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Introduction: Biologically active vitamin D (1,25-dihydroxyvitamin D or 1,25D)
has emerged as a key regulator of human innate immunity. 1,25D signaling in
macrophages strongly induces the expression of neutrophil chemoattractants,
such as IL-8/CXCL8. Meta-analysis of vitamin D-regulated expression profiles
has suggested that 1,25D may regulate granule formation in granulocytic cells.
Here, we have examined the effects of 1,25D signaling on human neutrophil gene
expression, alone and in combination with the inflammatory signal
lipopolysaccharide (LPS). These studies are of interest because, whereas 1,25D
signaling boosts innate immunity, it is anti-inflammatory.

Methods and results: We determined the effects of 1,25D alone and in
combination with LPS on gene expression of primary human neutrophils by
RNAseq. LPS did not affect or slightly enhanced the expression of several well-
characterized 1,25D-target genes, but strongly suppressed that encoding the
1,25D catabolic enzyme CYP24Al. Chromatin immunoprecipitation (ChlP) assays
revealed that 1,25D-dependent vitamin D receptor (VDR) binding to the major
CYP24A1 enhancer was eliminated in neutrophils treated with LPS, whereas
binding to other 1,25D-target genes was unaffected. Notably, LPS induced
binding of transcriptional repressors MAFF and BACH1 to the major CYP24A1
enhancer region. In other studies, pathway analyses revealed that 1,25D
suppressed LPS-induced genes encoding inflammatory proteins. In addition,
RNAseq and confirmatory RT/qPCR studies revealed that 1,25D, both on its own
and in combination with LPS, increased mRNA expression of genes encoding
antimicrobial components of secretory granules, including that encoding
cathelicidin antimicrobial peptide (CAMP). Consistently, exposure of
neutrophils to 1,25D enhanced bacterial killing, as revealed by a 20-25%
reduction in E. coli colonies incubated with 1,25D-treated neutrophil
conditioned media. The increased bacterial killing by 1,25D is mediated by
1,25D-induced secretion of cathelicidin, as an antibody against LL-37, the
active form of cathelicidin, blocked antimicrobial activity.
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Discussion: Collectively, the data suggest that LPS prolongs vitamin D signaling
by suppressing expression of the 1,25D catabolic enzyme CYP24Al1. 1,25D
signaling in the presence of LPS attenuates the expression of several genes
associated with LPS inflammatory responses, whereas 1,25D in the absence or
presence of LPS enhances the release of antibacterial proteins secreted by
neutrophils in response to infection.

vitamin D, lipopolysaccharide, neutrophils, transcriptional responses, innate immunity,
antibacterial, cathelicidin antimicrobial peptide, CYP24A1

Introduction

Initially recognized for its critical role in calcium and phosphate
homeostasis, the hormonal form of vitamin D (1,25(OH)2D3 or
1,25D) is now understood to have multiple physiological effects,
including a role in boosting innate immunity (1-3). While one can
acquire vitamin D through dietary intake, supplements, or exposure
to sufficient UVB radiation, diets lacking in vitamin D, avoidance of
sunlight, and wearing conservative clothing contribute to a
widespread deficiency. Clinical studies have shown that people who
are deficient in vitamin D have increased risks of bacterial infections
(2). Vitamin D deficiency is linked with an increased risk of dental
caries (4). Moreover, vitamin D supplementation has been shown to
decrease the severity and frequency of relapse in patients with
Crohn’s disease, an inflammatory bowel disease characterized by
defective intestinal innate immunity (5-8). It is therefore important
to fully understand the molecular mechanisms of vitamin D
signalling in innate immune responses to pathogen threat.

The activation of vitamin D occurs primarily in the liver by 25-
hydroxylation, followed by lo-hydroxylation, catalyzed by
CYP27B1 in peripheral tissues, including cells of the immune
system (9, 10). This results in the formation of the active form
1,25-dihydroxyvitamin D (11), which activates the vitamin D
receptor (VDR). The VDR is a nuclear receptor that regulates
gene expression by binding to specific regions on DNA called
vitamin D response elements (VDREs), direct repeats of PuGG/
TTCA separated by 3 base pairs (12). The 1,25D-bound VDR can
directly and indirectly regulate the expression of more than 1000
genes (13) in a tissue- and species-specific manner (14).

Consistent with the pleiotropic actions of vitamin D, the VDR
and CYP27B1 are widely expressed in tissues unrelated to calcium
homeostasis, such as activated macrophages and dendritic cells (11,
15), implying local 1,25D production in cells. In activated
macrophages and dendritic cells, production of CYP27B1 is
controlled by immune signals such as interferon y (IFN-y), a
cytokine released by pro-inflammatory Thl cells, and bacterial
lipopolysaccharide (LPS). LPS signals through toll-like receptor 4
(TLR4), a member of a large family of so-called pattern recognition
receptors (PRRs) (16). Moreover, there is evidence that 1,25D can
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directly contribute to the host innate immune response by
activating transcription of a number of genes, including those
encoding antibacterial peptides (AMPs), PRRs, regulators of
autophagy and cytokines in human monocytes, neutrophils and
epithelial cells (1). Of note, 1,25D robustly induces the expression of
CAMP (encoding cathelicidin antimicrobial peptide), whose active
form (LL-37) exhibits potent anti-bacterial and anti-viral activity
(17). 1,25D signaling also suppresses intracellular growth of M.
tuberculosis and robustly enhances infection-induced interleukin
(IL)-1B production in human macrophages (18).

Preclinical studies on the effect of 1,25D on innate immune
transcriptional responses have been mostly carried out in
monocytic or epithelial cells, whereas limited studies have been
performed in granulocytic cells such as neutrophils. Neutrophils
make up the largest portion of the granulocyte population (19), and
individuals with congenital neutrophil deficiencies often suffer from
serious infections (20, 21), highlighting the crucial role of these cells
in immune defense. Neutrophils employ various techniques to
eliminate microbes, including engulfing them (phagocytosis),
releasing stored substances (degranulation), generating reactive
oxygen species (respiratory burst), and deploying neutrophil
extracellular traps (NETs) (19, 22). Neutrophils are not as
transcriptionally silent as was once previously considered (23)
and are instead now known to be transcriptionally active, which
directly affects their functions (e.g. phagocytosis, bactericidal
activity, apoptosis) (24-34). Within the past 20 years, there has
been more effort directed toward uncovering transcriptional events
in neutrophils following infection or inflammation, and systems
biology-level approaches have provided significant insight into the
role of these cells during host-pathogen interactions (26, 32, 34).

Our interest in these cells stemmed from our recent large-scale
vitamin D-regulated gene expression re-analysis of 94 expression
profiles, which suggested that 1,25D may regulate granule
formation (35). However, these studies were performed in
undifferentiated human HL60 promyelocytic leukemia cells,
which represent a poor model for differentiated neutrophils.
Moreover, we previously found that 1,25D stimulated expression
and secretion of IL-8/CXCL8 in Mtb-infected macrophages (18).
Given that IL-8 attracts neutrophils to sites of inflammation and/or

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1683913
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ismailova et al.

infection (36), we wondered what the effect of 1,25D was on
neutrophil transcriptomic responses. These studies are of
particular interest because, while 1,25D signaling boosts innate
immunity, it is also anti-inflammatory. Therefore, we carried out
gene expression profiling studies in primary human neutrophils
treated with 1,25D and/or LPS as an inflammatory signal.
Interestingly, we found that LPS strongly but selectively repressed
the 1,25D-induced expression of CYP24A1, which encodes the
enzyme that initiates 1,25D catabolism. This occurred through
the induced binding of transcriptional repressors MAFF and
BACHI1 to a VDRE downstream of the CYP24A1 gene. In
addition, 1,25D substantially altered the strong transcriptional
responses of neutrophils to LPS. 1,25D, alone and in combination
with LPS, regulated various neutrophil innate immune functions,
including interleukin signaling and degranulation. Further, it
suppressed the expression of genes encoding LPS-induced
inflammatory cytokines. In conclusion, these data shed new light
on an additional mechanism by which vitamin D signaling regulates
the innate immune system.

Results

Exposure to LPS alters the transcriptional
responses of neutrophils to 1,25D

As neutrophils are among the first leukocytes recruited to sites
of inflammation and infection, we investigated how 1,25D regulated
their transcriptional responses. Neutrophils express the vitamin D
receptor (VDR), and our preliminary studies (not shown) and
published data showed that 1,25D upregulates known target genes
such as those encoding the co-receptor for toll-like receptors CDI14
(37), CYP24A1 and CAMP (38). To test for the effects of 1,25D on
neutrophil gene expression in the presence of an inflammatory
signal, we treated primary cultures of human neutrophils for 6h
with 1,25D and LPS alone or in combination. Control experiments
showed that these treatments did not affect neutrophil viability, as
tested by flow cytometry (Supplementary Figure S1). We probed the
relationship between LPS and 1,25D signaling in primary human
neutrophils by performing RNAseq analysis (Supplementary
File S1). Three isolates of primary cells were stimulated with 100
nM of 1,25D alone or in combination with 100 ng/ml LPS or treated
with vehicle for 6h (Figure 1A). 100 ng/ml of LPS was employed in
order to mimic systemic inflammation; this dose was shown to
induce maximal gene expression of cytokines and other signature
LPS-regulated genes (39), and has been used in other publications
(40-44).

The results confirmed the robust expression of the VDR under
all conditions (Supplementary Table SI). Principal component
analysis revealed that each treatment condition produced distinct
expression profiles and that those of each of the triplicates were
highly concordant (Figure 1B). LPS- and 1,25D-regulated gene
expression profiles were largely distinct. ~900 differentially
expressed genes (DEGs) were significantly up- or downregulated
by 1,25D at least 1.5-fold, and a further 900 DEGs were regulated by
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1,25D in combination with LPS compared to LPS or 1,25D alone
(Figure 1C). Venn diagram depiction of the data revealed that the
effect of 1,25D was more modest on its own than that of LPS
(Figure 1D). Conversely, gene expression regulated by LPS and
1,25D together had a greater overlap with genes regulated by LPS
alone (Figure 1D). While 1,25D affected the magnitude of
transcriptional responses to LPS, it rarely reversed LPS-regulated
gene repression (Supplementary Figure S3).

Notably, LPS treatment strongly suppressed 1,25D-induced
expression of CYP24A1, whereas it tended to boost the effect of
1,25D on other VDR target genes (Figure 2A). Decreased CYP24A1
expression was also reported in 1,25D-treated macrophages infected
with virulent and non-virulent strains of Mtb (18). LPS had no
significant effect on the expression of VDR mRNA or protein
(Figures 2B, C, Supplementary Table S1). In addition, the gene
counts for CYP27BI, encoding the 1a-hydroxylase, were very low
and were suppressed by LPS (Figure 2D, Supplementary Table SI).
This observation contrasts with the stimulatory effect of LPS/TLR4
signaling on CYP27BI expression in macrophages (45), and
indicates that LPS does not stimulate endogenous production of
1,25D in neutrophils. In addition, there is a non-specific trend
towards inhibition by 1,25D of CYP27BI expression, which is not
observed in macrophage-like cells (18) but is reminiscent of the
repressive effect of 1,25D on CYP27BI in the kidney (46).

1,25D-dependent VDR binding to the
+50kb CYP24A1 enhancer is suppressed in
the presence of LPS

To address the mechanisms underlying LPS-regulated
suppression of CYP24A1 expression, we performed ChIP assays
of the VDR in multiple isolates of primary human neutrophils
treated with vehicle, 1,25D, LPS, or LPS + 1,25D. Consistent with its
effects on their genes, LPS maintained or slightly enhanced 1,25D-
induced VDR binding to VDREs in the CAMP and CDI4 genes
(Figure 2E, Supplementary Figure S4, Supplementary Table S2) (38,
47-51). ChIP on chip and ChIPseq studies have identified three
principal VDR binding sites in the CYP24A1 regulatory region, one
promoter-proximal site and two downstream enhancers at +50 and
+66 kb (52). We observed substantial 1,25D-dependent VDR
binding to the +50kb site but not to the promoter-proximal nor
the +66kb enhancer (Figure 2F, Supplementary Figure S5).
Remarkably, 1,25D-dependent VDR binding to the +50kb
enhancer was eliminated in neutrophils treated for 6h with LPS
(Figure 2F, Supplementary Figure S5A). Interestingly, chromosome
conformation capture assay in human colonic LS180 cells showed
that the +50kb site is located structurally immediately adjacent to
the CYP24A1 promoter (52). The +50kb site has also been identified
in VDR ChIPseq studies of 1,25D-treated undifferentiated and
phorbol 12-myristate 13-acetate (PMA)-differentiated monocytic
THP-1 cells (25, 26).

Given that LPS treatment had no effect on VDR protein
expression, we hypothesized that LPS signaling induced a
repressive transcriptional environment in the region of the +50kb
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FIGURE 1

RNAseq analysis of primary human neutrophils treated in the presence or absence of 1,25D and in combination with LPS. (A) Schematic of neutrophil
RNAseq experiment. (B) Principal component analysis of triplicate isolates of primary human neutrophils treated with control (C), 1,25D (D), LPS and

1,25D in combination with LPS (LPS+D). (C) Table of differentially expressed

control as well as by 1,25D in combination with LPS relative to control. (D) Venn diagrams of 1.5-fold regulated gene expression changes in primary
human neutrophils treated by 1,25D (green) and LPS (red) alone, as well as by 1,25D in combination with LPS relative to C (blue).

|

genes regulated 1.5-fold (p<0.05) by 1,25D and LPS alone relative to

enhancer. To assess this, we inputted the CYP24A1 + 50 kb
enhancer region sequence from the hg38 genome into the
Transcription Factor Affinity Prediction (TRAP) web tool (http://
trap.molgen.mpg.de/cgi-bin/home.cgi) (see Methods and Materials
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for details) to search for transcription factor motifs. Among other
motifs, this identified the “TGCTGAGTCA” sequence, also known
as the MAF recognition element (MARE) and the cap’n’collar
(CNC)-small MAF (sMAF)-binding element, a consensus binding
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FIGURE 2

The transcriptional responses of neutrophils to LPS and hormonal vitamin D alone and in combination with each other. (A) Primary human
neutrophils are responsive to 1,25D (D) as demonstrated by mRNA induction of CYP24A1, CD14, GOS2, and HBEGF. (B) RT-gPCR analysis of VDR
gene expression by 1,25D and LPS alone or in combination. (C) Western blot of VDR in neutrophils and quantification relative to Beta-ACTIN.
Graphics mean + SD from 3 biological replicates and unpaired, one-way ANOVAs followed by Tukey's post hoc test for multiple comparisons were
used (ns >0.05). (D) RT/qPCR analysis of CYP27B1 gene expression in neutrophils treated with or without LPS. RT/gPCR graphics are representative
of 2 or 3 biological replicates. Graphics mean + SD from 3 technical replicates from a representative sample, and paired, one-way ANOVAs followed
by Tukey's post hoc test for multiple comparisons were used (*P < 0.05). (E, F) Analysis of the association of VDR with up- and downstream
regulatory regions of CAMP, CD14 (E) and CYP24A1 (F) (based on hg38 genome assembly) by ChlIP assay in neutrophils treated with or without 1,25D
in the presence or absence of LPS. ChlIPs are representative of 3—4 biological replicates. Graphics are mean + SD from at least 3 technical replicates
from a biological sample, and paired one-way ANOVAs followed by Tukey's post hoc test for multiple comparisons were used (*P < 0.05, **P < 0.01,
***pP < 0.001, ****P < 0.0001 and ns >0.05). ChlIP values are normalized to input for each condition and expressed as a fold enrichment relative to
IgG control.
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site of MAF family proteins. This family is composed of small MAF
oncoproteins (MAFF, MAFG, and MAFK) and large MAF proteins
(C-MAF, MAFA, MAFB and NRL), and the cap’n’collar (CNC)
family of transcription factors (NFE2 (NF-E2 p45), NFE2LI1
(NRF1), NFE2L2 (NRF2), BACHI and BACH2) (53) (Figure 3A).
The near-consensus “TGCTGAGTCA” motif is located 48 bp
upstream of the +50kb VDRE (Figure 3B). Large MAF
homodimers and heterodimers of small MAF and CNC family of
transcription factors are MARE-dependent activators, whereas
heterodimers of small MAF with either BACH1 or BACH2 are
MARE-dependent repressors (53-59). Interestingly, relative to the
other enriched TFs, BACHI and MAFF were the most highly
expressed and MAFF expression was induced by LPS at the gene
expression level in our RNAseq analysis of neutrophils (see below)
(Figure 3A, Supplementary Table S1) (39). Previous studies revealed
the importance of MAFF in inflammatory responses (60-63).
BACH]1 is involved in the suppression of anti-inflammatory M2
macrophage differentiation (64, 65) as well as in the induction of
inflammation observed in atherosclerosis (66) and rheumatoid
arthritis (67). We could not find enriched MARE at the other
CYP24A1 -405b and +66kb enhancers. We confirmed increased
gene and protein expression of MAFF in LPS-stimulated
neutrophils by RT/qPCR and Western blot analyses (Figures 3C,
D). The major MAFF band is at 18 kDa, and other smaller/minor
bands represent other isoforms with a similar pattern to another
study (68). BACH1I mRNA and protein were constitutively
expressed and were not induced by LPS (Figures 3C, D).

Elevated binding of transcriptional
repressors MAFF and BACH1 is induced by
LPS at the CYP24A1 + 50kb enhancer

We performed a series of in silico and directed ChIP
experiments to determine if MAFF bound to the MARE in the
+50kb enhancer. Importantly, we found a MAFF ChIPseq peak
identified previously in hepatocyte HepG2 cells (Supplementary
Table S2) that corresponds to the MARE in the CYP24A1 + 50kb
region (Figure 4A). We also found evidence for BACH1 binding to
the +50kb region in a ChIPseq dataset from embryonic stem cells
(Figure 4A, Supplementary Table S2). To determine whether MAFF
and BACHI interact with the CYP24A1 enhancer, we performed
ChIP assays in several isolates of vehicle-, 1,25D-, LPS- and LPS +
1,25D-treated neutrophils. Importantly, LPS induced MAFF and
BACHI binding to the CYP24A1 + 50kb downstream regulatory
region in the absence or presence of 1,25D (Figure 4B,
Supplementary Figures S6A, B). BACHI1 was shown to maintain
the state of suppressive dimethyl acetylated histone 3 marker
(H3K9me2) (69). Further, the same study found that
overexpression of BACHI1 resulted in decreased chromatin
accessibility but increased binding of H3K9me2 at the promoters
of target genes in human aortic smooth muscle cells (HASMCs).
Moreover, the ChIPseq signal profile of H3K9me2 is greater at
BACHLI enriched regions in BACH1 overexpressed HASMCs than
control HASMCs (69). Accordingly, LPS increased binding of
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H3K9me2 to the CYP24A1 + 50kb enhancer in the absence or
presence of 1,25D (Figure 4C, Supplementary Figure S6C). In
contrast, this histone mark was reduced with 1,25D treatment
alone, thus providing more evidence for a repressive
transcriptional environment induced with LPS treatment at the
+50kb CYP24A1 enhancer.

1,25D regulates expression of several
genes encoding components of secretory
granules both on its own and in
combination with LPS

We performed pathways analyses to identify changes in gene
expression signatures in the presence of 1,25D and/or LPS
associated with neutrophil components and molecular signaling
pathways (Figure 5, Supplementary Figures S6, S7, Supplementary
Files S2, §3). 1,25D appeared to broadly suppress the effects of LPS
on transcription of genes encoding cytokines and cytokine receptors
(Supplementary Figures S7A, 8). In addition, Gene Ontology
representation analysis for biological processes revealed 1,25D-
mediated regulation of several pathways important in neutrophil
function, such as proliferation, adhesion and regulation of
inflammatory responses (Supplementary Figure S8B,
Supplementary Figure S9). Interestingly, gene ontology
representation analysis for cellular components (Supplementary
Figure S7A, Supplementary File S2) and reactome pathway
analysis (Supplementary Figure S7B, Supplementary File S3),
revealed regulated genes were associated with neutrophil granules,
degranulation and interleukin signaling (Figure 5). Notably, 1,25D,
in the presence or absence of LPS, regulates expression of genes
encoding components of tertiary, specific and secretory granules
(Supplementary Figure S7A, Supplementary Table S3; genes
classified based on proteome profiling of human neutrophil
granules (70)). To further investigate this, we produced heatmaps
of DEGs within the granule and interleukin signaling categories
(Figures 5A, C). From the degranulation heatmap (Figure 5A),
1,25D induced a subset of genes (enclosed in red) that are either not
induced or repressed by LPS. These include genes encoding proteins
involved in host innate immunity (e.g. SLC2A3 and SERPINBI) (17,
71-83) and those with anti-inflammatory activity (e.g. ORMI and
ORM?2) (84-87). Further, the list of genes include Rab GTPases that
traffic granules from the cytosol to the cell surface (e.g. CRACR2A)
(88), genes encoding adhesion molecules (e.g. ITGAM) (89), and
components of the cytoskeleton organization machinery (e.g.
DYNLTI) (90), which, like the Rab GTPases, are important in
degranulation (91-93). Conversely, 1,25D repressed a subset of
genes that are upregulated by LPS alone (enclosed in blue), which,
interestingly, included genes encoding pro-inflammatory proteins
in neutrophil granules, such as prosaposin (PSAP), galectin-3
(LGALS3) (94) and plasminogen activator/urokinase (PLAU) (95,
96) (Figure 5A). We validated increased expression of some genes
implicated in degranulation, such as SLC2A3, which encodes the
GLUT3 glucose transporter (neutrophils rely on glycolysis for their
effector functions) (97) and ITGAM, which encodes the membrane
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FIGURE 3

MAF recognition element enriched at the CYP24A1 + 50kb downstream enhancer. (A) Table of enriched transcription factor motifs at the CYP24A1 + 50kb
enhancer. Exp. = expression level by RNAseq gene counts. (B) Schematic diagram of the human CYP24A1 locus displayed with the +50kb position of the
VDRE (highlighted in yellow) and MAF recognition element (MARE) (in blue font) with nucleotide bases indicated on chromosome 20 (hg19). In red font are
the nucleotide mismatches. (C) RT/gPCR analysis of MAFF and BACH1 gene expression in neutrophils treated with or without 1,25D and in the presence or
absence of LPS. Graphics are representative of 3 biological replicates. Graphics mean + SD from 3 technical replicates from a representative sample and
paired, one-way ANOVAs followed by Tukey's post hoc test for multiple comparisons were used (*P < 0.05, **P < 0.01 and ns >0.05). (D) Western blot
analysis of MAFF and BACH1 and quantification relative to Beta-ACTIN. Graphics mean + SD from 3-5 biological replicates and unpaired, one-way ANOVAs
followed by Tukey's post hoc test for multiple comparisons were used (*P < 0.05 and ns >0.05).

Frontiers in Immunology

07 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1683913
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ismailova et al.

Y-axis: 20 +50kb Chr 20

10.3389/fimmu.2025.1683913

CYP24A1

| 52,748, 006 52,745, 006] 52,758, 098] 52,755, 098]

A et

MAFF HepGZ_A

Tt

5
52,768, 098] 2,765, 908 52,770, 980 2,775, 080

A

BACH1ESCs |

VDRTHP-1 %

Neutrophil 6h ChIP

CYP24A1 *
(+50kb) / MAFF —*

Fold induction
relative to C IgG

CYP24A1 (+50kb) ns
/ H3K9me2 **

Fold induction
relative to C IgG
(=]
1

CYP24A1 _ «
(+50kb) / BACH1 — _**

%* %k

ns %% ns

84 —— —

o 2 ¢ o
A S ¥ 8
v v
IgG aH3K9me2

FIGURE 4

Enhanced binding of MAFF to the CYP24A1 downstream enhancer as assessed by ChlIP assay in LPS and LPS + 1,25D-treated neutrophils. (A) UCSC
browser image showing VDR, MAFF and BACH1 ChlPseq tracks at the CYP24A1 locus. The +50kb site of VDR, MAFF and BACHL1 binding is
highlighted in blue. The black boxes indicate bona fide peaks as determined by the corresponding ChiPseq studies. (B) Analysis of the association of
MAFF, BACH1 and (C) H3K9me2 with the +50kb downstream enhancer of CYP24A1 (based on hg38 genome assembly) by ChIP assay in neutrophils
treated with or without 1,25D in the presence or absence of LPS for 6h. Graphics are representative of at least 3 biological replicates. Graphics mean
+ SD from 5-6 technical replicates from a representative sample and paired, one-way ANOVAs followed by Tukey's post hoc test for multiple
comparisons were used (*P < 0.05, **P < 0.01, ***P < 0.001 and ns >0.05). ChlIP values are normalized to input for each condition and expressed as

a fold relative to control IP.

protein CD11b, a marker of secondary and tertiary granules (98-
100) by RT/qPCR analysis in neutrophils (Figure 5B).

1,25D, in the presence or absence of LPS, regulated expression
of genes encoding components of interleukin signaling (Figures 5C,
D). 1,25D upregulated a subset of genes (enclosed in red) that are
either not induced or repressed by LPS, and these included genes
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encoding anti-inflammatory proteins (e.g. OSM (101)) and those
with antimicrobial activity (e.g. LGALS9 (102-104), CXCL6 (105,
106), ITGAX (107, 108)) (Figures 5C, D). However, another group
of genes (enclosed in blue, top) are either not regulated or
suppressed by 1,25D, but is upregulated by LPS. These included
genes encoding pro-inflammatory and IL-family cytokines (e.g.
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1,25D, in the presence and absence of LPS, may regulate degranulation and signaling by interleukins in primary human neutrophils. Heatmaps of
DEGs within the degranulation (A) and signaling by interleukins (C) categories based on the Reactome pathway analysis. Note that hierarchical
clustering was performed to generate the heatmaps, and as a result, the order of conditions differs between the two heatmaps. RT/qPCR validation
of genes within the degranulation (B) and signaling by interleukin reactome categories (D). Graphics are representative of 2 or 3 biological replicates.
Graphics mean + SD from 3 technical replicates from a representative sample and paired one-way ANOVAs followed by Tukey's post hoc test for
multiple comparisons were used (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 and ns >0.05).

IL36G (109) and IL20 (110, 111)) (Figures 5C, D). In addition,
1,25D in the presence of LPS suppressed a cluster of genes encoding
proinflammatory cytokines (e.g. CCL19 (112, 113) and CCL2 (114,
115)) that are otherwise not regulated by LPS (enclosed in blue,

bottom, Figure 5C). This is in concordance with the notion that

1,25D is anti-inflammatory and that vitamin D sufficiency

suppresses peripheral inflammatory immune responses.

Frontiers in Immunology

Given that 1,25D alone or in combination with LPS regulates
several genes whose products are implicated in degranulation,
particularly in gelatinase (3°), specific (2°) and secretory granules,
we investigated whether 1,25D can modulate degranulation by flow
cytometric assessment of cell surface granule markers (100). There
are four different types of granules within neutrophils, each one
containing different antimicrobial proteins that are secreted upon
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inflammatory or pathogen challenge, as well as membrane proteins

that are translocated to the cell surface during degranulation
(Figure 6A) (116). However, 1,25D did not appear to regulate the
delivery of cell surface markers of granules (Figure 6B).
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Nevertheless, our RNAseq suggests that 1,25D in the presence or
absence of LPS may regulate the antimicrobial and anti-
inflammatory secreted components of various granules
(Supplementary Table S3). We confirmed the 1,25D-mediated
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1,25D regulates gene expression of secreted neutrophil granule proteins in the absence and presence of LPS. (A) Schematic of the different granules
contained within neutrophils and their membrane and secreted components. (B) Upper row: Representative flow cytometric analysis of cell surface
markers of granules in neutrophils treated for 6h with 1,25D on its own and in combination with LPS. Representative fluorescence histograms of 3-5
biological replicates. Bottom row: Histograms of Mean fluorescence intensity (MFI) for 3—5 biological replicates. Statistical analyses: mean + SD and
unpaired, one-way ANOVAs followed by Tukey's post hoc test for multiple comparisons were used (*P < 0.05, **P < 0.01 and ns >0.05). (C) RT-
gPCR analysis of antimicrobial and anti-inflammatory secreted components of granules. Graphics are representative of 3 biological replicates.
Graphics mean + SD from 3 technical replicates from a representative sample and paired, one-way ANOVAs followed by Tukey's post hoc test for
multiple comparisons were used (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 and ns >0.05).
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induction of several genes encoding these proteins (CAMP, DEFA1,
LRGI, ALOX5, CDA and CTSZ) by mRNA expression (Figure 6C).
CAMP and DEFAI encode antimicrobial peptides (AMPs). Due to
their amphipathic properties, both cathelicidin and defensin
peptides disrupt bacterial membranes through interactions with
hydrophobic and phospholipid components (17). Unlike CAMP,
DEFA1 appears to be uniquely regulated by 1,25D in the presence of
LPS, and not by 1,25D alone (Figure 6C). In addition to AMPs,
1,25D, in the presence or absence of LPS, upregulated other host-
defense implicated and anti-inflammatory genes such as: LRGI,
which encodes a secreted glycoprotein containing leucine-rich
repeats that serve as pattern recognition motifs for the innate
immune system (76); CTSZ or cathepsin Z, which is a member of
the family of antimicrobial and anti-inflammatory cathepsins or
serine proteases (117, 118); ALOX5, an enzyme that enhances AMP
production and pathogen killing by neutrophils (119), and CDA, a
cytidine deaminase, which was shown to reduce viability of E. Coli
(71). Unlike LRGI, gene expression of ALOX5, CDA and CTSZ does
not appear to be further enhanced by 1,25D in the presence of LPS
(Figure 6C). Overall, the data suggest that while 1,25D does not
regulate the expression of cell surface markers of granules, it may
regulate the secreted components of granules.

1,25D induces antibacterial activity against
E. coli in neutrophils

A prediction from 1,25D inducing expression of genes encoding
antimicrobial components of granules is that it may enhance

10.3389/fimmu.2025.1683913

neutrophil antibacterial activity. Therefore, to test for induction of
antimicrobial activity, we conducted bacterial killing experiments
using E. coli incubated with neutrophil-conditioned media (14, 38)
(Figure 7). Consistent with our hypothesis, conditioned culture
media from human neutrophils treated for 6h with 1,25D in the
presence or absence of LPS modestly but significantly inhibited
viability of E. coli (Figure 7B). There was no significant difference in
bacterial killing using conditioned media of vehicle-treated
neutrophils compared to media only (Figure 7A). Given that the
CAMP gene is robustly induced by 1,25D in neutrophils, we were
interested in determining the contribution of its encoding active
peptide, LL-37, to secreted antibacterial activity. To this end, we
used an anti-LL-37 antibody that blocked antimicrobial activity in
lung airway surface liquid (120). Remarkably, incubation of
conditioned media with this antibody, as opposed to control IgG,
completely blocked 1,25D-induced antimicrobial activity
(Figure 7C), confirming that secretion of LL-37 is the major
component of 1,25D-enhanced antibacterial activity.

Discussion

To date, analysis of innate immune regulation by vitamin D has
been mostly conducted in monocytes and macrophages. However,
neutrophils, the most abundant immune cells in the circulation, are
also vital in host innate immunity and play an instrumental role in
antimicrobial defense. In addition, neutrophil inflammatory
responses must be regulated, as uncontrolled inflammation may
be pathogenic; for instance, acute respiratory distress syndrome,
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FIGURE 7

1, 25D induces antimicrobial activity in neutrophils. (A) 500 colony-forming units (CFU) of E. Coli were incubated in conditioned medium from
neutrophils pre-treated for 6h with vehicle. Bacterial samples were incubated at 37 °C with shaking for 30 min prior to plating. The results are
expressed as a percentage of bacterial colonies relative to media only incubated with E. Coli. (B) 500 CFU of E. Coli were incubated in conditioned
medium from neutrophils pre-treated for 6h with either vehicle/control (C), 1,25D (D), LPS, and 1,25D+LPS (LPS+D). The results are expressed as a
percentage of bacterial colonies relative to vehicle-treated neutrophils. (C) 500 CFU of E. Coli were incubated in conditioned medium from
neutrophils pre-treated with vehicle or 1,25D for 6h. Prior to incubation with E. Coli, either IgG control or anti-LL-37 antibody was added to samples
for 30 min. Graphics are mean + SD from 3 or 5 biological replicates and unpaired, one-way ANOVAs followed by Tukey's post hoc test for multiple

comparison were used (**P < 0.01, ***P < 0.001 and ns >0.05).
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associated with respiratory infections, is driven by overactive
neutrophil inflammation (121). However, data on the effects of
1,25D signaling on neutrophil function remain limited. Our lab has
previously demonstrated that 1,25D induced secretion of neutrophil
chemokine IL-8 in macrophages infected with Mtb, implying
enhanced recruitment of neutrophils to sites of infection (122).
1,25D may also influence granule formation in undifferentiated
human promyelocytic leukemia HL-60 cells, as shown by our re-
analysis of 94 human and mouse vitamin D-regulated expression
profiles (35). Considering these data, we investigated the effect of
1,25D, in the presence or absence of the inflammatory signal LPS,
on primary human neutrophil transcriptomic responses to
determine whether the hormone may regulate neutrophil
microbial activity.

RT/qPCR results suggested that CYP27BI1 expression in
neutrophils was weak, and unlike monocytic cells, its expression
was not induced by LPS. This was confirmed by our RNAseq gene
counts and is consistent with a prior study (38). These results
suggest that neutrophils do not generate 1,25D from circulating
25D in the presence of an inflammatory signal, but rather respond
to 1,25D produced locally from macrophages at sites of infection or
inflammation. Moreover, under the influence of LPS, 1,25D-
induced CYP24A1 expression was strongly repressed in
neutrophils, suggesting that 1,25D catabolism is inhibited in LPS-
treated neutrophils. Similar suppression of CYP24A1 induction was
previously observed in Mtb-infected macrophages (18), although
the underlying mechanisms were not addressed. mRNA and protein
expression of the VDR was not significantly affected by LPS, but
ChIP assays of primary human neutrophils revealed decreased
1,25D-induced binding of the VDR in the presence of LPS to a
previously identified enhancer 50 kb downstream of the CYP24A1
TSS (52). Further ChIP studies showed that LPS induced binding of
MAFF and BACHI, components of a transcriptional repressor
complex, to the +50kb enhancer, to a near-consensus MARE
adjacent to the VDRE. This is in line with a motif enrichment
analysis of 1,25D-regulated genomic binding sites from ATACseq
and RNAseq of THP1 cells, which revealed a shift from canonical
VDR-RXR binding in 1,25D-treated cells to TGAGTCA-enriched
motifs (MARE near-consensus sequence) in cells exposed to LPS
alone or in combination with 1,25D (123). We also found that
binding of the suppressive dimethyl acetylated histone 3 marker was
induced with LPS in the absence or presence of 1,25D; this is
indicative of transcriptional repression. Among the CNC family
members, BACH1 and BACH2 heterodimerize with small MAF
proteins to repress transcription (53). We found that, in
comparison to other family members, MAFF, an inflammation-
linked transcription factor (60), and BACHI, associated with
repressing M2 anti-inflammatory macrophage differentiation (64,
65), were the most highly expressed in LPS-treated neutrophils.
MAFF mRNA and protein expression were induced by LPS in
primary human neutrophils, whereas BACHI was constitutively
expressed. Interestingly, increased MAFF and BACHI
heterodimeric binding at the MARE of the LDLR (which encodes
the low-density lipoprotein receptor) promoter and ensuing
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suppression of LDLR expression were previously demonstrated in
the presence of LPS in human Hep3B and murine AML12 liver cell
lines (61). Moreover, similar to our study, MAFF induction by LPS
was robust. However, LPS-mediated induction of BACH1 was
modest (61), suggesting that LPS-induced expression of one of
the heterodimeric partners is sufficient to drive increased binding of
MAFF/BACHI to the CYP24A1 enhancer.

This study represents the first large-scale RNAseq study on
neutrophils treated with 1,25D on its own and in combination with
LPS to probe their individual or combined effects on neutrophil
transcriptomic responses. Bioinformatic analysis revealed ~900
genes being regulated by 1,25D alone, and a further 900 genes
regulated by 1,25D in combination with LPS. The majority of genes
regulated by 1,25D and LPS alone and in combination were
induced. This is contrary to transcriptomic analysis from human
peripheral blood mononuclear cells (PBMCs), where single
treatments of 1,25D and LPS diminished gene expression (124).
Co-stimulation of LPS with 1,25D in PBMCs resulted in a reduced
number of responsive genes (124), which is in contrast to the
increased number of genes regulated by LPS+D in neutrophils
compared to LPS or 1,25D alone. However, ATACseq and
RNAseq from THPI cells revealed that co-treatment with LPS
and 1,25D altered chromatin accessibility at over 41,500 genomic
regions and significantly regulated the expression of >2000 genes
(123), which is in agreement with our data. Intriguingly, while
1,25D impacted the magnitude of LPS-mediated transcriptional
responses, the hormone rarely reversed LPS-regulated gene
repression in neutrophils. Pathway analyses suggested a role for
1,25D in the regulation of degranulation and signaling by
interleukins. Degranulation was also noted as an enriched
pathway in 1,25D-treated HL60 cells (35). Upon closer
inspection, it appeared that 1,25D boosted expression of genes
encoding anti-inflammatory and antimicrobial proteins within the
degranulation network, while at the same time it inhibited LPS-
induced expression of genes encoding pro-inflammatory mediators
found in granules. This is consistent with previous reports of 1,25D
as an anti-inflammatory and antimicrobial modulator of the
immune system (1). Along the same vein, 1,25D broadly
suppressed LPS-induced expression of genes encoding pro-
inflammatory cytokines in our RNAseq, an observation also
supported by smaller-scale studies in neutrophils (37, 125) and an
RNAseq study from 1,25D and LPS-treated human PBMCs (124).

1,25D did not appear to regulate the delivery of surface markers
of granules. However, we did provide evidence for 1,25D enhancing
mRNA expression of genes encoding antimicrobial proteins found
within granules, such as CAMP, DEFA1, LRG1, and CTSZ, which
supports the notion that 1,25D regulates the secreted components
of granules. A prediction of enhancing the expression of
antimicrobial components of granules would be increased
bacterial killing by 1,25D-treated cells. Indeed, we found that
1,25D treatment of neutrophils for 6 hours significantly increased
secreted antimicrobial activity against E. Coli. Notably, this increase
was abolished by incubation of conditioned media from neutrophils
with an antibody against LL-37, the active peptide encoded by the
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CAMP gene. Granulocytic cells are a major source of circulating LL-
37 due to their abundance and storage of LL-37 in granules released
at sites of infection (126, 127). LL-37 is known to confer
antibacterial activity against Gram-negative bacteria in in vitro
experiments (128). Our lab has previously demonstrated that
1,25D robustly enhanced bacterial killing in epithelial cells treated
with 1,25D for 24 and 48 hours (14, 38). Therefore, it is possible that
the bactericidal effect of 1,25D in neutrophils may be even greater
with longer incubation times. Due to the limited viability of primary
human neutrophils cultured in vitro (6-8h) (129-133), we did not
test extended periods of incubation. However, neutrophils in vivo
may live 3 days or more (134-138), suggesting that 1,25D may act
on neutrophils for a longer period.

In conclusion, we provide evidence of innate immune
regulation by hormonal vitamin D in neutrophils. For the first
time, we uncovered the mechanism of genomic regulation of LPS-
mediated CYP24AI1 suppression in the presence of 1,25D via
induced binding of transcriptional repressors MAFF and BACH1
to a CYP24A1 enhancer. We show that in neutrophils, 1,25D
suppresses inflammatory signals while at the same time it
enhances anti-microbial activity, mainly by boosting expression of
CAMP. These dual roles are key to the immunomodulatory effects
of 1,25D. Future exploration in the physiological role of 1,25D on
neutrophil function would shine more light on novel mechanisms
of 1,25D-mediated regulation of immune responses to infection
and inflammation.

Materials and methods
Human neutrophil isolation and treatment

Whole blood from consenting healthy donors was collected
under McGill University Health Centre REB ethics # 23-03-044.
Primary human neutrophils were isolated from blood using
negative selection with the EasySepTM Direct Human Neutrophil
Isolation Kit (STEMCELL) following the manufacturer’s
instructions. Neutrophil purity was assessed by flow cytometry,
measuring markers specific to various blood cell populations,
including CD45 (for hematopoietic cells, excluding erythrocytes
and platelets), CD16 (for natural killer cells, neutrophils, and
macrophages), and CD66b (for granulocytes) (Supplementary
Figure S2). Cell count was determined using an automatic cell
counter (Bio-Rad), adjusting the concentration to between 5x10°
and 1x10° cells/ml. Neutrophils were resuspended in tissue culture
medium containing RPMI 1640 (1X with L-glutamine, sodium
pyruvate, and 25mM HEPES, Wisent 350-006-CL), supplemented
with 10% fetal bovine serum and penicillin/streptomycin (ScienCell
0503). The cells were then treated with 100nM 1,25D (BML-
DM200, Enzo Life Sciences), 100ng/mL LPS (L3012-5MG, Sigma-
Aldrich), or vehicle (dimethyl sulfoxide) for 6 hours. Annexin V/
propidium iodide staining confirmed that after 6 hours, the
neutrophils remained mostly viable (Supplementary Figure S1).
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RNA sequencing

RNA sequencing was conducted essentially as described (39).
Briefly, total RNA was extracted from three isolates of 1,25D-, LPS-,
1,25D+LPS- and vehicle-treated neutrophils using the FavorPrep
Blood/Cultured Cell Total RNA Mini Kit (FABRK 001, Favorgen)
according to the manufacturer’s protocol. Biological replicates were
generated from three independent neutrophil isolates from three
different donors. Only RNA samples with an OD 260/280 ratio
greater than 1.7 and an RNA integrity number (RIN) > 7 were
retained for further analysis. These samples were then submitted to
Genome Queébec for paired-end sequencing with 100M reads on an
Mlumina NovaSeq PE100 sequencer. Library preparation was
performed using the polyA Enriched RNA Library Preparation.
All samples met quality standards as determined by QC reports
from Genome Quebec and were included in the analysis. The
quality of sequence reads was verified using FastQC, with poor-
quality reads identified based on the Phred score, which is
logarithmically related to base calling error probabilities. For all
RNA-seq datasets, the Phred offset quality score exceeded 30, and
the minimum fragment size for alignment was set to 50. Low-
quality bases were trimmed from read ends using default settings in
Trimmomatic, and quality was re-assessed using FastQC. Reads
were mapped to the human GRCh38 genome assembly using
HISAT2. Gene expression was quantified by counting uniquely
mapped reads with StringTie, using default parameters.
Normalization and differential gene expression analysis were
conducted with the DESeq2 Bioconductor package. Genes with 2|
1.5| fold-change and adjusted p-values < 0.05 were considered
significant. The differentially expressed genes from the RNAseq
analysis are provided in Supplementary File S1.

Flow cytometry

Adherent neutrophils were detached by gently pipetting the
tissue culture dishes up and down. Both adherent and suspension
cells were then centrifuged at 500 rcf for 10 minutes and washed
twice with ice-cold PBS. The supernatant was removed, and the cells
were resuspended in FACS buffer (0.5-1% BSA in PBS) at a
concentration of 1 x 10° cells/mL. To block nonspecific binding,
human FcR binding inhibitor (14-9161-73, eBioscience) was added.
Neutrophil degranulation was determined by incubating the cells
with 2 pg of anti-human PE-CD66b (392903, BioLegend), PE-CD16
(302007, BioLegend), Alexa Fluor 700-CD45 (368514, BioLegend),
and APC-CD11b (301310, BioLegend) antibodies for 30 minutes at
room temperature in the dark. Cell viability was assessed using the
Vybrant Apoptosis Assay kit (V13242, Molecular Probes). After
washing, cells were either cross-linked in 2% paraformaldehyde or
immediately analyzed by flow cytometry for purity and viability,
respectively. Flow cytometry acquisition was performed using a BD-
LSRFortessa analyzer, monitoring at least 10,000 cells per sample.
Data analysis was conducted using Flow]Jo software (TreeStar Inc.).
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Bioinformatics analysis

The overlap between 1,25D, LPS, and 1,25D+LPS is illustrated
using Venn diagrams implemented by the VennDiagram package in
R. Principal component analysis (PCA) was performed using the R
function prcomp and visualized with the ggplot package.
Enrichment analysis of Reactome pathways was performed using
the ReactomePA package (139). Enrichment analysis of gene
ontology representation analysis for biological processes and
cellular components, as well as canonical pathways (Kyoto
Encyclopedia of Genes and Genomes), was conducted using the
clusterProfiler package (140). Heatmaps with hierarchical clustering
were constructed using the heatmap.2 package in R. Peaks from
VDR, MAFF, and BACHI1 ChIPseq studies and datasets from the
ENCODE consortium were aligned with the human genome (build
hgl9 or hg39) using the UCSC Genome Browser (http://
genome.ucsc.edu/cgi-bin/hgGateway). To find sequence motifs
enriched in the CYP24A1 + 50kb enhancer, we extracted their
sequence from the hgl9 or hg38 genome and used this as input for
the Transcription Factor Affinity Prediction (TRAP) web tool
(http://trap.molgen.mpg.de/cgi-bin/home.cgi) using JASPAR
vertebrates as the comparison library, human promoters as the
control, and Benjamini-Hochberg as the correction (141). We used
a p-value threshold of 0.05. This resulted in the enrichment of near-
consensus motifs for MARE and CNC-sMaf binding elements.

RNA extraction, reverse transcription and
qPCR

RNA extraction was performed using the FavorPrepTM Tissue
Total RNA Mini Kit (FATRK 001, Favorgen) according to the
manufacturer’s instructions. Validation of RNAseq by RT/qPCR
was conducted using neutrophil isolates from different donors than
those used for the RNAseq. cDNA was synthesized from 100-500
ng of RNA using the 5x All-in-One RT Mastermix (G485, abm) and
diluted 5 times. Quantitative polymerase chain reaction (QPCR) was
conducted with BrightGreen 2xqPCR MasterMix (MasterMix-LR-
XL, abm) on a Roche Applied Science LightCycler 96 machine.
Gene expression was normalized to ZC2HCI1C. All primers are
listed in Supplementary Table S4.

Western blotting and protein analysis

Western blotting and protein analysis were achieved as detailed
(1). The antibody for MAFF was generously provided by Dr. Volker
Blank and used at a dilution of 1:20,000. BACHI1 (sc-271211, Santa
Cruz, 1:100) and VDR (sc-13133, Santa Cruz, 1:500) primary
antibodies were purchased from Santa Cruz. The anti-rabbit and
anti-mouse IgG HRP-linked secondary antibodies were purchased
from Cell Signaling Technology and used at recommended
concentrations. We quantified changes in protein levels relative to
control using Image Lab software after normalization to B-actin
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(#4970, Cell Signaling Technology, 1:500). Western blot images are
representative of at least three biological replicates.

Chromatin immunoprecipitation assays

ChIP assays were conducted as previously specified (39). The
VDR antibody used for ChIP (4 pg/sample) is the same as for
western blotting. IgG mouse antibody (sc-2025, Santa Cruz, 4 pg/
sample) was purchased from Santa Cruz. MAFF (12771-1-AP,
Proteintech) and BACH1 (14018-1-AP, Proteintech) ChIP
antibodies were purchased from Proteintech and used at 2 ug/
sample. H3K9me2 (#4658S, Cell Signaling Technology) and normal
IgG rabbit antibodies (#2729S, Cell Signaling Technology) were
purchased from New England Biolabs and were used at 2 pg/
sample. Primer pairs used for ChIP assays are listed in
Supplementary Table S4.

Antimicrobial assays with neutrophil
conditioned media

Antimicrobial assays were performed as previously described
(14). E. coli was grown to early log phase at 37 °C in Luria-Bertani
(LB) broth (800-060-LG, Wisent). 50 ul cultures in LB broth were
diluted to 500 CFU with 150 pl of regular, non-conditioned medium
as a negative control or conditioned medium from cells treated with
1,25D, LPS and LPS + 1,25D for 6h. Samples were incubated at 37 °C
with shaking for 30 min, and bacteria were then plated onto LB agar
(800-011-LG, Wisent) plates, and CFUs were counted after 18 h. The
results for the conditioned medium experiments are expressed as a
percentage of CFUs relative to bacteria cultured in non-conditioned
medium. For the anti-LL-37 experiments, the conditioned media
were treated with 1 pg/ml anti-LL-37 (HM2070, Hycult) or IgG
(54158, Cell Signalling Technology) for 30 min at 4 °C with shaking,
before contacting E. coli.

Statistics

A two-tailed t-test (Student’s t-test), conducted using GraphPad
software, was used to assess the significance between two conditions.
For four conditions, a one-way ANOVA followed by Tukey’s post hoc
test for multiple comparisons was applied using GraphPad. A p-value
of < 0.05 was considered statistically significant. p-values were
represented with the following symbols: **P < 0.05, **P < 0.01, **P
<0.001, ***P < 0.0001, and ns > 0.05. Results from RT/qPCR, western
blotting, ChIP analyses, flow cytometry and antimicrobial assays are
based on at least three biological replicates, and one-way ANOVAs
were used to determine significance. Biological replicates refer to
neutrophil isolates from different human blood donors, and technical
replicates refer to repeated measurements of the same sample. Paired
tests were used for technical replicates of a representative sample, while
unpaired tests were used for biological replicates.
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