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Metabolic (dysfunction)-associated fatty liver disease (MAFLD) has emerged as a
leading cause of chronic liver disease worldwide. Its pathogenesis is closely
associated with gut microbiota dysbiosis and metabolic disturbances. In recent
years, numerous studies have demonstrated that bioactive compounds
produced by gut microbial metabolism—such as short-chain fatty acids,
secondary bile acids, tryptophan derivatives, and bacterial extracellular vesicles
—play critical roles in the development and progression of MAFLD by modulating
hepatic lipid metabolism, inflammatory responses, and epigenetic regulation.
The characteristic expression patterns of these gut microbiota-derived bioactive
compounds provide novel options for differential diagnosis of the disease.
Moreover, elucidation of the underlying pathological mechanisms has paved
novel avenues for MAFLD treatment. Strategies including dietary interventions,
prebiotics, probiotics, and other microbiota-targeted therapies are considered
potential approaches to modulate MAFLD progression. This review systematically
summarizes the molecular mechanisms underlying the development of MAFLD
influenced by gut microbiota-derived bioactive compounds. It also explores the
feasibility of utilizing specific gut microbial metabolite profiles for MAFLD
diagnosis and highlights potential therapeutic strategies targeting microbiota-
host metabolic interactions, including the use of engineered bacteria to produce
specific metabolites, probiotic/prebiotic interventions, and the clinical prospects
of fecal microbiota transplantation.
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1 Introduction

Metabolic Dysfunction-Associated Fatty Liver Disease
(MAFLD) is a metabolic disorder characterized primarily by
hepatic fat accumulation resulting from metabolic dysfunction
(1). It has become the most prevalent chronic liver disease
globally (2). With the widespread adoption of nutrient-rich
dietary patterns, the global burden of MAFLD continues to rise,
with its reported prevalence increasing from 21.9% in 1990 to 32.4%
in 2021 (3, 4). Current diagnostic methods for MAFLD include
non-invasive assessments and liver biopsy. Among the non-invasive
methods, imaging-based detection of hepatic steatosis is common,
whereas the abdominal ultrasound alone has a sensitivity of only
20%. Controlled attenuation parameter (CAP) derived from
vibration-controlled transient elastography (VCTE) and liver
stiffness measurement (LSM) is primarily used for qualitative
assessment, while its correlation with disease severity is limited.
Although the magnetic resonance imaging (MRI) remains the gold
standard for quantifying hepatic fat, it is not ideal for screening due
to its high cost, time consumption, and limited accessibility.
Ultrasound-guided liver biopsy, though useful for confirming
atypical cases, is limited by sampling errors, cost, and potential
complications (5, 6). Beyond the diagnostic challenges, therapeutic
options for MAFLD remain limited. The first-line treatment still
relies on lifestyle modifications such as dietary control, weight
management, and physical activity. Although several drugs
targeting hepatic fibrosis and inflammation have entered clinical
trials, none have been approved for routine clinical use (7).

The gut microbiota (GM), a complex community of
microorganisms—including bacteria, archaea, fungi, and viruses—
that colonize the human gastrointestinal tract, plays a key role in
host nutrient metabolism, intestinal barrier maintenance, immune
system development, and metabolic homeostasis (8). In various
metabolic pathways, the gut microbiota ferments dietary fibers and
polysaccharides indigestible by the host, producing short-chain
fatty acids (SCFAs), such as acetate, propionate, and butyrate (9).
These metabolites serve as major energy sources for intestinal
epithelial cells and regulate immune responses and energy
metabolism. Dysbiosis, commonly observed in MAFLD patients,
is marked by reduced microbial diversity and imbalanced
composition, which in turn alters the types and quantities of gut
microbiota-derived bioactive compounds and contributes to
MAFLD pathogenesis (10).

TABLE 1 Key characteristics of representative short-chain fatty acids.
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In recent years, therapeutic agents and strategies for MAFLD
targeting gut microbiota-derived bioactive compounds have
emerged. However, existing reviews predominantly focus on
broader microbiota compositional changes or generic
“microbiota-targeted” therapeutics (11, 12), do not adequately
cover the diagnostic/therapeutic potential of defined microbial
metabolites. Accordingly, this review aims to synthesize current
knowledge by elucidating the pathogenic mechanisms of gut
microbiota-derived bioactive compounds in MAFLD,
summarizing their diagnostic applications, and exploring targeted
therapeutic strategies, thereby providing a comprehensive
perspective toward clinical translation.

2 Major bioactive compounds derived
from gut microbiota

2.1 Short-chain fatty acids

2.1.1 Metabolism, functions, and targets of short-
chain fatty acids

SCFAs are primarily produced via the fermentation of dietary
fibers by anaerobic bacteria in the colon. These bacteria first break
down dietary fiber into monosaccharides, which are then
metabolized into acetate, propionate, as well as butyrate through
various fermentation pathways. In addition to dietary fibers, host-
derived mucins and certain amino acids and organic acids can also
serve as substrates for SCFA production (13, 14). Acetate is
produced by most gut bacteria, whereas propionate and butyrate
are synthesized via species- and pathway-specific mechanisms—
propionate mainly by Bacteroides via the succinate pathway, and
butyrate by various bacteria within the Firmicutes phylum. SCFAs
play central roles in energy metabolism and immune regulations
(15). In host tissues, SCFAs can be converted into acetyl-CoA
(based on acetate and B-oxidized butyrate) or succinyl-CoA (from
propionate) to enter the tricarboxylic acid cycle (TCA) for energy
production, or used for lipogenesis and gluconeogenesis (16). Each
SCFA has its distinct biological roles (Table 1). Acetate primarily
participates in energy metabolism and circulates through the portal
vein, ultimately utilized by the liver and peripheral tissues. In the
liver, acetate can support gluconeogenesis or fatty acid synthesis
(17). At optimal concentrations, acetate also activates G-protein-
coupled receptors (GPCRs), particularly GPR43, on immune cells in

Metabolic
fate

Absorption
site

Energy
contribution

Representative genus Proportion
formula
Acetic acid
(Ccle-I;EJZ)C(l)H) Bacteroides, Prevotella, Ruminococcus 60-70%
Propionic acid Bacteroides, Bifidobacterium 15-20%
(CH;CH,COOH) ’ ’
Butyric acid Eubacterium, Ruminococcus,

10-15%

(CH3(CH,),COOH) Faecalibacterium, Roseburia
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Entire colon Liver/muscle Systemic energy substrate

Mainly proximal Substrate for hepatic

Liver R (26-29)
colon gluconeogenesis
Mainly distal Mainly colonic | Core energy source for
colon cells colonic cells
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the portal system. Propionate is mainly metabolized in the liver to
activate GPCRs, such as GPR41 and GPR43,and exert immune-
regulatory functions (18). Butyrate is mainly metabolized in the
colon and serves as the preferred energy source for colonocytes.
Although butyrate can enter the portal circulation, its concentration
in the portal vein (approximately 0.29 mM in pigs) is significantly
lower than that of acetate (3.8 mM) and propionate (1.1 mM) (19).
Butyrate also acts as a histone deacetylase (HDAC) inhibitor,
promoting tight junction formation and mucin secretion to
maintain gut barrier integrity and prevent translocation of toxins
and microbial metabolites (20, 21). It further activates the AMPK
pathway (22), enhancing insulin sensitivity in both hepatocytes and
adipocytes, improving glucose metabolism, and reducing hepatic
lipid accumulation (23). Additionally, butyrate increases the levels
of anti-inflammatory cytokines (e.g., IL-10) (24) and suppresses
pro-inflammatory mediators (e.g., TNF-o. and IL-6) (25).

SCFAs primarily exert their effects via GPCRs that regulate
physiological functions, such as hormone secretion, glucose and
lipid metabolism, and immune responses (30). GPR43 has high
affinity for acetate and propionate, while GPR41 has high affinity for
propionate and butyrate (18). Recent studies have shown that
SCFAs can reduce levels of gut pH, activating the anti-
inflammatory Gas-coupled receptor GPR65 on intestinal
epithelial and immune cells (31), while other receptors, including
the butyrate-specific GPR109A (32) and OLFR78 (33), are activated
by acetate and propionate. However, SCFA-based treatment
approaches should consider the dose effect. Some reports indicate
a positive correlation between pro-inflammatory biomarkers and
butyrate and propionate. Therefore, more research is needed to
elucidate the mechanisms and dose effects before SCFAs
supplementation is widely approved for MAFLD (34).

2.1.2 Short-chain fatty acids involved in MAFLD

In MAFLD, disruptions in microbial metabolic functions lead
to significant changes in the levels, proportions, and distributions of
SCFAs (35). The total quantity of SCFAs is reduced due to
insufficient fiber intake and microbial dysbiosis (36, 37).
Particularly, the levels of protective SCFAs—propionate and
butyrate—are markedly decreased, as evidenced in portal vein,
peripheral blood, and fecal samples (38). The reduction in
butyrate is especially critical, as it compromises energy supply to
colonocytes, damages the intestinal barrier (i.e., “leaky gut”), and
facilitates translocation of endotoxins (e.g., lipopolysaccharides),
aggravating hepatic inflammation and accelerating the progression
from simple steatosis to nonalcoholic steatohepatitis (NASH) and
fibrosis (39). Furthermore, lower butyrate levels weaken the AMPK/
PPARa signaling, reducing fatty acid oxidation and insulin
sensitivity, thereby exacerbating gluconeogenesis and lipogenesis
(40-43). Importantly, hepatic steatosis, inflammation, and insulin
resistance in MAFLD further hinder SCFA transport and
utilization, forming a positive feedback loop. Numerous studies
have confirmed that restoring the levels of total SCFAs—especially
propionate and butyrate—can exert therapeutic effects on the
treatment of MAFLD, underscoring their upstream regulatory
roles (Table 2).
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Given the well-established positive feedback effect of SCFAs in
MAFLD, targeting SCFAs for therapeutic intervention has become
an attractive strategy, with the potential to serve as an ideal causal
treatment by modulating SCFA levels. Although numerous
preclinical studies have demonstrated the benefits of SCFA
supplementation, clinical trials primarily aimed at increasing
SCFAs remain limited and have yet to yield strongly positive
endpoint conclusions. Several ongoing clinical strategies focus on
restoring SCFA levels through dietary fiber interventions or
prebiotic/probiotic supplementation. A clinical trial investigating
cellulose supplementation has not reported results (NCT04520724).
Similarly, two clinical trials evaluating SCFA-producing probiotics
have not yet published outcomes (NCT06491342, NCT05402449)
(44). Another study on a synbiotic formulation designed to boost
SCFAs is still ongoing (NCT05821010). Therefore, the clinical value
of SCFAs requires further validation through more clinical studies
rather than additional preclinical research. Important future
directions include developing precise delivery systems for SCFAs
or their analogs to enhance colonic bioavailability, and defining
optimal SCFA intervention strategies for different stages of
MAFLD. Since SCFA levels can be influenced by multiple
metabolic factors, constructing composite diagnostic models that
incorporate SCFAs represents a feasible approach for using SCFAs
as non-invasive biomarkers for MAFLD. For instance, Lin et al.
developed an integrated model including physical indicators,
laboratory parameters, and gut metabolite SCFAs, which
demonstrated strong diagnostic performance (AUC=0.938) (45).
However, the clinical applicability of such models depends on
validation in multicenter studies and their ability to differentiate
MAFLD from other conditions.

2.2 Bile acids

2.2.1 Metabolism, functions, and targets of bile
acids

Primary bile acids (BAs) are synthesized in the liver and
metabolized by gut microbiota (primarily including Bacteroides,
Clostridium, Lactobacillus, Bifidobacterium, etc.) into secondary
BAs (96). The ratio of primary to secondary BAs plays a key role
in regulating lipid absorption efficiency and metabolic signaling
transduction (97, 98). As signaling molecules, both primary and
secondary BAs can act as ligands for the farnesoid X receptor (FXR)
(99). Upon activation of intestinal FXR, it stimulates
enteroendocrine cells to secrete fibroblast growth factor 15/19
(FGF15/19) (100). Once the hormone reaches the liver, it binds to
specific receptors on the liver cell membrane (a complex formed by
FGFR4 and the co-receptor B-Klotho), which subsequently inhibits
the BA synthesis enzyme CYP7A1l (101, 102). This creates a
negative feedback loop regulating the size of the BA pool, while
simultaneously improving glucose and lipid metabolism, i.e.,
inhibiting lipogenesis, promoting fatty acid oxidation, and
enhancing insulin sensitivity (99). Additionally, BAs can activate
the G protein-coupled bile acid receptor 1 (TGR5), exerting effects
on enteroendocrine cells, macrophages, hepatocytes (103), and
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TABLE 2 Recent treatments of MAFLD through the regulation of SCFAs (last 3 years).

Operation Mechanism Pathway Phenotype Ref.
Noni fruit phenolic-rich
ex(t):‘:ctml phenolic-ric Increased SCFAs level FXR-FGF15 Reduced conversion of cholesterol to bile acids (46)
Electroacupuncture Increased SCFAs level PPAR Decreased total cholesterol and triglyceride level (47)
E;
ogenous . Acetate and propionate FFAR/AMPK Decreased glucose, triglycerides and cholesterol (48)
supplementation
Lactoferrin Upregulated SCFAs level HTR2A-PPARa-CPT-1A Reduced fatty acid synthesis and increased hepatic lipolysis (49)
Polygonatum sibiricum Increased relative abundance of Pecreased fasting blood gluc?se a.nd fas'tmg mSl_lh,n level,
. . - improved glucose tolerance, insulin resistance, lipid and (50)
polysaccharides Bacteroidetes .
inflammatory factor level
Pol harides fi I d production of SCFA:
ysacciart ‘e S rom nereased procuction o s Bile acid axis Improved body weight, lipid profiles and liver function (51)
Caulerpa lentillifera (acetate and butyrate)
Exercise traini d
xerc1§e ra‘mmg an Increased SCFAs level - Reduced fat mass and improved glucose and lipid homeostasis (52)
fiber-rich diet
Significantly decreased fasting blood glucose, insulin level,
triglycerides (TG) and total cholesterol (TC), while increased
Quinoa B-glucan Increased SCFAs level - high-density lipoprotein cholesterol (HDLC) level; decreased (53)
malondialdehyde (MDA), aspartate transaminase (AST) and
alanine transaminase (ALT) level
Sweet potato extract Increased SCFAS level Bﬂe—sph?ngolipid Reduc‘edAw-eight gain, se‘rum low—d.ensity lipoprotein cholesterol, 1)
metabolism hepatic lipid accumulation and adipocyte hypertrophy
. Increased number of beneficial Attenuated hepatocellular vacuolation and significantly reduced
Resistant starch ) - o (55)
bacteria and SCFAs content number of hepatic lipid droplets
Hawthorn fruit Increased intestinal SCEASs level ~ Inblblted weight gain and hepatic fat accumulation in NAFLD 56)
mice
Reduced methylation,
Beer Increased SCFAs level a‘ﬂf?cting genes felated to Improved thrt‘>ugh bloo<-i parameters, weight gain, hepatic lipid 7)
lipid accumulation and content elevation and histology
inflammation
F'ermented barley Increased SCFAs level ~ Re'dl'lced body ?veigh't and f.at accumulation in the liver and 8)
dietary fiber epididymal white adipose tissue
Lactobacillus brevis M-
lgcis(:ﬂ::; dufior;ews Significantly reduced food intake, inhibited weight gain;
Increased SCFAs content - prevented excessive liver growth; and decreased serum total (59)
spontaneously . . e .
. cholesterol, triglycerides, and low-density lipoprotein
fermented sour porridge
Linggu‘izhugan Butyrate ~ Redlfced body siveight, T(‘Z, TG, LDL and HDL level, significantly (60)
decoction alleviated hepatic steatosis
Postbiotics of
Lactobacillus plantarum
prepared by . o . . .
L . Acetate, propionate and butyrate SCFAs-GPR41/GPR43 Inhibited cellular triglyceride accumulation (61)
pasteurization combined
with ultrasound
technology
L Promoted SCFA-producing Attenuated intestinal barrier damage, inflammation and Th17/
A PR/HDAC3, TLR4/NF-xB 2
retigenin bacteria and SCFA level GPR/ €3, TLR4/NF-x¢ Treg immune imbalance in HFD mice ©)
Pleurotus ostreatus
P liferation of SCFA
fermented by romoted proliferation of SC MAPK Improved hepatic lipid accumulation (63)
. producers
Lactobacillus rhamnosus
Lactobacillus plantarum . Significantly reduced weight gain, improved glucose metabolism,
I - 4
NCHBL-004 nereased acetate and propionate and maintained balanced lipid level ©4)
Exogenous GPR-HDAC3/LPS-TLR4/
I FAs level Allevi lycolipi li i liver inj 65
supplementation of ncreased SCFAs leve NF-kB/AMPK eviated glycolipid metabolism disorder and liver injury (65)
(Continued)
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TABLE 2 Continued

10.3389/fimmu.2025.1682755

Operation Mechanism Pathway Phenotype Ref.
acetate, propionate and
butyrate
B-glucan secreted by Reduced serum level of TC and low-density lipoprotein
I d SCFAs level AMPK 66
Rhizobium pusense nerease s leve cholesterol (LDL-C) (©6)
Enhanced mitochondrial functi d ted systemi
Sodium butyrate Increased butyrate level AMPK/Sirt1/PGC-1a " ance- fotochondry nction and regulated systemic energy (67)
metabolism
Capsaicin Enhanc?d fecal SCFAs PGC-1a Significantly reversed HFF‘-i-nduced obesfty, irr}proved glflcose ©8)
production tolerance, reduced blood lipids and alleviated inflammation
I lati f
Sr(lchrIe:sed ;e a'tlve alj)undance ‘0 Reduced inflammatory cytokines, increased expression level of
-producing microorganisms
Gymnemic acid P g' i 5 TLR4-NF-xB antioxidant genes such as Nfe212, Ho-1 and Nqol, and increased = (69)
such as Lactobacillus in the . . S . .
. . intestinal tight junction protein expression
intestine
Increased abundance of intestinal
Reduced lipid deposition in the li dd d blood lipid
Lactobacillus delbrueckii = Lactobacillus and colonic SCFA- - leeeil ced Hipid deposttion n the fiver and decreased blood Hpt (70)
Vi
producing bacteria
Increased short-chain fatty acid Adiponectin/AMPK/SIRT1, = Prevented weight gain and enlargement of the liver and various
Feruloyl acetone . ) (71)
level AMPK/PGC-1a. adipose tissues
Probioti ixt
thlo e mixture Increased fecal SCFAs level - Improved hepatic steatosis, inflammation and fibrosis (72)
rohep
Hedan tablet Increased short-chain fatty acid ~ ~ 73)
level
Multi-strair—ll_ ]\frobiotic Increased SCFAs level FXR-EGF15 .Improved glucose tolerance, blood lipids, body weight and liver 74)
WHHPRO index
Increased abundance of SCFA-
Hulless barley B-glucan producing bacteria (Prevotella-9, AMP-AMPK Reduced hepatic lipid deposition (75)
Y Bacteroides and Roseburia) and P P P
SCFA content
Jatoba-do-cerrado
(Hymenaea Increased acetate and propionate Decreased triglycerides, total cholesterol, LDL-c, non-HDL-c 76)
stigonocarpa Mart.) or butyrate serum level, hepatic lipids and liver weight
pulp
D?ndrobium .ofﬁcinale Increased SCEAS level PPAR Ijly.poglycemic e-Eect, alleviated hepatic steatosis and impaired 77
Kimura & Migo lipid homeostasis
I d infl ti d intestinal | barrier, reduced
ACTO001 Increased valproic acid AMPK/GPR43 .m'prove 1.n' ammation and intestinal mucosal barrier, reduce; 78)
lipid deposition
Lactobacill Enhanced abund f SCFA-
actobactiius n anc'e abun .ance of SC - Decreased serum lipid level and liver function markers (79)
fermentum CKCC1858 producing bacteria
Increased SCFA-producing
bacteria such as Bacteroides,
Rotundic acid Anaerotruncus, Desulfovibrio, - Reduced body weight and steatosis markers in serum and liver (80)
etc., significantly increased
relative abundance of SCFAs
Anthocyanin-Rich ' Decrea'sed plasma glucose, llpopz?l)fsaccharlde' and tumor
Promoted SCFA-producing gut necrosis factor-o. level, restored lipid metabolism and balance
Butterfly Pea Flower o - o . . (81)
microbiota between Treg and Th17 cells, inhibited dysfunctional liver and
Extract . . . .
abdominal white adipose tissue
. Higher abundance of SCFA- Histone deacetylase 1 and Inhibited lipid metabolism disorder and reduced hepatic
Erchen Decoction R R i (82)
producing bacteria H3K9ac steatosis
Enhanced intestinal al barrier, i d intestinal
Bile acids Increased SCFAs level FXR-PPARC. nhanced ntestinal mucosat barrier, tmproved mtestin (83)
morphology and altered cecal microbiota structure
I d SCFAs level and SCFA-
Bamboo Shoots ncrea3§ S‘ evel an - Alleviated weight gain and liver injury in obese mice (84)
producing bacteria
(Continued)
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TABLE 2 Continued

10.3389/fimmu.2025.1682755

Operation Mechanism Pathway Phenotype Ref.
P 1 I FA level FA-
omegranate pee ncreas?d S¢ ‘eve and SC - Reduced body weight, blood lipid and hepatic lipid level (85)
polyphenols producing bacteria
Self-assembling
polymer-based short Increased propionate or butyrate PPAR Reduced hepatic lipogenesis and fibrosis (86)
u
chain fatty acid prop v P pog
prodrugs
E ia Bark/Leaf Increased relative abundance of
ucommia Bark/Lea
Extract Ruminococcaceae. They also GPR41/GPR43 Alleviated lipid metabolism disorder (87)
promoted SCFAs production
1 FA- i
Polysaccharide-rich bnciea'sed S;l' K P:Odil ;mg‘
acteria and intestinal barrier-
fractions from - Reduced HFD-induced obesity and hepatic steatosis (88)

rotective Akkermansia
Enteromorpha prolifera P L
muciniphila

Prebiotic Tolypocladi
'reblotlc olypocladium Increased SCFAs level -
sinensens

Alleviated obesity-induced inflammatory response and oxidative

stress level 9

Prebiotic Cord
reblotic o Ayceps Promoted SCFAs production -

guangdongensis

Prebiotic Lactobacillus

delbrueckii Increased butyrate -

Lactobacillus paracasei
N1115

Increased SCFAs level -

Noni fruit Increased SCFAs production -

Enhanced abundance of SCFA-
producing bacteria

Phycobiliproteins
Bioactive Peptides

Increased content of

Sulforaphane Bacteroidaceae, Lactobacillaceae GPR41/43-GLP1

and Bifidobacteriaceae

“~” indicates that the study did not report this information.

other cell types, for example, promoting GLP-1 release to improve
glucose metabolism and satiety and inhibiting macrophage
inflammatory responses to reduce inflammation (104, 105).

BAs also possess antimicrobial activity. Changes in their
composition and concentration directly impact the structure of
the gut microbiota (106). Conversely, dysregulation of BA
metabolism can lead to dysbiosis, e.g., an increase in the relative
proportion of lipopolysaccharide (LPS)-producing bacteria,
forming an interacting cycle (107).

2.2.2 Bile acid metabolism in MAFLD

BA metabolism is under tight control through a complex
feedback loop involving the liver, gut, and gut microbiota. In
MAFLD patients, abnormalities often occur in BA synthesis,
metabolism, and signaling (108, 109). Specifically, signaling
through the receptors FXR and TGR5 is frequently reduced,
which links to problems like insulin resistance, fat accumulation
in the liver (steatosis), and inflammation (98).

Studies have shown that the levels and types of BAs are altered
in MAFLD patients, detected in their liver, blood, and stool (110).
Typically, in the blood, the levels of primary BAs, such as cholic acid
(CA) and chenodeoxycholic acid (CDCA), are increased. A key
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Reduced body weight and fat accumulation in HFD mice,
improved glucose tolerance and blood lipid level, decreased lipid = (90)
droplet accumulation and fat vacuole level in the liver

Decreased TG level, enhanced lipolysis and fatty acid -

91
oxidation ©D
Reduced visceral fat, liver weight, serum insulin and leptin level, ©2)
and IR, and alleviated abnormal lipid metabolism

Reduced body weight, decreased lipid accumulation in the liver ©93)
and adipose tissue

Alleviated obesity by reducing body weight and improved (94)
glucose and lipid indices in serum

Reduced blood glucose and HOMA-IRI in HFD rats (95)

enzyme responsible for making 120:-hydroxylated (12-OH) BAs,
called CYP8BI, is also activiated (111). This leads to a significant
increasd in the levels of 12-OH BAs like CA and deoxycholic acid
(DCA). Importantly, the ratio of these 12-OH BAs to non-12-OH
BAs serves as a key marker for metabolic performance in MAFLD,
correlating strongly with the levels of liver fat and inflammation
(108, 112). Conversely, the levels of non-12-OH BAs, such as
ursodeoxycholic acid (UDCA) and lithocholic acid (LCA), tend to
be lower in MAFLD patients. Since these acids often have protective
anti-inflammatory effects, the reduction in the levels of these acids
could worsen the disease (98). Excretion of secondary bile acids like
DCA and LCA is also reduced. This happens because imbalances in
gut bacteria impair the conversion of primary to secondary BAs.
Consequently, this limits the ability of these secondary acids to
activate beneficial receptors like FXR and TGR5, which normally
regulate fat metabolism and reduce inflammation. Therefore,
finding ways to restore a healthy balance (homeostasis) in BA
metabolism is considered a promising potential treatment for
MAFLD (113).

Therapeutic strategies targeting BAs for MAFLD warrant
extensive exploration. Bile acid signaling pathways, particularly
those involving FXR and TGR5, are emerging as key
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pharmacological targets for metabolic diseases. Obeticholic acid
(60t-ethyl-chenodeoxycholic acid, an FXR agonist) has been shown
to improve histological features of NASH and demonstrated
favorable outcomes in a Phase III clinical trial (NCT01265498)
(114-116). Two novel FXR agonists, cilofexor and TQA352, have
successfully passed clinical safety assessments (NCT02781584,
ChiCTR1800019570) (117). The development of TGR5 agonists
aims to leverage their ability to promote GLP-1 secretion and
suppress inflammation, thereby improving glycemic control and
mitigating hepatic inflammation. One clinical study observed
increased TGR5 expression levels in peripheral blood
mononuclear cells and reduced liver fat content in patients
following curcumin supplementation (ChiCTR2200058052) (118).

It is important to note that targeting these pathways requires
precise balance. For instance, obeticholic acid has been associated
with side effects such as an increased risk of drug-induced liver
injury, unfavorable changes in lipid levels, and severe pruritus (119-
121), leading the FDA to deny its conditional approval for NASH.
This underscores the importance of developing tissue-specific
agonists/antagonists. Beyond directly targeting signaling
pathways, other BA-focused therapeutic strategies should be
considered. For example, modifying the bile acid pool
composition using non-12-OH bile acids like UDCA and its
derivatives has shown promise. An 18-week treatment with
berberine ursodeoxycholate resulted in histological improvement
in most MAFLD patients, with dose-dependent improvements
observed across various biomarkers (NCT03656744) (122).
Furthermore, a clinical study demonstrated that aerobic exercise
increased total bile acid and ursodeoxycholic acid levels in MAFLD
patients, significantly improving body composition and liver
function while also reducing blood lipid and glucose levels
(NCT06338449). Additionally, microbiome intervention strategies
—using probiotics or prebiotics to restore microbial function and
promote the production of secondary bile acids (e.g., LCA)—should
be explored to achieve natural and mild activation of the FXR/
TGR5 pathways. On the diagnostic front, analyzing the bile acid
pool represents a potential non-invasive strategy, but it should be
combined with other diagnostic approaches to avoid confounding
factors from gallbladder diseases.

2.3 Tryptophan derivatives

2.3.1 Metabolism, functions, and targets of
tryptophan derivatives

Gut microbiota uses tryptophan as a precursor to generate
various derivatives through specific enzyme systems (123). Bacteria
like Clostridium, Bacteroides, and Bifidobacterium are involved,
producing compounds such as indole, indole-3-propionic acid
(IPA), tryptamine, and indole-3-acetic acid (IAA) (124). For
example, Enterobacteriaceae produce indole by deaminating
tryptophan via tryptophanase (125); Lactobacillus sp. generates
tryptamine catalyzed by aromatic amino acid decarboxylase (126);
Clostridium creates IPA through hydroxylation (127); and
Bacteroides synthesizes TAA (128-130). Once absorbed by the
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host, these metabolites undergo further processing, i.e., indole is
oxidized by hepatic CYP2E1 (131) or SULT1A1 (132) into indoxyl,
then sulfated or glucuronidated for excretion; IPA acts freely after
sulfation; and tryptamine is degraded by host monoamine oxidase
(MAO) into indoleacetic acid.

Tryptophan derivatives support gut barrier integrity, immune
regulation, and metabolic control (133). Indole and IPA activate the
aryl hydrocarbon receptor (AhR), boosting expression of tight
junction proteins (occludin and claudin-1) and mucins (MUC2),
strengthening the gut barrier (134). IAA accelerates mucosal repair
by regulating intestinal stem cell proliferation. Through AhR
activation, indole promotes regulatory T cell (Treg) differentiation
and IL-10 secretion, curbing Th17-driven gut inflammation (127),
while IPA inhibits pro-inflammatory cytokines like TNF-o and IL-6
from macrophages (135), exerting its anti-inflammatory effects by
regulating AhR-NLRP3 axis (136).

2.3.2 Tryptophan derivatives in MAFLD

Studies have shown an inverse link between indole levels and
liver fat content—obese individuals typically have lower indole and
higher hepatic fat (137). The beneficial roles of tryptophan
derivatives in MAFLD are well-documented (138, 139). Indole
and its derivatives exhibit anti-inflammatory properties by
increasing the levels of IL-10 andinhibiting TNF-o~driven NF-kB
activation and pro-inflammatory chemokine IL-8 expression. This
helps maintain gut barrier functions and has been demonstrated in
both cellular and animal models to reduce liver steatosis and fibrosis
(140, 141). In addition, targeting the AhR pathway has been shown
to inhibit lipid accumulation in the liver, reduce the level of
triglycerides and total cholesterol, and alleviate oxidative stress
(142). Research by Ding et al. demonstrated that exogenous
administration of indole-3-acetate (I3A) improved hepatic
pathology without altering the gut microbiota state, suggesting its
direct effect on hepatic metabolic function (143). Indoleamine 2,3-
dioxygenase (IDO), a key rate-limiting enzyme in gut tryptophan
metabolism, catalyzes the conversion from tryptophan to
kynurenine. Research in high-fat-diet-fed IDO-knockout (IDO/")
mice revealed less inflammatory macrophage infiltration and
reduced susceptibility to obesity-linked fatty liver and insulin
resistance (144) suggesting the beneficial roles of indole and its
derivatives in MAFLD.

In MAFLD, tryptophan metabolism shifts towards the
detrimental kynurenine pathway, while the beneficial microbial
pathways (such as the production of AhR agonists) are
suppressed. This imbalance directly contributes to intestinal
barrier disruption, systemic inflammation, and hepatic steatosis
(145). Therefore, restoring tryptophan metabolic balance represents
an etiology-targeting strategy. Potential therapeutic approaches
include using specific probiotics to remodel gut microbiota
function and enhance the production of endogenous beneficial
metabolites, as well as exploring drugs like IDO1 inhibitors to
reduce the generation of pro-inflammatory kynurenines. From a
diagnostic perspective, blood levels of indole/IPA or the indole/
kynurenine ratio show promise as non-invasive biomarkers for

assessing gut ecological function and liver disease severity.
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However, further research is needed to clarify the discriminatory
power of such models.

2.4 Trimethylamine N-oxide

Gut microbes convert precursor substances such as choline, L-
carnitine, and phosphatidylcholine ingested by the host into
trimethylamine (TMA). The produced TMA enters the liver via
the bloodstream, where it is oxidized by flavin-containing
monooxygenases (FMOs) into trimethylamine N-oxide (TMAO)
(146). In recent years, multiple studies have reported the correlation
between TMAO levels and the pathogenesis of MAFLD. A clinical
investigation by Ma et al. found that higher blood TMAO
concentrations were associated with an increased risk of MAFLD
(147). Additionally, fecal TMAO levels have been shown to
correlate with the severity of MAFLD (148). Subsequently,
numerous experimental studies have demonstrated that TMAO
disrupts lipid metabolism and promotes the occurrence and
progression of MAFLD (149, 150).

The promotion of MAFLD by TMAO involves multiple
phenotypes and pathways. Some studies have reported that
TMAO exacerbates hepatic steatosis by inhibiting bile acid (BA)-
mediated hepatic FXR signaling (151). Furthermore, TMAO
exhibits pro-inflammatory properties by activating the TLR4/
MyD88/NF-kB signaling pathway, upregulating the expression of
various inflammation-related genes, and simultaneously inducing
the polarization of liver macrophages toward the pro-inflammatory
M1 phenotype, thereby triggering liver inflammation (148). Novel
mechanisms of TMAO-mediated MAFLD have also been
discovered. For example, TMAO inhibits OTUB1-mediated
SLC7A11 stability, leading to hepatocyte ferroptosis and
accelerating MAFLD progression (152). TMAO upregulates the
expression of HULC, followed by P38MAPK overexpression,
thereby mediating hepatocyte apoptosis and promoting MAFLD
development (148). Yang et al. found that TMAO can activate the
PERK signaling pathway, subsequently inducing MAFLD (153).

However, it is important to note that conflicting research
conclusions exist. Miyata et al. reported that after feeding FXR-
null mice a diet containing 0.3% TMAO for 13 weeks, markers of
liver injury were significantly reduced, suggesting that TMAO may
improve liver function through pathways independent of bile acid
metabolism (154). Therefore, more studies with variables such as
dosage and administration duration are needed to clarify the precise
role of TMAO in MAFLD.

The aforementioned findings establish TMAO as a significant
risk biomarker and potential pathogenic factor in the onset and
progression of MAFLD, warranting consideration for incorporating
TMAO levels into diagnostic models aimed at assessing MAFLD
risk and disease severity. It should be noted that the association of
TMAO with conditions such as cardiovascular disease and cancer
has been extensively reported (155, 156), suggesting the potential of
developing composite biomarker diagnostic models based on
TMAO. On the therapeutic front, evaluating dietary interventions
that reduce the intake of precursor substances rich in choline and L-
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carnitine becomes important. Furthermore, the development of
FMO enzyme inhibitors to block the conversion of TMA to
TMAO, along with preclinical and clinical trials to validate their
therapeutic value, represents a viable strategy.

2.5 Endotoxins

Endotoxins (i.e., LPS), major components of Gram-negative
bacterial cell walls in Enterobacteriaceae, strongly activate the host
innate immune system (157). In MAFLD, LPS acts as a key
mediator of “leaky gut”—translocating into the liver via the portal
vein when the intestinal barrier is compromised (158-160). As the
primary ligand for Toll-like receptor 4 (TLR4), which is expressed
in hepatocytes, Kupfter cells (liver macrophages), and hepatic
stellate cells, LPS binding triggers downstream pathways like
MyD88-dependent signaling (161). This activates transcription
factors such as NF-xB, driving production of pro-inflammatory
cytokines (TNF-o, IL-1f, and IL-6) and chemokines (162)—key
mechanisms regulating liver inflammation, cell damage, and
progression to NASH. TLR4 signaling also induces insulin
resistance by disrupting insulin receptor substrate pathways (163).
Sustained inflammation activates hepatic stellate cells, promoting
extracellular matrix deposition and fibrosis. Besides TLR4, LPS
recognition involves LPS-binding protein (LBP) and CD14 (164).
Clinically, elevated LBP levels correlate with insulin resistance and
dyslipidemia in non-alcoholic fatty liver disease (NAFLD) or NASH
patients (165). In high-fat-diet MAFLD models, LBP-knockout
mice show improved lipid metabolism and milder pathology
(166). LPS can cleave membrane-bound CD14 (mCD14),
releasing presepsin into circulation (167), while CD14 depletion
reduces liver lipids and macrophage content, ultimately alleviating
steatosis (168). Both MAFLD patients and animal models exhibit
increased serum LPS (169). Studies have demonstrated that
antibiotic treatment (e.g., polymyxin B targeting Gram-negative
bacteria) effectively lowers TNF production and plasma LPS levels,
reversing hepatic steatosis (170).

Therapeutic strategies targeting LPS hold promising potential
for clinical exploration. As a central mediator linking “leaky gut” to
hepatic inflammation, LPS acts as an accelerator in the pathogenesis
of MAFLD. Its multi-faceted mechanisms—driving liver
inflammation, insulin resistance, and fibrosis through the TLR4
signaling pathway—make it a valuable therapeutic target. From a
diagnostic perspective, the levels of serum LPS, LBP, or CD14
should be considered as potential non-invasive biomarkers for
evaluating intestinal barrier function and systemic
inflammatory status.

2.6 Bacterial extracellular vesicles

Both Gram-positive and Gram-negative bacteria produce
bacterial extracellular vesicles (BEVs) (171). Under normal
physiological conditions, the liver manages the physiological
stress caused by BEVs. However, in MAFLD, dysbiotic gut
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microbiota releases excessive BEVs loaded with bioactive bacterial
components (e.g., LPS, bacterial DNA, and proteins) (172). These
vesicles cross the compromised gut barrier (“leaky gut”) and enter
the liver via the portal circulation. BEVs from different bacteria
exert harmful effects through distinct molecular activations, i.e.,
outer membrane vesicles (OMVs) from Gram-negative bacteria are
LPS-rich, with lipid A specifically recognized by TLR4 (173);
cytoplasmic membrane vesicles from Gram-positive bacteria
express lipoteichoic acid, activating TLR2 (174); and BEVs from
pathogens like Porphyromonas gingivalis (with high LPS levels)
induce M1 macrophage polarization and amplify pro-inflammatory
responses (175). By delivering virulence factors directly to host cells,
BEVs significantly contribute to inflammation and disease
progression. Fizann et al.’s research reinforces the detrimental
role of BEVs in disease states, demonstrating that administration
of fecal-derived extracellular vesicles (fEVs) from NASH patients
upregulates pro-fibrotic and pro-inflammatory protein expression
in hepatic stellate cells and increases intestinal permeability in wild-
type mice. Their study specifically highlighted the pathogenic
contributions of nmMLCK and LPS carried within BEV cargo
(176). Critically, additional evidence implicates BEV-carried DNA
in pathology: Luo et al. demonstrated that Vsigd+ macrophage
deficiency in disease states facilitates translocation of microbiota-
containing extracellular vesicles (mEVs), leading to accumulation of
microbial DNA in hepatocytes and hematopoietic stem cells. This
subsequently activates the cGAS/STING signaling pathway,
mediating inflammatory responses (177).

It should be noted that previous studies have also confirmed the
beneficial effects of beneficial intestinal bacteria on disease phenotypes,
for instance, BEVs from lactic acid bacteria demonstrate efficacy in
reducing oxidative damage (178), and studies confirm the protective
effects of Enterococcus faecium-derived EVs against ethanol-induced
hepatic injury in rats (179). Therefore, the source of gut bacteria and
the type of cargo content may constitute the pivotal determinant
underlying the double-edged effects of BEVs. There is an urgent need
for in-depth research to differentiate the roles of BEV origin and cargo
composition in MAFLD (Figure 1).

BEVs hold broad potential for exploration, primarily
encompassing applications as non-invasive diagnostic biomarkers
and targeted therapeutic vehicles. For instance, specific BEVs in the
blood or their cargo—such as microbial DNA and proteins—could
serve as novel non-invasive biomarkers for assessing gut microbiota
status and MAFLD disease activity. Additionally, engineered
exosomes derived from intestinal probiotics are being investigated
for their ability to precisely deliver anti-inflammatory or metabolic
regulatory factors, combining favorable biocompatibility with
therapeutic efficacy.

2.7 Crosstalk among bioactive substances

It is important to note that gut microbiota-derived bioactive
substances do not exert their biological functions independently but
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rather regulate each other’s metabolic homeostasis through various
crosstalk mechanisms, thereby achieving integrated regulation of
hepatic lipid metabolism. Studies have reported the mechanisms by
which SCFAs influence bile acid metabolism. Tolhurst et al.
discovered that short-chain fatty acids can trigger the secretion of
glucagon-like peptide-1 (GLP-1) (180). In a clinical study, GLP-1
agonists demonstrated even better efficacy in treating bile acid
diarrhea than the standard-of-care bile acid sequestrant
colesevelam (181), suggesting that short-chain fatty acids play a
positive role in stabilizing bile acid metabolism. Lu et al. indicated
that short-chain fatty acids activate the FXR-FGF15-CYP7A1
pathway, reducing bile acid synthesis and improving bile acid
metabolism (182). Crosstalk between tryptophan and bile acid
metabolism has also been reported. Chen et al. found through
exogenous supplementation in mice that tryptophan inhibits
intestinal FXR signaling and promotes hepatic bile acid synthesis
and excretion, accompanied by elevated levels of conjugated bile
acids and an increased ratio of non-12-OH to 12-OH bile acids in
hepatic and fecal bile acid profiles (183). IDO-1 is the rate-limiting
enzyme in tryptophan degradation. However, Qiao et al.
demonstrated that inhibition of IDO-1 expression leads to a
decrease in SCFA levels (184), suggesting a crosstalk effect
between tryptophan or its derivatives and SCFAs, though further
research is needed to elucidate the underlying mechanisms. In
summary, crosstalk exists among gut bioactive substances such as
SCFAs, bile acids, and tryptophan metabolites. Abnormal levels of
any of these gut microbiota-derived bioactive compounds may
impact the levels of others, ultimately leading to changes in the
overall metabolic network. More research is needed to achieve a
deeper understanding of this network, which could aid in the
formulation of postbiotic combination therapies.

3 Diagnostic potential of gut
microbiota-derived bioactive
compounds in MAFLD

The dysregulation of the gut microbiome and its bioactive
compounds is closely linked to MAFLD progression, offering a
promising diagnostic tool for MAFLD (36). Advances in multi-
omics technologies have made it feasible to leverage gut microbiota-
derived bioactive compounds for MAFLD diagnosis (12). For
instance, Zhang et al. studied 60 MAFLD patients and developed
a metabolomics model centered on propionate and butyrate
analogues as key differentially expressed markers. This model
achieved an AUC of 0.94, outperforming phenomics (AUC=0.91)
and gut metagenomics (AUC=0.78), and combined metabolomics-
phenomics model further improved diagnostic accuracy
(AUC=0.97) (185). Beyond distinguishing MAFLD from healthy
individuals, these compounds can also identify MAFLD
comorbidities. For example, Li et al. used a random forest (RF)
machine learning algorithm integrating gut metagenomics and
plasma metabolomics to recognize MAFLD patients at risk of
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Mechanisms underlying the association between gut microbiota-related bioactive substances and MAFLD. The green terms in the “intestinal

epithelial cells” column indicate beneficial components, yellow represents neutral components, and red indicates harmful components; the blue
terms in the "Target or Source” column denote beneficial targets, while red denotes harmful targets. GPR, G-Protein Coupled Receptor; HDAC,
Histone Deacetylase; FXR, Farnesoid X Receptor; TGRS, Takeda G-protein-coupled Receptor 5; AhR, Aryl Hydrocarbon Receptor; TLR, Toll-Like
Receptor; OTUB1, OTU deubiquitinase, binary 1; HULC, Highly Upregulated in Liver Cancer; PERK, PKR-like Endoplasmic Reticulum Kinase; LBP,

Lipopolysaccharide-Binding Protein; CD14, Cluster of Differentiation 14.

cardiovascular disease (186). Furthermore, monitoring disease
progression using gut microbiota-derived bioactive compounds
has also been reported. Luo et al. demonstrated through targeted
metabolomics that nine metabolites are involved in the metabolic
reprogramming of MAFLD-related inflammation. They
constructed a machine learning model using seven of these
inflammation-related metabolites to assess MAFLD disease
progression (187). Lin et al. established a comprehensive model
incorporating short-chain fatty acid/tryptophan metabolites and
clinical variables such as arm circumference, which showed good
predictive power for severe liver steatosis (45). In addition to
building diagnostic models, some studies have reported
independent risk metabolites for MAFLD. Barrea et al. found that
Trimethylamine N-oxide (TMAO) can serve as an early biomarker
for adipose tissue dysfunction and NAFLD even in the absence of
overt metabolic syndrome, suggesting that a TMAO-based
threshold could help identify the NAFLD population (188).

BEVs deserve special attention as diagnostic tools due to their
accessibility and non-invasive nature. Their stronger
immunogenicity compared to host-derived vesicles enhances
diagnostic specificity (189). Studies have shown significantly
elevated LPS-positive BEVs in plasma from patients with gut
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barrier dysfunction, correlating positively with plasma ZO-1
levels, indicating reduced mucosal integrity and increased
permeability. This positions LPS-positive BEVs as promising
biomarkers for intestinal barrier damage (172, 190). However,
diagnostic potential varies based on the sources of BEVs source,
i.e.,, fecal BEVs are abundant but prone to environmental
contamination during collection, limiting their accuracy for
systemic conditions, while blood-derived BEVs reflect more
accurately the whole-body status but face technical challenges in
isolation and characterization due to low biomass, typically yielding
less material than fecal samples (191).

Despite these encouraging findings, the current research
landscape has limitations. Many studies are preliminary, with
small sample sizes, and lack validation in large, independent
cohorts. The diagnostic models often require further refinement
for clinical application. For BEVs, standardized protocols for
isolation and characterization are urgently needed. Therefore,
while existing evidence robustly confirms the principle that
microbial products can serve as biomarkers, future research must
focus on translational validation, standardization of assays, and
determining the incremental value of these biomarkers over
established clinical parameters.
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4 Therapeutic strategies targeting gut
microbiota-derived bioactive
compounds

Modulating levels of SCFAs, BAs, and tryptophan derivatives
has proven effective therapeutic treatment against MAFLD. For
instance, Yan et al. demonstrated that fecal microbiota
transplantation from mice treated with Morinda citrifolia
polyphenol extract elevated SCFA-producing bacteria. The
resulting increased levels in SCFAs activated the intestinal FXR-
FGF15 pathway, subsequently triggering hepatic FXR to suppress
CYP7A1 expression—thereby regulating cholesterol-to-BA
conversion and maintaining lipid homeostasis (46). Liu et al.
found electroacupuncture (EA) improved adipose tissue
pathology and reduced the levels of total cholesterol/triglycerides
by modulating lipid metabolism-associated gut microbiota,
increasing the levels of SCFAs, and activating PPAR signaling
(47). Wu et al. showed that Akkermansia muciniphila
supplementation reshaped BA profiles by regulating the gut FXR-
FGF15 axis (192). Nie et al. identified multiple microbially modified
BAs, including the previously uncharacterized 3-succinylated cholic
acid (3-sucCA), that inversely correlated with liver injury in biopsy-
confirmed MAFLD patients. Furthermore, 3-sucCA alleviated
MASH by promoting A. muciniphila (193). Moreover, oral

10.3389/fimmu.2025.1682755

administration of indole-3-acetate has been demonstrated in
preclinical studies to suppress the expression of several enzymes
involved in hepatic lipogenesis and beta-oxidation, while
concurrently mediating anti-inflammatory effects in macrophages
through the AMPK signaling pathway (143).

Dietary interventions, probiotics/prebiotics, microbiota
transplantation, engineered bacteria, and postbiotics all show
therapeutic promise. However, each has its own advantages and
disadvantages (Table 3). Dietary intervention is a relatively safe
treatment strategy. High-fiber diets provide abundant SCFA
precursors (194), while Mediterranean diets—rich in polyphenols,
polyunsaturated fatty acids (PUFAs), oleic acid, carotenoids, and
fiber—exert antioxidant, anti-inflammatory, and antimicrobial
effects (195). Both types of diets are recognized as MAFLD
mitigators. A meta-analysis integrating 11 studies assessing
Mediterranean diet adherence scores demonstrated that this
dietary strategy significantly reduced body weight and alanine
aminotransferase (ALT) levels, suggesting its efficacy in
supporting weight loss and improving liver health in patients
with MASLD/MASH (196). Clinical observations indicate that a
daily intake of 24 grams of fiber reduces hepatic steatosis and
significantly lowers aspartate aminotransferase (AST) and total
cholesterol levels (197). However, patient compliance, individual
variability, and delayed efficacy necessitate positioning dietary
therapy as a foundational approach. Meanwhile, Probiotic/

TABLE 3 Advantages and limitations of gut microbiota regulation strategies in MAFLD.

Representative
method

Strategy category

Advantage

Limitation

High safety with no side effects

Increase SCFAs production and improve

Great differences in compliance

Slow onset (requires long-term adherence)

Dietary intervention High-fiber diet insulin sensitivity (197)
Significant individual
Regulate gut microbiota diversity ignitican ‘m tvidual response
heterogeneity
Strong strain specificity and unstable
Non-invasive with good tolerance 5 P £ "
efficacy
Bifidobacteria +
Probiotics/prebiotics Fructooligosaccharides Enhance intestinal barrier and inhibit LPS Colonization resistance affects long-term (209)
(synbiotics) translocation efficacy
Some strains have enzyme-lowering effects  Lack of standardized preparations
Avoid the problem of viable bacteria Immature colon-targeted delivery
colonization technology
Postbiotics Butyrate preparations High stability and controllable dosage ngh doses may cause gastrointestinal (210)
discomfort
Directly supplement active metabolites Relatively high cost
Rapidly reshape microbiota structure Risk of infection/microbiota disorder
Fecal microbiot: T lantation of microbiot:
e mlcro.lo 4 rensplantation ot microblota Doubts about the durability of efficacy (211)
transplantation from healthy donors . R .
Potential reversal of insulin resistance
Lack of ethics and standardization
Precisely degrade specific toxins Controversies over biosafety
Dual-Targeted Nanoparticles
Engineered bacteria therapy = Hitchhiking on Lactobacillus Difficulty in industrial production (201)

rhamnosus

Programmable control of microbiota
functions

Unknown immunogenicity
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prebiotic supplements also demonstrate benefits. A clinical study
demonstrated that short-term probiotic supplementation can
improve ALT, AST, and BMI (NCT06074094) (198).
Supplementing with prebiotics alone has also yielded positive
clinical results. For example, Lycium barbarum polysaccharide
(LBP) supplementation reduced ALT levels in MAFLD patients
(ChiCTR2000034740) (199). It should be noted that most prebiotic
research remains at the preclinical stage. For instance, Ma et al.
revealed that Tricholoma mongolicum polysaccharide (TMP)
significantly enhanced gut microbial o-diversity in MAFLD
models, restructured community composition, lowered
Firmicutes/Bacteroidetes ratios, and enriched SCFA-producing
microbial genera. Proteomics confirmed that TMP suppressed
hepatic immune inflammation and ferroptosis while enhancing
metabolic homeostasis pathways (200). Whether these agents have
clinical translational value requires further validation. Engineered
bacteria represent another group of frontiers. Zhang et al. used dual-
targeted nanoparticles hitchhiking on Lactobacillus rhamnosus to
enhance gut accumulation and liver-targeted delivery of
anthocyanins, improving MAFLD treatment (201). However, it
must be noted that safety concerns, bioethical concerns and
industrial-scale production hurdles remain. Fecal microbiota
transplantation (FMT) was previously considered a potential
therapeutic approach and demonstrated success in preclinical
studies (202). However, conflicting results in clinical trials have
introduced uncertainty regarding this strategy. The study by Xue
et al. reported that allogeneic FMT administered three times within
three days reduced hepatic fat accumulation (203). However,
Groenewegen et al. found no significant effects of FMT on liver
steatosis, glucose tolerance, hepatic biochemistry, or gut microbiota
composition in their clinical trial (NCT04465032) (204). Craven et al.
reached an intermediate conclusion, demonstrating that FMT did not
improve hepatic proton density fat fraction (PDFF) but might reduce
intestinal permeability in patients with MAFLD (NCT02496390)
(205). Moreover, FMT still faces significant challenges before it can
be widely adopted in clinical practice, including infection risks,
potential dysbiosis, and ethical dilemmas (206). The clarified roles
of gut microbiota-derived bioactive compounds have paved the way
for postbiotics. These overcome limitations of live bacteria (ie.,
colonization issues, stability challenges, and dosing precision) and
stand as a promising MAFLD treatment strategy (207). Clinical trials
by Fogacci et al. have demonstrated that a butyrate-based therapeutic
strategy reduces hepatic steatosis scores and improves key lipid
profile indicators (208).

5 Conclusion

MAFLD, the most prevalent chronic liver condition worldwide,
is increasingly linked to gut dysbiosis and metabolic disruption. This
review systematically details how gut microbiota-derived bioactive
compounds—SCFAs, BAs, tryptophan derivatives, MTAO,
endotoxins, and bacterial extracellular vesicles—orchestrate
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MAFLD progression from steatosis to steatohepatitis and fibrosis.
These gut microbiota-derived bioactive compounds directly or
indirectly modulate hepatic lipid metabolism, gut barrier integrity,
immune responses, and signaling pathways (e.g., FXR, TLR4, and
AMPK). Clinically, characteristic microbial metabolite profiles offer
novel diagnostic biomarkers (e.g., propionate/butyrate ratios for
SCFAs and 12-OH/non-12-OH BA ratio) to enhance diagnostic
accuracy. BEVs, with their high specificity and accessibility, show
promise as non-invasive indicators for MAFLD progression.
Therapeutically, strategies targeting gut microbiota-host metabolic
linkages—high-fiber diets, probiotics/prebiotics, FMT, engineered
bacteria, and postbiotics—hold significant potential for the
treatment of MAFLD. By restoring microbial balance and
metabolite homeostasis (e.g., boosting the levels of SCFAs, and
normalizing BAs), they effectively combat hepatic lipid
accumulation and inflammation. Currently, elucidating the role of
gut microbiota-related bioactive substances in MAFLD remains
challenging. Firstly, while most studies suggest that SCFA
supplementation is beneficial for individuals, there are also reports
of ineffective or even harmful outcomes. Similarly, conflicting
research results exist for BAs and TMAO, necessitating more
precise variable control to clarify the effective and harmful ranges
of these bioactive substances, thereby unlocking their potential for
clinical applications. Secondly, the heterogeneity of individual
microbiomes affects diagnostic consistency. Relatively few studies
focus on the diagnostic utility of gut-derived bioactive substances,
highlighting the need for larger sample sizes and stricter enrollment
criteria to develop diagnostic models with clinical applicability.
Additionally, the mechanisms of certain bioactive compounds
(e.g., BEVs) in MAFLD progression are not yet fully understood.
Greater efforts to clarify the roles of these bioactive compounds will
facilitate drug target design and translation. In terms of clinical
translation, challenges such as probiotic colonization efficiency, the
safety of FMT, and ethical concerns regarding engineered bacteria
remain significant obstacles. Further discussions are needed to
determine the most suitable therapeutic strategies for MAFLD.
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