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T cells play a central role in the immune response to gastric cancer, and their
dysfunction directly contributes to immune escape from the tumor and limits the
efficacy of immunotherapy. The immune microenvironment of gastric cancer
consists of a wide range of cells and molecules, and this complex and dynamic
environment exerts profound inhibitory effects on T cell function. upregulation of
PD-1, CTLA-4, and other inhibitory molecules is a key mechanism of T cell
depletion, and metabolic reprogramming and chronic antigenic stimulation
further weaken the anti-tumor activity of T cells. In recent years, PD-1/PD-L1
inhibitors have demonstrated some efficacy in gastric cancer, but the problem of
drug resistance remains prominent. To address these challenges, combinatorial
therapeutic strategies have gradually become the focus of research, especially
combining immune checkpoint inhibitors with chemotherapy, radiotherapy, or
targeted therapy to enhance the antitumor effect of immunotherapy. This review
delves into the molecular mechanisms of T-cell depletion and its impact in
gastric cancer immunotherapy, and analyzes the potential application of
biomarkers in predicting treatment response. By comprehensively analyzing T-
cell depletion and the immune microenvironment in gastric cancer, this paper
provides a theoretical basis for the development of future personalized
combinatorial therapeutic strategies, with the aim of improving patient
prognosis and enhancing the overall therapeutic efficacy.
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1 Introduction

Gastric cancer is the fifth most common malignant cancer
worldwide and the fourth leading cause of cancer-related deaths
(1). According to the World Health Organization (WHO), there will
be approximately 1 million new cases of gastric cancer worldwide in
2020, accounting for 5.6% of all cancer cases, the incidence of gastric
cancer in East Asia (China, Japan, Korea, etc.) is much higher than
that in Europe and the United States, with significant geographical
differences (2, 3). In addition to this, the incidence of gastric cancer
also has obvious gender distribution differences, and the incidence of
gastric cancer in men is approximately twice as high as that in women
(1, 4). Adenocarcinoma is the most common histologic subtype of
gastric cancer, in addition to mucinous adenocarcinoma, indolent cell
carcinoma, and undifferentiated carcinoma (5). Gastric cancer has a
rapid progression and is prone to lymph node metastasis and distant
metastasis, resulting in a poor prognosis (6). Therefore, the study of
the pathogenesis of gastric cancer and its therapeutic strategies is
essential to improve clinical prognosis.

T cells are one of the core components of the adaptive immune
system that recognize and kill tumors (7).CD8+ cytotoxic T
lymphocytes (CTLs) directly kill tumor cells by recognizing tumor
antigens and releasing perforin and granzyme (8, 9). And CD4+ helper
T cells coordinate the immune response by secreting cytokines (10).
The functional soundness of T cells is an important guarantee to
maintain anti-tumor immune surveillance (11). However, in gastric
cancer and other solid tumors, T cells often exhibit dysfunction (e.g.,
depletion or heterogeneity), and their antitumor efficacy is greatly
diminished (12). A distinctive feature of T-cell dysfunction is the
upregulation of immune checkpoint molecules, such as programmed
death receptor-1 (PD-1) and cytotoxic T-lymphocyte antigen-4
(CTLA-4), the expression of which leads to T-cell suppression which
in turn promotes tumor evasion of immune surveillance (13-15). In
addition, chronic antigenic stimulation, metabolic abnormalities, and
suppressive cytokines in the tumor microenvironment contribute to
the gradual loss of effector function of T cells, further exacerbating
immune escape from the tumor (16). Therefore, an in-depth
understanding of the dysfunctional mechanisms of T cells in gastric
cancer immunity can help develop novel immunotherapeutic
strategies (17, 18).

This article delves into the molecular mechanisms underlying T
cell dysfunction in gastric cancer and explores potential therapeutic
strategies. By integrating basic and clinical research findings, we
elucidate the intricate role of T cells in gastric cancer immunity. We
focus on T cell depletion and heterogeneity, and highlight the
potential application of biomarkers in predicting therapeutic
response. Ultimately, we aim to provide novel insights for the
development of future personalized immunotherapy strategies.T-
cell dysfunction in gastric cancer.

1.1 Mechanisms of T-cell exhaustion

T-cell exhaustion is a state in which T cells gradually lose their
effector function under continuous antigenic stimulation (19).
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Depleted T cells exhibit decreased proliferative capacity,
decreased secretion of effector molecules (e.g., IFN-y, TNF-a, IL-
2), and high expression of multiple inhibitory receptors (PD-1,
CTLA-4, TIM-3, etc.) (20). In gastric cancer, T cell depletion is one
of the important mechanisms of tumor immune escape (21).

1.1.1 Immune checkpoint inhibitory pathways

The PD-1/PD-L1 pathway is one of the most well-studied
mechanisms of T-cell exhaustion (22). Programmed Cell Death
Protein 1 (PD-1), an inhibitory receptor on the surface of T-cells, is
usually highly expressed in response to chronic antigenic exposure
and inhibits T-cell activity by binding to its ligand, PD-L1, thereby
preventing its killing of tumor cells (23). Gastric cancer cells often
exploit this pathway to evade immune surveillance by
overexpressing PD-L1 (24). This inhibitory mechanism not only
plays a role in depleting T cells, but is also upregulated during acute
T cell activation to prevent T cell overreaction. In acute infection
models, inhibitory receptors including PD-1 and Cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) are up-regulated to
counteract the activating effects of T-cell receptor (TCR) and co-
stimulatory signals to maintain immune homeostasis (25).

During immune depletion, the presence of PD-1 was not
essential. However, its existence notably diminished the extent of
depletion and to some extent, prevented cells from becoming
overstimulated. This implies that even in the context of depleted
T cells, PD-1 may still be exerting a protective effect by inhibiting
cell activation (26). In addition to the PD-1/PD-L1 pathway, CTLA-
4 is an important immune checkpoint molecule that acts mainly
during the initial activation of T cells (27). CTLA-4 inhibits the
activity of T cells by preventing co-stimulatory signaling through
binding to B7 molecules on the surface of antigen-presenting cells
(28). In gastric cancer, tumor cells further enhance T-cell inhibition
by upregulating PD-L1 and B7 expression. CTLA-4 acts mainly
during initial T-cell activation, whereas PD-1 exerts a sustained
inhibitory effect under chronic antigen exposure (29).

1.1.2 Metabolic reprogramming

Metabolic changes in the tumor microenvironment
significantly affect T cell function (30). Gastric cancer cells and
immunosuppressive cells (e.g. myeloid-derived suppressor cells,
MDSCs) preferentially seize nutrients such as glucose and
glutamine through metabolic reprogramming, weakening the
metabolic activity of T cells and thus inhibiting their effector
function (31). Tumor cells are predominantly aerobic glycolysis,
which rapidly consumes glucose and generates large amounts of
lactic acid, acidifying the microenvironment, thus further inhibiting
T cell proliferation and effector function (32). In addition, lipid
accumulation and fatty acid oxidation caused by metabolic
reprogramming were enhanced, which promoted the impaired
mitochondrial function and accelerated depletion of T cells.
Notably, metabolic wastes such as lactate in the tumor
microenvironment not only inhibit T cells, but also promote
polarization of M2-type tumor-associated macrophages (TAMs)
by inducing the expression of HIF-1c, which in turn drives tumor
progression (33).

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1681539
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Luo et al.

1.1.3 Chronic antigenic stimulation

In gastric cancer, tumor cells continuously express tumor-
associated antigens, resulting in a long-term activation state of T
cells (34). However, sustained antigenic stimulation not only causes
T cells to gradually lose their effector function, but also further
deepens the depletion state of T cells by upregulating inhibitory
receptors such as PD-1, TIM-3, and LAG-3 (35). It has been pointed
out that chronic antigen exposure accompanied by metabolic
reprogramming promotes mitochondrial dysfunction, leading to
excessive accumulation of reactive oxygen species (ROS) and
exacerbating T cell depletion. Therefore, blocking these inhibitory
signals or modulating metabolic pathways is expected to restore T
cell activity and improve immunotherapy outcomes (36).

1.2 T-cell heterogeneity

In the microenvironment of gastric cancer, T cell heterogeneity is
mainly reflected in the functional differentiation of subpopulations
such as CD8+ effector T cells, memory T cells and regulatory T cells
(Treg cells).CD8+ effector T cells (CTLs) are responsible for the direct
killing of tumor cells, but they usually show depletion characteristics in
gastric cancer patients, which manifests itself in the form of the high
expression of inhibitory receptors, such as PD-1, LAG-3, etc.,, and in
this state the CTLs lose their effector function and gradually reduce the
secretion of perforin and granzyme, thus failing to effectively kill tumor
cells (36). Memory T cells, such as central memory (Tcm) and effector
memory (Tem) cells, can be rapidly activated upon re-encountering
tumor antigens, but their function is often limited by metabolic defects
and inhibitory factors (e.g., TGF-f, IL-10) in the gastric cancer
microenvironment, resulting in reduced cell proliferation capacity
and secretion of key effector molecules such as IFN-y. In addition,
the number of Treg cells was significantly elevated in gastric cancer
tissues, and they suppressed effector T cells by secreting inhibitory
factors such as TGF-B and IL-10, and competed with antigen-
presenting cells for nutrients, thus weakening anti-tumor immunity
(37). In conclusion, the heterogeneity among T cell subsets and their
different depletion mechanisms in the microenvironment further reveal
the complexity of immune escape in gastric cancer, providing multiple
targets and optimized strategies for immunotherapy (38).

2 Biomarkers and clinical prediction

As the immune microenvironment of gastric cancer has been
studied intensively, a variety of emerging biomarkers have shown
significant potential in predicting immunotherapy response and
assessing patient prognosis (39).

2.1 Emerging biomarkers of T cell
dysfunction

CD39/CD73 are key enzymes in adenosine metabolism and are
usually highly expressed in depleted T cells. Through the adenosine

Frontiers in Immunology

10.3389/fimmu.2025.1681539

signaling pathway, CD39 and CD73 contribute to the accumulation
of immunosuppressive adenosine in the tumor microenvironment,
thereby suppressing the function of effector T cells (40). In gastric
cancer patients, high levels of CD39/CD73 expression are closely
associated with reduced T cell activity, allowing tumor cells to evade
recognition by the immune system. Therapies that block the
adenosine pathway, such as A2aR inhibitors, have been shown to
restore T-cell function and enhance anti-tumor responses, and are
one of the important current research directions in gastric cancer
immunotherapy (41).

TIGIT, a newly discovered inhibitory receptor, significantly
inhibits the glycolytic activity of CD8+ T cells by binding to its
ligand CD155, which in turn reduces the secretion of anti-tumor
factors such as IFN-y (42). Preclinical studies have shown that
blocking the TIGIT/CD155 pathway not only restores the metabolic
activity of T cells, but also significantly enhances anti-tumor
immune responses and improves patient survival. Therefore, the
TIGIT/CD155 axis is considered a potential target in gastric
cancer immunotherapy with important clinical translational
prospects (43).

2.2 Biomarkers for predicting response to
therapy

Along with the widespread use of immunotherapy in gastric
cancer treatment, biomarkers that predict response to therapy are
particularly important to help optimize treatment strategies and
improve efficacy.

Tumor Mutational Burden (TMB) is considered an important
marker of response to immunotherapy (44). A higher TMB usually
means more tumor neoantigen generation, enhancing the chances
of recognition and attack by the immune system (45). In gastric
cancer patients, it has been found that those with higher TMB
typically show more significant efficacy to PD-1/PD-L1 inhibitor
therapies, as these neoantigens stimulate a stronger immune
response (46).

Microsatellite instability (MSI) is another widely studied
biomarker in immunotherapy (47). Due to defective DNA
mismatch repair, MSI-H (high microsatellite instability) tumors
typically have higher mutational loads and neoantigen generation
rates, and thus show good response to immune checkpoint
inhibitors in gastric cancer.MSI assays have become a commonly
used method in the clinic to screen patients for suitability for
immunotherapy (48).

In addition, factors such as the number of tumor-infiltrating
lymphocytes (TILs) and specific metabolic markers (e.g., CXCL9,
IDO, and LDH) have shown significant value in predicting the
efficacy of immunotherapy (49). A high density of CD8+ TILs is
usually associated with a better clinical prognosis, and high
expression of markers such as CXCL9 and IDO predicts a
stronger anti-tumor immune response (50). Personalized
therapeutic regimens based on these markers can significantly
improve the outcome of gastric cancer patients and promote the
development of personalized immunotherapy.
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3 Treatment opportunities and
prospects

Immune checkpoint inhibitors (ICIs) and T-cell augmentation
therapies have shown unprecedented promise in the treatment of
gastric cancer (51). Through immune system modulation, the
survival and treatment outcome of gastric cancer patients have
been significantly improved (52).

3.1 Immune checkpoint inhibitors

In immunotherapy for gastric cancer, PD-1/PD-L1 inhibitors
and CTLA-4 inhibitors have been widely used as the two main
classes of ICIs (53). Pembrolizumab and Nivolumab are the most
common PD-1 inhibitors, which restore the anti-tumor activity of
T-cells by blocking the binding of the PD-1 receptor to the PD-L1
ligand (54). For example, the CheckMate 649 trial showed that the
combination of Nivolumab and chemotherapy significantly
prolonged the overall survival (OS) of gastric cancer patients
compared to chemotherapy alone, with a particularly significant
survival benefit in patients with high PD-L1 expression (55). In
contrast, CTLA-4 inhibitors, such as Ipilimumab, boosted T-cell
activity by competitively inhibiting the binding of CTLA-4 to B7
molecules (56, 57). However, due to the low response of gastric
cancer to CTLA-4 inhibitors, clinical studies have mostly focused
on their use in combination with other therapies to optimize
treatment outcomes (58, 59).

In recent years, combination strategies of ICIs with other
therapeutic agents have been explored and have shown initial
success. For patients with locally advanced gastric cancer, a
combination neoadjuvant therapy trial including Karelizumab,
Apatinib and chemotherapy showed that patients achieved a
complete pathological response rate of 15.8% after surgery, while
demonstrating remarkable safety and tolerability. This combination
therapy strategy not only acts directly on tumor cells, but also
enhances the efficacy of ICIs by inhibiting tumor angiogenesis and
elevating the degree of immune cell infiltration in the tumor
microenvironment (60).

3.2 T-cell enhancement therapy

In addition to ICIs, T-cell augmentation therapies such as
chimeric antigen receptor T-cell (CAR-T) therapy and T-cell
receptor (TCR-T) therapy have shown great potential in gastric
cancer immunotherapy (61).

3.2.1 CAR-T cell therapy

CAR-T therapy targets and kills tumor cells by genetically
engineering patient T cells to express receptors for specific tumor
antigens (62). For gastric cancer, CLDN18.2-specific CAR-T cells
have demonstrated potential efficacy in a phase I clinical trial, with
disease control in approximately 48.6% of patients (63). The
therapy showed a high overall response rate, especially for gastric
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cancer patients expressing CLDN18.2, with a 6-month survival rate
of 81.2% (63). In addition, ICAM-1-targeted CAR-T cells showed
significant anti-tumor activity in gastric cancer models (64). The
study showed that by combining with chemotherapy or IL-12, the
therapy exhibited significant anti-tumor effects in abdominal
metastatic gastric cancer.

3.2.2 TCR-T cell therapy

Unlike CAR-T therapies, TCR-T therapies target more diverse
antigens (e.g., tumor-specific mutant antigens) by enhancing the
recognition of tumor antigens by T cells (65). In gastric cancer
treatment, TCR-T therapy research has focused on targeting antigens
such as NY-ESO-1 and MAGE-A4 (66). Although TCR-T therapies
have shown some anti-tumor activity in early trials, challenges
remain in how to effectively respond to immunosuppression in the
tumor microenvironment, especially in the management of off-target
effects (67).

4 Combination therapy strategies

Combination therapy is becoming increasingly important in the
treatment of gastric cancer, as monotherapies struggle to overcome
the complexity of the tumor microenvironment and multiple drug
resistance (68). By combining different therapies, studies have shown
that the efficacy of ICIs can be significantly enhanced when combined
with chemotherapy, radiotherapy or targeted therapy (69).
Chemotherapy and radiotherapy not only kill tumor cells directly,
but also enhance the immune system’s ability to recognize and attack
tumors by inducing “immunogenic cell death” and releasing tumor
antigens (70). These treatments can also alter the tumor
microenvironment, reducing the number of immunosuppressive
cells such as Treg cells while increasing the infiltration of effector T
cells to further enhance the efficacy of ICIs (71). In gastric cancer
clinical trials, PD-1 inhibitors combined with chemotherapy or
radiotherapy showed significant synergistic effects, significantly
prolonging patients’ overall survival (OS) and progression-free
survival (PFS) (72). In addition, targeted therapies such as HER2
and VEGFR inhibitors reduce tumor resistance by blocking tumor-
specific signaling pathways; studies have shown that the combination
of HER2 inhibitors with PD-1/PD-L1 inhibitors significantly
activates anti-tumor immune responses and improves prognosis
(73). Looking forward, combination therapy will be more based on
individual tumor characteristics and microenvironmental status,
combined with TMB, MSI and other markers to design
personalized programs. In addition, the combination of new
immunotherapies such as bispecific antibodies and tumor vaccines
with ICIs is also being explored, which is expected to bring more
therapeutic options for gastric cancer patients (74) (Figure 1).

5 Discussion

T cell dysfunction in the immune response to gastric cancer
reveals a complex mechanism by which tumors evade immune
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Pathogenesis of T cell dysfunction in the immune microenvironment of gastric cancer and its corresponding therapeutic strategies. The
pathogenesis of T cell dysfunction in the immune microenvironment of gastric cancer is the evasion of immune surveillance by gastric cancer cells
through metabolic reprogramming of lactate accumulation and HIF-1a activation, recruitment of immunosuppressive cells MDSCs and Tregs, and
upregulation of immune checkpoint molecules PD-L1 and TIM-3. Therapeutic strategies for T-cell dysfunction in the immune microenvironment of
gastric cancer are immune checkpoint inhibitors PD-1/PD-L1 and CTLA-4 inhibitors restoring T-cell antitumor activity by blocking inhibitory signals,
emphasizing the potential of the combined therapeutic strategy of immune checkpoint inhibitors in conjunction with chemotherapy or radiotherapy

in improving therapeutic efficacy.

surveillance (75). In this paper, we systematically review the
multiple effects of the gastric cancer microenvironment on T-cell
function, focusing on T-cell exhaustion and its resulting
immunosuppression. The critical roles of inhibitory pathways
such as PD-1 and CTLA-4 in T-cell exhaustion have been
intensively investigated, while metabolic reprogramming and
chronic antigenic stimulation further exacerbate the loss of T-cell
effector function (76). A variety of emerging biomarkers, such as
CD39, CD73, and TIGIT, have demonstrated important
applications in predicting the response of gastric cancer patients
to immunotherapy, providing a basis for individualized
stratification and optimization of therapeutic strategies (77).

Although the use of immune checkpoint inhibitors in the
treatment of gastric cancer has achieved some success,
monotherapy still faces challenges in dealing with the complex
tumor microenvironment (78). Combination strategies combining
chemotherapy, radiotherapy and targeted therapies have
demonstrated significant synergistic effects in the clinic, and
future studies should focus on the optimization of these
combination regimens and their efficacy differences in different
patient populations (79). In addition, although T-cell enhancement
therapies such as CAR-T and TCR-T have been successful in
hematological tumors, their application in gastric cancer faces
challenges such as the lack of tumor-specific antigens and
microenvironmental inhibition (80). Personalized, multi-target
combination therapy strategies for gastric cancer patients should
be the future research direction (81).

In the future, immunotherapy for gastric cancer will further
develop towards diversification and precision (82). Through the
discovery of novel biomarkers and optimized combinations of
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treatment strategies, breakthroughs in overcoming drug resistance
and improving efficacy are expected. Multidisciplinary
collaboration will be key to advancing these studies, ultimately
providing patients with a wider range of therapeutic options and
longer-term survival benefits. These findings will not only
dramatically improve gastric cancer treatment options, but also
provide a valuable reference for immunotherapy of other
solid tumors.
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