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1 Introduction

Chronic wounds represent a major global health crisis, fundamentally characterized by

the failure of the immune system to resolve inflammation and transition to a pro-reparative

state (1, 2). Chronic wounds impose a staggering global burden, subjecting hundreds of

millions of patients to persistent pain, social isolation, elevated rates of depression, and a

markedly increased risk of mortality, thereby severely compromising their quality of life (3,

4). In healthy acute wounds, the immune response comprises a precisely regulated

sequence of events, initiating with an inflammatory phase for the clearance of debris and

pathogens, and transitioning to an active resolution phase that orchestrates tissue

regeneration (2, 5). In chronic wounds, this coordinated process becomes dysregulated,

resulting in a state of persistent, low-grade inflammation. This immunological

dysregulation is the central biological lesion (2, 6).

The clinical management of chronic wounds is traditionally guided by principles of

standard care, often summarized by the TIME framework (Tissue debridement,

Inflammation and infection control, Moisture balance, and Epidermal edge advancement)

(7, 8). While essential for preparing the wound bed, these measures are often primarily

supportive in nature (9). They manage the wound’s condition but frequently fail to actively

trigger the stalled healing cascade in a biologically non-permissive environment (10). This

insufficiency of standard care to overcome the intrinsic biological barriers of non-healing

wounds provides the fundamental rationale for shifting toward active therapeutic approaches

(10, 11). Consequently, the field has increasingly focused on strategies in bioengineering and

tissue engineering, which aim to directly intervene in and modulate the biological processes of

the wound to break the cycle of healing futility.

Within this paradigm of active therapeutic intervention, several major technological

branches have emerged. These include (1): Cell-based therapies, which involve the

application of allogeneic or autologous cells such as fibroblasts, keratinocytes, and stem

cells, sometimes delivered within living cellular constructs (e.g., Apligraf®, Dermagraft®)
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(2, 12, 13); Tissue-engineered scaffolds, utilizing materials like

acellular dermal matrices (ADMs) to provide a structural

template for cellular infiltration and tissue regrowth (3, 14, 15)

Bioactive molecule delivery, which uses biomaterial carriers to

release signaling molecules like growth factors (15, 16). Among

these diverse strategies, the approach centered on growth factor

delivery has attracted an immense volume of research.

Yet paradoxically, despite its compelling reparative potential and a

substantial research foundation, its clinical translation has been

profoundly disappointing (17, 18). This translational gap reveals a

critical paradox: within a persistent, pro-inflammatory

microenvironment, the biological efficacy of exogenously

administered pro-regenerative factors is severely compromised. This

failure suggests that current research strategies may suffer from a

fundamental limitation: they focus primarily on optimizing the

technical parameters of drug delivery (a pharmaceutical engineering

problem), while overlooking the fact that the core etiology of impaired

chronic wound healing is immunological dysregulation. To further

elucidate and validate this point, we use basic fibroblast growth factor

(bFGF) as a model for three reasons. First, as a potent mitogen for

fibroblasts and endothelial cells, bFGF promotes granulation tissue

formation and angiogenesis, addressing two key obstacles in chronic

wound repair. Second, bFGF is among the most intensively studied

growth factors in sustained-release and nanocarrier research (19–22).

Third, its well-defined molecular pharmacology—requiring heparin/

heparan sulfate–mediated receptor dimerization and downstream

signaling—makes it an ideal candidate for both advanced materials-

based manipulation and for systematically dissecting how

inflammation attenuates growth factor efficacy at the receptor,

signaling, and extracellular matrix (ECM) levels.

In this opinion article, we contend that the persistent failure of

growth factor-based therapies stems from a biologically naive

“container paradigm” that prioritizes delivery engineering over

fundamental immunology. We posit that the true obstacle to

chronic wound healing is the underlying immune dysregulation,

which renders pro-regenerative signals futile. Therefore, we

advocate for a paradigm shift toward “regenerative immuno-

engineering,” an approach that first actively modulates the

immune microenvironment to resolve inflammation, thereby

creating a permissive biological context for subsequent, precisely

controlled regenerative cues (Figure 1). This article will critically

dissect the biological pillars of failure in current approaches and

then outline a new blueprint for regenerative immuno-engineering,

emphasizing the strategic integration of immunomodulation with

spatiotemporal control of healing signals. It should be emphasized

that while bFGF serves as our central model, the immuno-

engineering paradigm we propose is equally applicable to other

regenerative strategies mentioned prior.
2 The “container” paradigm: a
biologically agnostic approach

The prevailing research framework for bFGF delivery can be

described as the “container” paradigm. The primary goal of this
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framework has been to engineer a physicochemically perfect vessel,

optimizing for key metrics, such as loading efficiency, stability, and

sustained-release kinetics from various platforms like hydrogels,

nanofibers, or microspheres (23, 24). A representative study within

this paradigm might report a high bFGF encapsulation efficiency of

> 90%, accompanied by elegant graphs depicting a smooth, linear,

zero-order release over 21 days in vitro (25, 26). These results,

however, would be typically obtained under sterile, acellular, and

protease-free phosphate-buffered saline conditions that bear no

resemblance to the chaotic, hostile milieu of a real chronic wound

(25, 26). This engineering-first approach is intellectually attractive

but biologically naive. Furthermore, this approach operates on the

flawed assumption that the chronic wound is a passive void, and

that a constant supply of a pro-regenerative factor is sufficient to

trigger healing.

This approach, while technically sound from a pharmaceutical

engineering standpoint, commits a dangerous reductionist fallacy in

that it attempts to address a dynamic, multifactorial, and systemic

biological problem with a single, constant, and context-independent

input (i.e., local bFGF concentration). This perspective

systematically overlooks the complex and dynamic immune

microenvironment of chronic wounds, which is characterized by

the predominance of pro-inflammatory M1-like macrophages,

excessive neutrophil extracellular traps (NETs) that cause

collateral tissue damage, and a milieu of cytotoxic cytokines and

proteases (6, 27, 28). In this specific context, any attempt to

promote regeneration is futile. This carrier-centric research

paradigm has failed because the pro-regenerative signals it

delivers cannot be effectively received and transduced by target

cells that exist in a pro-inflammatory state with altered

signaling pathways.
3 The biological pillars of failure: an
immunological re-examination

The clinical failure of growth factor-based therapies does not

stem from an insufficient potency of molecules like bFGF itself, but

rather from a profound immunological veto that systematically

dismantles their regenerative potential at every critical step (2, 14).

The “container paradigm” is inherently flawed because the pro-

regenerative “message” it delivers is intercepted, corrupted, and

ultimately ignored by target cells trapped in a non-resolving

inflammatory state. This failure is built upon three interconnected

pillars of immunological destruction.

First, the delivered growth factor is rapidly neutralized before it

can reach its target. The microenvironment of chronic wounds is

characterized by the infiltration and dominance of pro-

inflammatory immune cells, particularly M1-like macrophages

and hyperactivated neutrophils (28–31). These cells release a

complex cocktail of destructive enzymes, such as high levels of

matrix metalloproteinases (MMPs) (27, 32). Any exogenously

delivered protein, including bFGF, is highly susceptible to

degradation in such a proteolytically rich milieu. Furthermore,

excessive Neutrophil Extracellular Traps (NETs)—web-like
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structures composed of DNA and cytotoxic proteins—not only

cause collateral tissue damage but may also indirectly impede the

effective diffusion and utilization of growth factors (28, 29).

Consequently, in an environment that is both proteolytically

active and presents dual physical and chemical barriers, even the

most sophisticated sustained-release carriers cannot guarantee the

integrity and bioavailability of their payload.

Second, even if exogenous bFGF escapes degradation through

protective strategies, such as conjugation with heparin analogs (26),

the signaling responsiveness of target cells is already significantly

blunted by inflammation. The biological function of bFGF is highly

dependent on its specific binding to its cognate receptor complex.

This process is critically mediated by cell-surface heparan sulfate

proteoglycans (HSPGs) (33, 34), which in turn triggers downstream

intracellular signaling cascades, most notably the mitogen-activated

protein kinase/extracellular signal–regulated kinase (MAPK/ERK)

and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)

pathways (35–37). Specifically, the MAPK/ERK pathway is a

primary driver of cell proliferation and migration, stimulating the

proliferation and motility offibroblasts and keratinocytes, which are

essential for granulation tissue formation and re-epithelialization

(35, 36). Concurrently, the PI3K/AKT pathway plays a pivotal role

in promoting cell survival by inhibiting apoptosis and regulating

cell metabolism, while also fostering angiogenesis—all of which are
Frontiers in Immunology 03
indispensable processes for successful tissue regeneration (35, 37).

The chronic wound microenvironment directly impairs or

dismantles this signaling machinery. Activated immune cells,

including M1 macrophages and neutrophils, secrete high levels of

heparanase, and high expression of heparanase has been shown to

degrade HSPGs in various models of chronic inflammation (38, 39).

This creates a vicious cycle: inflammation destroys the very

receptors required for a pro-regenerative response (40, 41).

Concurrently, abundant pro-inflammatory cytokines in chronic

wounds, such as tumor necrosis factor-a (TNF-a), can

downregulate or interfere with several growth factor receptors

and their downstream signaling, rendering cells refractory to

proliferative/migratory stimuli (42, 43). Therefore, merely

increasing the concentration of bFGF is a futile strategy when

target cells have become insensitive or non-responsive to pro-

regenerative stimuli due to persistent and strong inflammatory

signal interference.

Finally, the entire cellular milieu is biologically misaligned and

non-conducive to regeneration due to a profound failure in the

process of “inflammation resolution.” Physiological healing is not

merely the cessation of inflammation but a biochemically

orchestrated program driven by specialized pro-resolving

mediators (SPMs) that guides the cellular state from a pro-

inflammatory phenotype to a pro-reparative phenotype (44–46).
FIGURE 1

Schematic illustration of the conventional “container” paradigm versus the proposed regenerative immuno-engineering paradigm for chronic wound
therapy. The left panel depicts the conventional “container” paradigm, where traditional biomaterials function as passive carriers, delivering bFGF into
the chronic wound. However, this microenvironment is characterized by persistent, non-resolving inflammation, driven by pro-inflammatory M1-like
macrophages secreting cytotoxic cytokines, excessive NETs, and the presence of bacterial biofilms. Despite bFGF delivery, this hostile inflammatory
milieu largely renders the growth factor ineffective, leading to impaired healing. The right panel illustrates the regenerative immuno-engineering
paradigm, a novel framework proposing the use of ‘smart biomaterials’ that first actively modulate the immune microenvironment. These smart
biomaterials release immunomodulators to reprogram immune cells (e.g., promoting the phenotypic shift of M1 macrophages toward a pro-
reparative M2 state, thereby facilitating the secretion of anti-inflammatory cytokines). Once immune homeostasis is restored and inflammation
resolves, the biomaterial can then effectively deliver pro-regenerative factors like bFGF. In this permissive environment, bFGF can effectively
stimulate fibroblasts to produce collagen and promote ECM deposition, and activate endothelial cells for angiogenesis, ultimately leading to
enhanced tissue regeneration and successful wound healing.
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Chronic wounds are characterized by a severe deficit of these SPMs,

leaving local cells trapped in a persistent, non-resolving state of

inflammation (47–49). In this context, delivering a potent mitogen

like bFGF via a passive carrier is biologically incoherent. It attempts

to impose a proliferative signal upon an immune system and a

stromal cell population that have not yet received the critical “stop

inflammation” and “initiate resolution” commands. This mismatch

does not lead to organized tissue regeneration but rather to

aberrant, non-functional tissue deposition and potentially

exacerbated fibrosis. In essence, the “container” approach fails

because it attempts to initiate the tissue regeneration program

before the critical biological prerequisite—the effective control

and resolution of inflammation—has been met.
4 A new blueprint: principles of
regenerative immuno-engineering

To break the translational stalemate, we must shift from the

“container” paradigm to one of “Regenerative Immuno-

engineering.” This approach views biomaterials not as carriers,

but as active immunomodulatory platforms. The primary goal

would be to re-establish immune homeostasis, thereby creating a

permissive environment for endogenous and exogenous

regenerative cues. This new framework is built on two core

principles, as described below. Table 1 summarizes representative
Frontiers in Immunology 04
engineering approaches that operationalize this regenerative

immuno-engineering paradigm, organized by therapeutic

principle, engineering modality, mechanism, and examples.
4.1 Active immunomodulation as a
therapeutic prerequisite

The primary objective of any advanced wound dressing must be

the active modulation of the immune microenvironment.

Pioneering studies have already demonstrated the feasibility of

this approach (50). Biomaterials have been successfully

engineered to drive macrophage reprogramming, shifting them

from the M1 to the M2 phenotype, a critical step in resolving

inflammation (51–53). Beyond macrophage reprogramming, future

bioregulators could target other key immune players, for instance

by designing materials that inhibit NETosis, deliver signals to

promote regulatory T cell (Treg) expansion, or act as “cytokine

sponges” to sequester excess TNF-a from the wound bed. Other

“smart” materials could sense the pathological hallmarks of a

chronic wound, such as high MMP levels or reactive oxygen

species (ROS), and respond by releasing anti-inflammatory drugs

or antioxidants, respectively (54, 55). Materials with intrinsic

antibacterial properties, such as photodynamic hydrogels, can

combat biofilms without inducing antibiotic resistance (56–58).

Crucially, these functionalities can be synergistic; for example,

disrupting a biofilm not only removes a bacterial source but also
TABLE 1 Engineering approaches within the regenerative immuno-engineering paradigm.

Therapeutic principle Engineering approach Mechanism of action Examples

Active immunomodulation

Biomaterial-mediated macrophage
reprogramming

Delivery of signaling molecules to
polarize macrophages from a pro-
inflammatory M1 to a pro-reparative
M2 phenotype.

Release of IL-4, IL-10, or M2 macrophage-
derived exosomes.

Functional materials targeting immune cells/
factors

Inhibiting NETosis to reduce tissue
damage; promoting Treg expansion for
immune tolerance; sequestering excess
pro-inflammatory cytokines.

NETosis-inhibiting materials; Treg-
inducing signal delivery; “cytokine
sponges” for TNF-a sequestration.

Stimuli-responsive “smart” materials
Sensing pathological cues in the
wound microenvironment and
releasing therapeutics on-demand.

MMP-responsive release of anti-
inflammatory drugs; ROS-responsive
release of antioxidants.

Antibacterial biomaterials

Eradicating bacteria and biofilms
without inducing antibiotic resistance,
thereby reducing the PAMPs load that
drives M1 macrophage activation.

Photodynamic hydrogels; materials
releasing NO or antimicrobial peptides.

Spatiotemporal control
of signals

Sequential release systems
Mimicking the natural healing cascade
by releasing different bioactive
molecules in stages.

Multi-layered hydrogels with differential
degradation rates; systems with staged
release of IL-4 (early) and bFGF/VEGF
(mid-phase).

On-demand release systems
Enabling precise external control over
the timing and dosage of therapeutic
release via non-invasive stimuli.

Nanoparticles/hydrogels responsive to
near-infrared light or ultrasound.

Multi-compartment or layered platforms

Spatially segregating different
therapeutic components to achieve
complex spatiotemporal delivery
profiles.

Microneedle arrays capable of layered and
sequential drug release.
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reduces the pathogen-associated molecular patterns (PAMPs) load

that drives M1 macrophage activation. These studies exemplify the

new role of this biomaterial as an “intelligent bioregulator” that first

pacifies the battlefield.
4.2 Spatiotemporal control of immuno-
regenerative signals

Once the immune environment is normalized, regenerative

signals could be deployed effectively. This would require a

sophisticated, “two-step” therapeutic strategy. The first wave of

signals should be immunomodulatory, aimed at promoting the

resolution of inflammation. Only after this is achieved should the

second wave, featuring pro-regenerative factors such as bFGF and

vascular endothelial growth factor (VEGF), be released. This

necessitates a move away from simple and sustained release

toward dynamic and sequential delivery (59, 60). This strategy

could be achieved through a variety of sophisticated engineering

strategies, such as multi-layered hydrogels with differential

degradation rates, smart nano-valves that respond to specific pH

or enzymatic cues, or on-demand systems triggered by external

stimuli such as light or ultrasound (61–63). An idealized release

profi le might involve three stages: an initial burst of

immunomodulators (e.g., IL-4 or SPMs) for the first 0–3 days; the

subsequent release of pro-angiogenic and proliferative factors (e.g.,

bFGF/VEGF) from day 3 to 10; and a final phase delivering anti-

fibrotic or tissue-remodeling agents to ensure high-quality tissue

formation. The engineering of multi-compartment or layered

systems, such as advanced microneedle arrays, provides a tangible

platform for achieving this critical level of spatiotemporal control

(64, 65). This approach, validated by the quantitative monitoring of

downstream signaling pathways such as p-ERK and p-AKT would

ensure that the right signal is delivered at the right time, in concert

with the evolving immunological state of the wound (66, 67).
5 Conclusion and future perspectives

The long-standing failure to translate bFGF nanodelivery

systems into clinical real ity is not an indictment of

nanotechnology, but of a research paradigm that has been

divorced from fundamental immunology. The future research

direction requires a fundamental shift in perspective: from

designing materials as passive carriers to engineering intelligent

biomaterials capable of specific molecular interactions with the

immune system.
5.1 Bridging the bench-to-bedside gap: the
path forward

We now call for the establishment of a truly integrated field of

“regenerative immuno-engineering,” in which materials scientists

and immunologists will collaborate from day one. This new field
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must be supported by a revolution in preclinical modeling. We must

acknowledge the profound limitations of traditional murine

models, whose rapid and robust healing capacity often masks the

pathologies that prevent healing in humans (68, 69). The path

forward requires embracing more physiologically relevant

platforms such as three-dimensional (3D)-bioprinted and

immune-competent skin equivalents that incorporate senescent

cells and biofilms, organ-on-a-chip systems for high-throughput

screening and the real-time monitoring of immune-material

interactions, and large animal models of diabetes that better

recapitulate systemic metabolic dysregulation (70–72).

Furthermore, the path to clinical translation is paved with

regulatory challenges. These drug-device combination products

present unique hurdles for agencies. Key questions arise regarding

the characterization of the material’s mechanism of action (is it a

device, a drug, or both)?, the establishment of relevant biomarkers

to prove in vivo immunomodulation, and ensuring lot-to-lot

consistency for complex, multi-functional materials (73, 74). A

“design-for-translation” approach that incorporates regulatory

science early in the development process is essential.
5.2 Technological convergence for
personalized wound management

When positioned against the broader landscape of advanced

therapies, the rationale for regenerative immuno-engineering

becomes even more compelling. Compared to cell-based

therapies, which introduce exogenous living cells into a hostile

environment, our approach offers a more fundamental solution.

Instead of delivering cells that may struggle to survive and function

amidst chronic inflammation, regenerative immuno-engineering

first focuses on “detoxifying” the wound bed, creating a

permissive niche where the patient’s own endogenous cells can be

activated to drive repair. This “host-centric” strategy may also offer

significant advantages in terms of cost, scalability, and off-the-shelf

availability over complex cell logistics. Specifically, the “off-the-

shelf” nature of these advanced biomaterials circumvents the

complex logistics, high costs, and patient-specific manufacturing

challenges associated with cell-based therapies. This inherent

scalability makes the approach more amenable to widespread

clinical adoption. Furthermore, while navigating the regulatory

pathway for drug-device combination products is not without its

hurdles, the potential for standardized, large-scale manufacturing

and stringent quality control may present a more straightforward

route to approval compared to the highly personalized and variable

nature of many cell-based products. Similarly, while tissue-

engineered scaffolds provide a valuable physical framework, they

do not inherently address the underlying immunological paralysis.

Regenerative immuno-engineering acts as a functional

complement, transforming these passive scaffolds into active

immunomodulatory platforms. In essence, rather than simply

replacing or supplementing tissue components, our paradigm

seeks to restore the intrinsic regenerative capacity of the host by

correcting the root immunological defect.
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Looking ahead, the “intelligent bioregulator” will serve as a

platform for converging technologies. Artificial intelligence (AI)

and machine learning, for instance, can move beyond simple

screening to perform inverse design, predicting material

compositions and surface topographies that will elicit a desired

immune response (75, 76). We envision systems integrated with

biosensors for closed-loop and adaptive therapy, and platforms that

combine protein delivery with gene-based approaches to provide

both short-term signals and long-term cellular programming (77,

78). Ultimately, this culminates in the vision of personalized wound

management. For example, a patient’s wound exudate could be

rapidly analyzed via single-cell or proteomic profiling to identify

their unique “inflammatory signature,” which could then inform

the AI-driven fabrication of a bespoke bioregulator dressing with a

personalized cocktail of therapeutic agents and a tailored

release schedule.

Confronting the manufacturing challenges will be paramount.

However, the first and most crucial step is conceptual. We must

recognize that healing a chronic wound is fundamentally an

immunological challenge. Future biomaterials must not only

deliver bFGF but also be capable of actively modulating the

patient’s immune response through the release of specific

s i g n a l i n g mo l e c u l e s . On l y b y impa r t i n g s p e c ifi c

immunomodulatory functions to materials, enabling them to

precisely intervene in the immune response process, can we

expect to ultimately achieve coordinated and effective

tissue regeneration.
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