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regulatory B cells: from Breg
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For half a century, the quiet work of a specialized immunosuppressive B cell
subset has been slowly unveiled, revealing its profound impact on immune
balance. This review provides a comprehensive retrospective on the history of
regulatory B cell (Breg) investigation, tracing their journey from initial elusive
observations to their current recognition as crucial immunomodulators. We
explore the paradigm shift from B cells solely as antibody producers to their
multifaceted roles in immunosuppression. Key milestones include the earliest
suggestions of suppressive B cell activity around 1970, the formal coining of the
currently used term "regulatory B cells” in the early 2000s, and the subsequent
elucidation of diverse Breg subsets and their suppressive mechanisms. Finally, we
discuss contemporary advances, including the application of single-cell multi-
omics, the identification of novel markers and metabolic regulators, and the
promising yet challenging path toward Breg-based therapeutic strategies. This
historical perspective underscores the remarkable progress in Breg biology and
illuminates future directions for harnessing their clinical potential.
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1 Introduction

B cells have long been recognized as central components of the adaptive immune
system, primarily for their capacity to produce antibodies, facilitate opsonization, present
antigens, and activate T cells (1). The foundational understanding of B cell biology was
significantly advanced by landmark studies throughout history. For instance, the late 19th
century saw Emil von Behring and Shibasaburo Kitasato identify circulating "antitoxins"
(now known as antibodies) as crucial for immunity to diphtheria and tetanus (2). Paul
Ehrlich later proposed that cells with pre-formed antibody receptors were the producers of
these "antitoxins," laying theoretical groundwork (3). The cellular source of antibodies, B
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cells, was more definitively identified in the late 1940s, with plasma
cell development correlating with antibody responses after
immunization (4). A pivotal moment arrived in 1965 with Max
Cooper and Robert Good's landmark study using chicken models,
which established B cells as a distinct lineage responsible for
antibody production, separate from T cells involved in delayed-
type hypersensitivity (5).

The initial discovery and characterization of B cells focused
predominantly on their role as antibody producers and promoters
of adaptive immunity, establishing a long-held view of their
function. However, this established immunological paradigm
began to shift fundamentally with the emergence of observations
suggesting a suppressive capacity for B cells. The first hints of B cells
possessing immunosuppressive properties emerged in the late 1960s
(6) However, given the lack of understanding regarding the
molecular mechanisms underlying the function of these B cells,
the concept of anti-inflammatory B lymphocytes faced significant
challenges in gaining widespread acceptance within the scientific
community. The currently used well-established term "regulatory B
cells" (Bregs) itself emerged relatively recently after the publication
of data on the immunosuppressive role of B lymphocytes in chronic
intestinal inflammation (7). Later, it has been demonstrated that
Bregs play a direct role in the pathogenesis of a wide range of
pathologies, including cancer, autoimmune diseases, infectious
diseases, and transplantation immunity (8, 9). In addition,
these cells have been shown to contribute to the maintenance
of homeostasis in a healthy organism (8). Recent progress in the
field has led to a significant advancement in our understanding
of Breg origin, differentiation pathways and molecular mechanisms
of immunosuppression. While numerous reviews have discussed
the mechanisms and functional roles of Bregs, few have synthesized
their scientific journey - how the concept first emerged,
how acceptance within the immunology community evolved,
and how successive methodological advances reshaped our
understanding, from early skepticism to recognition of Bregs as
key immunoregulatory players. We also highlight unresolved
controversies and translational frontiers. Major milestones in the
Breg field are shown in Table 1 and represented in the
timeline (Figure 1).

2 The genesis of immunosuppressive
B cells (1960s — 1990s)

The journey into understanding the immunosuppressive
capabilities of B cells began in the late 1960s, challenging the
then-prevailing view of B lymphocytes solely as antibody-
producing effector cells (10). This direct contradiction to the
perceived "promoter” role of B cells necessitated a re-evaluation of
their fundamental functions, introducing a new dimension to B cell
functionality and indicating that B cells possess a dual potential:
both pro-inflammatory and anti-inflammatory.

Morris and Moller were the first to discover that adoptively
transferred plasma cells can inhibit response to antigenic
stimulation (6). A significant turning point came with
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experiments demonstrating that B cell-depleted splenocytes
exhibited a reduced capacity to suppress delayed-type
hypersensitivity (DTH) reactions in guinea pigs. Specifically,
studies by Katz, Parker, and Turk in 1974, and Neta and Salvin in
the same year, showed that B cell depletion led to a more intense
and prolonged DTH response compared to controls (11, 12). These
findings directly implied that B cells could actively inhibit T cell
activity, introducing the concept of a "suppressor B cell" (10). While
the precise mechanisms remained unclear at that early stage, these
observations were crucial in broadening the understanding of B cell
functionality beyond antibody production (10). The notion that B
cells could contribute to immune regulation, similar to the
emerging understanding of suppressor T cells, laid the conceptual
groundwork for future investigations into Breg subsets (13).
Subsequent studies in the 1980s further supported this
hypothesis, demonstrating that adoptive transfer of activated
splenic B cells could induce tolerance and promote the
differentiation of T cells into suppressor T cells (14-17). The
1990s marked a period of more definitive in vivo demonstrations
of B cell-mediated immune suppression, largely facilitated by the
development of genetically modified mouse models (10). A pivotal
advancement was the establishment of a B cell-deficient mouse
strain, pMT, achieved by disrupting the immunoglobulin p chain
gene (18). These mice, lacking mature B cells, became an invaluable
tool for dissecting the roles of B cells in various immune contexts
(10). A landmark study by Janeway and colleagues in 1996 utilized
these uMT mice to investigate the role of B cells in experimental
autoimmune encephalomyelitis (EAE), a widely used murine model
for multiple sclerosis (19). While the incidence and initial severity of
EAE were comparable between wild-type and puMT mice, the B cell-
deficient mice exhibited a significantly longer disease duration and
rarely achieved full recovery. This observation strongly suggested
that B cells played a crucial role in the resolution or immune
modulation of an acute autoimmune reaction in the central nervous
system, rather than solely contributing to its pathogenesis (19).
Further solidifying the concept of B cell-mediated immune
suppression, similar findings were reported in a chronic colitis
model in 1997 (20). Research demonstrated that mice lacking B cells
developed colitis at an earlier age and experienced more severe
disease compared to their B cell-sufficient counterparts (20). The
adoptive transfer of purified B cells from healthy mice could prevent
the development of colitis in recipient mice, indicating a protective,
suppressive role for B cells in inflammatory bowel conditions.
These in vivo demonstrations in well-defined experimental
murine models provided compelling evidence for the existence of
B cells with immunoregulatory properties, setting the stage for their
formal identification and characterization in the subsequent decade.

3 Coining the term and early
characterization (2000s — 2010s)

The early 2000s marked a pivotal moment in B cell immunology
with the formal coining of the term "regulatory B cells" (7).
This distinct identity for the B cell subset responsible for
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TABLE 1 Key milestones in regulatory B cell research.

10.3389/fimmu.2025.1681082

Year Key discovery Researchers Brief significance
1968 Adoptively tran.sferfed ;‘)lasma' cells inhibit subsequent Morris and Mller (6) - 4 ' -
response to antigenic stimulation First demonstration of B cell suppressive function,
challenging the antibody-centric paradigm and laying
B cell-depleted spl bate delayed-t i
1974 ce ep‘e' f SP eno‘cytes ?xacer ate delayed-type Katz et al,, Neta and Salvin (11, 12) foundation for regulatory B cell concept
hypersensitivity in guinea pigs
Provided compelling in vivo evidence that B cells can
1980-1984 Adoptive transfer of BCR-activated B cells induces L'age-Stehr et al,, Shimamura et al., drive immune tolerance by inducing Treg
tolerance and Treg differentiation in mice Kennedy et al. (14-17) differentiation, reinforcing the emerging suppressor B
cell concept
Landmark in vivo evidence that B cells are essential
In vivo demonstration of immunoregulatory B cells in Wolf et al. (19) for controlling and resolving autoimmune
EAE ’ inflammation, confirming their immunoregulatory
1996 role
Revealed cell death-mediated i 1
B cells express functional FasL Hahne et al. (60) evea e' cel dea n'15 rated supp re§51on asanove
mechanism of B cell immunoregulation
Confirmed the protective role of B cells in chronic
1997 Immunoregulatory B cells in the chronic colitis model =~ Mizoguchi et al. (20) intestinal inflammation, strengthening the case for
their suppressive capacity in vivo
. . Lo Demonstrated that B cells are central to maintaining
B cells are essential for immunoregulation in immune ’ X i . L X K
2001 L D'Orazio et al. (61) immune tolerance in specialized tissues, expanding the
privileged organs . .
relevance of Bregs beyond systemic immunity
Formal coining of the term "regulatory B cells" (Bregs) Provided a clear identity for suppressive B cells and
and identification of IL-10-producing B cells in Mizoguchi et al. (7) established IL-10 as their hallmark cytokine, shaping
2002 chronic inflammation the modern Breg framework
Bregs ameliorate EAE and CIA via IL-10-dependent Fil L (62
suppression illatreau et al. (62) Demonstrated that IL-10 production by Bregs can
suppress autoimmune disease, firmly linking IL-10 to
B liorate CIA via IL-10-ds dent i
regs a@e iorate via ependen Mauri et al. (63) Breg function
suppression
2003 Highli . .
ighlighted TGF-B as an alternative suppressive
TGF-B"* B cells induce anergy in T killers Parekh et al. (64) pathway, broadening the mechanistic repertoire of
Bregs
Linked Bregs to allergic tol 3 ding their rol
2004 IL-10" B cells protect from systemic anaphylaxis Mangan et al. (65) e regs. oa e}'glc olerance, expanding thelr role
beyond autoimmunity
Demonstrated that Bregs regulate host-pathogen
2005 IL-10" B cells suppress immunity to parasites Gillan et al. (66) interactions, revealing their relevance in infectious
disease
Unified di findi der the formal “Breg”
The concept of Bregs is formally established Mizoguchi et al. (21) n .e fverse fin -mgs‘ uncer the tormal - Breg
terminology, consolidating the field
Identified cytotoxi B producti 1
Human B cells produce GzmB in response to IL-21 . entt e' cytotoxic granzyme 'pro ue lfm asanove
. . Jahrsdorfer et al. (67) suppressive mechanism, expanding functional
2006 and BCR stimulation K K
diversity
D trated the th ti tential of B i
Bregs attenuate GvHD after bone marrow emonstra -e ¢ eral?eu ' PO enA ?a © regs‘ n
. Rowe et al. (68) transplantation by showing their ability to ameliorate
transplantation .
graft-versus-host disease.
Iklnti-CPZO (lr.it'u)fimab)' B cell depletion exacerbates Goetz et al. (23)
ulcerative colitis in patients Provided clinical evidence that Bregs exist in humans,
Rituximab-linked psoriasis onset highlights Breg as their removal worsened inflammatory disease
2007 K Dass et al. (22)
protective role
Discovery of immunosuppressive CD21MCD23" (T2- Evans et al.,
hi
MZP) and CD21"CD230n- on&Bregs (MZ) Gray et al. (69, 70) Identified novel murine Breg subsets, demonstrating
Identification of functional IL-10*CD1d"CD5"* Breg phenotypic diversity within regulatory B cells
2008 ey Yanaba et al. (71)
subset ("B10") in mice
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TABLE 1 Continued

10.3389/fimmu.2025.1681082

Year Key discovery Researchers Brief significance
Provided mechanistic insight into Breg induction,
B B10) devel t ires BCR di i d
2009 re8 (_ ), cvelopment requires fversity an Yanaba et al. (72) linking their development to innate and adaptive
TLR signaling .
signals
; i Established a distinct h B h d
First identification of human Bregs (CD24"CD38") in X stablishe -a 1stne ‘um‘an reg P ent?type an i
SLE Blair et al. (26) showed their dysfunction in autoimmunity, opening
2010 human Breg research
N ted ph i lap between B d
Foxp3*CD5" Bregs in human PBMC Noh et al. (73) 188es e. p enoch overiap 'e cen bregs an‘ i
Tregs, raising questions about lineage and plasticity
ffumoriassociated B cells suppress antitumor Olkhanud et al, (74) Lin‘ked Bregs to cancer imrT)une evas-ion, highlighting
immunity their potential as therapeutic targets in oncology
2011
TIM-1 as a marker for IL-10" Bregs, and its role in . Identified a functional marker and target for
Ding et al. (59) . .
tolerance modulating Breg-mediated tolerance
CD25" Bregs suppress effector T cells and induce Kessel et al. (75) Expanded the Breg repertoire by identifying a subset
Tregs ’ that promotes Treg induction
2012
D trated that B tain i tol b
Bregs maintain Tregs via GITRL expression Ray et al. (76) 'emons rate K at Pregs sustain lm,mune olerance by
directly supporting Treg homeostasis
Linked Bregs t i logy, ti
Bregs support fetal-maternal tolerance Rolle et al. (77) mA ¢ r-egs © pregnancy 1mrf1un-o o8Y> suggesting
their role in preventing fetal rejection
2013 §D25hiC13.7lhiCD?3’ "Brl cells" suppress van de Veen et al. (78) Fxpaflded.Breg phenotypif: diversity with
inflammation and induce Tregs identification of Brl cells in humans
Murine CD5"CX3CR1" "TolBC" induce Tregs via Liu et al. (79) Described a novel murine Breg subset, reinforcing
TGF-B ’ heterogeneity of regulatory B cells
CD19*CD27™CD38" plasmablasts inhibit DC Showed that antibody-secreting plasmablasts can also
K Matsumoto et al. (80) .
function exert regulatory functions
IL-35 as a Breg-produced cytokine suppressing Expanded the cytokine repertoire of Bregs beyond IL-
. Shen et al. (81) . T
immune responses 10 and TGF-B, underscoring mechanistic diversity
2014
Highlighted the role of the microbi in shapi
Commensal gut microbiota induces Bregs Rosser et al. (82) ighiighted the role of the mlcro 1ome In shaping
Breg development and function
Adenosine production by CD39*CD73" B cells as a Kaku et al. (83) Revealed metabolite-mediated immunoregulation as a
suppressive mechanism ’ novel Breg mechanism
Linked tryptoph tabolism to Breg function,
Bregs express IDO, promoting Treg proliferation Nouél et al. (84) Hnked tryptop . an metabo '1sm © reg function
further expanding suppressive pathways
2015 PD-L1-expressing B cells suppress T cells via PD-1/ Khan et al. (85) Cfmr?ected Bregs- to immune Fheckpoint biology,
PD-L1 pathway aligning them with therapeutic targets
CD1d"CD5" Breg role identified in Wiskott-Aldrich Showed that Breg defects contribute to
Yokoyama et al. (86) . . o .
Syndrome immunodeficiency, linking them to orphan diseases
D trated that pl 11 dopt lat
2018 Identification of LAG-3+ regulatory plasma cells Lino et al. (87) K em(')ns rate 'a prasma cells car'l & ,OP ? reguiatory
identity, expanding Breg phenotypic diversity
Commensal-reactive IgA-producing recirculating Roi al (32
Bregs modulate neuroinflammation ojas et al. (32) Highlighted IgA™ Bregs as a distinct subset, while
APRIL serves as an inducer of this phenotype
2019 IgA" Bregs can be induced by APRIL Feher et al. (33)
AhR as E'l tl'ranscriptional regulator of Breg Piper et al. (29) Revealéd envi.ror'nmental sensing as a key factor in
differentiation Breg differentiation
Identified IL-27" B bset, di kine-
IL-27-producing Bregs suppress neuroinflammation Choi et al. (42) en'l ¢ . reg Subsel, exp én ing cytoline
mediated mechanisms of suppression
p d SLAMF5 1 th tic target fa
2021 SLAMF5 as a negative regulator of IL-10" Bregs Radomir et al. (50) ropose 2 @ novel terapeutic target for

TIGIT* memory Bregs suppress T cells and DC

Hasan et al. (38)

stabilizing Bregs

Revealed a human Breg subset with multi-mechanism
suppression, broadening functional scope

Frontiers in Immunology

04

(Continued)

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1681082
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zheremyan et al.

TABLE 1 Continued

Key discovery

Researchers

10.3389/fimmu.2025.1681082

Brief significance

B cell-derived GABA induces anti-inflammatory
macrophages

Breg-derived HSP70 suppresses CD4" T cells

LARS2-expressing B cells promote tumor

2022 . .
immunoevasion

2023 PPARS is essential for tumor-induced IL-10" Bregs,
and its inhibition enhances immunotherapy
Breg-derived antibodies shape neonatal gut
microbiome

2024
OXPHOS-dependent IL-10" Bregs; Trx deficiency in
SLE Bregs

2025 VISTA" Bregs suppress immunity via VISTA-PSGL-1

axis

Zhang et al. (88)

Wang et al. (89)

Wang et al. (37)

Chen et al. (51)

Gu et al. (90)

Tartaro et al. (40)

Uncovered neurotransmitter-mediated
immunoregulation, linking Bregs to neural-immune
interactions

Identified stress chaperone-mediated suppression as a
novel Breg function

Linked mitochondrial metabolism to tumor-
promoting Breg subsets

Demonstrated metabolic control of Bregs in cancer,
offering therapeutic intervention points

Showed that neonatal Bregs influence early-life
microbiota development, broadening physiological

relevance

Linked mitochondrial metabolism and redox balance

Bradford et al. (49)

to Breg differentiation and autoimmune dysfunction

Identified VISTA* Bregs as pro-tumor subsets,
highlighting novel immunosuppressive axes

EAE, experimental autoimmune encephalomyelitis; CIA, collagen-induced arthritis; GzmB, granzyme B; GVHD, graft-versus-host disease; TolBC, tolerogenic B cells; DC, dendritic cells; IDO,

indoleamine 2,3-dioxygenase; GABA, gamma-aminobutyric acid; LARS2, leucine-tRNA-synthetase-2; PPARS, peroxisome proliferator-activated receptor delta; OXPHOS, oxidative

phosphorylation; Trx, thioredoxin.

immunosuppressive functions has moved beyond the earlier, less
defined "suppressor B cell" hypothesis.

In 2006, Mizoguchi and colleagues were instrumental in
introducing the term “Bregs” to the scientific community (21).
Their research, conducted in mouse models of colitis and intestinal
inflammation, identified a discrete population of B cells that
exhibited suppressive functions (7, 20). These B cells were
observed to expand in chronic inflammatory environments and
were capable of dampening the progression of intestinal
inflammation by down-regulating inflammatory signaling
pathways. This work provided a clear conceptual framework and
a specific name for this immunomodulatory B cell population.

The hypothesis of human Bregs was initially based on clinical
observations. One of the first pieces of evidence came from
observations related to the use of the B cell-depleting antibody
rituximab. In some patients treated with rituximab, B cell depletion
was associated with the development of psoriasis or a worsening of
ulcerative colitis (22, 23). These paradoxical outcomes implied that
B cells can exert a suppressive function in humans, which was lost
upon their depletion. Further support for the human Breg
hypothesis emerged when a clinical trial involving anti-CD20
monoclonal antibody therapy in transplant recipients was halted
due to an increased rate of organ rejection (24). These early
indications suggested that B cells also exert immunosuppressive
functions in humans, similar to findings in murine models (25).

More definitive identification of human Bregs occurred in 2010
when Claudia Mauri's group identified them in the context of
systemic lupus erythematosus (SLE) (26). They identified a
specific immature B cell population in human peripheral blood,
characterized by the CD24™CD38™ phenotype. These cells were
shown to produce high amounts of IL-10 upon in vitro CD40
engagement and were capable of suppressing Thl differentiation
and converting CD4" T cells into regulatory T cells (Tregs).

Frontiers in Immunology

Following the formal coining of the term, IL-10 rapidly emerged
as the hallmark suppressive cytokine associated with Breg activity in
the early 2000s. Its consistent involvement in Breg-mediated
immune suppression across various models established it as the
primary functional molecule for many years (1). For a long time,
Bregs were identified solely by the expression of IL-10. Later, the
existence of IL-10-independent Bregs has been convincingly
demonstrated, and the term “B10 cells” was commonly used to
refer to this population. However, it has become increasingly clear
that IL-10 expression alone does not fully capture the phenotypic
and functional heterogeneity of Bregs.

4 Advances in Breg subset
characterization and differentiation
pathways (2010s — 2020s)

The next era of Breg research marked the discovery of a
large variety of human and murine Breg subsets, including
common interspecies subpopulations such as CD5'CD1d", as
well as unique ones, such as CcD24MCcDp3gh (transitional Bregs),
CD24MCD27* (memory Bregs, also termed “B10” in humans),
CD25*CD717CD73” (Brl) for humans, and CD21MCD23M (T2-
MZP, transitional 2 marginal zone precursor B cells), CcD21MCD23~
(MZ, marginal zone B cells), CD138"CD44" (plasmablasts) for
mice (1, 27). Breg subpopulations can also be identified based on
their effector anti-inflammatory molecules, which broadly fall into
three categories: cytokine-mediated mechanisms (TGF-B*, IL-35%,
IL-10", etc.), cell-cell contact mechanisms (PD-L1, TIM-1, FasL,
TIGIT, etc.), and metabolic or unconventional mechanisms (CD39/
CD73/adenosine, thioredoxin, GABA, HSP70) (28). It is
noteworthy that despite this phenotypic heterogeneity some of
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shift of traditional

view of B cells as solely

pro-inflammat

Adoptive transfer

of plasma cells inhibit
antigenic response
Morris, Moller, 1968

B cells suppress
delayed-type
hypersensitivity

Broader investigation of Bregs
in pathologies; first evidence for
the existence of human Bregs

Bregs in chronic inflammation
Mizoguchi et al., 2002

Bregs in autoimmunity
Fillatreau et al., 2002
Mauri et al,, 2003

Bregs in allergy
Mangan et al., 2004

Katzetal, 1974
Neta, Salvin, 1974
Bregs in parasitic infections
Gillan et al., 2005

B cells induce Tregs
Lage-Stehr et al., 1980
Shimamura et al., 1982
Kennedy, Tomas, 1983
Shimamura et al., 1984

Bregs in transplantation
Rowe et al., 2006

Bregs in

homeostasis
maintenance B cell-depleting therapy
induces autoimmunity
Goetz et al., 2007

B cells suppress EAE Dass et al, 2007

Wolf et al., 1996

GzmB* Bregs
Jahrsdorfer et al.,
2006

B cells suppress
chronic colitis
Mizoguchi et al., 1997
IL-10*Bregs  CD21"CD23"/-
Mizoguchi et al,, (T2MZP/MZ) Bregs
2002 Evans et al., 2007
Gray et al,, 2007

CD1d"CD5* Bregs
Yanaba et al., 2008

TGF-B* Bregs
Parekh et al.,
2003

Pioneer studies of B cell suppressive mechanisms;
establishment of "Breg" term and hallmark cytokine (IL-10),

FIGURE 1

1960-1990 00-2010 2010 m

health and disease

Bregs in cancer Bregs in pregnancy
Olkhanud et al., 2011 Rolle et al., 2013

Bregs and microbiota
Rosser et al., 2014
TIGIT* Bregs

Bregs in immunodeficiency Hasan et al, 2021

Yokoyama et al., 2015
IL-27* Bregs
Choi et al., 2021

CD24"CD38" tBregs
Blair et. al., 2070

SLAMFS5 - negative
regulator of Bregs

Bre
Radomir et al., 2021 9

phenotype
and
molecular
mechanisms

CD24"CD27* mBregs

Iwata et. al., 2011 HSP70* Bregs

Foxp3* Bregs Wang et al,, 2021

Noh et al., 2010

TIM-1* Bregs
Ding et al., 2071

GITRL* Bregs
Ray etal., 2012

IL-35* Bregs
Wang et al., 2014

PD-L1* Bregs
Khan et al,, 2015

LAG-3* Bregs
Lino et al., 2018

CD25"CD71"CD73-
Bregs

van de Veenet al.,,
2013

LARS2* Bregs
Wang et al., 2022

PPARS regulates
Breg function
Chen et al., 2023

CD39*CD73* Bregs
Kaku et al,, 2014

IgA* Bregs
Rojas et al., 2019
Fehres et al, 2019

Trx regulates Breg
metabolism
Bradford et al., 2024
AhR regulates

Breg differentiation
Piper et al, 2019

VISTA* Bregs
Tartaro et. al., 2025

Rapid expansion of the repertoire of Breg mechanisms,
differentiation pathways, metabolic requirements

Timeline of Breg journey. For a more comprehensive overview, including additional key discoveries and detailed contextual descriptions, please refer
to Table 1. EAE, experimental autoimmune encephalomyelitis; GzmB, granzyme B; LARS2, leucine-tRNA-synthetase-2; PPARS, peroxisome
proliferator-activated receptor delta; Trx, thioredoxin. Created with BioRender.com.

these populations may overlap. With the discovery of a wide range
of Breg subsets, scientists kept questioning the origin of Bregs.
Hypotheses of pathways for Breg differentiation have long been
debated. The basic concept suggested the presence of a universal
Breg lineage marker (more possibly - transcription factor), and a lot
of attempts have been made to find one. In 2019, Claudia Mauri’s
group succeeded in finding a transcriptional factor aryl
hydrocarbon receptor (AhR), which was shown to contribute to
the CD21™CD24" Breg differentiation (29). Another transcription
factor, hypoxia-inducible factor-lo, was also found to regulate
CD1d"CD5" Bregs. The master-regulator of Tregs, FOXP3, was
also identified in a subset of Bregs (30). However, to date, no study
has succeeded in identifying a universal Breg lineage marker.
Taking into account the high heterogeneity of Breg subsets and
the ability of B cells to acquire regulatory functions in response to
specific stimuli, the concept of an inducible Breg nature has arisen.
This concept has been proven in a wide variety of studies showing
that Bregs can be induced from different subsets of B cells (31-33).
Breg-inducing stimuli include CD40L, IL-21, IL-35, CpG, BAFF,
and APRIL in different combinations (33-36). This concept of
"induced Bregs" highlights the plasticity of B cells and their ability to
adapt their function based on the local immune milieu, also
providing a basis for their therapeutic implication.
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This era marked the burst of articles in the Breg field. The
majority of these publications consist of observations regarding the
involvement of Bregs in the pathogenesis of various diseases, mainly
different types of cancer, autoimmune diseases, infections, and
graft-versus-host disease (25). It was essential to transition
towards a detailed investigation of their mechanisms of
immunoregulation, intensifying the study of their molecular
characteristics and methods for precise manipulation of Bregs.

5 Omics revolution in Breg
immunology (2020s — onwards)

The current era is profoundly shaped by the advent and
widespread adoption of single-cell and multi-omics technologies.
These high-resolution analytical techniques are deepening the
understanding of Breg heterogeneity and function, providing an
unprecedented level of precision that was previously unattainable
with traditional methods. Traditional bulk sequencing and flow
cytometry often masked the true diversity within B cell populations
by providing an average view of gene expression. Single-cell RNA
sequencing (scRNA-seq), single-cell B cell receptor sequencing
(scBCR-seq), and integrated multi-omics approaches overcome
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these limitations. This capability is critical for unraveling the true
diversity of Bregs, which are known to exhibit remarkable
phenotypic variability depending on their tissue location and the
specific disease context.

Recent research leveraging these advanced technologies has
already yielded significant discoveries, such as the identification of
novel Breg subsets and Breg effector mechanisms (TIGIT" Bregs,
LARS2" Bregs, VISTA" Bregs, etc.) (37-40). Single-cell analysis has
recently delineated seven organ-specific Breg subsets with variable
immunosuppressive functions in mice, each with distinct gene
expression profiles and immunosuppressive functionalities (41).
These modern techniques have also helped reveal the functional
diversity of Bregs. In particular, functionally specific Bregs
that minimally express IL-10 (previously considered Breg
hallmark) but show high levels of TGF-B and IL-35 were
characterized, which proved that IL-10" Breg cells also possess
specific immunosuppressive properties distinct from conventional
Bregs (41). Recently, transcriptomic analysis revealed a distinct
subpopulation of IL-27" Bregs, which is also developmentally and
functionally distinct from IL-10" and IL-35" Bregs (42). Notably,
Bregs exhibit organ-specific heterogeneity with diverse phenotypes
and functions depending on their organ of residence, such as the
spleen, lymph nodes, or peritoneal cavity (41). This heterogeneity
highlights the need for detailed characterization of Breg subsets
across different tissues, and technologies like scRNA-seq offer a
powerful approach to map their functional diversity in various
contexts. Complementing omics-powered insights, recent research
emphasizes that epigenetic and genetic regulation critically shape
Breg functionality: histone modifications and DNA methylation,
regulatory RNAs (IncRNA, miRNA, circRNA, etc.) and non-coding
SNPs influence B cell subset differentiation and activation, thereby
contributing to disease pathogenesis (43-48).

Another key milestone has been the refinement of our
understanding of Breg differentiation and its requirements. A
recent study by Mauri’s group performed trajectory analysis of
scRNA-seq data of B cell culture activated with Breg-inducing CpG
and revealed pathways of Breg differentiation. Within these
pathways, they identified a specific metabolic regulator of Breg
differentiation - a redox-regulating protein thioredoxin,
highlighting that Breg differentiation, unlike non-Breg cells,
highly depends on mitochondrial electron transport and
controlled reactive oxygen species levels, while inhibition of other
metabolic pathways made no difference (49). It is important to note
that some other important regulators of Breg differentiation and
function have also been recently identified, including PPARS and
SLAMFS5, posing new potential therapeutic targets for Breg
modulation (50, 51).

6 Emerging implications of Bregs

Bregs have attracted increasing attention as potential agents for
immune modulation with human studies providing evidence across
key contexts such as in autoimmune diseases (impaired transitional
Bregs in SLE, paradoxical flares after rituximab in ulcerative colitis,
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etc.) (23, 26), transplantation (Breg-associated cytokines and the
frequency of circulating Bregs as biomarkers of allograft rejection,
implementation of Bregs to prevent graft-versus-host disease, etc.)
(52-54), and cancer (VISTA*, PD-1"PD-L1* and other tumor-
associated Bregs as drivers of immune evasion, etc.) (40, 55). Recent
advances have paved the way for several promising therapeutic
approaches aimed at harnessing the immunosuppressive functions
of Bregs.

While adoptive transfer of Tregs has advanced further clinically
(56), with numerous trials and translational studies already underway,
development of Breg-based cell therapy is still in its early stages (57).
Nevertheless, Bregs offer unique advantages in some contexts at least
due to their ability of antigen presentation and production of tolerogenic
antibodies, providing a wider spectrum of immunoregulatory
mechanisms. Adoptive Breg cell therapy represents a rapidly evolving
strategy, involving the ex vivo expansion of Bregs and their subsequent
reintroduction into the patient. Protocols have been developed to
generate human Bregs from either autologous or allogeneic peripheral
B cells using specific inducers. These expanded Bregs exhibit strong
suppressive activity and the capacity to modulate effector cell responses,
offering a foundation for personalized Breg-based immunotherapies
(58). Engineering of antigen-specific Bregs also holds promise for the
treatment of autoimmune pathologies characterized by involvement of
well-defined autoantigens.

Given Breg ability to interact with and promote other
immunoregulatory cell populations, including Tregs, myeloid-
derived suppressor cells, and invariant natural killer T cells, they
present an attractive option for combination immunotherapeutic
strategies (1). Co-administration or co-induction of Bregs (for
example, with in vivo inductors such as short-chain fatty acids,
etc.) with other regulatory cells may enhance immune tolerance and
provide longer-lasting immunosuppressive effects.

Advances in the identification of Breg-specific markers and
regulatory pathways have opened new avenues for in vivo
modulation. Even though Breg-specific lineage markers are yet to
be identified, molecules such as TIM-1, TIGIT, and others have
emerged as functional markers and potential therapeutic targets
(38, 59). Pharmacologic agents or biologics designed to enhance or
inhibit these pathways may allow for precise manipulation of Breg
function in disease-specific contexts, enabling a shift toward
immune tolerance without broad immunosuppression.

7 Conclusions and perspectives

The journey of Bregs has evolved from the initial recognition of
a suppressive B cell population primarily defined by IL-10
production to a sophisticated understanding of a heterogeneous
family of cells employing diverse suppressive mechanisms. The
early 2000s established the fundamental concept of Bregs as critical
regulators of immune homeostasis, particularly in autoimmune
contexts. However, the subsequent decades, culminating in the
current era, have revealed that Bregs are not a singular entity but
rather a dynamic and adaptable population capable of acquiring
regulatory functions through various pathways.
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The current landscape, characterized by an enhanced ability to
dissect cellular heterogeneity using single-cell and multi-omics
technologies, has led to the identification of novel markers,
subsets, and intricate regulatory networks beyond the B10
concept. The understanding that Bregs can arise from
conventional B cell subsets in a context-dependent manner
represents a major paradigm shift. Despite all the advances in the
field, a significant challenge persists: Bregs still lack a unique lineage
marker, which absence makes their identification and classification
a persistent challenge; however, it remains uncertain whether such a
marker exists. Beyond this, additional barriers remain, including the
plasticity of Breg phenotypes, their strong context-dependency
across diseases and tissues, and methodological limitations that
complicate translation from experimental models to human
biology. Deeper appreciation of Breg biology is not just academic:
it directly informs the development of targeted therapeutic
strategies. The creation of composite Breg-specific signatures with
predictive potential could allow for the classification of risk groups
in different Breg-associated pathologies, as well as for more precise
therapy selection. Exploration of organ-specific Bregs is also critical,
as distinct tissue-resident subsets may employ unique suppressive
mechanisms that influence disease outcomes. Moreover,
investigating combinatorial regulatory cell therapies could reveal
synergistic approaches to enhance immunomodulation. Further
challenges stem from pronounced heterogeneity of Bregs, as
distinct subpopulations may use non-overlapping suppressive
mechanisms, making it unclear which subset should be expanded
or targeted therapeutically; their localization, since certain Breg
subsets are scarce in peripheral blood and thus difficult to harvest
for adoptive transfer; and the potential risks of Breg-based cellular
products, which could cause excessive immunosuppression and
predispose to malignancy. Moreover, it remains a major challenge
to direct Bregs selectively to diseased tissues, in order to avoid
systemic suppression and maximize their therapeutic benefit in a
localized manner. A clear reflection of these barriers is the current
translational gap: despite promising preclinical data, Breg-based
therapies have not yet entered clinical trials. The new era of Breg
immunology is poised to unlock the full therapeutic potential of
these cells, offering novel avenues for treating a wide array of
immune-mediated diseases and significantly advancing the field
of immune tolerance.
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