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Humoral Immunity plays an important role during Mycobacterium tuberculosis
(Mtb) infection. In mouse models, polyvalent and monoclonal antibodies
targeting Mtb provided some protection against tuberculosis (TB). The five
human antibody isotypes (IgG, IgM, IgA, IgE, and IgD) mediate an array of
functional activities against bacterial infections, including neutralization,
antibody-dependent cellular cytotoxicity (ADCC), phagocytosis, and
complement activation. Different antibody isotypes have functions through
different protective mechanisms based on the biological structures and
pathways involved. In this review, we summarize the research progress on the
different isotypes of antibodies against TB, and discuss the antibody-based
strategies against tuberculosis, the potentiality of antibodies in TB diagnosis,
and suggest further research directions, including investigating the mechanisms
of different isotypes of antibody-mediated protection against TB, identifying
correlates of immunity, and novel vaccines development.

Mycobacterium tuberculosis, tuberculosis, humoral immunity, antibody isotype, BCG

Introduction

Tuberculosis (TB) is still a leading cause of death from a single infectious disease. There
were about 10.8 million cases of active TB globally, with 1.25 million deaths in 2023 (1).
Currently, the only established TB preventive vaccine, Bacillus Calmettee-Guérin (BCG),
because of its variable efficacy in adults, is not good enough to control TB despite its
widespread use. Therefore, effective TB drugs and vaccines are the most urgent needs for
TB control and treatment.

The mammalian immune system has innate and adaptive components including
macrophages, dendritic cells, T cells, and B cells etc., which can cooperate to protect the
host against bacterial infections (2, 3). In humans, the adaptive immune responses,
including cellular and humoral immunity to Mtb, play an important role in the outcome
of Mtb infection and disease progression (3-5). After Mtb enters the body, T cells and
B cells can collaborate to control infection and direct the adaptive immune response. B cells
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have the functions to present Mtb antigens to activate T helper cells,
which in turn stimulate B cells to produce antibodies and become
memory B cells (6-8). Moreover, both cell types can produce
cytokines, which can help regulate the immune responses to TB
(6-8). Therefore, understanding the B-cell responses and protective
roles of different antibody types in TB challenges the long-held
dogma that cellular immunity alone is sufficient to fight
Mtb infections.

In the late nineteenth century, it was thought that the animal’s
serum therapy was effective in treating tuberculosis patients, but
later the antibody effects were considered insignificant because of
the inconsistent trial results (9, 10). There is now accumulated
evidence that antibodies contribute to the prevention of M.
tuberculosis infection and the progression of tuberculosis (11-19).
However, evidence from passive monoclonal antibody (mAb)
studies does not necessarily reflect the protective humoral
immunity developed during a natural Mtb infection. Blocking of
Th2 cytokines IL-4 can enhance host resistance and passive IgA
protection against tuberculosis (20, 21). Understanding the
antibodies” roles, the targeting antigens, and the protective
mechanisms will help us develop more effective diagnostics and
novel TB vaccines in a more rational way (22). In this review, we
summarize the research progress about antibody subclasses, various
antibody effector functions, the antibodies in TB diagnosis, and
raise important and potential scientific questions for TB antibody
research in future studies, which can be a reference and help in the
design and development of novel vaccines and therapeutics.

Antibody isotypes and subclasses

The antibody is a Y-shaped or T-shaped heterodimeric protein
consisting of two heavy chains and two light chains, which are
secreted by the plasma B cells (23). B cell receptor (BCR) -ligand
interactions play a critical role in regulating B cell behavior, and
primary B cell development and survival (24). The antibodies are
further classified into five isotypes, named IgM, IgA, IgG, IgE, and
IgD, depending on the unique constant region of the antibody (25)
(Figures 1A, B). Major antibody isotypes display distinct serum
abundances and half-lives: IgG (70-80% of total serum) has a ~21-
day half-life; IgA (~15%) shows a short monomeric half-life
(~1 day) but a longer secretory dimer half-life (~5-6 days); IgM
(~10%) has a ~5-day half-life; IgD (<0.5%) and IgE (<0.01%) have
short half-lives (~2-3 days and ~2 days, respectively) (26-28).
Different quantities of antibodies and persistence can also affect
immunological effects. For example, the extended half-life of IgG,
mediated by FcRn recycling, is why this class is responsible for long-
term immunity following vaccination or infection (26-28). The
differences in antibodies’ constant regions could be reflected in the
fact that each antibody isotype plays different roles throughout the
infection process (29, 30). The antibodies have considerable
diversity in the location and number of the conserved N-linked
glycosylation sites that are located at the Fc as well as Fab regions.
For IgG, it bears a single N-linked glycosylation site at asparagine
297 (N297) of each heavy chain and has shown importance in
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antibodies’” functions. The antibodies’” hinge region can contain N-
and O-linked glycans (31, 32) (Figure 1A). IgG is the most
important isotype in blood and extracellular fluids, while IgA is
mainly secreted by plasma cells within mucosal membranes lining
the intestines, airways, and reproductive tracts. IgG has a higher
efficiency in regulating macrophage phagocytosis compared to IgA
because of its functional location and easy access to T helper cells
and molecules (33). IgA is the primary antibody protecting the
mucosal surface, excelling at defending against invaders that can
penetrate the mucosal barrier, with a unique tail structure that could
resist acids and enzymes (34). IgE levels are very low in the blood
and primarily bound to mast cell receptors located in the skin and
submucosa. Antigen-binding IgE has induced mast cells to release
chemicals to control pathogenic spread (35). Most antibodies are
diffusely distributed throughout the body from the site of synthesis,
while secretory IgA needs to be transported to the apical surface
through the polymeric immunoglobulin receptor (pIgR) (36).
Different isotypes of antibodies have been developed to work in
various bodily regions. These antibody isotypes exhibit variable
characteristics at different body locations to counteract pathogenic
infections. Specifically, each antibody isotype has a specific structure
that affects its function. For example, IgM, which exists as a
pentamer, enhances antibody-antigen avidity in the form of
multi-site binding and the ability to bind complement (37, 38). In
the case of IgD, the heavy chain glycosylation leads to the formation
of a T-shaped structure that increases the flexibility of the hinge
region, which could well facilitate the epitope binding of the
antigens and the synergistic action of IgM in the early stages of
pathogenic infection (32, 39). IgD and IgG share the same basic
structure but have a longer hinge region that is easily hydrolyzed by
proteases (40). The other isotypes of antibodies, IgA and IgE, are
smaller and can diffuse easily out of the blood into the tissues (40).

In addition to this, each antibody is further subdivided into
several different subclasses based on the amino acid composition of
the hinge region and the number and location of disulfide bonds
(41). In mammals, there is only one type of IgM except for cattle
(Bos taurus), which has two Igu genes on the same chromosome
and expresses two subclasses of IgM, IgM1 and IgM2 (42). Human
IgG can be classified as IgG1, IgG2, IgG3, and IgG4, while mouse
IgG is classified as IgG1, IgG2a/c, IgG2b, and IgG3. IgG1 is also the
most promising subclass for tumor immunotherapy, and because
human IgGl1 is also able to bind effectively to the murine Fcy
receptor, significant effects can be observed in an in vivo mouse
model (11, 43, 44) (Figure 1). IgG2 is mainly used to neutralize
pathogen toxins or block the binding of receptor ligands, and its
measured complement-dependent cytotoxicity (CDC) and
antibody-dependent cell-mediated cytotoxicity (ADCC) effects
have been shown to be very weak (45) (Table 1). IgG3 has the
strongest binding capacity to FcyRs, triggers ADCC and antibody-
dependent cell-mediated phagocytosis (ADCP), and has a stronger
CDC effect than IgG1 (43-45) (Table 1). The hinge region of the
IgG4 molecule is short, and its binding to FcyRs was weak (43, 55)
(Figure 1). In humans, there are two subclasses of IgA, IgAl and
IgA2. Circulating monomeric immunoglobulin A (mIgA) and
dimeric secretory IgA (sIgA) are two structures of IgA antibodies.
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FIGURE 1
Structure of antibodies’ isotypes and subclasses. (A). The general structure of antibody. The variable glycosylated chains are distributed in different
antibody fractions such as the Fab and Fc domain. (B). The structure and characteristics of antibody isotypes. The IgG is classed into 4 subclasses,
including 1gG1, 19G2, 19G3, and 1gG4, according to the variations in heavy and light chain disulfide bonds. IgG subclass identified by FcyR affinity. In
particular, IgG and IgE are only present as monomers, while the IgA exists either as monomers, such as IgAl and IgA2 or as dimers. Additionally, IgM
is solely presented as multimers, primarily as pentameric structures. N-glycosylation sites: ; O-glycosylation sites.

Monomeric IgA is mostly IgAl in the bloodstream and has
functions as systemic immunity, while dimeric sIgA is the
principal antibody of external secretions and the mucosal
immune system (42). The differences between IgA1 and IgA2 are
mainly in the structure of their hinge region and the number of
glycosylation sites (57). In serum, the ratio of IgA1 and IgA2 is 9:1,
whereas in mucosal tissues, IgA1 and IgA2 are evenly distributed.
By contrast, mice have only one IgA isotype and lack a functional
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homolog to FcoRI, which is different from human beings (57)
(Table 1). The studies indicate that IgA effector functions depend on
subclass and glycosylation, and the balance of subclass distribution
and IgA1/IgA2 ratio is associated with host immune responses and
disease progression (58), and the mechanisms of these need to be
further investigated.

Different cytokine stimulation in vitro can induce B cells to
secrete different antibody subclasses: IFN-y can induce the
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TABLE 1 Different classes and subclasses of antibodies and their Fc fractions’ functions.

Mouse
antibody
subclass

Human
antibody
subclass

Human

antibody
isotype

IgM has only one isotype in mammals, except for cattle (Bos taurus), which express
two subclasses of IgM, IgM1 and IgM2.
Regulate primary infections.

IgM IgM IgM

Activate complement systems in humans and mice.
IgM from mice can eliminate pathogens, especially in the primary infection period.

IgD IgD IgD

A main antibody subclass in blood; it binds effectively to the murine Fcy receptor.
IL-10 could act as a switch factor for IgG1 and IgG3.
Activated efficiently complements the cascade reaction in humans contrast to the 53)

IgG1 IgG1

mouse.

Neutralize pathogens’ toxins or block the binding of receptor ligands; Complement-
dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity

IgG2a
(ADCC) effects.

1gG2

lgG 1gG2b

Strongest binding to FcyRs.
Trigger ADCC, ADCP, and the strongest CDC.
In mice, IgG3 has a long half-life and the strongest binding capability to antigens.

1gG3 IgG3

Fc fractions’ functions

The function is similar to humans compared to mice, including regulating B cells’
maturity and selection.

IFN-y can induce the production of IgG2.

Lipoarabinomannan (LAM) from Mtb induces IgG2 production.

In mice, IgG2a has a stronger complement-activating ability compared to IgG2b,
which could regulate immune reactions by FcyRI, FeyRIII, and FcyRIV.

References

(46-48)

(49, 50)

(11, 43, 44, 51-

(45, 46, 54)

(43-45, 52, 53)

Binding to FcyRs was weak. It plays an essential role in anti-inflammation and

1gG4 -

hypersensitive stimuli.
IL-4 and IL-3 can induce the production of IgG4.

(43, 55, 56)

IgAl

In serum, the ratio of IgA1 and IgA2 is 9:1, whereas in mucosal tissues, IgA1 and
IgA2 are evenly distributed.

IgA e IgA
IgA2

IgE IgE IgE

production of IgG2 (61), while IL-4 and IL-3 can induce the
production of IgG4 (56), and IL-10 can act as a switch factor for
IgGl and IgG3 (51) (Table 1). Therefore, this area regarding the
mechanisms of antibody subclass protection deserves to be explored
in depth in the future.

The roles of antibody isotypes in TB
prevention and therapies

The aerosol containing Mtb enters the human lungs and is
phagocytosed by the resident alveolar macrophages (62-64). The
tissue-resident alveolar macrophage can secrete IL-1 to activate
interstitial macrophages for producing GM-CSF to activate
monocyte-derived macrophages, which can lead to lung tissue
damage (62-64) (Figure 2). Macrophages recognize the bacteria via
different surface receptors, including complement receptors, Fc
receptors, mannose receptors, and DC-SIGN receptor (65, 66). The
phagosome and lysosome fusion is a critical pathway for inhibiting
Mtb growth inside macrophages, and the granulysin and perforins
secreted by CD8+ T cells can work together to decrease the viability of

Frontiers in Immunology

The mice have only one IgA isotype and lack a functional homolog to FcaRI, which is
different from humans.

The main function of the isotype was regulating hypersensitive reaction and anti-
parasite immune response, which was similar to mice compared to humans.

(57, 58)

(59, 60)

macrophage intracellular Mtb (67, 68). Humans with IFN-gamma
receptor deficiency are susceptible to Mycobacterial infection (69, 70).
CD4+ and CD8+ T cells are important mediators of protection
against Mtb infection (71, 72) (Figure 2). Mtb is a kind of intracellular
pathogen that can arouse the Thl type immunity, comprising
monocyte activation and T cell cytotoxicity. B cells and T cells can
work together to prevent Mtb infection. T helper cells can stimulate B
cells to become activated and produce high-affinity antibodies,
become memory B cells, and help activate cytotoxic T cells to kill
macrophages (8, 73, 74). In the host granulomas B cells and T
follicular helper (Tgy) -like cells are important for TB control, and
Mtb antigen-specific B cells can direct Try -like cells into lymphoid
follicles, which can help in mediating Mtb control (75). On the other
hand, B cells can modulate T cell immune response by different
mechanisms such as antigen presentation, antibodies, and cytokines
production (6, 7) (Figure 2). In primates, the subclasses of antibodies
are related to the effectors’ response, such as cytotoxicity,
phagocytosis, and secretion of immune cytokines (17, 76, 77). The
amount and persistence of antibodies also have an important role in
Mtb infection. The low quantity of antibodies may not be enough to
confer protection, while the high amount of antibodies may not give
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Overview of antibodies’ roles in tuberculosis. Control of Mycobacterium tuberculosis (Mtb) is the result of multiple immune cell interactions, such as
T-cell, B-cell, macrophages, and dendritic cells (DC). Meanwhile, a variety of receptors and cytokines also mediated the process. The Mtb is
internalized into macrophage and DC via pattern recognition receptors (PRR), and survives inside the phagosomal compartment, after which the
apoptosis bodies carrying mycobacterial peptides are released. Several ways are employed by host cells to control Mtb: (1), These vesicles are
acquired by DC, and the mycobacterial peptides are loaded on the MHC class | or MHC class Il, which is presented to CD4+ T cells or CD8+ T cells.
The CD8 T cells combined with MHC class | are activated, and act as cytolytic T lymphocytes (CTL) secreting perforin and granulysin to lyse host
cells and kill Mtb. Moreover, the CD4+ T-helper (Th) cells combined with MHC class Il are activated and polarized into different subsets including
Thl, Th2, Thl7, and Treg. Among them, Thl cells can produce IL-2, TNF-a, and IFN-vy for interacting with macrophages. Th2 cells produce IL-4 to
mediate B cells. Regulate T cells (Treg) produce IL-10 or transforming growth factor B (TGF-f). Th17 cells produce IL-17, which can activate
polymorphonuclear granulocytes (PNG). (2), The Mtb is directly taken up by DC and is loaded on the MHC class | or MHC class II, with serial cells
mediating as described above. (3) The affinity of antibody Fc domain with complement component 1 (C1qg) causes complement-dependent
cytotoxicity (CDC), which regulates host cells to eradicate Mtb. The lysed cells release Mtb which is affected by antibodies during cell-to-cell

transfer.

protection, which is called a prozone effect (78-80). Studies indicate
that the constant regions with the variable regions of antibodies can
confer specific protective effects against Mtb infection (16, 17, 81, 82).
Different murine isotypes of antibodies, such as IgM, IgG1, IgG3, and
IgA, are passively protective against Mtb infection (Table 2).

IgM

IgM is expressed on the cell surface at the beginning of B-cell
establishment in the bone marrow and accompanies the entire
process of B-cell maturation. IgM is evolutionarily conserved and
can specifically bind antigens in the absence of prior immunization
(93, 94). IgM is the primary class of antibody produced early in host
infection and provides a rapid antibody response. The protective
roles of IgM against a wide range of pathogens, including
intracellular bacteria such as Mtb and Ehrlichia muris (E. muris),
have been demonstrated (95-100). IgM plays an indispensable role
in the development of an optimal germinal center (GC) reaction,
which is a prerequisite for the establishment of effective humoral
immunity for chronic TB control. The variation of specific Ig classes
may potentially affect TB disease progression (101). The
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immunodeficient mice, lacking IgM secretion, exhibit significant
susceptibility to TB, indicating the protective role of IgM in TB
progression (99, 102) Intravenous administration of the BCG
vaccine can prevent Mtb infection in a rhesus monkey model
(100), and the existence of Mtb-specific IgM in bronchoalveolar
lavage fluids (BALF) of the BCG-vaccinated monkeys implies that
IgM can have protection against TB in an early phase of Mtb-host
interaction (98, 100). The above results initiate a new era in the
study of IgM against TB and provide a new direction for the study
of the mechanisms of humoral immunity in fighting against
intracellular mycobacterial infection. However, early IgM
antibodies do not undergo somatic hypermutation and therefore
produce IgM with low affinity (33). Fortunately, IgM can form
pentamers, which spontaneously bind multivalent antigenic
molecules, such as bacterial capsule polysaccharides (103).
Therefore, the deficiency of IgM monomer avidity is compensated
by this multipoint binding ability (104). The rapid production and
efficient activation of IgM can be very effective in controlling
bacterial infections, which would have serious consequences if the
pathogenic infection is not controlled as soon as possible. Specific
long-lived IgM plasma cells can indeed demonstrate somatic
mutations, produce IgM antibodies, and contribute to long-term
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TABLE 2 Antibody isotype-mediated protection against mycobacterial infections.

10.3389/fimmu.2025.1682934

Organism/
Cells or . o o .
Target : antigen Timing of the administration of . .
Isotypes . animals Biological effects
antigens Challenge mAbs
Models
route
Human acute
Lipoarabinomannan monocytic Incubated cells with Mtb in the presence of Increase the phagocytosis of
IgM ; ) Mtb i (83)
(LAM) leukemia cell line IgM mycobacteria
THP-1
IgG1 Arabinomannan Mouse (BALB/c) Mtb Mixed mAbs with Mtb before infection CrU reductlon-and (84)
(AM) (intravenous) prolonged survival
Lipoarabinomannan Human epithelial Preincubated Mtb with mAbs before Inhibited the mycobacterial
IgGl Mtb - . (85)
(LAM) cells A549 infection load in cells
Administrated int itoneally mAb bef Reduced lung bacterial
1eG1 Pets.1 Mouse (BALB/c) | Mitb (acrosol) : ml.ms rated intraperitoneally m. efore educed lung bacteria a1
infection of 5 h burden
16G2b MPBS3 Mouse (BALB/c) M bovis ‘The n“lAbS incubated with M. bovis before Reduced lung Pathology and (86)
(intravenous) infection prolonged survival
. Administrated intraperitoneally mAb before
IgG2b OmpA Mouse (C57BL/c) M bovis infection of 5 h; four injections of antibodies Reduc?d lung pathology and (87)
(intranasal) i K bacterial burden
at 1-week intervals for mice treatment
Arabi M. (BALB/ Mib ( ! Enhance host survival and
1gG3 ( Arlaw)momannan azgszleL /C)C intrat:ae:l(:::l) Mtb incubated with mAb before infection Mtb confinements in (88)
granulomas
Heparin-binding .
Reduct f th d of
IgG3 haemagglutinin Mouse (BALB/c) | BCG (intranasal) BCG coated with the anti-HBHA mAb 'llen eli(s: ton of fhe spreac o (89)
(HBHA) !
Heparin-binding R . . S
. Human epithelial = Mtb (aerosol Preincubated Mtb with mAbs before Isotype-dependent inhibitory
IgA haemagglutinin R . . . (85)
cells A549 intratracheal) infection adhesion
(HBHA)
Reducing lung bacteria
16kDa o-crystallin Mtb Inoculation mAb at 2 h before and again at 2 | burdens, and IFN-y
IgA M BALB,
& (Acr) ouse ( /c) (intravenous) and 7 d after infection inoculation can help enhance ©0)
the effects.
TgA 16kDa o-crystallin Mouse (BALB/c) Mtb (aerosol or mAD were inoculated at vellrious dosing times -CFU .reduction in early-stage ©1)
(Acr) intranasal) pre- and post-challenge with Mtb infections
IgAl 16kDa o-crystallin Mouse (CD89tg) ~ Mtb (intranasal) mADb @ixed .with IFN-y was administered 2 h Reduc?d lung pathology and ©2)
(Acr) before infection bacterial burden
Administrated intraperitoneally mAb before Reduced lung bacterial
IgA LpqH Mouse (BALB/c) = Mtb (aerosol) infection of 5 h burden (14)

protection (105). IgM can function as an antimicrobial activity by
modulating multiple immune processes, including opsonization,
dendritic cell functions, T cell immunity, and humoral responses
(103, 106). During the active phase of TB, the IgM against different
Mtb antigens is induced within one month of infection (107). In
immunized rhesus monkeys, IgM titers are the strongest marker of
reduced bacterial load, and intravenous BCG administration to
rhesus monkeys elicited near complete immune protection against
TB (98). The IgM exhibits very potent anti-bacterial and viral
activity by fixing complement and mediating protection (108).
Benefiting from its pentameric and hexameric structure, IgM has
a high affinity to the complement component C1q and is therefore
more likely than IgG to utilize the complement system to
accomplish complement-dependent cytotoxic (CDC) processes
(109) (Figure 3). BCG can bind to Clq in the presence of IgM in
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serum samples from BCG-vaccinated people (110). Mild
tuberculosis meningitis (TBM) is associated with overall higher
IgM titers to Mtb antigens in the CSF and is characterized by an
enrichment of Mtb-specific antibodies that can activate
complement and drive phagocytosis by monocytes and
neutrophils (111). The mAb anti-LAM IgM A194 can inhibit Mtb
growth in human whole blood but not in macrophages, which
suggests that other factors, including complement, may be required
for the restrictive effects (100). Mouse mAb anti-LAM IgM TMDU3
can bind Clq and iC3b, activate the classical complement pathway
and enhance mycobacteria phagocytosis and promote the fusion of
phagosome and lysosome in a CD11b-dependent manner (83).
However, the detailed molecular mechanism by which IgM
mediates the complement system against TB remains poorly
characterized and warrants further investigation in future studies.
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neutralized with Mtb. (b) The antibody isotypes, IgG and IgA, inhibited biofilm formation. (c) The IgG and IgA activate neutrophil
opsonophagocytosis, oxidative bursts, and extracellular traps. (d) The antibody isotypes, IgG and IgA, mediated the trapping of Mtb in mucins. (e) The
IgM and IgG activate complement cascade to induce cell lysis through the membrane attack complex or drive Mtb clearance. (f) The IgG, IgM, and

IgA mediate opsonophagocytosis, oxidative burst, or release of cytokines

in macrophage cells. (g) The IgG isotypes drive natural killer (NK) cell

degranulation to kill infected cells. (h) The IgG, IgE, and IgD mediate the degranulation of mast cells, eosinophilic granulocytes, and basophilic
granulocytes to release vasoactive substances and cytokines in allergens or parasitic infections. (i) The follicular dendritic cells (FDCs) present

mycobacterial antigen to B cells. (j) The IgG, IgM, and IgA mediate DC to
mannose-binding lectin.

IgD

In general, the IgM and IgD are co-expressed on the mature B
cell surface before antigenic stimulation, and IgD may play a crucial
role in regulating B cell maturation (25). IgD isotypes are not
presented on the surface of primary B cells but on the mature B
cells, and are mainly expressed in the upper respiratory tract, where
they bind well to basophils and innate immune cells to promote
bactericidal activity through unknown receptors (25). Structurally,
IgD has the increasing flexibility of the hinge region, which greatly
augments antigen-antibody binding. In addition, IgD also
synergizes with IgM to have protection at the early stages of
pathogenic infections to exert anti-infective effects (112). One
study indicates that older TB patients have higher total IgD
levels (113).

[e[€]

Monoclonal antibodies of the IgG isotype have been utilized for
passive therapy, since IgG is the most abundant antibody isotype in
serum with a long half-life. The increasing evidence suggests
antibodies play a protective role in mouse infection models,
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enhance antigen uptake, processing, and presentation toward T cells. MBL,

including BALB/c and C57BL/6 (13, 17, 114). Intravenous
administration of the high dose of total human immunoglobulin
IgG (hdIVIg) to mice resulted in significantly reducing the organs’
bacterial loads in Mtb-infected BALB/c and C57BL/6 mice models
(15, 115). The hdIVIg may have protective effects, maybe because it
can modify the critical cells’ responses against TB, such as dendritic
cells and T cells (115). In another research, the human IgG was
administered into mice via the intranasal route, and the results
showed a remarkable decrease in pulmonary bacterial load in mice
(116), in this study, the gamma-globulin’s protection was abolished
after incubation with Mtb, which suggests a potential role of Mtb-
specific antibodies against TB (116). The di-glycosylated glycan
structures found on the Fc region of IgG can differentiate
tuberculosis infection (TBI) and active tuberculosis (ATB), as well
as discriminate treated ATB from ATB (27). Moreover, the TB-
specific IgG4 antibodies are evaluated in ATB but diminished after
TB treatment (27). The total Ig isolated from highly exposed
healthcare workers was injected into the mice 5 hours before
aerosol infection and can offer protection in the lungs’ CFU
reduction (13). The abundance of IgG3 from protective donors in
this study was higher than that from a nonprotective donor when
testing for decay kinetics in the mouse model in this study (13). The
functions of antibody subclasses could be affected by hinge region
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length and disulfide bonding, and longer, more flexible structures
implied an increased binding efficiency for antigens, complements,
and Fc receptors (117, 118) (Figure 3). Different subclasses may play
different regulatory functions at different stages of TB development
(119). The IgG1 antibody subclass against TB could increase the
TNEF-a release, responsible for disease localization and granuloma
formation at the early stages of infection (120, 121). The IgGl
monoclonal antibodies directed against LAM named SMITB14 can
increase the survival rate and reduce bacterial load and weight loss
in BALB/c mice (84). The human IgGl P1AM25 targeting
oligosaccharide (OS) motifs of AM can enhance Mtb
phagocytosis by macrophages, reduce intracellular growth in an
FcyR-dependent manner, and have protective effects in passive
transfer with Mtb-infected FcyR-humanized mice (114).
However, PIAM25 in murine IgG2a but not IgGl can give
protection against Mtb infection in C57BL/6 mice (114). Another
study indicates that the IgG1 of monoclonal anti-LAM increased
the mycobacterial load in A549 cells (85). The presence of only
neonatal receptors in the A549 cells, lacking conventional FcyR and
FcaR receptors expressed on the cell surface, may be the main
reason for the differences (85). Antibodies targeting polysaccharide
LAM and protein antigens in TB patients were predominantly of
IgG regardless of the patient’s clinical status (122). In murine
models of C. neoformans infection, the switch from IgG3 to IgGl
increases antibody protective efficacy against C. neoformans
infection (123). The mouse IgG2b monoclonal antibodies
targeting OmpA and MPB83 have shown a significant reduction
in the bacterial burdens in mice infected with M. bovis (86, 87). In
TB patients, different antibody isotypes are found to target
lipoarabinomannan (LAM), which is a mycobacterial cell wall
glycolipid component (54, 122). A significant switch from anti-
LAM antibody subclass IgGl to IgG2 was observed from
tuberculoid toward lepromatous forms, despite a constant total
amount of antibodies, suggesting that this conversion may be
associated with changes in antibody protective effects (122).

IgA

In the early stages of Mtb infection, IgA antibodies secreted
from the mucosal surfaces of the respiratory tracts play a key role in
the anti-infection process (Figure 3). The anti-HBHA IgA
monoclonal antibodies were shown to inhibit bacterial uptake in
lung epithelial cells (85). The use of arabinomannan reactive
monoclonal antibodies to opsonize Mtb demonstrates that IgG1
on THP1 monocytes has no significant difference in bacterial counts
compared with the isotype control, whereas the IgA1 isotype does
(85). A monoclonal antibody targeted Mtb surface lipoprotein
LpgH from a highly exposed but uninfected healthcare worker,
which was identified to be of IgA isotype in its natural form, was
shown to have protection against tuberculosis (14).

Antigen specificity influences protection, since a mouse IgA
monoclonal antibody binding to the Acr antigen named TBA61 was
found to be far more protective than an antibody TBA84 against the
PstS1 antigen (91). Mouse IgA monoclonal antibodies, regardless of
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their specificity, can inhibit the proliferation of mouse macrophage
cell lines. The anti-proliferative activity is manifested by IgA
binding to J774.1 cells, stimulating tumor necrosis factor (TNF)-
alpha production and inducing apoptosis, but not by mouse
monoclonal IgG and IgM (124). The TNF-o. is essential for
granuloma formation and macrophage recruitment at the early
stages of Mtb infection; however, too much TNF-o. can lead to the
necrosis of the infected macrophage cells and help the mycobacteria
release into the blood (125, 126). In addition, adding IFN-y before
macrophages infected with IgA-opsonized Mtb can increase nitric
oxide and TNF-a production, and decrease the bacterial counts in
macrophages (90). When Balb/c mice were inoculated with mouse
IFNy and an anti-Acr IgA TBA61 mAb via the intranasal route
(i.n.), a synergistic protective effect on reducing bacterial burdens
can be found for the lungs harvested 3 and 4 weeks after H37Rv
aerosol infection, while neither component alone was protective
(90, 127) (Table 2). Moreover, when co-inoculation of anti-Acr IgA
TBA61 mAb and mouse IFNY via i.n. route in Balb/c mice with IL-4
depletion by a neutralizing anti-IL4 mADb, a significant reduction of
bacterial burdens can be observed compared with IgA and IFNy
treatment in wild-type mice after H37Rv infection (21) (Table 2).
The studies indicate that the IFNy and IL4-mediated macrophage
functions are involved in the process which anti-Mtb IgA mAb
inhibit Mtb growth (21, 90, 127).

IgE

Specific IgE has been reported in TB patients, suggesting that
IgE may play an important role during TB disease progression (56,
128, 129). In TB patients, IgE levels are significantly elevated, and a
decrease in IgE levels after treatment is observed. In addition, total
IgE levels are significantly higher in TB patients with intestinal
helminths and human immunodeficiency virus (HIV) co-infection
than in those with helminths or without co-infection (p< 0.05)
(130). Specific IgE levels are elevated in both tuberculosis and
leprosy patients, and the differences can be observed between TB
patients and healthy controls (131). Therefore, changes in the level
of total IgE are often ignored in TB diagnosis (132, 133).
Conventionally, IgE is often used as a characteristic marker of
allergic diseases, and the relationship regarding specific IgE and TB
is still not very clear (133).

The roles of antibody isotypes in TB
diagnosis

The main component of immunologic diagnosis of TB is based
on the detection of antibody responses to Mtb antigens.
Mtb infection provokes a complex humoral immune response,
with different antigens expressed at different stages of the
infection (134, 135). Studies have shown that antigen or epitope-
specific serology may help in diagnosis, assessment of prognosis,
and monitoring of chemotherapy in TB patients (136-138). The
antigens selected for antibody detection are important. A systems-
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level analysis of the antibody response to the entire Mtb proteome
in TB patients indicates that Mtb immunoproteome is rich in
membrane-associated and extracellular proteins, and the antibody
responses to the same antigens varied among patients and are
correlated with bacillary burden (139). Using serology for active TB
patients finding could reduce the TB transmission, which can help
treat the patients and limit the spread timely (140, 141). The
previous studies have shown that the antigens such as 38-kDa
antigen (PstS1), the 16-kDa antigen (Acr), and LAM are the
immunodominant markers for ATB diagnosis (142-144). The
smear-positive pulmonary tuberculosis patients have increased
serum immunoglobulin titers against mycobacterial antigens;
however, there are still 10% didn’t show any increase (145, 146).
On the other hand, antibody-based assays have performed poorly
when used to diagnose sputum smear-negative TB, and antibody
responses can also be observed in past TB cases, which pose
additional challenges for TB serodiagnosis (147).

As the most predominant antibody isotype in serum, IgG has
been the focus of TB diagnosis. Serologically based detection of IgG
levels of single or multiple antigens is by far the most common
concept in TB diagnosis. 11 Mtb antigens are combined to detect
IgG levels, and the results showed an astounding sensitivity of over
95% in sputum smear-positive samples (148). In 755 HIV-
uninfected adults, the three-antigen model and the multi-antigen
model have shown higher sensitivity compared with the single-
antigen model (149). As such, IgG level against TB in the context of
polyprotein fusion from TB antigens is used in diagnosis to
discriminate TB patients. In terms of diagnostic sensitivity of up
to 90%, it shows that six antigen fusion became an effective way to
improve TB detection (150). The reason for using multiple antigens
to detect TB was that each antigen is expressed at a different stage of
infection, and the use of multiple antigens allowed for a more
accurate diagnosis. Similarly, each antibody subtype and subclass
significantly different at the stage of TB development, even when the
total amount is constant. Therefore, the combined diagnosis of
multiple isotypes becomes a possibility for efficient diagnosis.
Moreover, the characteristics of the antibody are also a factor for
an accurate diagnosis to distinguish the active TB and TBI. Some
groups have revealed the presence of distinct glycosylation patterns
in IgG Fc portion antibodies in active TB and TBI from South
Africa, the USA, and Mexico, implying that the glycosylation could
be a potential molecular target to differentiate between active TB
and TBI (15, 27). Recent studies have shown that subclass IgG4 also
serves as a new antibody signature for active TB, especially after
significant changes in treated TB patients, indicating potential as a
signature molecule for detection (27). FcyRI, an activating receptor
of immune cells, can be significantly upregulated by IFN-yand GM-
CSF and binds to monomeric 1gG1, IgG3, and IgG4 with a high
affinity (151). Therefore, the FcyRI levels can be a marker that
would help to improve the sensitivity of the detection to distinguish
between the active and latent infection. Apart from that, the IgG1
and IgG3 are also major antibody subclasses for complement
activation, with significantly higher levels of complement Clq in
active TB patients compared to those with latent infection (52, 53).
Therefore, the complement C1q expression related to active TB
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could be a potential marker to discriminate the TBI from active TB.
The high-affinity antibody receptor FCYR1A, which principally
binds the IgGl and IgG3 subclasses, has been observed to be
higher by analysis of whole blood transcription in active TB
patients than in those with TBI, regardless of HIV status or
ethnicity (152). Therefore, the FCYRIA expression level has the
potential to be a biomarker for indicating acute tuberculosis
in patients.

Mtb antigen-specific IgA antibodies could be used to develop
accurate tests for TB diagnosis, the studies suggest that IgA
targeting Acr could discriminate between clinical TB patients and
healthy controls (153, 154). Moreover, the anti-16kDa IgA and anti-
MPT64 IgA have been found suitable target molecules to
discriminate the active TB and TBI, with >90% sensitivity in
diagnosis (155). The role of IgM in TB diagnosis is not well
understood. The previous studies indicate that the diagnosis of
patients with TB by measuring the titer of IgM antibodies in serum
alone showed low sensitivity (156, 157). However, the combination
of IgG, IgM, and IgA antibody responses to protein antigens or
polysaccharides like LAM can improve the sensitivity and
specificity of active TB diagnosis (155, 158).The different
mycobacterial species may have their unique characteristics of
LAM structure. Rapid-growing nontuberculosis mycobacteria
(NTM) such as M. smegmatis have uncapped ends or inositol
phosphate caps (PILAMs), and slow-growing NTM such as M.
avium are capped with mannopyranose residues, which leads to
manLAM (159, 160). Therefore, it is important and possible to
develop antibodies specifically targeting Mtb regions to enhance the
specificity (161). Antigen variation in different lineages of Mtb
should also be considered when the Mtb-specific antibodies are used
for TB diagnosis. There is a 63bp deletion in Mtb lineage 4.2.2
(L4.2.2) strains, which may affect the MPT64-based testing results
in L4.2.2 isolates prevalent areas (162). Therefore, we should
consider the changing levels of antibodies and also epitopes
recognized by the diagnostic antibodies when conducting the TB
diagnosis protocol design to effectively improve the accuracy and
performance of the test.

Conclusions and perspectives

Tuberculosis is a contagious respiratory disease due to Mtb
infection and is one of the top 10 single pathogens in the world in
terms of mortality (163, 164). The problem of antibiotic therapy for
tuberculosis has led to the emergence of Mtb drug resistance. In
recent years, passive therapy with antibodies has become
increasingly popular for research as an alternative to
antimicrobial therapeutic agents. The effectiveness of various
antibodies relies mostly on isotypes, which allows them to
efficiently adapt to the most appropriate mode of transport across
the epithelium to the site of function. Additionally, crucial research
tools include broadly and powerfully antibodies, which may be used
to find protective epitopes that can be developed into functional
vaccines by structure-based reverse vaccinology. Currently, more
than 70 monoclonal antibodies have been approved for the
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treatment of various pathogenic bacterial infections (165).
However, many hurdles remain in the field of anti-infective
mAbs: finding optimal targets for a pathogen, understanding how
the isotypes, Fc receptors (FcRs), and other structural regions
mediate protection, and developing better pre-clinical and clinical
trials to investigate the therapeutic potential of these
antibodies (165).

Traditionally, it is believed that, as intracellular bacteria, the
protective immune response against TB is mainly exerted by T cell-
mediated cellular immunity, including CD4+ and CD8+ T cells
(166). However, in recent years, new findings suggest that B cells
also play an important role in the anti-TB process, but the exact
mechanisms are not well understood (167). Currently, BCG is the
most commonly used TB vaccine. Its role is preventing the onset of
meningitis and disseminating TB in infants and children.
According to the World Health Organization in 2017, 120 of the
158 countries that allow BCG immunization have 90% BCG
immunization coverage (168).

However, the failure of BCG to protect against pulmonary
disease in adults has limited its use in a larger range of
populations. In addition, significantly different immuno-
protective effects were observed with different immunization
routes of BCG, with significant immuno-protective effects
observed with mucosal immunization with BCG compared to
subcutaneous immunization (169, 170) and in intravenously
BCG-injected experimental monkeys (98)Changes in both cellular
immunity-related factors and antibody levels have been observed in
these studies, but their roles in host protection and their modes of
action remain to be answered.

Previous studies have mostly focused on eliciting cell-mediated
immune responses against TB (171-173). More and more studies
have shown that the host can produce protective antibodies against
TB, and an increasing number of Mtb antigens have been reported
to have the ability to induce protective antibodies (11, 14, 17, 174).
Therefore, the integration of humoral immunity into tuberculosis
vaccine development could be a potentially effective strategy. Recent
studies have shown that the subunit vaccines incorporating the
antigens arousing cellular immunity, such as Ag85A, and humoral
immunity, such as PstS1 or LpqH, can significantly enhance the
protective efficacy against TB (22, 175, 176), which gives us
suggestions that it is rational to design the TB vaccines based on
both cellular immunity and humoral immunity.

An ideal target is a prerequisite for an antibody to have its
functions. It is worth investigating whether specific antigens, their
relative concentrations, and post-translational lipid and
carbohydrate moieties influence the class or subclass of antibody
production in future studies. Mtb has secreted proteins playing
important roles in its virulence and immune evasion. The secreted
virulence proteins are secreted by secretion systems and can
modulate the host immune responses (177). Therefore, some
secreted proteins are possible therapeutic targets for TB
treatment. The development of antibodies targeting secreted
systems and proteins is a rational strategy for TB control and
treatment. The cell walls of M.bovis BCG resemble those of Gram-
negative bacteria and are presumed to have a four-layer membrane
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structure, from inner to outer: the cytoplasmic membrane, the
peptidoglycan-arabinomannan complex, the extracellular
membrane, and the outermost pod membrane (178). The
presence of 144 outer membrane proteins in Mtb was deduced
using signal peptide prediction, transmembrane protein prediction,
and B-strands amphiphilicity, but only MctB and OmpATb of Mtb
and MspA of M. smegmatis have been fully identified (179, 180).
Antibodies that recognize bacterial outer membrane proteins
generate immune protection (87), suggesting the potential value
of screening efforts for antibodies against outer membrane proteins
(87, 165). Given that most antibodies recognizing surface proteins
are currently uncharacterized, their anti-infective value awaits
further elucidation.

The antibody-dependent enhancement of infectious disease
should also be considered. The antibodies’ receptor FcyRI
inactivation can impact nitric oxide production by neutrophils,
antigen presentation, and antibody-dependent killing of pathogens
by macrophages (181, 182). Moreover, the improved Mtb control in
the lungs of Fcgrt”™ mice compared to the control mice was
observed and associated with reduced neutrophil recruitment
(181, 182). Neutrophil accumulation is associated with increased
disease severity in human TB and in mouse models of TB (183-
185). Moreover, one study indicates that rabbit anti-H37Rv sera can
facilitate the multiplication of BCG in the spleens of mice (186).
Antibodies” prozone-like effects should also be considered when
developing antibody-based treatment methods for TB (78-80). The
Mtb ‘decoy’ constituents also need to be considered. Antigens such
as PstS1 may exacerbate disease by inducing a Th2 response, while
anti-Acr antibodies show potential for protection, but the Th2
stimulant components need to be removed (21, 143, 187).
Although obstacles remain in identifying effective targets and
understanding how monoclonal antibodies protect against
different infections, progress in these areas is a positive indication
that monoclonal antibodies will be more widely accepted in the
future as a treatment for bacterial infections.

Above all, the different roles of antibodies™ isotypes in
tuberculosis need to be further investigated. The discovery of
protective antibodies against TB can contribute to TB prevention
and treatment. At the same time, the antigens identified following
the isolation of protective antibodies will help in the design and
development of novel tuberculosis vaccines.
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