlying EM-associated fibrosis and to
identify potential therapeutic targets.

Fibrosis is closely associated with various diseases (7, 8). Vigano
et al. have defined EM as a pro-fibrotic state (9, 10). More and more
evidence suggests that fibrosis plays a crucial role in the
development of endometriosis, suggesting that the treatment of
fibrosis may be a promising non-hormone therapy strategy (11).
However, endometriosis-associated fibrosis is a complex
phenomenon, and its mechanism remains unclear. Platelets,
macrophages, ectopic endometrial cells, and sensory nerve fibers
have all been implicated in its progression (10, 12).

With the rapid advancement of bioinformatics technologies,
significant progress has been made in understanding diverse
diseases (13-15), particularly through single-cell RNA sequencing
(scRNA-seq) and multi-omics approaches, which provide powerful
tools for elucidating disease mechanisms and identifying potential
therapeutic targets (16-18). Marcos A. S. Fonseca et al. used
scRNA-seq to generate a cellular atlas of the EM
microenvironment, revealing dysregulated pro-inflammatory
pathways and upregulation of complement proteins in epithelial,
stromal, and proximal mesothelial cells (19). Other studies have
utilized scRNA-seq to uncover cellular changes in endometriotic
lesions, including specific subpopulations of immune-regulatory
macrophages, immune-tolerant dendritic cells, and unique vascular
changes associated with EM (20). SCRNA-seq has advanced our
understanding of cellular heterogeneity and intercellular
communication in EM, but lacks spatial context. Spatial
transcriptome technology (ST) can directly display gene
expression in situ on the basis of retaining tissue structure, which
makes up for the shortcomings of traditional methods (21, 22). By
integrating spatial transcriptomics with single-cell sequencing, we
were able to map communication networks within their spatial
context. Unlike studies that used scRNA-seq or spatial
transcriptomics alone, our combined approach offers a clearer
view of how spatially enriched fibroblast subpopulations
contribute to fibrosis and immune remodeling in endometriosis.

2 Materials and methods
2.1 Data acquisition and preprocessing

Single-cell RNA-seq data (GSE213216) were obtained from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/). The 10x
Genomics datasets were imported and processed as Seurat objects
using the Seurat R package (v4.3.0) (23). Doublets were removed
using DoubletFinder (v2.0.3) (24). Cells meeting the following
quality thresholds were retained: nFeature RNA ranging from
300 to 5000, nCount_RNA between 500 and 40,000,
mitochondrial gene content below 25%, and hemoglobin gene
expression less than 5%.

Raw count matrices were log-transformed as log(x + 1). Data
normalization was performed using the NormalizeData function in
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Seurat. A total of 2,000 highly variable genes were selected with
FindVariableFeatures, followed by data scaling with ScaleData.
Dimensionality reduction was conducted via principal component
analysis (PCA), retaining the top 30 principal components (25, 26).
Batch effects across samples were corrected using the Harmony
package (v0.1.1). Cells were clustered using FindNeighbors and
FindClusters (27, 28), and visualized in two dimensions using
Uniform Manifold Approximation and Projection (UMAP) (29,
30). Cell cycle phase scores were computed using CellCycleScoring.
Cell types were annotated based on canonical marker gene
expression and previously published references.

2.2 Fibroblast subpopulation analysis

To investigate fibroblast heterogeneity in EM, fibroblast subsets
were extracted and re-clustered. The FindAllMarkers function was
employed to identify differentially expressed genes (DEGs) among
the subpopulations (31). Annotation of fibroblast subtypes was
based on their distinct marker profiles. Tissue-specific Ro/e values
and cell cycle phases were calculated as described previously (32).

2.3 Functional enrichment analysis

DEGs in EM fibroblast subpopulations were evaluated for
functional enrichment in Gene Ontology categories with
ClusterProfiler (v4.6.2) (33, 34). Additionally, Gene Set
Enrichment Analysis (GSEA) (35) utilized KEGG pathway gene
sets for the analysis to compare the functional characteristics across
different fibroblast subtypes (34, 36, 37). Functional terms were
ranked based on statistical significance.

2.4 Trajectory and stemness analysis

To infer fibroblast differentiation trajectories, Monocle2 and
Slingshot (v2.6.0) were used to carry out pseudotime analysis (38—
41). The stemness potential of each subpopulation was quantified
using CytoTRACE (21, 42, 43) and subpopulations were
ranked accordingly.

2.5 Transcription factor and metabolic
analysis

Gene regulatory network inference was conducted using the
pYSCENIC package (v0.10.0) in Python 3.7 (37). Transcription
factor (TF) activity in each fibroblast subpopulation was assessed
using AUCell, and the top five TFs per subset were visualized using
ggplot2. Metabolic pathway activity was evaluated using the
scMetabolism R packag (44), and the five most enriched pathways
per fibroblast subset were presented as a heatmap.
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2.6 Cell culture

The ihESC and hEM15A cell lines were utilized in this study.
thESCs were cultured in DMEM/F12 medium supplemented with
10% fetal bovine serum (FBS, Gibco, USA), 1% Penicillin-
Streptomycin (PS, Gibco, USA), and 1% GlutaMAX™ (Gibco,
USA). hEMI5A cells were maintained in DMEM/F12 containing
10% FBS and 1% PS. All cells were incubated at 37 °C in a
humidified atmosphere with 5% CO,.

2.7 siRNA transfection

CXCR4-targeting siRNAs were transfected into ihESCs and
hEMI15A cells using LipofectamineTM RNAIMAX (Invitrogen,
USA) following the manufacturer’s instructions. A non-targeting
siRNA (NC siRNA) served as a negative control. Knockdown
efficiency was verified by measuring CXCR4 mRNA expression
using quantitative real-time PCR (qRT-PCR).

2.8 qRT-PCR analysis

Total RNA was isolated with TRIzol"" reagent (Invitrogen,
USA) and subsequently reverse-transcribed into cDNA using the
ABScript III RT Master Mix for qPCR with gDNA Remover
(ABclonal, China). Quantitative real-time PCR was conducted
employing 2x Universal SYBR Green Fast qPCR Mix
(ABclonal, China).

2.9 Cell proliferation assay

Cells transfected were seeded at 5 x 10° per well in 96-well plates
and allowed to grow for 24 hours. Afterwards, 10 uL of CCK-8
reagent (Beyotime, China) was introduced into each well, and the
plates were incubated at 37 °C for 2 hours. Absorbance at 450 nm
was recorded using a microplate reader at 24, 48, 72, and 96 hours.
Cell proliferation was assessed by plotting growth curves from
optical density (OD) measurements, and proliferation differences
between groups were analyzed statistically.

2.10 Colony formation assay

Transfected cells were plated at a density of 1 x 10° cells per well
in 6-well plates and cultured for two weeks. Afterward, colonies
were rinsed with PBS, fixed in 4% paraformaldehyde for 15 minutes,
and stained with 0.1% crystal violet for 10 minutes. The colonies
were then photographed under a microscope, and their numbers
were counted to evaluate cell proliferation ability.
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2.11 Transwell migration assay

Cell migration capacity was assessed using Transwell chambers
(8-um pore size, Corning). Transfected cells were resuspended in
serum-free DMEM/F12 and seeded into the upper chamber, while
the lower chamber contained DMEM/F12 with 10% FBS as a
chemoattractant. After 24 hours of incubation, non-migrating
cells on the upper surface were gently removed. Migrated cells on
the lower surface were fixed with 4% paraformaldehyde, stained
with 0.1% crystal violet, and counted under a microscope in
randomly selected fields.

2.12 Intercellular communication analysis

To investigate intercellular communication among different cell
types in EM, we applied the CellChat R package (v1.6.1) (45-47).
Cell-cell interactions were inferred based on known ligand-
receptor pairs using scRNA-seq data (48-50). Both global
communication networks and fibroblast subpopulation-specific
interactions were quantified and visualized, enabling the
identification of key signaling pathways involved in
EM pathogenesis.

2.13 Spatial transcriptomics analysis of
endometriotic lesions

Spatial transcriptomic data from two ectopic lesion sections
(GSM6690475 and GSM6690476) were analyzed to investigate cell-
type localization and spatial organization. Cell type deconvolution
was performed using Robust Cell Type Decomposition (RCTD),
with scRNA-seq data serving as the reference. The dominant cell
type and proportions at each spatial spot were mapped to spatial
coordinates (51).

Spatial feature plots—including total UMI count (nCount
Spatial), gene count (nFeature Spatial), mitochondrial gene
percentage, stemness AUC, and cell cycle scores—were generated
to assess data quality and biological variability. Spatial expression
patterns of selected transcription factors and marker genes were
visualized across tissue sections.

Spatial domains were identified via unsupervised clustering
using the ISCHIA framework. Clustering results were displayed in
both tissue sections and UMAP space. Co-occurrence analysis was
conducted to assess the spatial proximity and interactions among
cell types.

Ligand-receptor interactions within the spatial context were
inferred using the stLearn package through both binary and
continuous coexpression analyses. Spatially enriched signaling
interactions were identified, and their localization patterns were
annotated to highlight potential functional niches.
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In parallel, the MISTyR framework was applied to construct
proximity-aware cell-cell communication networks. Based on
multi-scale modeling of tissue microenvironments, MISTyR
identified key interacting cell populations and their spatially
organized signaling hubs within the lesion tissue.

2.14 Statistical analysis

All analyses were performed using R (v4.2.0) and Python (v3.7).
Statistical significance between groups was evaluated using the
Wilcoxon rank-sum test or Spearman’s correlation as appropriate.
Significance levels were indicated as follows: ns, not significant;
*P < 0.05; *P < 0.01; **P < 0.001; ****P < 0.0001.

3 Results

3.1 Overview of single-cell transcriptomic
profiling in endometriotic lesions

We analyzed scRNA-seq data from the publicly available
GSE213216 dataset, focusing on 15 samples derived from
patients. These included five Endometriomas and ten
Endometriosis samples (detailed information for all samples was
provided in Supplementary Table 1). The overall workflow of this
study was illustrated in the graphical abstract.

After applying rigorous quality control, a total of 79,577 single cells
were retained and subjected to further analysis (Figure 1A). These
high-quality single cells were clustered into 35 distinct groups using
Seurat (Figure 1B). Based on the expression of established marker
genes, these clusters were further classified into 11 major cell
populations. The identified cell types encompassed myeloid cells,
plasmacytoid dendritic cells (pDCs), B cells, endothelial cells (ECs),
mast cells (MCs), plasma cells, proliferating cells, Fibroblast, smooth
muscle cells (SMCs), epithelial cells (EPCs), and a combined group of T
and NK cells (T/NK). The circular plot provided an overview of the
cellular landscape (Figure 1C), and individual UMAP panels illustrated
cell-type-specific distributions (Figure 1D).

When examining sample-wise contributions, we observed
considerable variability in cell type proportions across patients.
The bar plot in Figure 1E summarized these distributions.
Fibroblast and T/NK cells constituted the majority of the cell
populations across samples. Of particular interest was patient
GSM6574509, who exhibited a pronounced enrichment of B cells
alongside a relatively low proportion of Fibroblast, highlighting
significant variability between individual samples.

We compared the relative proportions of each cell type between
Endometriomas and Endometriosis samples to determine if cellular
compositions differed between lesion types (Figure 1F). For most
cell populations, the distribution was similar between the two
groups. As an example, T/NK cells consisted of 42.10%
Endometriosis-derived cells and 46.50% from Endometriomas,
while Fibroblast showed nearly equal contributions from both
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sources (41.80% from Endometriosis and 41.20% from
Endometriomas), suggesting broadly conserved cellular
architecture between lesion types.

3.2 DEGs and enrichment analysis of
different cell populations in EM

The top five marker genes were determined for each cell
subpopulation associated with endometriosis (Figure 2A).
Fibroblast highly expressed COL3AI, CFD, COLIA2, COLIAI,
and DCN, which were closely associated with extracellular matrix
formation and remodeling. Notably, marker genes typically
associated with MCs, such as TAGLN, ADIRF, and MYL9, also
showed high expression in Fibroblast, suggesting transcriptional
overlap between the two subpopulations.

DEG enrichment analysis was performed for each
subpopulation (Figures 2B, C). The results indicated that DEGs in
the fibroblast subpopulation were enriched in biological processes
such as extracellular matrix organization, extracellular structure
organization, and external encapsulating structure organization.
These processes were critical for EM synthesis, remodeling, and
the maintenance of tissue structure, and are fundamental to the
interaction between cells and their external environment.

Further analysis of the DEGs in the fibroblast subpopulation
(Figure 2D) revealed upregulated genes including FTL, MEF2C,
NFE2L2, SLCI16A1, and LIMSI, and downregulated genes such as
RPL35, TM4SF1, RPS15, APOCI1, and CTSD. Enrichment network
analysis (Figure 2E) demonstrated that these genes were
predominantly involved in pathways related to regulation of
signaling, cellular response to acidic chemicals, and vesicle
localization, suggesting that Fibroblast may also participate in
signal modulation and local metabolic adaptation within the

EM microenvironment.

3.3 ScCRNA-seq revealed the heterogeneity
of fibroblast subpopulations in EM

Further classification of the EM fibroblast subpopulation
identified five Seurat clusters, which were named based on their
marker genes as follows: CO FHL2" Fibroblast, C1 SFRP2" Fibroblast,
C2 CXCR4" Fibroblast, C3 RAMPI" Fibroblast, and C4 TFF3*
Fibroblast (Figure 3A). The results indicated that the C1 SFRP2*
Fibroblast and C3 RAMPI1* Fibroblast subpopulations
predominantly originated from the Endometriosis tissue type, while
the CO FHL2" Fibroblast and C2 CXCR4" Fibroblast subpopulations
were mostly derived from the Endometriomas tissue type.

To further characterize the heterogeneity among fibroblast
subpopulations, the CNV score, cell stemness score, and G2M
score were assessed for each of the five EM fibroblast subtypes
(Figure 3B). The results showed that the C2 CXCR4" Fibroblast had
the highest Cell Stemness Score, with relatively high CNV and G2M
scores as well. This suggests that this subpopulation may possess
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FIGURE 1

Overview of all cells in EM. (A) The UMAP plot showed the distribution of 79,577 high-quality single cells, which were derived from 15 patient
samples used in this study. (B) The UMAP plot displayed the distribution of Seurat clusters. The high-quality EM single cells were classified into 35
Seurat clusters. (C) The circular plot provided a comprehensive view of the distribution of all cell types in EM. (D) The UMAP facet plot depicted the
specific distribution of each cell type within EM. (E) The proportional bar graph demonstrated the distribution of cell and tissue types in each sample.
Two tissue types were represented: Endometriomas and Endometriosis. (F) The proportional bar graphs presented the proportion of each cell type
across different tissue types.

strong proliferative capacity and stem cell-like properties. Figure 3C We further examined the distribution of fibroblast subpopulations
showed the proportions of fibroblast subpopulations across patient  across cell cycle stages and tissue types (Figure 3D). The results revealed
samples, with CO FHL2" Fibroblast being the most abundant in  that the C4 TFF3" Fibroblast and C2 CXCR4" Fibroblast subpopulations
Endometriomas tissues. were more likely to be in the G2M phase of the cell cycle, suggesting a
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FIGURE 2

Gene enrichment analysis of different cell types in EM. (A) The bubble plot showed the top 5 marker genes for each cell type in EM. (B, C) Based on
DEGs, the GOBP enrichment analysis results for each cell type in EM were presented. (D) The volcano plot displayed the top 5 upregulated and top
5 downregulated genes in the EM Fibroblast subpopulation. (E) The enrichment network plot showed pathways enriched in the EM fibroblast
subpopulation.

higher proliferative activity. Regarding tissue type preference, the C0 3.4 DEGs and enrichment ana lysis of
FHL2" Fibroblast and C2 CXCR4" Fibroblast subpopulations were more  fibroblast sub populations in EM

common in Endometriomas, while the C3 RAMPI" Fibroblast, C1

SFRP2" Fibroblast, and C4 TFF3" Fibroblast subpopulations were To further investigate fibroblast heterogeneity in EM, we
predominantly found in Endometriosis. These findings were  analyzed marker genes, DEGs, and their enrichment. The
consistent with the previous analysis. distribution and expression patterns of marker genes for each
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Overview of Fibroblast subpopulations in EM. (A) The Fibroblast subpopulations were classified into five Seurat clusters, named based on their
marker genes as follows: CO FHL2" Fibroblast, C1 SFRP2" Fibroblast, C2 CXCR4" Fibroblast, C3 RAMP1* Fibroblast, and C4 TFF3* Fibroblast. The
circular plot displayed the distribution of these five Fibroblast subpopulations. The four small UMAP plots around the circle illustrated the Seurat
clusters of fibroblast subpopulations, different tissue types, cell cycle stages (G1, G2M, and S), and the distribution across different patient samples.
(B) The violin plots showed the CNV Score, Cell Stemness Score, and G2M Score for the five EM fibroblast subpopulations. (C) The bar graph
depicted the tissue type proportions for different EM patient samples and the relative abundance of each fibroblast subpopulation. (D) The heatmaps

displayed the cell cycle Ro/e values and tissue type Ro/e values for the five EM fibroblast subpopulations.
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subpopulation were shown in Figures 4A, B. Most subpopulations
showed high expression of their respective marker genes. However,
FHL2, the marker of the CO subpopulation, was also highly
expressed in the C2 subpopulation, suggesting a potential
functional link between these two subpopulations.

10.3389/fimmu.2025.1680849

We then analyzed the upregulated and downregulated genes of
each fibroblast subpopulation and performed GO and KEGG
enrichment analysis (Figures 4C-E). In the CO FHL2" Fibroblast
subpopulation, upregulated genes such as RPS15, RPL28, RPLIO,
RPL11, and RPS14 indicated active protein synthesis. These DEGs
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DGEs and enrichment analysis of EM Fibroblast subpopulations. (A) The UMAP plots displayed the distribution of the five fibroblast subpopulations
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were enriched in oxidative phosphorylation and aerobic respiration,
suggesting elevated energy metabolism. In the C1 SFRP2" Fibroblast
subpopulation, the top upregulated genes included ACKR4, PTGES,
TNNT3, ECMI, and AKRIC2. Enrichment analysis showed
involvement in morphogenesis, signaling, migration, and
regulation of apoptotic signaling pathways. Notably, cytoplasmic
translation was a prominent process, implying a potential role of C1
SFRP2" Fibroblast subpopulation in tissue remodeling and
cell migration.

The top five upregulated genes in the C2 CXCR4" Fibroblast
subpopulation were ARHGAPI15, DOK2, EVI2A, GPSM3, and LCK.
Enrichment analysis indicated that the C2 subpopulation was
involved in immune responses related to leukocytes and
lymphocytes, with a characteristic regulation of apoptotic
signaling pathways. Additionally, cytoplasmic translation was
notably enriched in this subpopulation, suggesting its potential
role in immune response and apoptosis regulation.

In the C3 RAMPI" Fibroblast subpopulation, the top five
upregulated genes were ASIC2, WFDCI, LINGO1, CDCA7 and
DACH]I. Enrichment analysis revealed that C3 was primarily
associated with morphogenesis and localization, with biological
processes including cytoplasmic translation and aerobic
respiration. These results suggest that the C3 subpopulation may
play a key role in cellular energy metabolism and
morphological remodeling.

For the C4 TFF3" Fibroblast subpopulation, the top five
upregulated genes were LRCOLI, USHBP1, MYO5C, GCNT2, and
CEACAMI. Enrichment analysis linked C4 to leukocyte functions,
migration, adhesion, and endothelial activity. The response to
reactive oxygen species was also one of its prominent biological
processes. These findings highlight the important role of the C4
subpopulation in immune response, cell migration, and oxidative
stress. .The bubble plot displayed the stemness-associated genes for
each EM fibroblast subpopulation, showing that stemness-related
genes such as CTNNB1, MYC, and KLF4 were expressed to varying
degrees across all fibroblast subpopulations (Figure 4F).

3.5 Differentiation trajectory of EM
fibroblast subpopulations via pseudotime
analysis

Differentiation trajectories of EM fibroblast subpopulations
were inferred through pseudotime analysis with Monocle 2 and
Slingshot. The Monocle 2 results were shown in Figures 5A, B.
Violin plot analysis indicated that C2 CXCR4" Fibroblast were
predominantly located at the early pseudotime stage, whereas C1
SFRP2" Fibroblast were mainly distributed at the terminal end.
According to Monocle 2, the pseudotime path originated from the
bottom left and bifurcated into two trajectories—one heading
upward and the other downward—as it moved toward the top
right (Figure 5C). The distribution of different EM fibroblast
subpopulations along the Monocle 2 Pseudotime trajectory was
shown in the facet plot (Figure 5F), which revealed that the C3
RAMPI" Fibroblast and C4 TFF3" Fibroblast subpopulations were
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less concentrated in the lower right branch. Ridge plots were
generated to visualize the distribution of each EM fibroblast
subpopulation along pseudotime (Figures 5D, E). CO FHL2" and
C2 CXCR4" Fibroblast clustered near the beginning of the
trajectory, while C1 SFRP2" Fibroblast were mainly found at
the end.

The EM fibroblast subpopulations were categorized into five
states, and the proportion of each subpopulation in different states
was shown in Figure 5G. The analysis revealed that the CO FHL2"
Fibroblast subpopulation accounted for 77.60% of state 1, while the
C2 CXCR4" Fibroblast subpopulation accounted for 10.3% of state
1. This distribution likely reflects the difference in cell numbers, as
the CO FHL2" Fibroblast subpopulation contained 17,794 cells,
whereas the C2 CXCR4" Fibroblast subpopulation contained
2,482 cells.

Additionally, Slingshot analysis was employed to investigate the
developmental trajectories of EM fibroblast subpopulations. Three
lineages were generated, all starting from the C2 CXCR4" Fibroblast
subpopulation. The terminal ends of Lineage 1, Lineage 2, and
Lineage 3 corresponded to the C1 SFRP2" Fibroblast, C3 RAMPI"
Fibroblast, and C4 TFF3" Fibroblast subpopulations, respectively
(Figure 6A). Based on the Monocle 2 analysis results, we
hypothesized that the EM fibroblast subpopulations differentiated
from the C2 CXCR4' Fibroblast. Notably, the C2 CXCR4"*
Fibroblast subpopulation exhibited the highest Cell Stemness
Score, along with elevated CNV and G2M scores compared to the
other fibroblast subpopulations, piquing our interest in further
investigating the C2 CXCR4" Fibroblast subpopulation.

Slingshot analysis of the two tissue types was shown in
Figure 6B, with results indicating a tendency for Endometriomas
to transition towards Endometriosis. The naming genes of the EM
fibroblast subpopulations were analyzed across the three lineages, as
depicted in Figure 6C. The results revealed that the expression of the
CXCR4 gene in the C2 subpopulation was highest at the early stages
of the trajectory, gradually decreasing as pseudotime progressed.
DEGs enrichment analysis for Lineage 3 was shown in Figure 6D.
Enrichment analysis of DEGs in the Lineage 3 trajectory revealed
that the C2 CXCR4" Fibroblast subpopulation was closely
associated with biological processes such as muscle striated tissue
formation, skin structure, transforming myofibril, beta extracellular,
and transduction differentiation. These findings highlight the
potential roles of the C2 subpopulation in tissue repair,
extracellular matrix remodeling, and other functions.

3.6 ldentification of TF-regulatory
submodules in EM fibroblast
subpopulations

We used the specific index (CSI) matrix to identify three
regulatory modules in the EM fibroblast subpopulations, namely
MI, M2, and M3 (Figure 7A). The expression levels of TFs in each
regulatory module across the fibroblast subpopulations were shown
in Figure 7B. Additionally, we calculated the Regulon activity score
(RAS) to define the specific correspondence between Regulons and
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Monocle2 analysis of EM Fibroblast subpopulations. (A) The UMAP plot showed the Monocle2 pseudotime results for the EM fibroblast
subpopulations. (B) The violin plot illustrated the pseudotime trajectories for each EM fibroblast subpopulation. The C2 subpopulation was
positioned at the start of the pseudotime trajectory, while the C1 subpopulation was located at the end. (C) The pseudotime trajectory plot depicted
the progression from the lower left to the upper right. At branch point 1, the trajectory diverged into two paths, with one further splitting at branch
point 2 into two distinct trajectories. (D) The ridge plot displayed the density changes of each EM fibroblast subpopulation along pseudotime. (E) The
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Slingshot analysis of EM Fibroblast subpopulations. (A) The Slingshot analysis identified three lineages among the fibroblast subpopulations. Lineage
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revealed only one lineage. (C) The scatter plots showed the variation of marker genes for each fibroblast subpopulation across the three Slingshot
trajectories. (D) GOBP enrichment analysis was performed on the DEGs of Lineage 3, and the enriched terms were displayed.

each fibroblast subpopulation. Figure 7C showed the RAS of each ~ Fibroblast subpopulations based on the regulatory modules was
Fibroblast subpopulation across regulatory modules. The results ~ shown in Figure 7D.

indicated that TFs in the M1 module mainly regulated the CO To identify the core TFs of the EM Fibroblast subpopulations,
FHL2" and C2 CXCR4" Fibroblast. The distribution of the EM  we used pySCENIC to analyze the gene regulatory networks
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Gene regulatory network and metabolic analysis of EM Fibroblast subpopulations. (A) The heatmap displayed the three regulatory modules (M1, M2,
M3) across the EM fibroblast subpopulations. (B) The bar plots illustrated the expression levels of each fibroblast subpopulation in different regulatory
modules. (C) The Regulon activity score (RAS) was used to identify the specific relationships between regulons and each cell type. (D) The UMAP
plots showed the distribution of EM fibroblast subpopulations based on regulatory modules. (E) The heatmap presented the top 5 transcription
factors (TFs) for the five EM Fibroblast subpopulations. (F) The ranking of TFs in the C2 CXCR4* Fibroblast subpopulation was shown based on their
Regulon specificity score (RSS). (G) The ranking of TFs in G2M was shown based on their RSS. (H) The bar plots displayed the expression levels of the
top 5 TFs in different Fibroblast subpopulations for C2 CXCR4" Fibroblast. (I) The heatmap showed the AUCell values of the top 10 metabolism-
related pathways across different EM Fibroblast subpopulations. (J) The bubble plot illustrated the scores of the top 10 metabolism-related pathways
in different EM Fibroblast subpopulations. (K) The AUCell values of the top 5 metabolism-related pathways across different tissue types were shown.
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(Figure 7E). The results revealed that the top five TFs in the C2
CXCR4" Fibroblast subpopulation were RUNX3, IKZF3, IKZF1,
SPI1, and IRF5. Figure 7H showed the expression of key TFs across
subpopulations. RUNX3, the leading TF in C2 CXCR4" Fibroblast,
was linked to EM malignant transformation through
hypermethylation (52). Additional analysis found RUNX3 had
the highest specificity in the G2M phase and exhibited elevated
expression in Endometriomas compared to Endometriosis
(Figures 7F-H), indicating its potential as a therapeutic target.
We further examined metabolic pathways in fibroblast
subpopulations and identified key processes such as oxidative
phosphorylation, glutathione metabolism, glycolysis/
gluconeogenesis, pyruvate metabolism, and cysteine and
methionine metabolism (Figure 7I). Their expression levels across
subpopulations appeared in Figures 7], L. Glutathione metabolism
and glycolysis/gluconeogenesis showed higher activity in
Endometriosis tissues, whereas cysteine and methionine
metabolism were increased in Endometriomas (Figure 7K).

3.7 Functional validation of CXCR4 in
endometrium-associated cells

We investigated the biological role of CXCR4 in endometrium-
associated cells by knocking down its expression in ihESCs and
hEM15A cell lines and performing in vitro functional assays. qRT-
PCR analysis confirmed that CXCR4 mRNA levels were effectively
reduced in the siRNA group compared to controls (Figure 8A). The
CCK-8 assay suggested that CXCR4 knockdown impaired cell
proliferative capacity (Figure 8B), and colony formation assays
showed a decrease in clonogenic ability in both cell lines
(Figures 8C, D). To evaluate cell migration, Transwell assays
demonstrated a reduction in migrated cell numbers following
CXCR4 knockdown (Figures 8E, F), and wound healing assays
indicated slower wound closure at 48h in CXCR4 knockdown cells
compared with controls (Figures 8G-I). EAU incorporation assays
further suggested a reduction in the proportion of EdU-positive
cells after CXCR4 knockdown, indicating a potential inhibitory
effect on proliferation (Figures 8], K).

3.8 Complex crosstalk network analysis of
EM fibroblast subpopulations

Finally, we used CellChat to analyze the cell-cell
communication networks between the EM Fibroblast
subpopulations and other cell types. A comprehensive interaction
map of all cell types was shown in Figure 9A. The results revealed
that C2 CXCR4" Fibroblast had particularly strong interactions
with SMCs. Differential signaling networks between
Endometriomas and Endometriosis suggested that EGF may be
more enriched in Endometriosis, while VEGF was similarly
enriched in both tissue types (Figure 9B).

Figure 9C presented an overview of outgoing and incoming
signaling across all EM cell types. Notably, C2 CXCR4" Fibroblast
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played a key role in EN1, CLDN, and CD46 signaling pathways. The
incoming signaling pathways in EM Fibroblast subpopulations were
primarily associated with Pattern 2, involving pathways such as
CD99, FGF, and EGF (Figure 9D). In contrast, the outgoing
signaling pathways were primarily linked to Pattern 1, including
EN1, CD99, and ncWNT pathways (Figure 9E).

When C2 CXCR4" Fibroblast were considered as the signal
source, the analysis of interaction frequency (Figure 9F) and
interaction strength (Figure 9G) revealed that this subpopulation
had stronger and more frequent interactions with T NK cells
and SMCs.

3.9 FN1 signaling pathway network analysis

Previous studies have highlighted the close association between
FN1 and EM (53). To further explore FNI signaling in EM, we
visually analyzed the pathway and used centrality scores to assess
the importance of various cell types within the FN1 network. The
results revealed that fibroblast subpopulations exhibited higher
centrality scores compared to other cell types. Specifically, the C1
SFRP2" Fibroblast subpopulation scored highly as Sender,
Mediator, and Influencer, while the C2 CXCR4" Fibroblast
subpopulation scored highly as Sender and Influencer (Figure 10A).

CellChat analysis indicated that the fibroblast subpopulations
were the primary sources of FN1, signaling through autocrine and
paracrine mechanisms (Figure 10B). Figure 10C showed the
expression distributions of six genes in the FNI1 signaling
pathway. FN1, CD44, and ITGB1 were highly expressed in
multiple cell types. Figure 10D illustrated the regulatory effects of
the C2 CXCR4" Fibroblast subpopulation on various cell types
within this pathway.

CellChat inferred that the FN1-CD44 ligand-receptor
interaction plays a crucial role in communication between C2
CXCR4" Fibroblast and other cell types (T NK, MCs, SMC, B,
pDCs, Proliferating, Plasma, and Myeloid cells). Significant ligand-
receptor interactions between the C2 CXCR4" Fibroblast
subpopulation (as the signal sender) and various recipient cell
types were shown in Supplementary Figure 1A.

3.10 Spatial transcriptomic analysis of
endometriotic lesions

To investigate the spatial distribution of cell types in
endometriotic lesions, we analyzed spatial transcriptomic data
from tissue sections GSM6690475 and GSM6690476. We first
applied Robust Cell Type Decomposition (RCTD) to deconvolute
the cellular composition of GSM6690475 and visualized the
dominant cell type (first_type) for each spatial spot using an ST
map (Figure 11A). A separate ST map revealed the spatial
abundance of C2 CXCR4+ Fibroblast, showing their restricted
localization (Figure 11B). Spatial feature maps further illustrated
key quality control and biological indicators, including nCount
Spatial, nFeature Spatial, pMT, and stemness AUC (Figure 11C).
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FIGURE 8

In vitro functional assays validated the role of CXCR4. (A) gRT-PCR analysis showed that CXCR4 knockdown significantly reduced mRNA expression
in ihESCs and hEM15A cells. (B) CCK-8 assay indicated that CXCR4 knockdown markedly suppressed the proliferative capacity of both cell lines.

(C, D) Colony formation assays revealed a significant reduction in clonogenic ability upon CXCR4 knockdown. (E, F) Transwell migration assays
demonstrated that the number of migrated cells was markedly decreased following CXCR4 knockdown, indicating impaired migratory ability.

(G-1) Wound healing assays showed that cells with CXCR4 knockdown exhibited slower wound closure compared with controls. (3, K) EdU
incorporation assays and quantitative analysis further confirmed the inhibitory effect of CXCR4 knockdown on cell proliferation in ihESCs and
hEM15A cells. (**P < 0.01; ***P < 0.001).

The spatial expression of representative transcription factors and To explore higher-order spatial structure, we performed
marker genes, including RUNX3, CXCR4, CTNNBI, and MYC, was  unsupervised clustering using ISCHIA, which grouped all spatial
also visualized, confirming their localized enrichment  spots into 12 distinct clusters. These clusters were visualized both in
patterns (Figure 11D). spatial context by ST map (Figure 11E) and in reduced dimensional
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FIGURE 9
Cell crosstalk network across different cell types in EM. (A) The circle plot illustrated the number of cell-cell interactions among all cell types in EM.
(B) The signal network differences between Endometriomas and Endometriosis were ranked, with the top yellow signal pathways being more
enriched in Endometriomas and the bottom red pathways more enriched in Endometriosis. (C) The heatmap provided an overview of outgoing and
incoming signaling across all cell types. (D, E) The alluvial plots displayed the incoming communication patterns of target cells and outgoing
communication patterns of secreting cells among all EM cell types. (F) The circle plot showed the number of cell interactions with C2 CXCR4™*
Fibroblast as the source. (G) The circle plot illustrated the interaction strengths of C2 CXCR4" Fibroblast as the source of cell crosstalk.

aligned with previous CellChat-based interaction results, suggesting a
spatially coordinated immune-stromal microenvironment.

We further employed the stLearn Python package to analyze
ligand-receptor interactions within the spatial context. Focusing on

space by UMAP plot (Figure 11F). A co-occurrence heatmap revealed
the spatial relationships among clusters, indicating that C2 CXCR4+
Fibroblast strongly co-occurred with SMCs and ECs, while showing
negative co-occurrence with plasma cells (Figure 11G). These findings
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FIGURE 10

FN1 signaling pathway network across cell types in EM. (A) The heatmap displayed the four centrality scores of FN1, highlighting the relative
importance of each cell type as a sender, receiver, mediator, and influencer. (B) The hierarchical plot illustrated the intercellular communication
network of FN1 signaling. The left and right sides respectively displayed the autocrine and paracrine signals toward fibroblasts and other cell types.
Solid and open circles represented source and target cell types, with circle sizes proportional to the number of cells in each type. (C) The violin plot
showed the expression distribution of six genes involved in the inferred FN1 signaling pathway network. (D) The bubble plot compared the key
ligands and receptors involved in the FN1 signaling pathway network between the C2 CXCR4* Fibroblast subpopulation and other subpopulations.

the FN1-ITGBI1 ligand-receptor pair, we first performed global
screening using binary coexpression analysis across all spatial spots
to assess overall signaling intensity (Figure 11H). We then refined
the analysis to high-confidence regions by visualizing both binary
and continuous coexpression in statistically significant spots
(Figure 111). Lastly, spot-level annotations were added to visualize
the spatial pattern of FN1-ITGBI signaling (Figure 11]). The results
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demonstrated that this interaction was predominantly concentrated
at the tissue periphery, suggesting a localized stromal-integrin
signaling axis with potential roles in boundary formation or cell-
matrix remodeling.

To further validate and compare the spatial transcriptomic
architecture of endometriotic lesions, we analyzed tissue section
GSM6690476. Pie charts based on RCTD deconvolution showed the
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Spatial transcriptomic features of an endometriosis lesion from patient GSM6690475. (A) ST map showing the dominant cell type (first_type) per
spot as identified by RCTD. (B) ST map showing the relative abundance of C2 CXCR4+ fibroblast, with a color gradient from light red (low
abundance, 0.1) to deep red (high abundance, 0.5). (C) Spatial feature maps displaying nCount_Spatial, nFeature_Spatial, mitochondrial gene
percentage (pMT), and cell stemness AUC across the tissue section. (D) ST maps showing the spatial expression patterns of the top TF RUNX3, the
C2 fibroblast marker gene CXCR4, and stemness-related genes CTNNB1 and MYC. (E) ST map displaying the spatial distribution of the 12 clusters
across the tissue section based on ISCHIA clustering. (F) UMAP plot illustrating the transcriptomic similarity and separation among the 12 spatial
clusters. (G) Co-occurrence heatmap of spatial clusters. Red indicated positive co-occurrence, blue indicated negative co-occurrence, and grey
indicated no significant association. (H) Binary coexpression map of FN1-ITGB1 across all spots, indicating global ligand-receptor interaction
distribution. (I) Refined coexpression plots within significant spots: binary (left) and continuous (right) representations highlight regions with strong
interactions. (J) Spatial visualization with spot annotations showing that FN1-ITGB1 signaling was predominantly localized at the tissue periphery.
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proportional distribution of cell types at each spatial spot, and a
spatial map highlighted the dominant cell type across the tissue
(Figures 12A, B). Spatial feature plots revealed gradients in
sequencing quality and biological properties, including nCount
Spatial, nFeature Spatial, stemness AUC, and G2M score,
indicating spatial heterogeneity in proliferative and stem-like
properties (Figure 12C). The C2 CXCR4" Fibroblast
subpopulation showed distinct spatial localization, reinforcing its
relevance to lesion architecture (Figure 12D).

Using stLearn, we visualized the spatial coexpression of FN1
and ITGBI across all spots, significant spots, and annotated regions,
revealing spatially confined ligand-receptor activity (Figure 12E).
We further mapped the spatial distribution of sender and receiver
cells for three key FN1-mediated interactions—FN1-CD44, FN1-
ITGA3-1TGBI1, and FN1-ITGA5-ITGB1—highlighting interaction
hotspots enriched at the stromal-epithelial interface (Figure 12F).
Finally, a MISTyR-inferred cell-cell interaction network at the
intratissue proximity level revealed strong context-dependent
communications, particularly involving C2 Fibroblast, suggesting
their central role in coordinating the local cellular
microenvironment (Figure 12G).

4 Discussion

This study conducted an in-depth molecular characterization of
EM-associated fibroblast subpopulations using scRNA-seq,
revealing the heterogeneity of different cell subpopulations and
their potential roles in EM progression. Through comprehensive
analysis of scRNA-seq data from EM patients, we confirmed the
complex cellular composition of the EM microenvironment, with
particular emphasis on the abundance of immune cells and
fibroblast subpopulations. Among the 35 identified cell clusters, T
NK cells and Fibroblast represented the dominant subpopulations,
further highlighting the close relationship between immune
responses and the onset and progression of EM.

Fibroblast subpopulations in EM exhibited significant
heterogeneity, and these fibroblast subpopulations were classified
into five subpopulations: CO FHL2", C1 SFRP2*, C2 CXCR4", C3
RAMPI*, and C4 TFF3". Notably, C2 CXCR4" Fibroblast
subpopulation exhibited the highest Cell Stemness Score, along
with elevated CNV and G2M Scores, suggesting that this
subpopulation may be in a more active proliferative state and
could serve as the initiating subpopulation for fibroblast
differentiation. Moreover, Pseudotime analysis revealed the
developmental trajectory of the fibroblast subpopulations,
indicating that C2 CXCR4" Fibroblast may act as precursor cells
for the other subpopulation, further highlighting their key role in
the fibrotic progression of EM. Additionally, the TF regulatory
network analysis of Fibroblast subpopulations identified RUNX3 as
one of the core TFs in C2 CXCR4" Fibroblast. RUNX3 was found to
be closely associated with the malignant transformation of EM (52,
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54), with its expression level in Endometriomas being significantly
higher than in Endometriosis, emphasizing its potential as a
therapeutic target for EM.

FN1, a glycoprotein in the extracellular matrix, is involved in
key cellular processes, including cell adhesion, migration, wound
healing, coagulation, and even metastasis (55). Previous systematic
reviews and meta-analyses have suggested that the FN1 gene variant
rs1250248 may influence the development of EM (56).
Furthermore, the significant role of FN1 in EM has been
corroborated by studies such as that of Pagliardini et al. (57).
Beliard et al. proposed that FN1 may contribute to the persistence
of endometriotic lesions and found increased FNI1 receptor
expression in the endometriotic glands of the peritoneal lesions
compared to the eutopic endometrium from healthy controls (58).
Recent research has indicated that EM-associated mesothelial cells
interact with ectopic endometrial stromal cells through the FN1-
integrin complex and suggested that these mesothelial cells may
induce progesterone resistance in ectopic stromal cells via the FN1-
PI3K-AKT pathway (59). However, the potential relationship
between FN1 and Fibroblast remains insufficiently explored.

This study found that FN1 was highly expressed in fibroblast
subpopulations associated with EM, particularly in the C1 SFRP2*
Fibroblast and C2 CXCR4" Fibroblast subpopulation. Furthermore,
our research suggested that the FN1 signaling pathway may play a
key role in the fibrosis process and immune microenvironment
shaping in EM by regulating intercellular communication among
Fibroblast. CellChat analysis showed that C1 SFRP2" and C2
CXCR4" Fibroblast were main sources of FN1 and likely shaped
the EM microenvironment via key ligand-receptor pairs like FN1-
CD44, impacting immune and stromal cells. The strong links
between C2 CXCR4" Fibroblast, T NK cells, and SMCs suggest
this group may play a role in immune regulation or evasion in EM.
Further analysis indicated that FN1-ITGB1 and FN1-CD44
signaling axes exhibited high interaction frequencies in the EM
microenvironment, implying that FN1 may play an essential role in
the fibrosis process of EM by mediating adhesion and signal
transduction between Fibroblast, immune cells, and smooth
muscle cells. The varying FN1 signaling activity across fibroblast
subpopulations indicated they had different roles in EM pathology.
C1 SFRP2" Fibroblast likely contributed to EM remodeling, while
C2 CXCR4" Fibroblast were more involved in ongoing
inflammation and immune regulation. Spatial transcriptomics
confirmed that C2 CXCR4" Fibroblast were enriched in specific
tissue areas, with FN1 signaling—especially via FN1-ITGB1—
localized to the tissue edge and stromal-epithelial border.
Combined analyses with RCTD, stLearn, ISCHIA, and MISTyR
revealed that C2 CXCR4" Fibroblast functioned as spatial hubs
coordinating fibrosis and immune responses. These findings
highlighted FN1 signaling as a crucial spatial and functional
factor in EM progression.

Our functional assays demonstrated that CXCR4 knockdown
impaired proliferation, clonogenicity, and migration in ihESC and
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Spatial transcriptomic features of an endometriosis lesion from patient GSM6690476. (A) Pie charts showing the proportion of each cell type at
individual spatial spots based on RCTD results. (B) Spatial map displaying the dominant cell type (first_type) at each spot based on RCTD
deconvolution results. (C) ST maps showing the distribution and intensity of nCount_Spatial, nFeature_Spatial, cell stemness AUC, and G2M Score
across the tissue. (D) Spatial distribution map showing the C2 CXCR4" Fibroblast subpopulation. (E) Binary LR coexpression plots of FN1 and ITGB1
from stlearn: all spots, significant spots, and with spot annotations. (F) Spatial distribution of sender (left) and receiver (right) cells for three key FN1-
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hEM15A cells. These results support the biological relevance of our
single-cell and spatial findings, but further validation in primary
tissues and in vivo animal models is still required.

We acknowledge that the number of samples included for both
single-cell and spatial transcriptomics analyses is limited. While this
may constrain the generalizability of our findings and underestimate
inter-patient variability, the observed patterns were consistent across
multiple patients and analyses. Future studies with larger cohorts will
be critical to validate and extend these findings. Based on previous
studies and our comprehensive multi-omics analysis, we propose that
FN1 plays a key role in the fibrotic process of endometriosis, which
regulates the inflammatory response through key fiber cell subsets and
through interaction with immune cells. Our findings provide a
rationale for clinical translation, as FN1 plays a pivotal role in
fibroblast-mediated fibrosis and immune remodeling. Targeting FN1
interactions with receptors such as ITGB1 or CD44 may constitute a
promising non-hormonal therapeutic strategy, warranting further
preclinical evaluation and potential clinical development.

5 Conclusion

This study employed an integrated multi-omics approach
combining scRNA-seq and spatial transcriptomics to characterize
the heterogeneity and functional diversity of fibroblast
subpopulations in endometriosis. We identified FN1 signaling,
particularly within the C2 CXCR4" Fibroblast subpopulation, as a
central mediator of fibrosis and immune remodeling in ectopic
lesions. These findings enhance our understanding of the cellular
and molecular mechanisms driving EM progression and highlight
FNI1 as a potential target. Further studies are warranted to elucidate
the complex fibroblast-immune interactions and to validate FN1-
targeted interventions for improved management of endometriosis.
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