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Integrating deep learning
features from mammography
with SHAP values for a machine
learning model predicting
over 5-year recurrence of
breast ductal carcinoma
In Situ post-lumpectomy
Yupeng Sha1†, Quan Yuan1†, Yi Du1†, Shuqi Yang2, Ming Niu1,
Xiaoshuan Liang1, Shanshan Sun1, Tong Li1,
Shu Gong1 and Jiguang Han1*

1Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin,
Heilongjiang, China, 2Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou,
Fujian, China
Background: In women with ductal carcinoma in situ (DCIS) undergoing breast-

conserving surgery, still part will progress to invasive breast cancer (IBC) in the

future. Mammograms offer rich tumor data for patient stratification, but current

prediction methods focus on clinicopathological factors, overlooking

imaging insights.

Methods: We retrospectively analyzed 140 DCIS patients from Harbin Medical

University Cancer Hospital (2011-2020, followed up to 2025). Preoperative digital

mammograms and cl inicopathological data were collected, with

mammographic features extracted using pyradiomics and supervised by a

senior radiologist. Feature selection employed 10-fold cross-validated LASSO

regression. The dataset was split into training (n=100) and validation (n=40) sets

(10:4 ratio). Sixteen machine learning algorithms combining mammographic

deep learning features and clinicopathological variables were developed and

compared for predicting DCIS recurrence. Model performance was assessed

using ROC, sensitivity, specificity, PPV, NPV, and SHAP values for interpretation.

Results: The Gradient Boosting Machine (GBM) algorithm had the best predictive

performance, with an AUC of 0.918 (95% CI 0.873-0.963) in the test set. SHAP

values indicated that the mammographic signature (MS) was the most significant

predictor, followed by Ki-67 index and histological grade. Patients not receiving

radiotherapy had higher recurrence rates than those who did. Decision curve

analysis validated the model’s clinical utility across various risk thresholds.
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Conclusion: Our study developed an interpretable GBM model incorporating

mammographic and clinical data to predict DCIS recurrence (AUC = 0.918). Key

predictors were mammographic signature, Ki-67, and tumor grade, offering

clinicians a practical tool for personalized postoperative management.
KEYWORDS

ductal carcinoma in situ, breast-conserving surgery, mammography, deep
learning, recurrence
Introduction

Breast cancer (BC) represents roughly one-third of all female

malignant neoplasms globally (1). The progressive advancement of

diagnostic technologies has led to enhanced detection rates of breast

ductal carcinoma in situ (DCIS), which currently constitutes 20%–

25% of all recently identified BC diagnoses (2). Breast-conserving

surgery (BCS) has become the main local treatment for DCIS to

achieve precise excision with the smallest possible margin and to

minimize trauma (3). Despite the historically positive outlook for

DCIS cases, comprehensive large-cohort analyses have

demonstrated the risk of ipsilateral recurrence subsequent to

breast-conserving treatment in individuals diagnosed with DCIS

(4). Consequently, precise identification of DCIS patients who face

elevated recurrence risk following breast-conserving surgery

represents a critical factor in establishing appropriate

postoperative therapeutic strategies. Mammography is the

cornerstone of DCIS screening and diagnosis. The core functions

include early detection, risk stratification, and treatment guidance

(5). Mammography is highly sensitive to calcified DCIS, and > 90%

of female patients with DCIS, especially high-grade DCIS, show

suspicious microcalcifications on mammograms (6, 7).

Consequently, the systematic collection and examination of

mammographic characteristics, including lesion dimensions and

Breast Imaging Reporting and Data System (BI-RADS)

categorization, represents a critical component in the precise
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assessment of DCIS recurrence probability. Recent researches has

established that integrating deep learning (DL) methodologies with

radiological data represents a novel diagnostic and therapeutic

strategy for BC addressing the under exploitation of visual

diagnostic information (8). Khalid proposed an efficient DL

model to recognize BC in computerized mammograms of varying

densities (9). Alaeikhanehshir et al. used DL in mammography to

distinguish between high- and low-risk DCIS, enabling active

surveillance of patients (10). Nevertheless, contemporary DL

investigations predominantly emphasize multimodal feature

representation extraction, while the intricate architecture of

opaque computational models impedes comprehensive

understanding of individual feature contributions to predictive

outcomes. The lack of direct and effective explanations limits

their impact on clinical decision-making.

Shapley additive explanations (SHAP) value interpretation is a

new function-based interpretability method that provides a deeper

understanding of the key predictors of machine learning (ML)

models, thereby improving their transparency and credibility (11).

In the present study, we reviewed 140 the data of patients with DCIS

who underwent BCS at a large cancer center and integrated the

extracted DL features from mammography and other

clinicopathological features to construct an ML model for

predicting DCIS recurrence > 5 years after lumpectomy. Finally,

by combining the SHAP values, we visually explained the potential

factors affecting the long-term recurrence of DCIS.
Patients and methods

Study population

The research received ethical clearance from the Institutional

Review Board at Harbin Medical University Cancer Hospital

(reference: YD2024-18) and was conducted in full compliance

with the ethical standards established by the Declaration of

Helsinki. Because this was a retrospective study and all data were

anonymized, patient informed consent was waived.

This retrospective investigation incorporated 140 female

patients with confirmed primary DCIS who received inpatient

treatment at the Affiliated Cancer Hospital of Harbin Medical
frontiersin.org
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University during the period spanning March 1, 2011, through

March 1, 2020.All patients had complete pathological and

laboratory test results and clear mammography images. Data

including mammographic features, patient characteristics,

laboratory results, pathological results (according to the American

Joint Committee on Cancer (AJCC) Cancer Staging Manual, 8th

edition), and treatment strategies were collected (Table 1).

Inclusion criteria comprised: (1) pathologically confirmed DCIS

who underwent BCS; (2) high-quality digital mammography images

before treatment; (3) comprehensive clinical information (including

chemotherapy regimens, radiation treatment protocols, hormonal

therapeutic interventions, hormone receptor and human epidermal

growth factor receptor 2 [HR/HER2] expression profiles, Ki-67

proliferation index, and histopathological grading); (4) complete

pathology information;(5) All patients were pathologically

confirmed to have negative margins after tumor resection.

Exclusion criteria comprised: (1) distant metastasis or invasive

carcinoma; (2) other malignant tumors; (3) missing key data (e.g.,
Frontiers in Immunology 03
imaging or molecular markers); (4) history of breast radiotherapy or

loss to follow-up.

The follow-up endpoint of this study was April 1, 2025.

Fol lowing the completion of appropriate therapeutic

interventions, patients underwent systematic monitoring through

clinical consultations, telephonic communication, or electronic

correspondence at three-month intervals during the initial six-

month period, subsequently at six-month intervals for a

maximum duration of five years, and thereafter on an annual

basis, with the principal objective of identifying disease recurrence.
Imaging acquisition and interpretation

Digital mammographic imaging was performed utilizing

Mammomat Novation DR (Siemens AG Medical Solutions,

Erlangen, Germany) and Selenia Dimensions (Hologic, Bedford,

Mass, USA) systems, incorporating both craniocaudal (CC) and
TABLE 1 Performance of multiple machine learning models for identifying breast cancer recurrence status based on molybdenum target features.

Model_name AUC 95% CI Sensitivity Specificity Accuracy PPV NPV Task

LR 0.829 0.738-0.921 0.917 0.617 0.702 0.489 0.949 train

0.622 0.417-0.826 0.600 0.711 0.679 0.300 0.889 test

NaiveBayes 0.826 0.733-0.920 0.792 0.700 0.726 0.514 0.894 train

0.704 0.523-0.885 0.500 0.911 0.821 0.500 0.891 test

SVM 0.868 0.784-0.951 0.958 0.746 0.798 0.590 0.978 train

0.678 0.485-0.872 0.600 0.761 0.732 0.353 0.897 test

KNN 0.836 0.752-0.921 0.583 0.914 0.798 0.667 0.841 train

0.638 0.456-0.820 0.900 0.341 0.429 0.225 0.937 test

DecisionTree 1.000 1.000-1.000 1.000 1.000 1.000 1.000 1.000 train

0.702 0.532-0.872 0.600 1.000 0.768 0.400 0.902 test

RandomForest 0.891 0.819-0.963 0.750 0.933 0.881 0.818 0.903 train

0.630 0.430-0.831 0.600 0.800 0.750 0.375 0.900 test

ExtraTrees 1.000 1.000-1.000 1.000 1.000 1.000 1.000 1.000 train

0.687 0.498-0.876 0.500 0.844 0.768 0.385 0.884 test

XGBoost 0.992 0.980-1.000 1.000 0.933 0.952 0.857 1.000 train

0.711 0.500-0.922 0.700 0.761 0.750 0.389 0.921 test

LightGBM 0.877 0.805-0.949 0.875 0.857 0.821 0.636 0.941 train

0.634 0.424-0.843 0.600 0.833 0.732 0.353 0.897 test

GradientBoosting 0.975 0.949-1.000 0.958 0.933 0.940 0.852 0.982 train

0.704 0.507-0.902 0.600 0.867 0.804 0.462 0.907 test

AdaBoost 0.963 0.929-0.997 0.875 0.917 0.905 0.808 0.948 train

0.730 0.540-0.921 0.600 0.867 0.804 0.462 0.907 test

MLP 0.844 0.759-0.930 0.958 0.583 0.690 0.479 0.972 train

0.650 0.436-0.865 0.600 0.778 0.732 0.353 0.897 test
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mediolateral oblique projections. The region of interest (ROI)

showing the most suspicious lesion in the CC-view for each

patient was prioritized. To ensure reliable and reproducible BI-

RADS categorization, two experienced radiologists conducted

independent evaluations of all imaging studies. (R4-R6 with ≥ 8

years of mammography experience, respectively). Consensus

regarding the final diagnostic assessment was achieved through

collaborative discussion when interpretive differences arose. The

interpreting radiologists remained unaware of histopathological

findings while retaining access to relevant clinical data and

previous imaging studies. Based on the 2013 American College of

Radiology Breast Imaging Reporting and Data System (BI-RADS)

classification framework, lesions designated as categories 2 or 3

were characterized as benign or likely benign entities, while those

assigned categories 4 or 5 were classified as potentially malignant

findings warranting histopathological confirmation.
Data preprocessing

Calcified regions in the mammography images were annotated

as follows: for diffusely distributed calcifications, the entire area was

uniformly annotated; for multiple independent calcification

clusters, the specific cluster indicated for biopsy in the radiology

report was prioritized; and for large calcified areas, the entire scope

was annotated. All calcification region annotations were

independently completed by two trained annotators (SA: MD;

MM: medical technology researcher) using 3D Slicer software

(version 4.10.2) on full images supervised by a senior breast

radiologist (RM).

Tumor recurrence encompassed both localized recurrence and

metastatic spread to distant tissues or organs. Localized recurrence

was characterized as tumor reappearance within the ipsilateral

breast, chest wall, or corresponding regional lymph nodes.

Neoplasm classification was conducted in accordance with the

eighth edition of the AJCC staging criteria. All lymph node-

positive (LMN+) cases were confirmed pathologically. Based on

the established criteria from the American Society of Clinical

Oncology (ASCO) and the College of American Pathologists

(CAP), estrogen receptor and progesterone receptor positivity

were characterized as ≥ 1% of tumor cell nuclei demonstrating

positive staining. HER2 expression was determined in accordance

with the 2018 ASCO/CAP criteria, whereby immunohistochemistry

scores of 3+ are classified as positive, while scores of 2+ are deemed

positive when HER2 gene amplification is confirmed through

fluorescence in situ hybridization (FISH) analysis. Four serum

inflammation- and immunity-related biomarkers were measured:

the ratio of platelets to lymphocytes (PLR), the ratio of neutrophils

to lymphocytes (NLR), the ratio of lymphocytes to monocytes

(LMR), and the platelet-albumin ratio (PAR, calculated as the

quotient of platelet count and serum albumin concentration). All

blood cell counts were performed using automated hematology

analyzers (Sysmex XN series or Beckman Coulter DxH), and serum

albumin was measured using standardized biochemical analysis
Frontiers in Immunology 04
methods (e.g., bromocresol green method or immunoturbidimetry),

following strict clinical laboratory standard operating procedures.
Machine learning model development

First, considering the different measurement units among

variables, all variables were normalized using “StandardScaler.”

Subsequently, to address feature dependency, Spearman’s

correlation analysis was performed. When the correlation

coefficient between any two variables exceeded 0.9, one variable

was removed from the analysis. Between-group comparisons were

conducted using the Mann–Whitney U test. Categorical data are

presented as percentages (%), with Pearson’s chi-square analysis

employed to assess between-group variations. The sample dataset

was partitioned into training (n = 100) and internal validation (n =

40) cohorts using a 10:4 allocation ratio (12). Owing to the high-

dimensional nature of features that adversely affect DCIS recurrence

prediction, we sought to identify the features most closely associated

with DCIS recurrence in the training set. Feature extraction was

performed utilizing the “pyradiomics” module within Python 3.8.1,

while feature selection was conducted through the least absolute

shrinkage and selection operator (LASSO) algorithm. The optimal

lambda parameter for feature selection was established via 10-fold

cross-validation methodology (13). The prediction models were

developed employing sixteen machine learning algorithms: partial

least squares (PLS) (14), random forest (RF) (15), decision tree

system (DTS) (16), support vector machine (SVM) (16), logistic

regression (LR) (17), K-nearest neighbors (KNN) (18), eXtreme

gradient boosting (XGBoost) (19), gradient boosting machine

(GBM) (20), neural network (NeuralNet) (21), generalized linear

model boosting (glmBoost) (22), naïve Bayes (23), decision tree

(16), extra trees (24), light gradient boosting machine (25), adaptive

boosting (AdaBoost) (26), and multilayer perceptron (27). To

maintain model reliability across both training and testing

datasets, a ten-fold cross-validation approach was implemented

(13). To identify the optimal hyperparameters for each algorithm, a

systematic grid search methodology was employed, utilizing the

maximum area under the receiver operating characteristic (ROC)

curve (AUC) (28, 29) as the evaluation metric for determining the

superior model configuration. The Delong test was employed for

AUC comparisons. The optimal model was constructed using the

training dataset and subsequently evaluated through both internal

and external validation datasets. Model efficacy was assessed on

both training and testing datasets through the utilization of receiver

operating characteristic curves, along with measurements of

sensitivity, specificity, positive predictive value, and negative

predictive value (28). To mitigate overfitting and enhance model

generalization, rigorous regularization techniques were

implemented during training. These included penalty-based

complexity constraints, feature coefficient compression, and built-

in regularization methods such as tree depth limits and randomized

subspace sampling. All feature selection and hyperparameter tuning

were conducted internally within the training set using repeated
frontiersin.org
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cross-validation to prevent data leakage. The final model

performance was evaluated on a strictly retained validation set.

Despite moderate sample sizes relative to initial feature dimensions,

this study ensured an optimal event-to-prediction ratio through

substantial dimensionality reduction and regularization. Further

external validation in larger cohorts is required to confirm the

model’s robustness and generalization capabilities. Additionally,

decision curve analysis (DCA) was conducted to evaluate genuine

clinical applicability. SHAP analysis was employed to elucidate the

individual feature contributions to predictive outcomes (28, 29).

The SHAP values obtained for representative cases demonstrated

how specific features influenced particular samples, thereby

facilitating comprehension of the model’s decision-making

mechanisms (29). Subsequently, recursive feature elimination

(RFE) was implemented to conduct additional variable selection

and construct a streamlined model variant.
Statistical analysis

Statistical analyses were conducted using R Studio version 4.3.3

and Jupyter Notebook 5.6.0. For categorical data, chi-squared or

Fisher’s exact tests were used (30).Continuous variables were tested

for normality using Shapiro-Wilk tests(a= 0.05). For normally

distributed data, independent t-tests were used; otherwise, Mann-

Whitney U tests were applied. Statistical significance was defined as

p < 0.05.
Results

The research methodology is illustrated in Figure 1.
Baseline characteristics

Between March 2011 and March 2020, 140 patients with DCIS

confirmed by biopsy or postoperative pathology were included.

Supplementary Table S1 presents the demographic and clinical

characteristics of the study population at baseline. The most

common histological grades were low (43.6%), high (35.7%), and

intermediate (20.7%). Compared with patients with non-

recurrence, patients with recurrence showed significantly higher

histological grades and Ki67 indices; additionally, a higher

proportion of these patients did not receive chemotherapy

(Supplementary Table S1). All clinical characteristics (21 clinical

features) were obtained from the electronic medical records of

patients with DCIS.
Feature selection

We performed radiomic feature extraction using the

pyradiomics module in Python 3.8.1, obtaining a total of 849

features including shape features, first-order histogram features,
Frontiers in Immunology 05
and second-order texture features (Supplementary Table S2). To

address the potential adverse effects of high-dimensional data on

predicting breast intraductal carcinoma recurrence, we first

standardized all features using StandardScaler to eliminate

measurement unit discrepancies. Subsequently, we conducted

Spearman correlation analysis (threshold r>0.9) to remove

redundant features, resulting in 172 optimized features

(Supplementary Table S3). Further refinement was achieved

through Mann-Whitney U tests (p<0.05), which identified 41

statistically significant features (Supplementary Table S4). After

partitioning the dataset into training and validation sets at a 10:4

ratio (Supplementary Tables S5, S6), we employed LASSO

regression (Figure 2A) with 10-fold cross-validation (Figure 2B)

to ultimately determine five optimal mammography (MG) features.

The five selected radiomic features were: original firstorder

10Percentile (10th percentile from the first-order statistics of the

original image), original glcm Contrast (contrast from the gray-level

co-occurrence matrix), original glcm Idmn (inverse difference

moment normalized from the gray-level co-occurrence matrix),

wavelet HLL firstorder Median (median from the first-order

statistics of the wavelet High-Low-Low filtered image), and

wavelet HHL firstorder Median (median from the first-order

statistics of the wavelet High-High-Low filtered image).

Based on these features, we evaluated twelve machine learning

algorithms (Table 1), among which the AdaBoost algorithm

demonstrated superior performance and was selected to establish

the mammography signature (MS). To enhance the robustness of

our predictive model, we further integrated MS with clinical

features and blood inflammatory markers (PLR, NLR, LMR, and

PAR). Feature selection was performed using three distinct

methods: SVM-RFE, LASSO, and random forest. The SVM-RFE

approach identified 15 optimal variables (accuracy: 83.6%;

Figure 3A, Supplementary Table S7), LASSO selected 8 key

variables (Figure 3B, Supplementary Table S8), and random forest

determined 11 important variables (Figure 3C). Comprehensive

analysis ultimately identified four core predictive variables:

chemotherapy status, Ki-67 index, histological grade, and MS

(Figure 3D), which served as the foundational elements for

constructing our predictive model. This systematic feature

selection and model development process ensured methodological

rigor while s ignificantly improving the rel iabi l i ty of

predictive outcomes.
Model performance comparison

Initially, we hypothesized that a comprehensive integration of

clinical features might provide key insights for predicting DCIS

recurrence outcomes. Therefore, we obtained 21 clinical features

from the electronic medical records and identified four strongly

correlated variables through analysis and integration. These four

variables were used to develop a predictive model for DCIS

recurrence. In the present investigation, ten machine learning

algorithms (PLS, RF, DTS, SVM, Logistic, KNN, XGBoost, GBM,

NeuralNet, and glmBoost) were evaluated within the discovery
frontiersin.org
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dataset to assess their predictive capabilities (Figures 4A, B).

Based on its superior overall performance across both training

and testing datasets, the GBM model was identified as the

most effective approach (training set AUC = 0.963, test set

AUC = 0.918).Additionally, comparison of the GBM-integrated

model with single-risk signatures (Figures 4C, D) showed that the

GBM-integrated model had the largest area under the ROC curve
Frontiers in Immunology 06
(AUC) (training set: 0.961; test set: 0.915). Among the single-risk

signatures, the MS had the highest AUC in the training set (0.937),

whereas histological grading had the highest AUC in the test set

(0.849). While individual risk signatures demonstrated measurable

net benefit across broad threshold probability ranges, the GBM

model exhibited superior overall net benefit performance.

Consequently, this model was identified as the most suitable
FIGURE 1

Brief technical flowchart.
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approach for forecasting DCIS recurrence over a five-year period

and subsequent timeframes.

Regarding clinical utility, the four-variable model demonstrated

substantial net benefits across diverse threshold probability ranges

alongside the GBM model; nevertheless, the GBM model displayed

superior net benefit performance, thereby validating its designation

as the most effective predictive framework for DCIS recurrence

(Figures 5A, B).To improve model interpretability, we employed the

SHAP framework. According to the importance ranking based on

the mean absolute SHAP values (Figure 5C), the four features were

ordered as follows: MS > Ki-67 index > histological grading >

chemotherapy status. Figure 5D shows a violin plot for each feature,

illustrating the correlation between features and SHAP values.

Larger absolute SHAP values indicate a greater impact of the

features on the GBM-based prediction model. The yellow and

purple dots represent higher and lower feature values,

respectively. These results underscore that MS was the most

critical factor, surpassing Ki-67, histological grade, and

chemotherapy. Figure 5E presents a comprehensive case analysis

illustrating the model’s predictive methodology for an individual

patient. Within this representation, yellow markers signify positive

influences on the prediction outcome, while purple markers

indicate negative influences. The f(x) value corresponds to the

computed SHAP value for each contributing factor. Notably, the

GBM model predicted a lower recurrence risk than the baseline in

this patient. Among these factors, a high histological grade was the

primary negative contributor (reducing the predicted risk by -0.107,

from a baseline of 0.243 to 0.144), whereas the absence of

chemotherapy had a small positive impact (+0.0374). Overall, the

combined effects resulted in a prediction that was significantly

below the average risk.
Frontiers in Immunology 07
Discussion

This investigation involved the development and performance

evaluation of 10 ML algorithms utilizing 21 clinical parameters,

encompassing clinical characteristics, mammographic imaging

data, and histopathological findings, to forecast long-term

recurrence (≥5 years) in DCIS patients following BCS. The

findings demonstrated that the GBM model achieved optimal

performance with a test set AUC of 0.918, displaying superior

predictive capacity compared to the remaining four individual risk

signatures and consequently providing substantial clinical utility.

To enhance model interpretability, we employed the SHAP

methodology for visualization purposes. SHAP force plots were

utilized to elucidate the individualized prediction process for DCIS

recurrence risk assessment, thereby facilitating comprehensive

understanding of the underlying predictive mechanisms (29).

While existing clinical risk assessment tools like the VNPI and

RTOG 9804 standard rely on traditional clinical-pathological

variables (such as age, tumor size, margin width, and histological

grade), our approach integrates deep learning-derived breast X-ray

imaging features with key clinical predictors. This enables our

model to capture tumor heterogeneity and radiologically-based

disease progression patterns that conventional scoring systems

cannot reveal. Unlike these early-stage tools, our model provides

personalized, interpretable risk predictions through SHAP analysis,

thereby revealing which factors contribute most significantly to

individual recurrence risks.

Most recent studies on predicting recurrence after BCS for

DCIS rely solely on single data sources—such as clinicopathological

features or imaging indicators—and do not integrate multimodal

data, which may lead to the omission of key predictive information
FIGURE 2

(A) and (B) LASSO coefficient convergence paths.
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(10, 31–33). Second, although existing DL models have certain

predictive capabilities (34, 35), they are mostly “black-box” models

that lack quantitative explanations of predictive factors, thereby

limiting clinician trust in the results. Finally, some studies have

established predictive models without sufficient clinical translation

validation, lacking both DCA to demonstrate the clinical net benefit
Frontiers in Immunology 08
and association with specific treatment decisions, thus restricting

the model’s practical application. For example, some studies used

only molecular phenotypes or pathological information for

predictive analysis or performed risk stratification based solely on

radiomic features (10, 33); however, these methods have

shortcomings in prediction accuracy and clinical applicability.
FIGURE 3

Machine learning-based feature selection (A) SVM-RFE algorithm performance showing accuracy (83.6%) and error rate (16.4%) with top 15 selected
features. (B) LASSO coefficient convergence paths. (C) Random Forest feature importance ranking (threshold >1). (D) Venn diagram of overlapping
features from LASSO, RF, and SVM-RFE methods, identifying four key predictors: chemotherapy status, Ki-67 index, histological grade, and
mammographic signature (MS).
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In the present study, the GBM algorithm, an advanced

ensemble learning method based on gradient boosting,

demonstrated excellent predictive performance in medical

datasets with complex feature interactions. By organically

c omb in i ng DL f e a t u r e s f r om mammog r aphy w i t h

clinicopathological variables, the GBM model significantly

outperformed traditional ML methods in predicting the risk of

DCIS recurrence. Compared with traditional LR models, the GBM

algorithm more effectively captures nonlinear relationships and

feature interactions through its iterative boosting process while

maintaining strong robustness to data noise and outliers. SHAP

value analysis quantitatively showed that the MS was the most
Frontiers in Immunology 09
influential predictor, followed by Ki-67 index and histological

grade, consistent with the clinical knowledge of DCIS

progression. The MS is a composite quantitative score derived

from deep learning analysis of preoperative breast X-ray imaging.

Although algorithm-generated, its numerical value correlates with

visually identifiable radiological features associated with known and

invasive lesions. Higher MS scores typically correspond to breast X-

ray imaging manifestations characterized by: cluster-like

microcalcifications without masses (such as fine speckled, linear,

and branched patterns), which may also present as single or

multiple masses, particularly those showing a mouse-tail-like

blurring at the posterior edge along ductal pathways. The model’s
FIGURE 4

Performance comparison of machine learning models receiver operating characteristic (ROC) curves of 10 ML algorithms in (A) training set and
(B) test set. The Gradient Boosting Machine (GBM) demonstrated superior performance (test AUC = 0.918). (C, D) Comparison between GBM
integrated model and single-feature signatures, showing higher AUC values for the integrated model in both training (0.961) and test sets
(0.915).PLS: Partial Least Squares, RF: Random Forest, DTS: Decision Tree Splitting, SVM: Support Vector Machine, Logistic: Logistic Regression,
KNN: K-Nearest Neighbors, XGBoost: eXtreme Gradient Boosting, GBM: Gradient Boosting Machine, NeuralNet: Neural Network, glmBoost: gradient
boosting for generalized linear models.
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excellent predictive performance (AUC = 0.918) benefits from the

ability of the GBM algorithm to process high-dimensional feature

spaces while effectively avoiding overfitting through regularization.

More importantly, the introduction of SHAP interpretation

provides clinicians with transparent model decision-making bases,

effectively addressing the common “black box” problem of complex
Frontiers in Immunology 10
ML models. This optimal combination of prediction accuracy and

interpretability renders our GBM framework suitable for decision

support in the clinical management of DCIS.

Earlier research has demonstrated that adjuvant radiotherapy

substantially diminishes the likelihood of local disease recurrence

following breast-conserving surgery for ductal carcinoma in situ
FIGURE 5

Model interpretability and clinical utility analysis (A, B) Decision curve analysis (DCA) demonstrating net benefit of GBM model versus clinical
predictors across threshold probabilities. (C) SHAP summary plot ranking feature importance (MS > Ki-67 > histological grade > chemotherapy).
(D) SHAP violin plots showing value distributions impacting predictions (yellow/purple indicate high/low values). (E) Force plot exemplifying
individualized prediction for a case with reduced recurrence risk (baseline 0.243 → 0.144), where high histological grade was the dominant negative
contributor.
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(hazard ratio 0.3–0.5) (36, 37), findings that align with our current

investigation, which revealed a markedly elevated recurrence rate

among patients not receiving radiotherapy. However, SHAP

analysis in this study further revealed increased recurrence risk

even in patients who received radiotherapy, with high-grade lesions,

and with high Ki-67 expression, thus suggesting the need to

additionally consider molecular characteristics to optimize

radiotherapy indications. Our research integrates breast X-ray

deep learning features with Ki-67 and histological grading to

establish a refined pre-treatment risk stratification framework that

surpasses traditional factors. SHAP analysis demonstrates that these

elements exhibit additive and potentially synergistic predictive

value. For instance, a patient with high-grade DCIS exhibiting

high MS (indicating fine linear calcifications or spiculated masses)

coupled with elevated Ki-67 levels (>30%) would be identified by

our model as having extremely high recurrence risk. This specific

imaging-clinical profile suggests a biologically aggressive tumor

with high proliferative potential, even in cases of negative

margins. While standard adjuvant radiotherapy benefits such

high-risk patients, it may not sufficiently counteract their

inherent recurrence risk. Consequently, our model serves as a

decision-support tool to enhance treatment strategies (including

optimized radiotherapy dosage, extended endocrine therapy,

consideration of systemic chemotherapy, and intensified

monitoring). Conversely, patients with low MS (indicating

benign-like features), low histological grade, and low Ki-67 levels

are predicted to have excellent prognosis. For these patients, our

model supports step-down therapy—such as omitting radiotherapy

or following standard monitoring protocols in selected cases—to

avoid overtreatment and reduce side effects.

While our model demonstrates strong discriminative

capabilities, several critical limitations of this study must be

noted. Firstly, the relatively limited sample size—particularly

when compared to the original high-dimensional feature set—

may raise concerns about overfitting due to the reduced number

of events. To address this, we implemented rigorous feature

reduction techniques (such as LASSO regression) and cross-

validation to mitigate these issues. However, some highly complex

models (such as decision trees and extreme random forests) still

exhibited overfitting on the training set (AUC = 1.000), highlighting

the importance of rigorous model selection and validation in high-

dimensional data. The GBM model we ultimately selected

demonstrated outstanding and consistent performance across

both training and test sets, indicating its strong generalization

capability. Nevertheless, this result should be viewed with caution.

Secondly, this is a retrospective study conducted by a single

institution, with its sample exclusively drawn from the Asian

(China) population. The inherent selection bias in this design,

combined with the homogeneity of genetic background, lifestyle

patterns, and healthcare practices within the population, severely

limits the external validity and generalizability of our predictive

model. Therefore, before implementing this model in clinical

practice, it must undergo large-scale external validation in

multicenter prospective cohorts encompassing diverse geographic

distributions, ethnicities, and racial backgrounds. Future research
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should focus on validating the model’s robustness through larger-

scale samples. Only after demonstrating its effectiveness across

broader populations can this model be considered a universally

applicable decision support tool. Thirdly, regarding post-breast-

conserving surgery adjuvant therapy details, our study is

constrained by the completeness of available retrospective data.

While we documented the implementation of adjuvant

chemotherapy, endocrine therapy, and adjuvant radiotherapy,

specific protocol details (such as chemotherapy cycle counts and

dosages; endocrine drug selection and treatment duration; total

radiation dose, fractionated regimens, and brachytherapy usage)

and technical specifications were not consistently available for all

patients. Consequently, our analysis could not account for potential

variations in radiotherapy protocols that might influence recurrence

outcomes and constitute unmeasured sources of confounding

factors. Finally, while multimodal data were integrated, the

extraction of imaging features mainly relied on two-dimensional

mammography images and did not include richer imaging

information such as dynamic contrast-enhanced MRI.
Conclusion

This research documented the utilization of machine learning

methodologies incorporating mammographic imaging

characteristics, clinical data, and laboratory measurements for

forecasting recurrence among DCIS patients, establishing a GBM

algorithmic framework capable of accurately estimating DCIS

recurrence probability. In this study, the combination of ML with

the interpretable SHAP method endowed the “black-box” ML

model with interpretability, making it more suitable for predicting

DCIS recurrence in clinical scenarios. Additionally, the inclusion of

DCA highlights the clinical value of GBM. We propose the use of

this approach as an auditable decision-support tool to facilitate

patient healthcare and research.
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