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Introduction: Aortic dissection (AD) is a lethal disease with increasing incidence
and limited preventive options, characterized by aortic media degeneration and
inflammatory cell infiltration. Dysregulation of lipid metabolism is increasingly
recognized as a pathological characteristic of AD; however, the exact molecular
regulators and critical genetic determinants involved remain unclear.

Methods: This study employed an integrative approach combining single-cell
RNA sequencing and machine learning to identify novel lipid metabolism-related
biomarkers in aortic dissection. Single-cell RNA sequencing data from aortic
dissection and control samples were processed to analyze lipid metabolism
activity and identify differentially expressed genes. Machine learning algorithms
and protein-protein interaction networks were then used to prioritize
biomarkers, which were further validated through bulk RNA-seq analysis and
immune infiltration studies and experiments using an Ang Il-induced aortic
dissection mouse model.. Functional characterization included cell-cell
communication analysis and pseudo-time trajectory reconstruction to
elucidate the roles of candidate genes in aortic dissection pathogenesis.
Results: This multi-modal strategy identified PLIN2 and PLIN3 as key regulators
of lipid metabolism in aortic dissection. Analysis revealed significant up-
regulation of lipid metabolism in aortic dissection, with PLIN2 and PLIN3
emerging as central regulators. Single-cell profiling showed these genes were
highly expressed in monocytic cells, correlating with enhanced inflammatory
signaling (e.g., SPP1, GALECTIN). Machine learning and bulk RNA-seq validation
confirmed their diagnostic potential. Pseudo-time analysis linked PLIN2 to early
monocyte differentiation, while cell-cell communication studies implicated it in
pro-inflammatory crosstalk with smooth muscle cells. The upregulation of PLIN2
and its specific expression in macrophages were further confirmed in an Ang Il-
induced aortic dissection mouse model. Molecular docking screened for
potential therapeutic compounds that may target PLIN2, among which
ketoconazole was identified.
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Discussion: These findings suggest that PLIN2/PLIN3 could be key mediators of
metabolic dysregulation and immune activation in aortic dissection, highlighting
their potential as diagnostic markers and therapeutic targets.

macrophage, lipid metabolism, aortic dissection, PLIN2, single-cellRNA sequencing

1 Introduction

Aortic dissection (AD), an aggressive cardiovascular disease
with an exceedingly mortality rate (1). According to the Stanford
classification, AD can be classified as Stanford type A (TAAD) or
type B(TABD) (2). Aortic dissection arises from multiple
pathological processes, including aberrant phenotypic switching
and apoptosis of vascular smooth muscle cells, impaired
extracellular matrix homeostasis, endothelial dysfunction, and
inflammatory immune cell infiltration (3). TAAD constitutes
approximately 67% of all AD cases, with mortality rates
escalating rapidly at a rate of 2.6% per hour during the first 24
hours. Although significant advancements in the management of
TAAD over the past decade, overall survival remains suboptimal,
with postoperative mortality rates persisting at 10-35%,
emphasizing the urgent need for early non-invasive intervention
and preventive strategies (4, 5). Given these challenges, a deeper
understanding of the molecular mechanisms driving AD is
urgently needed to discover new therapeutic strategies and
robust prognostic markers.

Lipids serve crucial functions in energy homeostasis, biological
membrane architecture, and cellular signaling pathways. However,
dysregulation of lipid metabolism contributes significantly to the
pathogenesis of multiple disorders, including metabolic syndrome,
type 2 diabetes mellitus, and cardiovascular diseases (6, 7).
Similarly, in aortic dissection, clinical studies have identified
significant dyslipidemia in AD patients, characterized by elevated
serum total cholesterol and low-density lipoprotein (LDL) levels.
Notably, oxidized LDL (OxLDL) upregulates TLR4 expression and
activates the NF-xB pathway, thereby promoting inflammatory cell
recruitment. These infiltrating immune cells exacerbate vascular
wall injury through increased production of reactive oxygen species
(ROS) and proteolytic enzymes (8, 9).

Although emerging evidence underscores the critical
involvement of lipid metabolites in AD pathogenesis, the
identification and functional validation of key regulatory genes
remain a substantial challenge. Single-cell RNA sequencing
(scRNA-seq) represents a powerful emerging technology that
facilitates genomic profiling, cellular heterogeneity assessment,
differential gene expression analysis, and cell-type identification at
single-cell resolution (10, 11). When integrated with machine
learning algorithms and complementary bioinformatics
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approaches, this methodology holds significant potential for
discovering novel diagnostic biomarkers (12, 13).

This study represents the first demonstration of lipid metabolic
heterogeneity at single-cell resolution in AD, revealing significant
intercellular variations across distinct cell populations. Our study
integrates single-cell and bulk transcriptomic data to systematically
identify biomarkers associated with dysregulated lipid metabolism
in AD pathogenesis. Moreover, using machine learning approaches,
we refined these candidate genes and identified optimal
feature genes linked to dysregulated lipid metabolism in AD.
These findings suggest novel therapeutic targets and provide
important mechanistic insights for future AD research and
intervention strategies.

2 Materials and methods
2.1 Data acquisition and processing

We obtained the scRNA-seq data for AD from the GSE189795
(14), GSE254132 (15) and GSE222318 (16) from GEO database
(http://www.ncbi.nlm.nih.gov/geo/). After merging all the datasets,
we required 15 AD and 14 normal control samples.
Furthermore,746 lipid metabolism-related genes were obtained
from GSEA database (https://www.gsea-msigdb.org/gsea/
index.jsp). To ensure high-quality single-cell data, we performed
stringent quality control by filtering cells based on the following
criteria: genes detected per cell (nFeature_ RNA) between 200 and
5,000, total UMI counts (nCount_RNA) between 200 and 30,000,
mitochondrial gene content (pMT) below 20%, and hemoglobin
gene content (pHB) below 5%. After applying these thresholds, we
retained 211235 high-qualified cells for subsequent analysis. To
identify the most variable genes, the top 2000 were selected using
the “FindVariableFeatures” function after applying linear
regression-based “Log-normalization” (scale.factor = 10000) to
scale and normalize the remaining cells. Following this, Principal
Component Analysis (PCA) was employed to reduce the
dimensionality of the single-cell RNA sequencing data. Then, we
utilized the Harmony, a R package which is an algorithm for robust,
scalable, and flexible multi-dataset integration (17), aiming to
harmonize the data and remove batch-induced differences
(group.by.vars = “orig.ident”).With pc.num=1:15 and a clustering
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resolution of 1, the “FindClusters” function partitioned cells into
distinct groups based on reduced-dimensionality space. Besides,
potential doublets were identified using the R package
DoubletFinder (18), with parameters set at PCs = 1:15 and an
expected doublet formation rate of 7%.The algorithm detected a
subset of cells as doublets. Cell annotation was performed using
well-established marker genes to classify distinct cell clusters into
specific cell types. Besides, we chose the bulk RNAseq data
GSE153434 (19) as the bulk RNA-seq data containing 10 AD
samples and 10 normal control of human aortic tissue and
GSE52093 (20) as the examining data containing 7 AD samples
and 5 normal control. The details of all the data used in this research
are provided in Supplementary File 1.

2.2 Single-cell level screening of potential
lipid metabolism-related genes

In this study, we employed AUCell (21) to calculate pathway
activity scores, evaluating lipid metabolic pathway engagement
across all cells. To further validate the accuracy of the AUCell
results, we also applied the AddModuleScore algorithm
(22).Based on these scores, cells were stratified into high- and
low-activity groups, followed by differential gene expression
analysis with a criteria set at log2 fold change > 0 and adjusted
pvalue<0.05 to identify up-regulated markers. Statistical
comparisons were performed using the Wilcoxon rank-sum
test. Significance levels were defined as follows: p < 0.05 (*), p<
0.01 (**), and p < 0.001 (***).Concurrently, Spearman correlation
analysis was performed to select the top 128 genes most strongly
associated with lipid metabolism. The intersection of these gene
sets was then derived to pinpoint the most potential lipid
metabolism-related genes.

2.3 Functional enrichment analysis

Functional enrichment analysis(pvalueCutoff = 0.05 and
qvalueCutoff =0.05) was performed using Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) to
characterize the biological pathways and protein functions
associated with these genes. Metascape is an online platform for
enrichment analysis that integrates functional enrichment,
interactome analysis, and gene annotation, thereby enabling a
comprehensive interpretation of gene functions (23).

2.4 Screening for optimal biomarkers

To systematically identify lipid metabolism related biomarkers,
we implemented a multi-platform validation strategy. First, three
machine learning approaches - LASSO regression (24), Random
Forest(RF) (25) (2000 trees with Gini importance scoring), Boruta
algorithm (26) and Support Vector Machine(SVM) -were employed
for robust feature selection.
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Specifically, prior to LASSO regression analysis, the
randomcoloR package in R was utilized to generate 40 distinct
colors, with the random seed set at set.seed (1). The LASSO model
was then executed with set.seed (11) and an alpha value of 1. For the
Random Forest model, the random seed was fixed at set.seed (3).
The Boruta algorithm was implemented with set.seed (1), along
with parameters doTrace = 2 and maxRuns = 500. The SVM model
was configured using 5-fold cross-validation (nfold = 5). Detailed
parameter settings for SVM are provided in the Supplementary
File 2.

Concurrently, potential candidates were subjected to protein-
protein interaction(PPI) analysis through STRING database
(https://cn.string-db.org/) followed by Cytoscape (27)
visualization and MCODE (28) clustering. The intersection of
genes identified by all five independent methods (LASSO,
Random Forest, Boruta, SVM and PPI cluster cores) was
subsequently derived, yielding a high-confidence set of
biomarkers. This consensus approach minimizes methodological
bias while enhancing biological relevance through multi-algorithm
cross-validation and systematic parameter configuration. Finally,
the expression patterns of these biomarkers were visualized using
violin plots, while their diagnostic potential was rigorously
evaluated through receiver operating characteristic (ROC) curve
analysis, including calculation of the area under the curve (AUC) in
both training and examining data.

2.5 Immune infiltration

We investigated the relationship between the biomarkers and
the immune cells by first profiling immune infiltration patterns
using marker genes curated from the Gene Set Enrichment Analysis
database(GSEA database, https://www.gsea-msigdb.org/).
Spearman correlation analysis revealed significant associations
between each biomarkers and specific immune cell subtypes (29).
Subsequently, single-gene GSEA was performed on the GSE153434
dataset by: 1. ranking all genes based on their correlation
coefficients with each biomarkers, and 2. analyzing these ranked
lists using a R package, ClusterProfiler, with the
‘c5.g0.v2023.2.Hs.symbols.gmt’ gene set from the Molecular
Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp). Finally, we visualized the results through bubble
plots summarizing significantly enriched pathways, providing a
comprehensive understanding of the function of two up-
regulated biomarkers.

2.6 Cell communication

Based on median expression levels of PLIN2, monocytic cells
were stratified into high- and low-expression groups. To further
understand the cell communication difference between the high-
expression group and low-expression group, we performed cell-cell
communication analysis. This analysis was conducted using the
CellChat R package, which infers intercellular communication by
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integrating known ligand-receptor interactions and gene expression
profiles, enabling the identification of signaling pathways and
communication patterns between different cell types (30). By
comparing the communication networks between high- and low-
expression groups, we identified significant difterences in cell-cell
interactions, providing insights into the underlying signaling
pathways involved in disease progression.

2.7 CytoTRACE and pseudo-time analysis

To assess the differentiation potential of monocytic cell
populations, we utilized CytoTRACE for quantitative evaluation of
developmental progression across distinct monocytic subsets. For
trajectory reconstruction, cells were systematically classified into two
distinct states based on their gene expression profiles using Monocle
pseudo-temporal ordering analysis. To delineate temporally regulated
genes during monocytic differentiation, we conducted comprehensive
differential expression analysis along the pseudotime continuum
(differentialGeneTest). We used the “plot_genes_in_pseudotime” to
show the dynamic expression patterns of the targeted genes. Lastly,
we performed differential gene expression analysis (min.pct = 0.01,
logfc.threshold = 0.01,test.use=“wilcox”) and GSEA(pvalueCutoff =
0.05) between PLIN2 labeled monocytic cells.

2.8 Molecular docking

We utilized the online databases Drug-Gene Interaction
Database (31) (DGIdb, https://dgidb.org/) and Drug Signatures
Database (32) (DSigDB, https://dsigdb.tanlab.org/) to predict
potential drug targets for the biomarker. Four candidate drugs
were selected for molecular docking. First, the molecular structures
of the drugs were downloaded from PubChem (https://
pubchem.ncbi.nlm.nih.gov/), and their most stable conformations
were generated using Chem3D. Subsequently, the predicted protein
structure of the target was obtained from the AlphaFold Protein
Structure Database (33) (https://alphafold.com). Molecular docking
was then performed using AutoDock Vina (34).The specific
parameters for the docking simulation, including the center
coordinates (X, Y, Z) and dimensions of the docking box, are
provided in Supplementary File 3, followed by visualization of the
interactions using the Protein-Ligand Interaction Profiler (35)
(PLIP, https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index)
and PyMOL.

2.9 Animal model
Aortic dissection (AD) was induced in ApoE&#x207B;/
&#x207B; mice using a well-established model of Angiotensin II

(Ang II) infusion (36, 37). Ten mice were randomly allocated into
an experimental group (n=10) and a control group (n=10). Mice in
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the experimental group received a continuous subcutaneous
infusion of Ang II (1000 ng/kg/min) via osmotic minipumps for
4 weeks, a protocol demonstrated to reliably induce aortic
pathologies including dissection and aneurysm in hyperlipidemic
mice (36). The control group received saline. Following the infusion
period, 10 mice in the Ang II group developed aortic dissection,
confirmed by gross examination, whereas no dissections were
observed in the control group. Our results are consistent with the
established efficacy of this model in promoting AD in
ApoE&#x207B;/&#x207B; mice.

This study was approved by the Ethics Committee of Beijing
Anzhen Hospital, Capital Medical University (Approval No.
AZ2025LA015). All experimental procedures were conducted in
strict accordance with the ethical principles for the care and use of
laboratory animals.

2.10 Western blotting

Proteins were extracted from aortic tissues and quantified using a
BCA protein assay kit (Beyotime Biotechnology, Cat# P0010). The
samples were then mixed with loading buffer, denatured by heating at
95 °C for 5 minutes, and separated by 10% SDS-PAGE. Subsequently,
the separated proteins were transferred onto a PVDF membrane.
After blocking with 5% BSA, the membrane was incubated overnight
at 4 °C with the following primary antibodies: anti-Plin2 (1:1,000,
Proteintech, Cat# 15294-1-AP, rabbit polyclonal) and anti-GAPDH
(1:50,000, Proteintech, Cat# 60004-1-Ig, mouse monoclonal).
Following primary antibody incubation, the membrane was
incubated with a mixture of fluorescent dye-conjugated secondary
antibodies: IRDye 800CW goat anti-rabbit IgG (1:20,000, Bioss, Cat#
bs-40295G-IRDye800CW) and IRDye 800CW goat anti-mouse IgG
(1:20,000, Bioss, Cat# bs-40296G-IRDye800CW). Protein bands were
finally visualized and quantified using an Odyssey infrared
imaging system.

2.11 gqRT-PCR

Total RNA was extracted from aortic tissue and reverse-
transcribed into ¢cDNA using the Evo M-MLV RT Premix Kit
(Accurate Biology, Cat# AG11728). Subsequently, quantitative
PCR (qPCR) was performed with the SYBR Green Pro Taq HS
Premixed qPCR Kit (Accurate Biology, Cat# AG11701). The primer
sequences used were as follows:

Plin2 (forward: 5'-TCCTTTCTGTTTGCACGTCCT-3’,
reverse: 5'-CTCTCATCACCACGCTCTGT-3’) and the reference
gene Gapdh (forward: 5-ACCCTTAAGAGGGATGCTGC-3/,
reverse: 5'-CCCAATACGGCCAAATCCGT-3').

The qPCR cycling protocol consisted of an initial denaturation
at 95 °C for 30 s, followed by 40 cycles of 95 °C for 5 s and 60 °C for
30 s. All reactions were carried out on an Applied Biosystems 7500
Real-Time PCR System.
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2.12 Immunofluorescence

Mouse arterial tissue slices were obtained from samples
embedded in paraffin. For immunofluorescence staining
according to the manufacturer’s instructions, the samples were
incubated overnight at 4 °C, and stained with PLIN2 polyclonal
antibody (1:1000; GB113109; Wuhan Servicebio Technology Co.,
Ltd., Wuhan, China) and a CD68 polyclonal secondary antibody
(1::1000; GB115593; Wuhan Servicebio Technology Co., Ltd.,
Wuhan, China). Slides were counterstained with DAPI. Finally,
images were acquired using a fluorescence microscope
(Rueil-Malmaison).

3 Results
3.1 The scRNA-seq profiling of AD

Quality control played a critical role in ensuring data
reliability for downstream analysis. After rigorous assessment
(Figure 1A), 29 high-quality samples (15 from the AD group
and 14 from the normal control group) were selected for further
investigation. The samples were sourced from three distinct
datasets as follows: Controll-3 and ATADI1-3 were obtained
from GSE254132; AD.2-6 and NA.1-4 were derived from
GSE189795; and the remaining samples originated from
GSE222318. To minimize technical variability, we performed
batch effect correction using Harmony. This effectively
harmonized the data distribution and eliminated batch-related
differences, as assessed by the clear reduction in batch effect shown
in Supplementary Figure 2A. The cells are well-integrated across
batches, with no discernible batch-specific clustering, indicating
the successful removal of technical variation (Figure 1B).
Subsequent clustering analysis categorized all cells into 30
distinct clusters (Figure 1C).

Potential doublets were identified using the R package
DoubletFinder. We first determined the optimal pK value, which
yielded the highest cross-validation mean area under the curve
(AUC), indicating the best model performance (Supplementary
Figure 1A). The algorithm subsequently computed a doublet
score for each cell and flagged a subset as putative doublets. As
expected, these algorithm-identified doublets generally exhibited
higher gene counts than singlet cells (Supplementary Figure 1B).
However, visualization in the UMAP embedding revealed a
heterogeneous distribution pattern: while some putative doublets
formed isolated clusters, a substantial proportion were intermingled
with transcriptically defined singlet populations (Supplementary
Figure 1C). Given that actively metabolizing cells—a key focus of
our study—can share high gene detection rates with technical
doublets and thus be prone to misclassification, we adopted a
conservative strategy. To avoid the inadvertent loss of these
biologically relevant cells, all putative doublets were retained in
downstream analyses.
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Using established cell markers, we identified 10 major cell types,
including B cells, endothelial cells, fibroblasts, and mast cells,
among others (Figure 1D). The specificity of these cell
populations was further confirmed by examining the expression
patterns of key markers (Figures 1E, F). To rule out the possibility
that batch integration introduced spurious findings, we
independently processed and analyzed the three single-cell
datasets. The key results were consistently reproduced in each
individual data (Supplementary Figures 3A-C), confirming the
robustness of our findings.

Comparative analysis revealed notable differences in cell type
distribution between the two groups (Supplementary Figure 4A).
Specifically, monocytic cells and smooth muscle cells were more
abundant in the AD group, whereas plasma cells and fibroblasts
showed reduced proportions (Supplementary Figure 4B). A detailed
breakdown of cell type distribution across individual samples is
provided (Supplementary Figure 4C).

3.2 Lipid metabolism in scRNA-seq data
and enrichment analysis

Emerging evidence indicates that dysregulated lipid metabolism
plays a critical role in the development of aortic dissection (9). In
our study, we utilized the AUCell and AddModuleScore to evaluate
lipid metabolism in scRNA-seq level(Figure 2A). The overall level of
lipid metabolism was up-regulated compared to normal control. It
is clear that there is great difference of the lipid metabolism level in
different cell types. Among them, the UAMP plot clearly showed
that these lipid metabolism-related genes were predominantly
expressed in monocytic cells and fibroblasts(Figure 2B). To be
specific, a comparative analysis of the normal group and AD
group indicated that lipid metabolism-related genes were more
active in monocytic cells and smooth muscle cells mainly while
relatively suppressed in fibroblasts, T cells and NK cells,
ect.(Figure 2C). Subsequently, by using the average expression
score, all cells were classified into score_up group(above the
mean) and score_down group(below the mean). The score_up
group contains monocytic cells and fibroblasts predominantly
(Figure 2D). Then we required 678 up-regulated differentially
genes among the two groups(Figure 2E). To identify the genes
most closely related with lipid metabolism, we used a spearman
correlation analysis and identified 128 the most related to lipid
metabolism (Figure 2F). To validate the robustness of our findings
against potential integration artifacts, we repeated the lipid
metabolism analysis on each dataset separately. The key results
were consistently recapitulated: a significant dysfunction of lipid
metabolic activity was confirmed in all three cohorts, with
macrophages and fibroblasts consistently showing the highest
enrichment scores (Supplementary Figures 5A-C).The AUCell
score of all cells in AD group, the full lists of these 678 up-
regulated genes and Top128 genes are provided in Supplementary
File 4-6 respectively.
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FIGURE 1

Screening of single-cell data. (A) Quality control of scRNA-seq data. (B) The UMAP results showed that the cell distribution was consistent across all
samples, with minimal batch effects. (C) UMAP clustering divided all cells into 30 well-defined clusters. (D, E) The dataset was annotated into 10 cell
populations based on established marker gene expression. (F) The expression pattern of the marker genes.

3.3 Multiple enrichment analysis

The intersection of these genes and up-regulated differentially
expressed genes yielded 26 up-regulated genes highly associated
with lipid metabolism (Figure 3A). The full process of the Venn
diagram are offered in Supplementary File 7. To infer the biological
functions of the 26 identified genes, we performed enrichment
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analysis using Metascape. The results revealed their most significant
associations with lipid-related processes, including lipid
metabolism, lysosomal function, the PPARA signaling pathway,
and lipid storage, indicating a strong link between our gene set and
lipid metabolic pathways (Figure 3B). Subsequent KEGG and GO
enrichment analyses of these 26 genes identified distinct functional
patterns. Gene Ontology analysis revealed three key functional
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clusters: molecular functions were predominantly associated with
amide binding; biological processes showed enrichment in cellular
localization maintenance, fatty acid metabolism, and lipid storage
regulation; while cellular components were primarily localized to
vacuolar and lysosomal luminal spaces (Figure 3C). KEGG pathway
analysis demonstrated significant enrichment in lysosome-related
pathways and PPAR signaling (Figure 3D). These findings
collectively suggest the candidate genes’ potential roles in lipid
metabolic regulation and lysosome-mediated cellular processes.
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3.4 |dentification of the biomarkers in
bulk-RNA data

To identify the most promising biomarkers, we employed a multi-
step computational strategy. Four distinct machine learning
algorithms—LASSO regression, Random Forest, Boruta, and SVM
—were applied to the bulk RNA-seq data to select features most
predictive of the phenotypic groups (Figures 4A-F). The application of
LASSO, Random Forest, Boruta, and SVM yielded gene sets of 6, 6, 9,
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FIGURE 3

Multiple enrichment analysis. (A) The Venn diagram illustrates 26 genes overlapped by Top 128 lipid metabolism related genes and the up-regulated
genes in AD group.(B) The metascape enrichment analysis shows the biological function of the 26 genes by network graph and bar chart. (C, D)
GOBP,GOCC,GOMF and KEGG enrichment analysis of 26 up-regulated genes.

and 14 genes, respectively. The result of four machine learning
algorithms are offered in Supplementary File 8-11. Concurrently,
PPI network analysis followed by MCODE module detection
identified 11 key hub genes (Figure 4G). By intersecting the results
from all methods, we identified three key biomarkers:PLIN2,PLIN3
and PPARG (Figure 4H). Notably, PLIN2 and PLIN3 exhibited
significantly increased expression, whereas PPARG was markedly
down-regulated (Figure 4I). ROC curve analysis further confirmed
their strong diagnostic potential, with AUC values of 0.900 (PPARG),
0.970 (PLIN3), and 0.990 (PLIN2) (Figure 4]) in training data.

3.5 Single gene set enrichment analysis
and immune infiltration

GSEA of the GSE15434 dataset revealed distinct pathway
associations for the up-regulated biomarkers. PLIN2 activation
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o

»
Count

showed enrichment in ribonucleoprotein complex biogenesis and
ncRNA processing pathways, while its suppression was linked to
immunoglobulin complex-related processes (Figure 5A). Similarly,
PLIN3 activation correlated with ribosome biogenesis and
nucleosome binding, whereas suppression was associated with
muscle and heart development pathways (Figure 5B). The output
of single GSEA for PLIN2 and PLIN3 are offered in Supplementary
File 12, 13. Immune infiltration analysis demonstrated significant
correlations between these genes and immune cell populations:
PPARG positively correlated with NKT cells and effector memory T
cells but negatively with CD56dim NKT cells; PLIN2 associated
with dendritic cells, neutrophils, and NK cells; and PLIN3 showed
connections with central memory CD4+ T cells but negative
correlations with NK cells and neutrophils (Supplementary
Figure 6A). These findings suggest these genes may influence
aortic dissection pathogenesis through their roles in metabolic
pathways and immune cell regulation.
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3.6 Validation PLIN2 and PLIN3 in in bulk
and scRNA-seq data

In examining data, analysis revealed a significant upregulation
of PLIN2 and PLIN3 in the AD group compared to the normal
controls. Both genes achieved an AUC of 1.00, demonstrating their
exceptional diagnostic potential for the disease (Figures 6A, B).
Notably, these genes were primarily expressed in monocytic cells
and significant up-regulated in AD progression in scRNA-seq data
(Figures 6B-D). To further substantiate our findings, we validated
the expression patterns of PLIN2 and PLIN3 in each of the three
individual, non-integrated single-cell datasets. Reassuringly, the
overall distribution and upregulation trend of both genes were
consistently recapitulated across all separate cohorts, aligning
greatly with the observations from the merged dataset
(Supplementary Figures 7A-D).

3.7 Intercellular communication

Based on the median expression level of PLIN2 in monocytic
cells, these cells were stratified into PLIN2-high and PLIN2-low
subgroups. The analysis included 27,312 and 30,045 monocytic cells
in the PLIN2-high and PLIN2-low groups, respectively. Further
investigation revealed that PLIN2-high monocytic cells exhibited
significantly stronger cell-cell communication with other cell types,
particularly endothelial cells and fibroblasts (Figures 7A-C). Both
incoming and outgoing interaction intensities were markedly
higher in the PLIN2-high group compared to the PLIN2-low
group (Figure 7D). The PLIN2-high group exhibited more active
communication with both fibroblasts and endothelial cells than the
PLIN2-low group. For both fibroblast and endothelial cells, the
strongest interactions originated from the PLIN2-high group
(Figure 7E). Key signaling pathways involved in these interactions
included IL10, SPP1, ANGPTL, GALECTIN, and TNF signal. In the
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SPP1 signaling network, the PLIN2-high population was identified
as the primary source. In contrast, the PLIN2-low group, SMC, and
T cells were the main receivers. Furthermore, the PLIN2-high group
also served as the most prominent mediator and influencer,
underscoring its critical role in orchestrating SPP1-mediated
communication (Figures 7F, G). Similarly, for the GALECTIN
pathway, the PLIN2-high group was once again the most active.
It primarily sent signals to cells such as NK cells and T cells,
establishing itself as a key player in this network (Figures 7H, I).

3.8 CytoTRACE and trajectory analysis

CytoTRACE was employed to define the development order of
the monocytic cells, revealing that PLIN2-high monocytic cells
resided in the early stages of development with better
differentiation potential (Figures 8A, B). Besides, we found that as
pseudo-time progressed, monocytic cells differentiated from left to
right with 11 different cell states (Figure 8C). The differential
GeneTest identified the genes with the most significant expression
changes along the pseudo-time trajectory. Among these most
dynamically altered genes, SPP1 exhibited an expression pattern
similar to PLIN2 across pseudotime. The parallel expression
dynamics (initial downregulation-transient upregulation-
secondary decline) imply possible functional crosstalk between
SPP1 and PLIN2 (Figure 8D). We next performed pseudotime
analysis and evaluated its relationship with lipid metabolism
activity (as measured by AUCell scores) using ggplot2. The
results revealed substantial fluctuation in lipid metabolic activity
along the pseudotime trajectory. Notably, the PLIN2-high group
exhibited consistently elevated scores compared to the PLIN2-low
group throughout this process, underscoring the critical role of
PLIN2 in lipid metabolism (Figure 8E). Lastly, we performed
differential gene expression analysis and GSEA between PLIN2-
high and PLIN2-low groups. The PLIN2-high group showed
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significant enrichment in several pathways including IL-10
signaling, cellular responses to external stimuli, cellular responses
to stress, and autophagy. These pathways may be functionally
associated with PLIN2’s role in AD pathogenesis (Figure 8F). The
list of differential gene expression are provided in Supplementary
File 14.

3.9 Binding of PLIN2 to potential drugs

Using an online drug prediction platform, we identified
potential compounds targeting PLIN2, including RTI-122,
cycloheximide, ketoconazole, and apigenin. Molecular docking
analysis revealed favorable binding energies of -6.211, -6.303,
-7.012, and -5.234 kcal/mol, respectively, all of which were below
the -5 kcal/mol threshold, indicating stable binding interactions
(Figures 9A-D). Molecular docking revealed distinct interaction
patterns between PLIN2 and the four candidate drugs. RTI-122
primarily formed multiple hydrophobic interactions with residues
such as LEU-191 and TYR-261. In contrast, cycloheximide
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established two hydrogen bonds with ARG-264. Ketoconazole
engaged in a more diverse set of interactions, forming hydrogen
bonds with LYS-273, SER-269, and HIS-258, alongside a Pi-Pi
stacking interaction with PHE-262. Apigenin, however, primarily
formed a hydrogen bond with GIM-233.

3.10 Experimental validation of the
biomarker

To validate the expression of the biomarker in aortic dissection,
we performed quantitative PCR (qQPCR) and Western blot analysis.
The qPCR results revealed a significant increase in the relative mRNA
level of PLIN2 in aortic dissection tissues (Figure 10A). Furthermore,
Western blot analysis demonstrated that PLIN2 protein expression
was also markedly upregulated (Figures 10B, C). The full, uncropped
blot membrane has been included in Supplementary Figure 8.

To determine the cellular localization of PLIN2,
immunofluorescence staining was conducted. The results showed
co-localization of PLIN2 with CD68 (a macrophage marker) in
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Celluar communication pattern in AD group. (A—C) The chord diagrams,heatmap and scatter plot exhibit the number and strength of interaction
between PLIN2-high and PLIN2-low groups and other cell types. (D) The heatmaps show the outgoing and incoming interaction pattern among
different cell types. (E) The chord diagrams illustrate the interaction of PLIN2_high,Plin2_low,endothelial cells and fibroblats. (F=I) The hierarchy plot
and the heatmap respectively illustrate the hierarchical relationship of the SPP1 and GALECTIN pathways and the roles played by different cell types.

dissected aortic tissues, indicating that PLIN2 is expressed in
macrophages. In contrast, only basal expression of PLIN2 was
detected in normal mouse aortic tissues, where CD68-positive
cells were absent—suggesting a lack of macrophage infiltration—
and no apparent co-localization was observed (Figure 10D).

Frontiers in Immunology

4 Discussion

AD has long constituted a life-threatening ca

rdiovascular

emergency, posing substantial risks to both survival and

functional outcomes. Notwithstanding progressive
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low groups.

in diagnostic and therapeutic approaches, the enduring burden of
adverse outcomes underscores imperative needs for therapeutic
innovation (38). While dysregulated lipid metabolism has been
increasingly implicated in AD pathogenesis, the cell-type-specific
heterogeneity of lipid metabolic reprogramming and its
precise genetic regulators remain poorly characterized (9, 39).
By combining scRNA-seq with supervised machine
learning algorithms, we precisely mapped cell-type-specific
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lipid metabolism alterations in AD, revealing previously
unrecognized vascular cell subsets exhibiting pathological
metabolic profiles.

We identified PLIN2 and PLIN3 as previously unrecognized
biomarkers linking macrophage function to lipid metabolism
dysregulation in AD. Both genes show marked upregulation and
strong association with perturbed lipid metabolic networks
characteristic of AD progression. Through integrated analysis
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FIGURE 9

Molecular docking analysis of potential therapeutic compounds targeting PLIN2. (A—D) Molecular docking analyses of RTI-122, cycloheximide,

ketoconazole, and apigenin with PLIN2.

combining gene expression analyses, functional enrichment
analyses and machine learning-based feature selection, we
robustly identified and validated that these AD-associated genes
are both statistically robust and mechanistically linked to AD
pathology, offering new perspectives for understanding disease
mechanisms and developing targeted interventions.

Frontiers in Immunology

PLIN2 and PLIN3 are core lipid droplets (LDs)-associated
proteins that orchestrate LD biogenesis and maturation. These
proteins have been implicated in diverse pathological conditions
including metabolic disorders (e.g., obesity, on-alcoholic fatty liver
disease) and cellular processes such as autophagy, demonstrating
their pleiotropic roles in cellular homeostasis (40). PLIN2, also
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CD68

Merged

Experimental validation of the biomarker (A) gRT-PCR reveals the relative expression of PLIN2 mRNA. (B, C) Western blot analysis confirmed that
PLIN2 protein levels were significantly elevated in aortic dissection tissues. (D) Immunofluorescence analysis revealed the staining patterns of DAPI

(blue), PLINZ2 (red), and CD68 (green),
indicate cells with evident co-localization of PLIN2 and CD68.

referred to as differentiation-related protein (ADRP), is a member
of the PAT family of lipid droplet-coating proteins that play
fundamental roles in lipid storage and metabolism. Plin2
modulates the metabolic equilibrium between glucose and fatty
acid utilization through its role in lipid droplet stabilization, which
serves as a reservoir for excess fatty acids (41). Moreover, PLIN2 is
capable of reducing the production of LDs or triglycerides by
impeding the lipid droplet association of adipose triglyceride
lipase (42). However, PLIN2 deficiency enhances lipolysis and
accelerates fatty acid mobilization through upregulation of PPARy
signaling pathways, which concurrently modulate metabolism and
amplify anti-inflammatory gene activation (41, 43). Similarly, in
AD, we observed PLIN2 upregulation concomitant with PPARy
downregulation. This inverse correlation suggests PLIN2-mediated
suppression of PPARYy signaling may contribute to AD
pathogenesis, though further mechanistic studies are required to
validate this hypothesis. Our study demonstrates for the first time
that PLIN2 primarily regulates lipid metabolism in macrophages
during AD. Other studies have also shown PLIN2’s important
regulatory role in macrophage. For instance, in colorectal cancer
PLIN2 promotes macrophage polarization towards the M2
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along with the merged channels, in both the normal control and aortic dissection groups. Small arrows

phenotype and activates the CD36-dependent epithelial-
mesenchymal transition (EMT) pathway in colorectal cancer cells,
thereby enhancing tumor invasiveness (44). Otherwise, it is
indicated that Perilipin 2-expressing mononuclear phagocytes
exhibit significant retinal accumulation under diabetic conditions,
where they promote microvascular degeneration through PPARy
signaling activation (45). Therefore, PLIN2 could represent a
potential therapeutic target, as suppression of its activity may
attenuate AD-associated inflammation and improve
clinical outcomes.

PLIN3, also called TIP47, is widely expressed across various
tissues. It attaches to newly formed lipid droplets and can
dynamically associate with or dissociate from LDs while
remaining stable in the cytosol (46, 47). In macrophage, it is
proposed that TIP47 may act as a carrier protein for free fatty
acids and in this way participates in conversion of Uptake of
lipids by macrophages (MPhi) into foam cells (48). The
mechanisms of TIP47 in various diseases remain unclear.
Although TIP47 expression is elevated in macrophages during
aortic dissection, its specific pathological mechanisms require
further investigation.
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An additional intriguing observation is that PLIN2 and PLIN3
both are related to autophagy which is a pathway that intersects
with lipid homeostasis (49). Consistently, our GSEA analysis of up-
regulated DEGs between PLIN2-high and PLIN2-low groups
confirms these mechanistic insights (Figure 6). Autophagy is a
lysosome-dependent catabolic process that degrades proteins,
lipids, and organelles to maintain cellular homeostasis (50).
Enrichment analysis of the 26 machine learning-selected genes
revealed multiple lysosome-related pathways, further supporting
this conclusion. With respect to the underlying mechanisms,
Susmita Kaushik reported that the CMA-dependent degradation
of PLIN2 and PLIN3 serves as a prerequisite for Adipose
triglyceride lipase (ATGL) to bind lipid droplets and initiate
lipolysis (49). In other organs, PLIN2 also modulates the
catabolism of cytosolic lipid droplets (LDs) to maintain cellular
lipid homeostasis (51, 52). However, the mechanistic involvement
of autophagy in macrophages within aortic dissection has not yet
been elucidated. Modulation of macrophage autophagy in aortic
dissection may represent a potential therapeutic strategy, though
further experimental validation is required.

4.1 Limitation

Although this study offers novel insights, several limitations should
be acknowledged. First, our study relied on the integration of three
independent single-cell RNA-seq datasets to achieve a sufficient cell
number for robust analysis. We acknowledge that this integrative
approach, despite rigorous correction using advanced batch-effect
removal algorithms (e.g., Harmony), may inherently introduce
residual technical variation that could confound the biological
signals. This represents a common trade-off in computational
biology between sample size and data homogeneity. Future studies
with larger, prospectively collected cohorts will be invaluable to
corroborate our findings in a more uniform analytical framework.
Next, while we established a correlation between lipid metabolic
activity and PLIN2/PLIN3 expression, the exact molecular
mechanisms by which these genes modulate lipid metabolism and
contribute to AD pathogenesis require further elucidation. Moreover,
our study focuses predominantly on transcriptomic alterations within
the AD landscape, which does not explore post-transcriptional
modifications and protein-level changes, all of which significantly
contribute to disease pathology. Furthermore, both animal model
experiments and clinical studies will be essential to validate their
diagnostic and therapeutic potential in preclinical and human
contexts. Although these limitations exist, our study advances the
understanding of AD molecular mechanisms and proposes potential
diagnostic markers and intervention strategies. Finally, regarding the
drug candidates targeting PLIN2, our validation relied solely on
molecular docking. While this computational approach successfully
established PLIN2 as a tractable target with stable ligand binding, it is
inherently preliminary. Future work necessitates more advanced
simulations, such as molecular dynamics, and crucially, experimental
validation to confirm the functional efficacy of these interactions.
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5 Conclusion

Our investigation provides the first single-cell resolution
analysis of lipid metabolic heterogeneity in aortic dissection,
demonstrating macrophages as pivotal mediators of inflammatory
responses. The discovery of PLIN2 and PLIN3 as central
modulators of lipid metabolism in aortic dissection highlights
their potential as both diagnostic biomarkers and
intervention targets.
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