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of aortic dissection by
integrating single-cell RNA
sequencing analysis and
machine learning algorithms
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Qixu Zhao2,3, Zetong Zheng1 and Gang Li2,3*

1Beijing Luhe Hospital, Capital Medical University, Beijing, China, 2Pediatric Cardiac Center, Beijing
Anzhen Hospital, Capital Medical University, Beijing, China, 3Beijing Institute of Heart Lung and Blood
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Introduction: Aortic dissection (AD) is a lethal disease with increasing incidence

and limited preventive options, characterized by aortic media degeneration and

inflammatory cell infiltration. Dysregulation of lipid metabolism is increasingly

recognized as a pathological characteristic of AD; however, the exact molecular

regulators and critical genetic determinants involved remain unclear.
Methods: This study employed an integrative approach combining single-cell

RNA sequencing and machine learning to identify novel lipid metabolism-related

biomarkers in aortic dissection. Single-cell RNA sequencing data from aortic

dissection and control samples were processed to analyze lipid metabolism

activity and identify differentially expressed genes. Machine learning algorithms

and protein-protein interaction networks were then used to prioritize

biomarkers, which were further validated through bulk RNA-seq analysis and

immune infiltration studies and experiments using an Ang II-induced aortic

dissection mouse model.. Functional characterization included cell-cell

communication analysis and pseudo-time trajectory reconstruction to

elucidate the roles of candidate genes in aortic dissection pathogenesis.

Results: This multi-modal strategy identified PLIN2 and PLIN3 as key regulators

of lipid metabolism in aortic dissection. Analysis revealed significant up-

regulation of lipid metabolism in aortic dissection, with PLIN2 and PLIN3

emerging as central regulators. Single-cell profiling showed these genes were

highly expressed in monocytic cells, correlating with enhanced inflammatory

signaling (e.g., SPP1, GALECTIN). Machine learning and bulk RNA-seq validation

confirmed their diagnostic potential. Pseudo-time analysis linked PLIN2 to early

monocyte differentiation, while cell-cell communication studies implicated it in

pro-inflammatory crosstalk with smooth muscle cells. The upregulation of PLIN2

and its specific expression in macrophages were further confirmed in an Ang II-

induced aortic dissection mouse model. Molecular docking screened for

potential therapeutic compounds that may target PLIN2, among which

ketoconazole was identified.
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Discussion: These findings suggest that PLIN2/PLIN3 could be key mediators of

metabolic dysregulation and immune activation in aortic dissection, highlighting

their potential as diagnostic markers and therapeutic targets.
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1 Introduction

Aortic dissection (AD), an aggressive cardiovascular disease

with an exceedingly mortality rate (1). According to the Stanford

classification, AD can be classified as Stanford type A (TAAD) or

type B(TABD) (2). Aortic dissection arises from multiple

pathological processes, including aberrant phenotypic switching

and apoptosis of vascular smooth muscle cells, impaired

extracellular matrix homeostasis, endothelial dysfunction, and

inflammatory immune cell infiltration (3). TAAD constitutes

approximately 67% of all AD cases, with mortality rates

escalating rapidly at a rate of 2.6% per hour during the first 24

hours. Although significant advancements in the management of

TAAD over the past decade, overall survival remains suboptimal,

with postoperative mortality rates persisting at 10–35%,

emphasizing the urgent need for early non-invasive intervention

and preventive strategies (4, 5). Given these challenges, a deeper

understanding of the molecular mechanisms driving AD is

urgently needed to discover new therapeutic strategies and

robust prognostic markers.

Lipids serve crucial functions in energy homeostasis, biological

membrane architecture, and cellular signaling pathways. However,

dysregulation of lipid metabolism contributes significantly to the

pathogenesis of multiple disorders, including metabolic syndrome,

type 2 diabetes mellitus, and cardiovascular diseases (6, 7).

Similarly, in aortic dissection, clinical studies have identified

significant dyslipidemia in AD patients, characterized by elevated

serum total cholesterol and low-density lipoprotein (LDL) levels.

Notably, oxidized LDL (OxLDL) upregulates TLR4 expression and

activates the NF-kB pathway, thereby promoting inflammatory cell

recruitment. These infiltrating immune cells exacerbate vascular

wall injury through increased production of reactive oxygen species

(ROS) and proteolytic enzymes (8, 9).

Although emerging evidence underscores the critical

involvement of lipid metabolites in AD pathogenesis, the

identification and functional validation of key regulatory genes

remain a substantial challenge. Single-cell RNA sequencing

(scRNA-seq) represents a powerful emerging technology that

facilitates genomic profiling, cellular heterogeneity assessment,

differential gene expression analysis, and cell-type identification at

single-cell resolution (10, 11). When integrated with machine

learning algorithms and complementary bioinformatics
02
approaches, this methodology holds significant potential for

discovering novel diagnostic biomarkers (12, 13).

This study represents the first demonstration of lipid metabolic

heterogeneity at single-cell resolution in AD, revealing significant

intercellular variations across distinct cell populations. Our study

integrates single-cell and bulk transcriptomic data to systematically

identify biomarkers associated with dysregulated lipid metabolism

in AD pathogenesis. Moreover, using machine learning approaches,

we refined these candidate genes and identified optimal

feature genes linked to dysregulated lipid metabolism in AD.

These findings suggest novel therapeutic targets and provide

important mechanistic insights for future AD research and

intervention strategies.
2 Materials and methods

2.1 Data acquisition and processing

We obtained the scRNA-seq data for AD from the GSE189795

(14), GSE254132 (15) and GSE222318 (16) from GEO database

(http://www.ncbi.nlm.nih.gov/geo/). After merging all the datasets,

we required 15 AD and 14 normal control samples .

Furthermore,746 lipid metabolism-related genes were obtained

from GSEA database (https://www.gsea-msigdb.org/gsea/

index.jsp). To ensure high-quality single-cell data, we performed

stringent quality control by filtering cells based on the following

criteria: genes detected per cell (nFeature_RNA) between 200 and

5,000, total UMI counts (nCount_RNA) between 200 and 30,000,

mitochondrial gene content (pMT) below 20%, and hemoglobin

gene content (pHB) below 5%. After applying these thresholds, we

retained 211235 high-qualified cells for subsequent analysis. To

identify the most variable genes, the top 2000 were selected using

the “FindVariableFeatures” function after applying linear

regression-based “Log-normalization” (scale.factor = 10000) to

scale and normalize the remaining cells. Following this, Principal

Component Analysis (PCA) was employed to reduce the

dimensionality of the single-cell RNA sequencing data. Then, we

utilized the Harmony, a R package which is an algorithm for robust,

scalable, and flexible multi-dataset integration (17), aiming to

harmonize the data and remove batch-induced differences

(group.by.vars = “orig.ident”).With pc.num=1:15 and a clustering
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resolution of 1, the “FindClusters” function partitioned cells into

distinct groups based on reduced-dimensionality space. Besides,

potential doublets were identified using the R package

DoubletFinder (18), with parameters set at PCs = 1:15 and an

expected doublet formation rate of 7%.The algorithm detected a

subset of cells as doublets. Cell annotation was performed using

well-established marker genes to classify distinct cell clusters into

specific cell types. Besides, we chose the bulk RNAseq data

GSE153434 (19) as the bulk RNA-seq data containing 10 AD

samples and 10 normal control of human aortic tissue and

GSE52093 (20) as the examining data containing 7 AD samples

and 5 normal control. The details of all the data used in this research

are provided in Supplementary File 1.
2.2 Single-cell level screening of potential
lipid metabolism-related genes

In this study, we employed AUCell (21) to calculate pathway

activity scores, evaluating lipid metabolic pathway engagement

across all cells. To further validate the accuracy of the AUCell

results, we also applied the AddModuleScore algorithm

(22).Based on these scores, cells were stratified into high- and

low-activity groups, followed by differential gene expression

analysis with a criteria set at log2 fold change > 0 and adjusted

pvalue<0.05 to identify up-regulated markers. Statistical

comparisons were performed using the Wilcoxon rank-sum

test. Significance levels were defined as follows: p < 0.05 (*), p<

0.01 (**), and p < 0.001 (***).Concurrently, Spearman correlation

analysis was performed to select the top 128 genes most strongly

associated with lipid metabolism. The intersection of these gene

sets was then derived to pinpoint the most potential lipid

metabolism-related genes.
2.3 Functional enrichment analysis

Functional enrichment analysis(pvalueCutoff = 0.05 and

qvalueCutoff =0.05) was performed using Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) to

characterize the biological pathways and protein functions

associated with these genes. Metascape is an online platform for

enrichment analysis that integrates functional enrichment,

interactome analysis, and gene annotation, thereby enabling a

comprehensive interpretation of gene functions (23).
2.4 Screening for optimal biomarkers

To systematically identify lipid metabolism related biomarkers,

we implemented a multi-platform validation strategy. First, three

machine learning approaches - LASSO regression (24), Random

Forest(RF) (25) (2000 trees with Gini importance scoring), Boruta

algorithm (26) and Support Vector Machine(SVM) -were employed

for robust feature selection.
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Specifically, prior to LASSO regression analysis, the

randomcoloR package in R was utilized to generate 40 distinct

colors, with the random seed set at set.seed (1). The LASSO model

was then executed with set.seed (11) and an alpha value of 1. For the

Random Forest model, the random seed was fixed at set.seed (3).

The Boruta algorithm was implemented with set.seed (1), along

with parameters doTrace = 2 and maxRuns = 500. The SVM model

was configured using 5-fold cross-validation (nfold = 5). Detailed

parameter settings for SVM are provided in the Supplementary

File 2.

Concurrently, potential candidates were subjected to protein-

protein interaction(PPI) analysis through STRING database

(https://cn.string-db.org/) followed by Cytoscape (27)

visualization and MCODE (28) clustering. The intersection of

genes identified by all five independent methods (LASSO,

Random Forest, Boruta, SVM and PPI cluster cores) was

subsequently derived, yielding a high-confidence set of

biomarkers. This consensus approach minimizes methodological

bias while enhancing biological relevance through multi-algorithm

cross-validation and systematic parameter configuration. Finally,

the expression patterns of these biomarkers were visualized using

violin plots, while their diagnostic potential was rigorously

evaluated through receiver operating characteristic (ROC) curve

analysis, including calculation of the area under the curve (AUC) in

both training and examining data.
2.5 Immune infiltration

We investigated the relationship between the biomarkers and

the immune cells by first profiling immune infiltration patterns

using marker genes curated from the Gene Set Enrichment Analysis

database(GSEA database, https://www.gsea-msigdb.org/).

Spearman correlation analysis revealed significant associations

between each biomarkers and specific immune cell subtypes (29).

Subsequently, single-gene GSEA was performed on the GSE153434

dataset by: 1. ranking all genes based on their correlation

coefficients with each biomarkers, and 2. analyzing these ranked

l i s t s u s ing a R package , C lu s t e rP rofi l e r , w i th the

‘c5.go.v2023.2.Hs.symbols.gmt’ gene set from the Molecular

Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/

msigdb/index.jsp). Finally, we visualized the results through bubble

plots summarizing significantly enriched pathways, providing a

comprehensive understanding of the function of two up-

regulated biomarkers.
2.6 Cell communication

Based on median expression levels of PLIN2, monocytic cells

were stratified into high- and low-expression groups. To further

understand the cell communication difference between the high-

expression group and low-expression group, we performed cell-cell

communication analysis. This analysis was conducted using the

CellChat R package, which infers intercellular communication by
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integrating known ligand-receptor interactions and gene expression

profiles, enabling the identification of signaling pathways and

communication patterns between different cell types (30). By

comparing the communication networks between high- and low-

expression groups, we identified significant differences in cell-cell

interactions, providing insights into the underlying signaling

pathways involved in disease progression.
2.7 CytoTRACE and pseudo-time analysis

To assess the differentiation potential of monocytic cell

populations, we utilized CytoTRACE for quantitative evaluation of

developmental progression across distinct monocytic subsets. For

trajectory reconstruction, cells were systematically classified into two

distinct states based on their gene expression profiles using Monocle

pseudo-temporal ordering analysis. To delineate temporally regulated

genes duringmonocytic differentiation, we conducted comprehensive

differential expression analysis along the pseudotime continuum

(differentialGeneTest). We used the “plot_genes_in_pseudotime” to

show the dynamic expression patterns of the targeted genes. Lastly,

we performed differential gene expression analysis (min.pct = 0.01,

logfc.threshold = 0.01,test.use=“wilcox”) and GSEA(pvalueCutoff =

0.05) between PLIN2 labeled monocytic cells.
2.8 Molecular docking

We utilized the online databases Drug-Gene Interaction

Database (31) (DGIdb, https://dgidb.org/) and Drug Signatures

Database (32) (DSigDB, https://dsigdb.tanlab.org/) to predict

potential drug targets for the biomarker. Four candidate drugs

were selected for molecular docking. First, the molecular structures

of the drugs were downloaded from PubChem (https://

pubchem.ncbi.nlm.nih.gov/), and their most stable conformations

were generated using Chem3D. Subsequently, the predicted protein

structure of the target was obtained from the AlphaFold Protein

Structure Database (33) (https://alphafold.com). Molecular docking

was then performed using AutoDock Vina (34).The specific

parameters for the docking simulation, including the center

coordinates (X, Y, Z) and dimensions of the docking box, are

provided in Supplementary File 3, followed by visualization of the

interactions using the Protein-Ligand Interaction Profiler (35)

(PLIP, https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index)

and PyMOL.
2.9 Animal model

Aortic dissection (AD) was induced in ApoE&#x207B;/

&#x207B; mice using a well-established model of Angiotensin II

(Ang II) infusion (36, 37). Ten mice were randomly allocated into

an experimental group (n=10) and a control group (n=10). Mice in
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the experimental group received a continuous subcutaneous

infusion of Ang II (1000 ng/kg/min) via osmotic minipumps for

4 weeks, a protocol demonstrated to reliably induce aortic

pathologies including dissection and aneurysm in hyperlipidemic

mice (36). The control group received saline. Following the infusion

period, 10 mice in the Ang II group developed aortic dissection,

confirmed by gross examination, whereas no dissections were

observed in the control group. Our results are consistent with the

established efficacy of this model in promoting AD in

ApoE&#x207B;/&#x207B; mice.

This study was approved by the Ethics Committee of Beijing

Anzhen Hospital, Capital Medical University (Approval No.

AZ2025LA015). All experimental procedures were conducted in

strict accordance with the ethical principles for the care and use of

laboratory animals.
2.10 Western blotting

Proteins were extracted from aortic tissues and quantified using a

BCA protein assay kit (Beyotime Biotechnology, Cat# P0010). The

samples were then mixed with loading buffer, denatured by heating at

95 °C for 5 minutes, and separated by 10% SDS-PAGE. Subsequently,

the separated proteins were transferred onto a PVDF membrane.

After blocking with 5% BSA, the membrane was incubated overnight

at 4 °C with the following primary antibodies: anti-Plin2 (1:1,000,

Proteintech, Cat# 15294-1-AP, rabbit polyclonal) and anti-GAPDH

(1:50,000, Proteintech, Cat# 60004-1-Ig, mouse monoclonal).

Following primary antibody incubation, the membrane was

incubated with a mixture of fluorescent dye-conjugated secondary

antibodies: IRDye 800CW goat anti-rabbit IgG (1:20,000, Bioss, Cat#

bs-40295G-IRDye800CW) and IRDye 800CW goat anti-mouse IgG

(1:20,000, Bioss, Cat# bs-40296G-IRDye800CW). Protein bands were

finally visualized and quantified using an Odyssey infrared

imaging system.
2.11 qRT-PCR

Total RNA was extracted from aortic tissue and reverse-

transcribed into cDNA using the Evo M-MLV RT Premix Kit

(Accurate Biology, Cat# AG11728). Subsequently, quantitative

PCR (qPCR) was performed with the SYBR Green Pro Taq HS

Premixed qPCR Kit (Accurate Biology, Cat# AG11701). The primer

sequences used were as follows:

Plin2 (forward: 5′-TCCTTTCTGTTTGCACGTCCT-3′,
reverse: 5′-CTCTCATCACCACGCTCTGT-3′) and the reference

gene Gapdh (forward: 5′-ACCCTTAAGAGGGATGCTGC-3′,
reverse: 5′-CCCAATACGGCCAAATCCGT-3′).

The qPCR cycling protocol consisted of an initial denaturation

at 95 °C for 30 s, followed by 40 cycles of 95 °C for 5 s and 60 °C for

30 s. All reactions were carried out on an Applied Biosystems 7500

Real-Time PCR System.
frontiersin.org

https://dgidb.org/
https://dsigdb.tanlab.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://alphafold.com
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
https://doi.org/10.3389/fimmu.2025.1681989
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1681989
2.12 Immunofluorescence

Mouse arterial tissue slices were obtained from samples

embedded in paraffin. For immunofluorescence staining

according to the manufacturer’s instructions, the samples were

incubated overnight at 4 °C, and stained with PLIN2 polyclonal

antibody (1:1000; GB113109; Wuhan Servicebio Technology Co.,

Ltd., Wuhan, China) and a CD68 polyclonal secondary antibody

(1::1000; GB115593; Wuhan Servicebio Technology Co., Ltd.,

Wuhan, China). Slides were counterstained with DAPI. Finally,

images were acquired using a fluorescence microscope

(Rueil-Malmaison).
3 Results

3.1 The scRNA-seq profiling of AD

Quality control played a critical role in ensuring data

reliability for downstream analysis. After rigorous assessment

(Figure 1A), 29 high-quality samples (15 from the AD group

and 14 from the normal control group) were selected for further

investigation. The samples were sourced from three distinct

datasets as follows: Control1–3 and ATAD1–3 were obtained

from GSE254132; AD.2–6 and NA.1–4 were derived from

GSE189795; and the remaining samples originated from

GSE222318. To minimize technical variability, we performed

batch effect correction using Harmony. This effectively

harmonized the data distribution and eliminated batch-related

differences, as assessed by the clear reduction in batch effect shown

in Supplementary Figure 2A. The cells are well-integrated across

batches, with no discernible batch-specific clustering, indicating

the successful removal of technical variation (Figure 1B).

Subsequent clustering analysis categorized all cells into 30

distinct clusters (Figure 1C).

Potential doublets were identified using the R package

DoubletFinder. We first determined the optimal pK value, which

yielded the highest cross-validation mean area under the curve

(AUC), indicating the best model performance (Supplementary

Figure 1A). The algorithm subsequently computed a doublet

score for each cell and flagged a subset as putative doublets. As

expected, these algorithm-identified doublets generally exhibited

higher gene counts than singlet cells (Supplementary Figure 1B).

However, visualization in the UMAP embedding revealed a

heterogeneous distribution pattern: while some putative doublets

formed isolated clusters, a substantial proportion were intermingled

with transcriptically defined singlet populations (Supplementary

Figure 1C). Given that actively metabolizing cells—a key focus of

our study—can share high gene detection rates with technical

doublets and thus be prone to misclassification, we adopted a

conservative strategy. To avoid the inadvertent loss of these

biologically relevant cells, all putative doublets were retained in

downstream analyses.
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Using established cell markers, we identified 10 major cell types,

including B cells, endothelial cells, fibroblasts, and mast cells,

among others (Figure 1D). The specificity of these cell

populations was further confirmed by examining the expression

patterns of key markers (Figures 1E, F). To rule out the possibility

that batch integration introduced spurious findings, we

independently processed and analyzed the three single-cell

datasets. The key results were consistently reproduced in each

individual data (Supplementary Figures 3A–C), confirming the

robustness of our findings.

Comparative analysis revealed notable differences in cell type

distribution between the two groups (Supplementary Figure 4A).

Specifically, monocytic cells and smooth muscle cells were more

abundant in the AD group, whereas plasma cells and fibroblasts

showed reduced proportions (Supplementary Figure 4B). A detailed

breakdown of cell type distribution across individual samples is

provided (Supplementary Figure 4C).
3.2 Lipid metabolism in scRNA-seq data
and enrichment analysis

Emerging evidence indicates that dysregulated lipid metabolism

plays a critical role in the development of aortic dissection (9). In

our study, we utilized the AUCell and AddModuleScore to evaluate

lipid metabolism in scRNA-seq level(Figure 2A). The overall level of

lipid metabolism was up-regulated compared to normal control. It

is clear that there is great difference of the lipid metabolism level in

different cell types. Among them, the UAMP plot clearly showed

that these lipid metabolism-related genes were predominantly

expressed in monocytic cells and fibroblasts(Figure 2B). To be

specific, a comparative analysis of the normal group and AD

group indicated that lipid metabolism-related genes were more

active in monocytic cells and smooth muscle cells mainly while

relatively suppressed in fibroblasts, T cells and NK cells,

ect.(Figure 2C). Subsequently, by using the average expression

score, all cells were classified into score_up group(above the

mean) and score_down group(below the mean). The score_up

group contains monocytic cells and fibroblasts predominantly

(Figure 2D). Then we required 678 up-regulated differentially

genes among the two groups(Figure 2E). To identify the genes

most closely related with lipid metabolism, we used a spearman

correlation analysis and identified 128 the most related to lipid

metabolism (Figure 2F). To validate the robustness of our findings

against potential integration artifacts, we repeated the lipid

metabolism analysis on each dataset separately. The key results

were consistently recapitulated: a significant dysfunction of lipid

metabolic activity was confirmed in all three cohorts, with

macrophages and fibroblasts consistently showing the highest

enrichment scores (Supplementary Figures 5A–C).The AUCell

score of all cells in AD group, the full lists of these 678 up-

regulated genes and Top128 genes are provided in Supplementary

File 4-6 respectively.
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3.3 Multiple enrichment analysis

The intersection of these genes and up-regulated differentially

expressed genes yielded 26 up-regulated genes highly associated

with lipid metabolism (Figure 3A). The full process of the Venn

diagram are offered in Supplementary File 7. To infer the biological

functions of the 26 identified genes, we performed enrichment
Frontiers in Immunology 06
analysis using Metascape. The results revealed their most significant

associations with lipid-related processes, including lipid

metabolism, lysosomal function, the PPARA signaling pathway,

and lipid storage, indicating a strong link between our gene set and

lipid metabolic pathways (Figure 3B). Subsequent KEGG and GO

enrichment analyses of these 26 genes identified distinct functional

patterns. Gene Ontology analysis revealed three key functional
FIGURE 1

Screening of single-cell data. (A) Quality control of scRNA-seq data. (B) The UMAP results showed that the cell distribution was consistent across all
samples, with minimal batch effects. (C) UMAP clustering divided all cells into 30 well-defined clusters. (D, E) The dataset was annotated into 10 cell
populations based on established marker gene expression. (F) The expression pattern of the marker genes.
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clusters: molecular functions were predominantly associated with

amide binding; biological processes showed enrichment in cellular

localization maintenance, fatty acid metabolism, and lipid storage

regulation; while cellular components were primarily localized to

vacuolar and lysosomal luminal spaces (Figure 3C). KEGG pathway

analysis demonstrated significant enrichment in lysosome-related

pathways and PPAR signaling (Figure 3D). These findings

collectively suggest the candidate genes’ potential roles in lipid

metabolic regulation and lysosome-mediated cellular processes.
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3.4 Identification of the biomarkers in
bulk-RNA data

To identify the most promising biomarkers, we employed a multi-

step computational strategy. Four distinct machine learning

algorithms—LASSO regression, Random Forest, Boruta, and SVM

—were applied to the bulk RNA-seq data to select features most

predictive of the phenotypic groups (Figures 4A-F). The application of

LASSO, Random Forest, Boruta, and SVM yielded gene sets of 6, 6, 9,
FIGURE 2

Analysis of lipid metabolism level at single-cell resolution in AD. (A) UMAP visualization revealed the global lipid metabolic profile across cell
populations. (B) The box plot displays the lipid metabolism scores for different cell types, calculated using the AUCell and AddModuleScore
algorithms. (C) Box plots illustrate the differential lipid metabolism levels across distinct cell populations between AD patients and normal
controls.The blue and red colors represent the AD group and the normal control group, respectively.(D) UMAP visualization delineates cell clusters
segregated into score-DOWN and score-UP lipid metabolism expression groups.(E) The volcanic plot shows the result of DEGs of lipid metabolism.
(F) Top 128 genes selection was based on correlation analysis with lipid metabolic activity, retaining only statistically significant associations. The left
panel shows the correlation coefficients for the top 128 genes, with a corresponding list of gene names, p-values, and correlation coefficients
provided in the right panel.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1681989
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1681989
and 14 genes, respectively. The result of four machine learning

algorithms are offered in Supplementary File 8-11. Concurrently,

PPI network analysis followed by MCODE module detection

identified 11 key hub genes (Figure 4G). By intersecting the results

from all methods, we identified three key biomarkers:PLIN2,PLIN3

and PPARG (Figure 4H). Notably, PLIN2 and PLIN3 exhibited

significantly increased expression, whereas PPARG was markedly

down-regulated (Figure 4I). ROC curve analysis further confirmed

their strong diagnostic potential, with AUC values of 0.900 (PPARG),

0.970 (PLIN3), and 0.990 (PLIN2) (Figure 4J) in training data.
3.5 Single gene set enrichment analysis
and immune infiltration

GSEA of the GSE15434 dataset revealed distinct pathway

associations for the up-regulated biomarkers. PLIN2 activation
Frontiers in Immunology 08
showed enrichment in ribonucleoprotein complex biogenesis and

ncRNA processing pathways, while its suppression was linked to

immunoglobulin complex-related processes (Figure 5A). Similarly,

PLIN3 activation correlated with ribosome biogenesis and

nucleosome binding, whereas suppression was associated with

muscle and heart development pathways (Figure 5B). The output

of single GSEA for PLIN2 and PLIN3 are offered in Supplementary

File 12, 13. Immune infiltration analysis demonstrated significant

correlations between these genes and immune cell populations:

PPARG positively correlated with NKT cells and effector memory T

cells but negatively with CD56dim NKT cells; PLIN2 associated

with dendritic cells, neutrophils, and NK cells; and PLIN3 showed

connections with central memory CD4+ T cells but negative

correlations with NK cells and neutrophils (Supplementary

Figure 6A). These findings suggest these genes may influence

aortic dissection pathogenesis through their roles in metabolic

pathways and immune cell regulation.
FIGURE 3

Multiple enrichment analysis. (A) The Venn diagram illustrates 26 genes overlapped by Top 128 lipid metabolism related genes and the up-regulated
genes in AD group.(B) The metascape enrichment analysis shows the biological function of the 26 genes by network graph and bar chart. (C, D)
GOBP,GOCC,GOMF and KEGG enrichment analysis of 26 up-regulated genes.
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FIGURE 4

Screening for biomarkers based on bulk-RNA data. The machine learning containing the LASSO (A, B) algorithm,the Random Forest algorithm (C),
the Boruta algorithm (D, E), the SVM algorithm (F) and PPI result visualized by Cytoscape as well as MCODE (G) determined the potential biomarkers.
(H) The Venn diagram illustrates 3 biomarkers overlapped by the above-mentioned methods’ results. (I) Box plots demonstrate the differential
expression patterns of three biomarkers between AD patients and normal controls, revealing a significant downregulation of PPARG and concurrent
upregulation of PLIN2 and PLIN3 in the AD group. (J) ROC curves of the three biomarkers are displayed from left to right: PPARG (AUC = 0.900),
PLIN3 (AUC = 0.970), and PLIN2 (AUC = 0.990).
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3.6 Validation PLIN2 and PLIN3 in in bulk
and scRNA-seq data

In examining data, analysis revealed a significant upregulation

of PLIN2 and PLIN3 in the AD group compared to the normal

controls. Both genes achieved an AUC of 1.00, demonstrating their

exceptional diagnostic potential for the disease (Figures 6A, B).

Notably, these genes were primarily expressed in monocytic cells

and significant up-regulated in AD progression in scRNA-seq data

(Figures 6B–D). To further substantiate our findings, we validated

the expression patterns of PLIN2 and PLIN3 in each of the three

individual, non-integrated single-cell datasets. Reassuringly, the

overall distribution and upregulation trend of both genes were

consistently recapitulated across all separate cohorts, aligning

greatly with the observations from the merged dataset

(Supplementary Figures 7A–D).
3.7 Intercellular communication

Based on the median expression level of PLIN2 in monocytic

cells, these cells were stratified into PLIN2-high and PLIN2-low

subgroups. The analysis included 27,312 and 30,045 monocytic cells

in the PLIN2-high and PLIN2-low groups, respectively. Further

investigation revealed that PLIN2-high monocytic cells exhibited

significantly stronger cell-cell communication with other cell types,

particularly endothelial cells and fibroblasts (Figures 7A–C). Both

incoming and outgoing interaction intensities were markedly

higher in the PLIN2-high group compared to the PLIN2-low

group (Figure 7D). The PLIN2-high group exhibited more active

communication with both fibroblasts and endothelial cells than the

PLIN2-low group. For both fibroblast and endothelial cells, the

strongest interactions originated from the PLIN2-high group

(Figure 7E). Key signaling pathways involved in these interactions

included IL10, SPP1, ANGPTL, GALECTIN, and TNF signal. In the
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SPP1 signaling network, the PLIN2-high population was identified

as the primary source. In contrast, the PLIN2-low group, SMC, and

T cells were the main receivers. Furthermore, the PLIN2-high group

also served as the most prominent mediator and influencer,

underscoring its critical role in orchestrating SPP1-mediated

communication (Figures 7F, G). Similarly, for the GALECTIN

pathway, the PLIN2-high group was once again the most active.

It primarily sent signals to cells such as NK cells and T cells,

establishing itself as a key player in this network (Figures 7H, I).
3.8 CytoTRACE and trajectory analysis

CytoTRACE was employed to define the development order of

the monocytic cells, revealing that PLIN2-high monocytic cells

resided in the early stages of development with better

differentiation potential (Figures 8A, B). Besides, we found that as

pseudo-time progressed, monocytic cells differentiated from left to

right with 11 different cell states (Figure 8C). The differential

GeneTest identified the genes with the most significant expression

changes along the pseudo-time trajectory. Among these most

dynamically altered genes, SPP1 exhibited an expression pattern

similar to PLIN2 across pseudotime. The parallel expression

dynamics (initial downregulation-transient upregulation-

secondary decline) imply possible functional crosstalk between

SPP1 and PLIN2 (Figure 8D). We next performed pseudotime

analysis and evaluated its relationship with lipid metabolism

activity (as measured by AUCell scores) using ggplot2. The

results revealed substantial fluctuation in lipid metabolic activity

along the pseudotime trajectory. Notably, the PLIN2-high group

exhibited consistently elevated scores compared to the PLIN2-low

group throughout this process, underscoring the critical role of

PLIN2 in lipid metabolism (Figure 8E). Lastly, we performed

differential gene expression analysis and GSEA between PLIN2-

high and PLIN2-low groups. The PLIN2-high group showed
FIGURE 5

Elucidating the biological mechanisms of up-regulated biomarkers. (A, B) The GSEA results of PLIN2 and PLIN3.Each panel is composed of
‘Activated’ and ‘Suppressed’ sections, representing the activation status of the relevant pathway. The plot also displays the gene enrichment count
and p-value for each pathway.
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significant enrichment in several pathways including IL-10

signaling, cellular responses to external stimuli, cellular responses

to stress, and autophagy. These pathways may be functionally

associated with PLIN2’s role in AD pathogenesis (Figure 8F). The

list of differential gene expression are provided in Supplementary

File 14.
3.9 Binding of PLIN2 to potential drugs

Using an online drug prediction platform, we identified

potential compounds targeting PLIN2, including RTI-122,

cycloheximide, ketoconazole, and apigenin. Molecular docking

analysis revealed favorable binding energies of -6.211, -6.303,

-7.012, and -5.234 kcal/mol, respectively, all of which were below

the -5 kcal/mol threshold, indicating stable binding interactions

(Figures 9A–D). Molecular docking revealed distinct interaction

patterns between PLIN2 and the four candidate drugs. RTI-122

primarily formed multiple hydrophobic interactions with residues

such as LEU-191 and TYR-261. In contrast, cycloheximide
Frontiers in Immunology 11
established two hydrogen bonds with ARG-264. Ketoconazole

engaged in a more diverse set of interactions, forming hydrogen

bonds with LYS-273, SER-269, and HIS-258, alongside a Pi-Pi

stacking interaction with PHE-262. Apigenin, however, primarily

formed a hydrogen bond with GIM-233.
3.10 Experimental validation of the
biomarker

To validate the expression of the biomarker in aortic dissection,

we performed quantitative PCR (qPCR) and Western blot analysis.

The qPCR results revealed a significant increase in the relative mRNA

level of PLIN2 in aortic dissection tissues (Figure 10A). Furthermore,

Western blot analysis demonstrated that PLIN2 protein expression

was also markedly upregulated (Figures 10B, C). The full, uncropped

blot membrane has been included in Supplementary Figure 8.

To determine the ce l lular loca l izat ion of PLIN2,

immunofluorescence staining was conducted. The results showed

co-localization of PLIN2 with CD68 (a macrophage marker) in
FIGURE 6

Validation PLIN2 and PLIN3 in bulk and single cell RNA-seq data. (A) The expression pattern of PLIN3 and PINL2 in GSE52093. (B) ROC curves of
PLIN2 and PLIN3 in GSE52093(AUC = 1.00). (C, E) The distribution of PLIN3 and PLIN2 expression across different cells types. (D, F) The violin plots
show PLIN2 and PLIN3 were significantly upregulated at the single-cell level in the AD group. (G, H) The UMAP visualization displays the expression
levels of PLIN2 and PLIN3 in both the AD and normal groups.
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dissected aortic tissues, indicating that PLIN2 is expressed in

macrophages. In contrast, only basal expression of PLIN2 was

detected in normal mouse aortic tissues, where CD68-positive

cells were absent—suggesting a lack of macrophage infiltration—

and no apparent co-localization was observed (Figure 10D).
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4 Discussion

AD has long constituted a life-threatening cardiovascular

emergency, posing substantial risks to both survival and

functional outcomes. Notwithstanding progressive refinements
FIGURE 7

Celluar communication pattern in AD group. (A–C) The chord diagrams,heatmap and scatter plot exhibit the number and strength of interaction
between PLIN2-high and PLIN2-low groups and other cell types. (D) The heatmaps show the outgoing and incoming interaction pattern among
different cell types. (E) The chord diagrams illustrate the interaction of PLIN2_high,Plin2_low,endothelial cells and fibroblats. (F–I) The hierarchy plot
and the heatmap respectively illustrate the hierarchical relationship of the SPP1 and GALECTIN pathways and the roles played by different cell types.
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in diagnostic and therapeutic approaches, the enduring burden of

adverse outcomes underscores imperative needs for therapeutic

innovation (38). While dysregulated lipid metabolism has been

increasingly implicated in AD pathogenesis, the cell-type-specific

heterogeneity of lipid metabolic reprogramming and its

precise genetic regulators remain poorly characterized (9, 39).

By combin ing scRNA-seq wi th superv i sed mach ine

learning algorithms, we precisely mapped cell-type-specific
Frontiers in Immunology 13
lipid metabolism alterations in AD, revealing previously

unrecognized vascular cell subsets exhibiting pathological

metabolic profiles.

We identified PLIN2 and PLIN3 as previously unrecognized

biomarkers linking macrophage function to lipid metabolism

dysregulation in AD. Both genes show marked upregulation and

strong association with perturbed lipid metabolic networks

characteristic of AD progression. Through integrated analysis
FIGURE 8

CytoTRACE and trajectory analysis of PLIN2 labeled monocytic cells in AD group (A) CytoTrace,Phenotype and PLIN2 expression pattern of tSNE
diagram. (B) Bar graph shows the differentiation status of PLIN2 labeled monocytic cells. (C) Pseudo-time analysis predicts the differentiation
trajectory of PLIN2-labeled monocytic cells. (D) Pseudotime analysis revealed the dynamic expression pattern of PLIN2 and SPP1. (E) The dynamic
expression pattern of lipid metabolism between PLIN2_high and PLIN2_low group (F) GSEA of up-regulated DEGs between PLIN2-high and PLIN2-
low groups.
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combining gene expression analyses, functional enrichment

analyses and machine learning-based feature selection, we

robustly identified and validated that these AD-associated genes

are both statistically robust and mechanistically linked to AD

pathology, offering new perspectives for understanding disease

mechanisms and developing targeted interventions.
Frontiers in Immunology 14
PLIN2 and PLIN3 are core lipid droplets (LDs)-associated

proteins that orchestrate LD biogenesis and maturation. These

proteins have been implicated in diverse pathological conditions

including metabolic disorders (e.g., obesity, on-alcoholic fatty liver

disease) and cellular processes such as autophagy, demonstrating

their pleiotropic roles in cellular homeostasis (40). PLIN2, also
FIGURE 9

Molecular docking analysis of potential therapeutic compounds targeting PLIN2. (A–D) Molecular docking analyses of RTI-122, cycloheximide,
ketoconazole, and apigenin with PLIN2.
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referred to as differentiation-related protein (ADRP), is a member

of the PAT family of lipid droplet-coating proteins that play

fundamental roles in lipid storage and metabolism. Plin2

modulates the metabolic equilibrium between glucose and fatty

acid utilization through its role in lipid droplet stabilization, which

serves as a reservoir for excess fatty acids (41). Moreover, PLIN2 is

capable of reducing the production of LDs or triglycerides by

impeding the lipid droplet association of adipose triglyceride

lipase (42). However, PLIN2 deficiency enhances lipolysis and

accelerates fatty acid mobilization through upregulation of PPARg
signaling pathways, which concurrently modulate metabolism and

amplify anti-inflammatory gene activation (41, 43). Similarly, in

AD, we observed PLIN2 upregulation concomitant with PPARg
downregulation. This inverse correlation suggests PLIN2-mediated

suppression of PPARg signaling may contribute to AD

pathogenesis, though further mechanistic studies are required to

validate this hypothesis. Our study demonstrates for the first time

that PLIN2 primarily regulates lipid metabolism in macrophages

during AD. Other studies have also shown PLIN2’s important

regulatory role in macrophage. For instance, in colorectal cancer

PLIN2 promotes macrophage polarization towards the M2
Frontiers in Immunology 15
phenotype and activates the CD36-dependent epithelial-

mesenchymal transition (EMT) pathway in colorectal cancer cells,

thereby enhancing tumor invasiveness (44). Otherwise, it is

indicated that Perilipin 2-expressing mononuclear phagocytes

exhibit significant retinal accumulation under diabetic conditions,

where they promote microvascular degeneration through PPARg
signaling activation (45). Therefore, PLIN2 could represent a

potential therapeutic target, as suppression of its activity may

at tenuate AD-assoc ia ted inflammat ion and improve

clinical outcomes.

PLIN3, also called TIP47, is widely expressed across various

tissues. It attaches to newly formed lipid droplets and can

dynamically associate with or dissociate from LDs while

remaining stable in the cytosol (46, 47). In macrophage, it is

proposed that TIP47 may act as a carrier protein for free fatty

acids and in this way participates in conversion of Uptake of

lipids by macrophages (MPhi) into foam cells (48). The

mechanisms of TIP47 in various diseases remain unclear.

Although TIP47 expression is elevated in macrophages during

aortic dissection, its specific pathological mechanisms require

further investigation.
FIGURE 10

Experimental validation of the biomarker (A) qRT-PCR reveals the relative expression of PLIN2 mRNA. (B, C) Western blot analysis confirmed that
PLIN2 protein levels were significantly elevated in aortic dissection tissues. (D) Immunofluorescence analysis revealed the staining patterns of DAPI
(blue), PLIN2 (red), and CD68 (green), along with the merged channels, in both the normal control and aortic dissection groups. Small arrows
indicate cells with evident co-localization of PLIN2 and CD68.
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An additional intriguing observation is that PLIN2 and PLIN3

both are related to autophagy which is a pathway that intersects

with lipid homeostasis (49). Consistently, our GSEA analysis of up-

regulated DEGs between PLIN2-high and PLIN2-low groups

confirms these mechanistic insights (Figure 6). Autophagy is a

lysosome-dependent catabolic process that degrades proteins,

lipids, and organelles to maintain cellular homeostasis (50).

Enrichment analysis of the 26 machine learning-selected genes

revealed multiple lysosome-related pathways, further supporting

this conclusion. With respect to the underlying mechanisms,

Susmita Kaushik reported that the CMA-dependent degradation

of PLIN2 and PLIN3 serves as a prerequisite for Adipose

triglyceride lipase (ATGL) to bind lipid droplets and initiate

lipolysis (49). In other organs, PLIN2 also modulates the

catabolism of cytosolic lipid droplets (LDs) to maintain cellular

lipid homeostasis (51, 52). However, the mechanistic involvement

of autophagy in macrophages within aortic dissection has not yet

been elucidated. Modulation of macrophage autophagy in aortic

dissection may represent a potential therapeutic strategy, though

further experimental validation is required.
4.1 Limitation

Although this study offers novel insights, several limitations should

be acknowledged. First, our study relied on the integration of three

independent single-cell RNA-seq datasets to achieve a sufficient cell

number for robust analysis. We acknowledge that this integrative

approach, despite rigorous correction using advanced batch-effect

removal algorithms (e.g., Harmony), may inherently introduce

residual technical variation that could confound the biological

signals. This represents a common trade-off in computational

biology between sample size and data homogeneity. Future studies

with larger, prospectively collected cohorts will be invaluable to

corroborate our findings in a more uniform analytical framework.

Next, while we established a correlation between lipid metabolic

activity and PLIN2/PLIN3 expression, the exact molecular

mechanisms by which these genes modulate lipid metabolism and

contribute to AD pathogenesis require further elucidation. Moreover,

our study focuses predominantly on transcriptomic alterations within

the AD landscape, which does not explore post-transcriptional

modifications and protein-level changes, all of which significantly

contribute to disease pathology. Furthermore, both animal model

experiments and clinical studies will be essential to validate their

diagnostic and therapeutic potential in preclinical and human

contexts. Although these limitations exist, our study advances the

understanding of AD molecular mechanisms and proposes potential

diagnostic markers and intervention strategies. Finally, regarding the

drug candidates targeting PLIN2, our validation relied solely on

molecular docking. While this computational approach successfully

established PLIN2 as a tractable target with stable ligand binding, it is

inherently preliminary. Future work necessitates more advanced

simulations, such as molecular dynamics, and crucially, experimental

validation to confirm the functional efficacy of these interactions.
Frontiers in Immunology 16
5 Conclusion

Our investigation provides the first single-cell resolution

analysis of lipid metabolic heterogeneity in aortic dissection,

demonstrating macrophages as pivotal mediators of inflammatory

responses. The discovery of PLIN2 and PLIN3 as central

modulators of lipid metabolism in aortic dissection highlights

the i r po ten t i a l a s bo th d iagnos t i c b iomarker s and

intervention targets.
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