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T cells play a central role in the immune response to gastric cancer, and their

dysfunction directly contributes to immune escape from the tumor and limits the

efficacy of immunotherapy. The immune microenvironment of gastric cancer

consists of a wide range of cells and molecules, and this complex and dynamic

environment exerts profound inhibitory effects on T cell function. upregulation of

PD-1, CTLA-4, and other inhibitory molecules is a key mechanism of T cell

depletion, and metabolic reprogramming and chronic antigenic stimulation

further weaken the anti-tumor activity of T cells. In recent years, PD-1/PD-L1

inhibitors have demonstrated some efficacy in gastric cancer, but the problem of

drug resistance remains prominent. To address these challenges, combinatorial

therapeutic strategies have gradually become the focus of research, especially

combining immune checkpoint inhibitors with chemotherapy, radiotherapy, or

targeted therapy to enhance the antitumor effect of immunotherapy. This review

delves into the molecular mechanisms of T-cell depletion and its impact in

gastric cancer immunotherapy, and analyzes the potential application of

biomarkers in predicting treatment response. By comprehensively analyzing T-

cell depletion and the immune microenvironment in gastric cancer, this paper

provides a theoretical basis for the development of future personalized

combinatorial therapeutic strategies, with the aim of improving patient

prognosis and enhancing the overall therapeutic efficacy.
KEYWORDS
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1 Introduction

Gastric cancer is the fifth most common malignant cancer

worldwide and the fourth leading cause of cancer-related deaths

(1). According to the World Health Organization (WHO), there will

be approximately 1 million new cases of gastric cancer worldwide in

2020, accounting for 5.6% of all cancer cases, the incidence of gastric

cancer in East Asia (China, Japan, Korea, etc.) is much higher than

that in Europe and the United States, with significant geographical

differences (2, 3). In addition to this, the incidence of gastric cancer

also has obvious gender distribution differences, and the incidence of

gastric cancer in men is approximately twice as high as that in women

(1, 4). Adenocarcinoma is the most common histologic subtype of

gastric cancer, in addition tomucinous adenocarcinoma, indolent cell

carcinoma, and undifferentiated carcinoma (5). Gastric cancer has a

rapid progression and is prone to lymph node metastasis and distant

metastasis, resulting in a poor prognosis (6). Therefore, the study of

the pathogenesis of gastric cancer and its therapeutic strategies is

essential to improve clinical prognosis.

T cells are one of the core components of the adaptive immune

system that recognize and kill tumors (7).CD8+ cytotoxic T

lymphocytes (CTLs) directly kill tumor cells by recognizing tumor

antigens and releasing perforin and granzyme (8, 9). And CD4+ helper

T cells coordinate the immune response by secreting cytokines (10).

The functional soundness of T cells is an important guarantee to

maintain anti-tumor immune surveillance (11). However, in gastric

cancer and other solid tumors, T cells often exhibit dysfunction (e.g.,

depletion or heterogeneity), and their antitumor efficacy is greatly

diminished (12). A distinctive feature of T-cell dysfunction is the

upregulation of immune checkpoint molecules, such as programmed

death receptor-1 (PD-1) and cytotoxic T-lymphocyte antigen-4

(CTLA-4), the expression of which leads to T-cell suppression which

in turn promotes tumor evasion of immune surveillance (13–15). In

addition, chronic antigenic stimulation, metabolic abnormalities, and

suppressive cytokines in the tumor microenvironment contribute to

the gradual loss of effector function of T cells, further exacerbating

immune escape from the tumor (16). Therefore, an in-depth

understanding of the dysfunctional mechanisms of T cells in gastric

cancer immunity can help develop novel immunotherapeutic

strategies (17, 18).

This article delves into the molecular mechanisms underlying T

cell dysfunction in gastric cancer and explores potential therapeutic

strategies. By integrating basic and clinical research findings, we

elucidate the intricate role of T cells in gastric cancer immunity. We

focus on T cell depletion and heterogeneity, and highlight the

potential application of biomarkers in predicting therapeutic

response. Ultimately, we aim to provide novel insights for the

development of future personalized immunotherapy strategies.T-

cell dysfunction in gastric cancer.
1.1 Mechanisms of T-cell exhaustion

T-cell exhaustion is a state in which T cells gradually lose their

effector function under continuous antigenic stimulation (19).
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Depleted T cells exhibit decreased proliferative capacity,

decreased secretion of effector molecules (e.g., IFN-g, TNF-a, IL-
2), and high expression of multiple inhibitory receptors (PD-1,

CTLA-4, TIM-3, etc.) (20). In gastric cancer, T cell depletion is one

of the important mechanisms of tumor immune escape (21).

1.1.1 Immune checkpoint inhibitory pathways
The PD-1/PD-L1 pathway is one of the most well-studied

mechanisms of T-cell exhaustion (22). Programmed Cell Death

Protein 1 (PD-1), an inhibitory receptor on the surface of T-cells, is

usually highly expressed in response to chronic antigenic exposure

and inhibits T-cell activity by binding to its ligand, PD-L1, thereby

preventing its killing of tumor cells (23). Gastric cancer cells often

exploit this pathway to evade immune surveillance by

overexpressing PD-L1 (24). This inhibitory mechanism not only

plays a role in depleting T cells, but is also upregulated during acute

T cell activation to prevent T cell overreaction. In acute infection

models, inhibitory receptors including PD-1 and Cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) are up-regulated to

counteract the activating effects of T-cell receptor (TCR) and co-

stimulatory signals to maintain immune homeostasis (25).

During immune depletion, the presence of PD-1 was not

essential. However, its existence notably diminished the extent of

depletion and to some extent, prevented cells from becoming

overstimulated. This implies that even in the context of depleted

T cells, PD-1 may still be exerting a protective effect by inhibiting

cell activation (26). In addition to the PD-1/PD-L1 pathway, CTLA-

4 is an important immune checkpoint molecule that acts mainly

during the initial activation of T cells (27). CTLA-4 inhibits the

activity of T cells by preventing co-stimulatory signaling through

binding to B7 molecules on the surface of antigen-presenting cells

(28). In gastric cancer, tumor cells further enhance T-cell inhibition

by upregulating PD-L1 and B7 expression. CTLA-4 acts mainly

during initial T-cell activation, whereas PD-1 exerts a sustained

inhibitory effect under chronic antigen exposure (29).

1.1.2 Metabolic reprogramming
Metabolic changes in the tumor microenvironment

significantly affect T cell function (30). Gastric cancer cells and

immunosuppressive cells (e.g. myeloid-derived suppressor cells,

MDSCs) preferentially seize nutrients such as glucose and

glutamine through metabolic reprogramming, weakening the

metabolic activity of T cells and thus inhibiting their effector

function (31). Tumor cells are predominantly aerobic glycolysis,

which rapidly consumes glucose and generates large amounts of

lactic acid, acidifying the microenvironment, thus further inhibiting

T cell proliferation and effector function (32). In addition, lipid

accumulation and fatty acid oxidation caused by metabolic

reprogramming were enhanced, which promoted the impaired

mitochondrial function and accelerated depletion of T cells.

Notably, metabolic wastes such as lactate in the tumor

microenvironment not only inhibit T cells, but also promote

polarization of M2-type tumor-associated macrophages (TAMs)

by inducing the expression of HIF-1a, which in turn drives tumor

progression (33).
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1.1.3 Chronic antigenic stimulation
In gastric cancer, tumor cells continuously express tumor-

associated antigens, resulting in a long-term activation state of T

cells (34). However, sustained antigenic stimulation not only causes

T cells to gradually lose their effector function, but also further

deepens the depletion state of T cells by upregulating inhibitory

receptors such as PD-1, TIM-3, and LAG-3 (35). It has been pointed

out that chronic antigen exposure accompanied by metabolic

reprogramming promotes mitochondrial dysfunction, leading to

excessive accumulation of reactive oxygen species (ROS) and

exacerbating T cell depletion. Therefore, blocking these inhibitory

signals or modulating metabolic pathways is expected to restore T

cell activity and improve immunotherapy outcomes (36).
1.2 T-cell heterogeneity

In the microenvironment of gastric cancer, T cell heterogeneity is

mainly reflected in the functional differentiation of subpopulations

such as CD8+ effector T cells, memory T cells and regulatory T cells

(Treg cells).CD8+ effector T cells (CTLs) are responsible for the direct

killing of tumor cells, but they usually show depletion characteristics in

gastric cancer patients, which manifests itself in the form of the high

expression of inhibitory receptors, such as PD-1, LAG-3, etc., and in

this state the CTLs lose their effector function and gradually reduce the

secretion of perforin and granzyme, thus failing to effectively kill tumor

cells (36). Memory T cells, such as central memory (Tcm) and effector

memory (Tem) cells, can be rapidly activated upon re-encountering

tumor antigens, but their function is often limited by metabolic defects

and inhibitory factors (e.g., TGF-b, IL-10) in the gastric cancer

microenvironment, resulting in reduced cell proliferation capacity

and secretion of key effector molecules such as IFN-g. In addition,

the number of Treg cells was significantly elevated in gastric cancer

tissues, and they suppressed effector T cells by secreting inhibitory

factors such as TGF-b and IL-10, and competed with antigen-

presenting cells for nutrients, thus weakening anti-tumor immunity

(37). In conclusion, the heterogeneity among T cell subsets and their

different depletionmechanisms in themicroenvironment further reveal

the complexity of immune escape in gastric cancer, providing multiple

targets and optimized strategies for immunotherapy (38).
2 Biomarkers and clinical prediction

As the immune microenvironment of gastric cancer has been

studied intensively, a variety of emerging biomarkers have shown

significant potential in predicting immunotherapy response and

assessing patient prognosis (39).
2.1 Emerging biomarkers of T cell
dysfunction

CD39/CD73 are key enzymes in adenosine metabolism and are

usually highly expressed in depleted T cells. Through the adenosine
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of immunosuppressive adenosine in the tumor microenvironment,

thereby suppressing the function of effector T cells (40). In gastric

cancer patients, high levels of CD39/CD73 expression are closely

associated with reduced T cell activity, allowing tumor cells to evade

recognition by the immune system. Therapies that block the

adenosine pathway, such as A2aR inhibitors, have been shown to

restore T-cell function and enhance anti-tumor responses, and are

one of the important current research directions in gastric cancer

immunotherapy (41).

TIGIT, a newly discovered inhibitory receptor, significantly

inhibits the glycolytic activity of CD8+ T cells by binding to its

ligand CD155, which in turn reduces the secretion of anti-tumor

factors such as IFN-g (42). Preclinical studies have shown that

blocking the TIGIT/CD155 pathway not only restores the metabolic

activity of T cells, but also significantly enhances anti-tumor

immune responses and improves patient survival. Therefore, the

TIGIT/CD155 axis is considered a potential target in gastric

cancer immunotherapy with important clinical translational

prospects (43).
2.2 Biomarkers for predicting response to
therapy

Along with the widespread use of immunotherapy in gastric

cancer treatment, biomarkers that predict response to therapy are

particularly important to help optimize treatment strategies and

improve efficacy.

Tumor Mutational Burden (TMB) is considered an important

marker of response to immunotherapy (44). A higher TMB usually

means more tumor neoantigen generation, enhancing the chances

of recognition and attack by the immune system (45). In gastric

cancer patients, it has been found that those with higher TMB

typically show more significant efficacy to PD-1/PD-L1 inhibitor

therapies, as these neoantigens stimulate a stronger immune

response (46).

Microsatellite instability (MSI) is another widely studied

biomarker in immunotherapy (47). Due to defective DNA

mismatch repair, MSI-H (high microsatellite instability) tumors

typically have higher mutational loads and neoantigen generation

rates, and thus show good response to immune checkpoint

inhibitors in gastric cancer.MSI assays have become a commonly

used method in the clinic to screen patients for suitability for

immunotherapy (48).

In addition, factors such as the number of tumor-infiltrating

lymphocytes (TILs) and specific metabolic markers (e.g., CXCL9,

IDO, and LDH) have shown significant value in predicting the

efficacy of immunotherapy (49). A high density of CD8+ TILs is

usually associated with a better clinical prognosis, and high

expression of markers such as CXCL9 and IDO predicts a

stronger anti-tumor immune response (50). Personalized

therapeutic regimens based on these markers can significantly

improve the outcome of gastric cancer patients and promote the

development of personalized immunotherapy.
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3 Treatment opportunities and
prospects

Immune checkpoint inhibitors (ICIs) and T-cell augmentation

therapies have shown unprecedented promise in the treatment of

gastric cancer (51). Through immune system modulation, the

survival and treatment outcome of gastric cancer patients have

been significantly improved (52).
3.1 Immune checkpoint inhibitors

In immunotherapy for gastric cancer, PD-1/PD-L1 inhibitors

and CTLA-4 inhibitors have been widely used as the two main

classes of ICIs (53). Pembrolizumab and Nivolumab are the most

common PD-1 inhibitors, which restore the anti-tumor activity of

T-cells by blocking the binding of the PD-1 receptor to the PD-L1

ligand (54). For example, the CheckMate 649 trial showed that the

combination of Nivolumab and chemotherapy significantly

prolonged the overall survival (OS) of gastric cancer patients

compared to chemotherapy alone, with a particularly significant

survival benefit in patients with high PD-L1 expression (55). In

contrast, CTLA-4 inhibitors, such as Ipilimumab, boosted T-cell

activity by competitively inhibiting the binding of CTLA-4 to B7

molecules (56, 57). However, due to the low response of gastric

cancer to CTLA-4 inhibitors, clinical studies have mostly focused

on their use in combination with other therapies to optimize

treatment outcomes (58, 59).

In recent years, combination strategies of ICIs with other

therapeutic agents have been explored and have shown initial

success. For patients with locally advanced gastric cancer, a

combination neoadjuvant therapy trial including Karelizumab,

Apatinib and chemotherapy showed that patients achieved a

complete pathological response rate of 15.8% after surgery, while

demonstrating remarkable safety and tolerability. This combination

therapy strategy not only acts directly on tumor cells, but also

enhances the efficacy of ICIs by inhibiting tumor angiogenesis and

elevating the degree of immune cell infiltration in the tumor

microenvironment (60).
3.2 T-cell enhancement therapy

In addition to ICIs, T-cell augmentation therapies such as

chimeric antigen receptor T-cell (CAR-T) therapy and T-cell

receptor (TCR-T) therapy have shown great potential in gastric

cancer immunotherapy (61).

3.2.1 CAR-T cell therapy
CAR-T therapy targets and kills tumor cells by genetically

engineering patient T cells to express receptors for specific tumor

antigens (62). For gastric cancer, CLDN18.2-specific CAR-T cells

have demonstrated potential efficacy in a phase I clinical trial, with

disease control in approximately 48.6% of patients (63). The

therapy showed a high overall response rate, especially for gastric
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cancer patients expressing CLDN18.2, with a 6-month survival rate

of 81.2% (63). In addition, ICAM-1-targeted CAR-T cells showed

significant anti-tumor activity in gastric cancer models (64). The

study showed that by combining with chemotherapy or IL-12, the

therapy exhibited significant anti-tumor effects in abdominal

metastatic gastric cancer.

3.2.2 TCR-T cell therapy
Unlike CAR-T therapies, TCR-T therapies target more diverse

antigens (e.g., tumor-specific mutant antigens) by enhancing the

recognition of tumor antigens by T cells (65). In gastric cancer

treatment, TCR-T therapy research has focused on targeting antigens

such as NY-ESO-1 and MAGE-A4 (66). Although TCR-T therapies

have shown some anti-tumor activity in early trials, challenges

remain in how to effectively respond to immunosuppression in the

tumor microenvironment, especially in the management of off-target

effects (67).
4 Combination therapy strategies

Combination therapy is becoming increasingly important in the

treatment of gastric cancer, as monotherapies struggle to overcome

the complexity of the tumor microenvironment and multiple drug

resistance (68). By combining different therapies, studies have shown

that the efficacy of ICIs can be significantly enhanced when combined

with chemotherapy, radiotherapy or targeted therapy (69).

Chemotherapy and radiotherapy not only kill tumor cells directly,

but also enhance the immune system’s ability to recognize and attack

tumors by inducing “immunogenic cell death” and releasing tumor

antigens (70). These treatments can also alter the tumor

microenvironment, reducing the number of immunosuppressive

cells such as Treg cells while increasing the infiltration of effector T

cells to further enhance the efficacy of ICIs (71). In gastric cancer

clinical trials, PD-1 inhibitors combined with chemotherapy or

radiotherapy showed significant synergistic effects, significantly

prolonging patients’ overall survival (OS) and progression-free

survival (PFS) (72). In addition, targeted therapies such as HER2

and VEGFR inhibitors reduce tumor resistance by blocking tumor-

specific signaling pathways; studies have shown that the combination

of HER2 inhibitors with PD-1/PD-L1 inhibitors significantly

activates anti-tumor immune responses and improves prognosis

(73). Looking forward, combination therapy will be more based on

individual tumor characteristics and microenvironmental status,

combined with TMB, MSI and other markers to design

personalized programs. In addition, the combination of new

immunotherapies such as bispecific antibodies and tumor vaccines

with ICIs is also being explored, which is expected to bring more

therapeutic options for gastric cancer patients (74) (Figure 1).
5 Discussion

T cell dysfunction in the immune response to gastric cancer

reveals a complex mechanism by which tumors evade immune
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surveillance (75). In this paper, we systematically review the

multiple effects of the gastric cancer microenvironment on T-cell

function, focusing on T-cell exhaustion and its resulting

immunosuppression. The critical roles of inhibitory pathways

such as PD-1 and CTLA-4 in T-cell exhaustion have been

intensively investigated, while metabolic reprogramming and

chronic antigenic stimulation further exacerbate the loss of T-cell

effector function (76). A variety of emerging biomarkers, such as

CD39, CD73, and TIGIT, have demonstrated important

applications in predicting the response of gastric cancer patients

to immunotherapy, providing a basis for individualized

stratification and optimization of therapeutic strategies (77).

Although the use of immune checkpoint inhibitors in the

treatment of gastric cancer has achieved some success,

monotherapy still faces challenges in dealing with the complex

tumor microenvironment (78). Combination strategies combining

chemotherapy, radiotherapy and targeted therapies have

demonstrated significant synergistic effects in the clinic, and

future studies should focus on the optimization of these

combination regimens and their efficacy differences in different

patient populations (79). In addition, although T-cell enhancement

therapies such as CAR-T and TCR-T have been successful in

hematological tumors, their application in gastric cancer faces

challenges such as the lack of tumor-specific antigens and

microenvironmental inhibition (80). Personalized, multi-target

combination therapy strategies for gastric cancer patients should

be the future research direction (81).

In the future, immunotherapy for gastric cancer will further

develop towards diversification and precision (82). Through the

discovery of novel biomarkers and optimized combinations of
Frontiers in Immunology 05
treatment strategies, breakthroughs in overcoming drug resistance

and improving efficacy are expected. Multidisciplinary

collaboration will be key to advancing these studies, ultimately

providing patients with a wider range of therapeutic options and

longer-term survival benefits. These findings will not only

dramatically improve gastric cancer treatment options, but also

provide a valuable reference for immunotherapy of other

solid tumors.
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FIGURE 1

Pathogenesis of T cell dysfunction in the immune microenvironment of gastric cancer and its corresponding therapeutic strategies. The
pathogenesis of T cell dysfunction in the immune microenvironment of gastric cancer is the evasion of immune surveillance by gastric cancer cells
through metabolic reprogramming of lactate accumulation and HIF-1a activation, recruitment of immunosuppressive cells MDSCs and Tregs, and
upregulation of immune checkpoint molecules PD-L1 and TIM-3. Therapeutic strategies for T-cell dysfunction in the immune microenvironment of
gastric cancer are immune checkpoint inhibitors PD-1/PD-L1 and CTLA-4 inhibitors restoring T-cell antitumor activity by blocking inhibitory signals,
emphasizing the potential of the combined therapeutic strategy of immune checkpoint inhibitors in conjunction with chemotherapy or radiotherapy
in improving therapeutic efficacy.
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