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Objective: To develop and validate a machine learning model that integrates dose
distribution-based radiomics, clinicopathological parameters, and hematological
inflammatory biomarkers for predicting radiation pneumonitis (RP) in locally
advanced non-small cell lung cancer (LA-NSCLC) patients receiving immuno-
consolidation therapy after concurrent chemoradiation (CCRT).

Methods: This retrospective study analyzed 161 locally advanced non-small cell
lung cancer (LA-NSCLC) patients divided into training (n=112) and validation
(n=49) cohorts. Radiomics features were extracted from planning CT scans
across nine 5-Gy dose gradients (0-60 Gy), including the initial positioning CT
(before radiotherapy) and a resetting CT (after a cumulative dose of 40-50 Gy),
all within regions of interest (ROIs). Longitudinal feature changes were analyzed,
followed by LASSO-based feature selection and logistic regression modeling.
Machine learning methods evaluated associations between radiomics signatures
(RS), clinical features, hematological inflammatory markers, and RP. Model
performance was evaluated with AUC metrics and decision curve analysis (DCA).
Results: Radiomics signatures across dose ranges (RS1:5 Gy; RS3:10-15 Gy;
RS4:15-20 Gy; RS5:20-30 Gy; RS7:40-50 Gy; RS8:50-55 Gy; RS9:55-60 Gy)
were developed. RS8 demonstrated the highest validation AUC (0.854). The
model based on RS8 combined with tumor location achieved an AUC of 0.918 in
the training cohort for predicting RP, whereas the addition of the neutrophil-to-
lymphocyte ratio at 4 week (NLR 4w) to this model resulted in a marginally higher
AUC of 0.938.
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Conclusions: The combined model improves RP prediction in LA-NSCLC
patients undergoing post-CCRT consolidative immunotherapy, offering a novel
approach for personalized patient management.

radiation pneumonitis, LA-NSCLC, consolidative immunotherapy, CT radiomics,

machine learning

1 Introduction

Radiotherapy (RT) serves as the primary therapeutic approach for
individuals with unresectable locally advanced non-small cell lung
cancer (LA-NSCLC) (1). Following the outcomes of the PACIFIC trial,
anti-PD-L1 therapies subsequent to radical chemo-radiotherapy have
been established as the standard care for this condition, demonstrating
a notable survival advantage (2, 3). Despite the promising synergy
between immune checkpoint inhibitors (ICI) and RT, awareness of the
risk of radiation pneumonitis (RP), a frequent adverse effect, is crucial.
The incidence of any-grade pneumonitis or RP was 33.9% and 24.8%,
respectively, among patients treated with durvalumab versus those on a
placebo regimen in the PACIFIC trial (2).This treatment regimen has
also been associated with an increased incidence of pneumonia and
more frequent treatment interruptions in a subset of patients (2),
potentially reducing clinical benefits (4). Hence, accurately predicting
RP is vital for optimizing RT dosing to maximize therapeutic effects
while minimizing RP risk.

Currently, RP predictive models are predominantly based on
clinical factors and dosimetric parameters, including age, gender,
smoking history, tumor location, pre-existing pulmonary
comorbidities, and concurrent chemotherapy treatment (5-8).
Dosimetric predictors, such as the volume of lung receiving 5 Gy
(V5), volume of lung receiving 20 Gy (V20), mean lung dose
(MLD), total lung radiation dose, and daily radiation dose, are
well-recognized (6, 9-11). The normal tissue complication
probability (NTCP) model, which utilizes comprehensive data
from the dose-volume histogram (DVH), has shown superior
predictive performance over dosimetric factors alone (12).

Radiomics, an emerging field, converts conventional medical
images into quantifiable data for mining and subsequent analysis,
supporting clinical decision-making. Its role in predicting clinically
significant RP has attracted considerable attention. Predictive models
based on radiomic features have become increasingly used to identify
patients at high risk for RP (13, 14). Studies have indicated that
incorporating dosiomic (dose-based radiomic) features can improve
the predictive efficacy beyond DVH or NTCP models alone for RP
prediction (15, 16). Additionally, the integration of radiomics and
dosiomic features into dual-omics models has been shown to further
enhance the predictive capability for RP (14).

Recent developments in multi-omics, combining radiomics

with hematological inflammatory markers, dosimetry, and clinical
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features, have demonstrated exceptional predictive performance
(17). Nevertheless, there exists a scarcity of radiomic data on risk
factors for predicting RP occurrence in LA-NSCLC patients who
received consolidative immunotherapy after CCRT compared to
current RP models. Addressing this gap by developing new
prognostic models with improved predictive ability is crucial for
optimizing the therapeutic benefits of current RT and ICI regimens
while minimizing RP incidence. In this study, we introduce a
composite predictive model that integrates radiomics based on
CT dose distribution, clinical parameters, and hematological
inflammatory biomarkers to predict RP in LA-NSCLC patients.

2 Materials and methods

2.1 Study population and data
characteristics

This retrospective study enrolled a total of 161 patients diagnosed
with Locally Advanced Non-Small Cell Lung Cancer (LA-NSCLC) at
the Shandong Cancer Hospital. These patients received consolidative
immunotherapy following RT from April 2019 to April 2023 (see
Figure 1A). The inclusion criteria were: (1) pathologically confirmed
stage IITA-IIIC NSCLC according to the AJCC 8th edition; (2)
completion of curative-intent thoracic RT ranging from 50-70 Gy;
(3) undergoing concurrent chemoradiotherapy followed by at least two
cycles of consolidative immunotherapy; (4) observation of RP within
six months post-RT. Patients were excluded based on the following: (1)
occurrence of RP prior to consolidative immunotherapy; (2) absence of
diagnostic imaging at the time of RP diagnosis; (3) a previous history of
thoracic RT; (4) incomplete RT data, including those not undergoing
reset CT during RT; (5) diagnosis of immune-related pneumonitis.
Baseline clinicopathologic and dosimetric data are summarized
in Table 1.

2.2 Treatment protocol
Patients were treated using intensity-modulated radiotherapy
(IMRT), with RT plans generated using the Eclipse system (Varian

Medical Systems, Palo Alto, CA, version 13.5.35). Prescribed RT doses
varied from 50 Gy to 66 Gy, delivered in fractions of 1.8 Gy to 2 Gy,
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FIGURE 1

(A) The workflow of schematic diagram of data collection of RP>2. (B) Dose-distribution-based CT images before radiotherapy and representative

images of patients presenting with grade 3 RP after radiotherapy.1Gy=

100cQGy.

TABLE 1 Baseline characteristics of the patients.

Training cohort (N=112)

Characteristic

Validation cohort (N=49)

Non-RP, N=78 RP, N=34 p-value = Non-RP, N=33 RP, N=16 p-value
Gender 0.488 >0.999
Male 72 (92%) 30 (88%) 30 (91%) 15 (94%)
Female 6 (7.7%) 4 (12%) 3 (9.1%) 1 (6.3%)
Age(years) 0.285 0.726
60 24 (31%) 14 (41%) 9 (27%) 3 (19%)
60 54 (69%) 20 (59%) 24 (73%) 13 (81%)
Histology 0.435 0.520
AC 24 (31%) 8 (24%) 9 (27%) 6 (38%)
Neo 54 (69%) 26 (76%) 24 (73%) 10 (63%)
Smoking History 0.525 >0.999
No 25 (32%) 13 (38%) 6 (18%) 3 (19%)
(Continued)
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TABLE 1 Continued

Characteristic

Training cohort (N=112)

Validation cohort (N=49)

10.3389/fimmu.2025.1684629

Non-RP, N=78 RP, N=34 p-value = Non-RP, N=33 RP, N=16 p-value

Yes 53 (68%) 21 (62%) 27 (82%) 13 (81%)
Tumor Location <0.001 0.079

Upper 60 (77%) 5 (15%) 17 (52%) 4(25%)

ijgj’i& or 18 (23%) 29 (85%) 16 (48%) 12 (75%)
Pulmonary comorbidities 0.001 0.261

No 61 (78%) 16 (47%) 22 (67%) 8 (50%)

Yes 17 (22%) 18 (53%) 11 (33%) 8 (50%)
TNM stage 0.072 0.653

1A 25 (32%) 11 (32%) 14 (42%) 5 (31%)

11IB 35 (45%) 21 (62%) 13 (39%) 9 (56%)

iite 18 (23%) 2 (5.9%) 6 (18%) 2 (13%)
KPS score 0.486 0.266

80 33 (42%) 12 (35%) 13 (39%) 9 (56%)

90 45 (58%) 22 (65%) 20 (61%) 7 (44%)
Immunotherapeutic drugs 0.509 0.363

PD-1 36 (46%) 18 (53%) 14 (42%) 9 (56%)

PD-L1 42 (54%) 16 (47%) 19 (58%) 7 (44%)
PD-L1 expression 0.317 0.378

>50% 9 (12%) 1(2.9%) 5 (15%) 1(6.3%)

1-49% 9 (12%) 7 (21%) 4(12%) 2 (13%)

<1% 11 (14%) 6 (18%) 2 (6.1%) 4 (25%)

Unavailable 49 (63%) 20 (59%) 22 (67%) 9 (56%)

Mean (SD) 23.90 (3.54) 24.66 (2.91) 0.243 24.11 (2.86) 24.95 (3.62) 0.301
o g[;dia“ @t 23.88 (21.30, 26.12) 2479 (22.83, 26.57) 2353 (22.23, 26.13) 2436 (23.29, 25.66)

Mean (SD) 132 (0.63) -0.09 (1.01) <0.001 150 (0.65) -0.51 (0.70) <0.001
o g;dian @t 129 (-1.78, -0.87) -0.02 (-0.92, 0.44) 153 (-1.89, -1.17) -0.39 (-0.91, -0.24)

1,044.90 (796.30, 1,014.90 (865.20, 1,127.40 (865.10, 54.70 (729.45,

MLD 1,344?73) 1,2982(.10) 0413 1,289(.20) ’ 1,18;.059) 0090
Vs 35.64 (30.20, 47.42) 38.57 (30.50, 47.58) 0.461 37.53 (31.28, 47.38) 34.82 (24.61, 39.07) 0.156
V20 18.77 (14.18, 23.48) 17.98 (15.24, 22.70) 0.692 20.45 (14.81, 22.60) 17.03 (12.36, 22.27) 0.164
V30 13.10 (9.33, 16.29) 12.28 (10.46, 16.31) 0.773 15.20 (10.68, 17.26) 11.95 (7.48, 15.42) 0.099
V40 8.46 (5.40, 10.54) 8.53 (5.25, 11.56) 0.529 9.45 (6.92, 12.09) 7.45 (4.06, 11.06) 0171
RT Dose(cGy) 6,0006.5)(;)0((].5(,)?;)10‘00, 6,0006.5)(;)0(().5(,;())0.00, 0597 6,0006.5)000((].6(;(())())0.00, s,oooé?é)oééézgo.oo, 0750
PTV/LV 0.08 (0.06, 0.12) 0.09 (0.05, 0.12) 0.730 0.08 (0.05,0.11) 0.06 (0.03, 0.09) 0479
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once daily, five days a week. Patients who did not exhibit disease
progression or persistent RT toxicity commenced up to 12 months of
consolidative immunotherapy within 60 days following the completion
of concurrent chemoradiotherapy (CCRT). Chemotherapy regimens
were tailored by the attending medical oncologists. The
immunotherapy regimens included sintilimab and durvalumab. The
study population was randomly divided into a training set (n=112) and
a validation set (n=49) at an approximate 7:3 ratio. The workflow of the
study is depicted in Figure 2.

2.3 RP evaluation

Follow-up for all cases was conducted for at least six months post-
RT, focusing on the incidence of RP. A senior radiologist and
oncologist evaluated RP occurrences. RP was identified based on: (1)
a history of RT; (2) symptoms such as shortness of breath, low-grade
fever, and a dry cough; (3) thoracic CT imaging findings within the
high-dose radiation field that diverged from normal lobar anatomy,
showing patches of solid lesions (18). Patients experiencing RP events,
categorized as grade >2, were evaluated using the Common
Terminology Criteria for Adverse Events version 5.0 (CTCAE V5.0).
RP monitoring encompassed clinical examinations, symptom
assessment, medical record review, laboratory tests, and regular
follow-up CT scans at 1, 3, and 6 months after RT completion,
followed by at least every three months during the first year.

10.3389/fimmu.2025.1684629

2.4 Collection and definition of parameters

Clinical information, imaging data, and results from laboratory
tests were compiled from our institution’s medical records.
Clinicopathological parameters such as age, gender, smoking
history, comorbidities, pathological diagnosis, tumor stage and
location, radiation dose, and PD-L1 expression levels were
gathered from data collected before the initiation of RT.
Inflammatory markers, including the Platelet-to-Lymphocyte
Ratio (PLR), Neutrophil-to-Lymphocyte Ratio (NLR),
Lymphocyte-to-Monocyte Ratio (LMR), and Systemic Immune-
Inflammation Index (SII), were assessed at six different intervals:
one week prior to RT commencement (as baseline), and at one (1w),
two (2w), three (3w), four (4w), and five (5w) weeks during RT.
These markers were calculated using the formulas: PLR = platelet
count [P]/lymphocyte count [L], NLR = neutrophil count [N]/L,
LMR = L/monocyte count [M], and SII = P x N/L. Additionally,
dosimetric parameters were extracted from the Varian Treatment
Planning System, contributing to our analysis of treatment
characteristics. MLD = mean dose of total lungs. PTV/LV=
planning target volume/total lungs volume. Vxx = % of the whole
OAR receiving 2xx Gy. V5 = percentage of total lungs volume
receiving 5 Gy. V20 = percentage of total lungs volume receiving 20
Gy. V30 = percentage of total lungs volume receiving 30 Gy. V40 =
percentage of total lungs volume receiving 40 Gy.

L]
- R .o
Patients h — "\, Feature extraction .. Model buildin 0. Model
ROI definition ) > g >
and selection Y4 performance
Radiomics feature A Validagsg set
N I
+  Shape i ![H
+  First-order W1 ¢l
. GLCM r I
«  GLRLM . .
- GLszm N
. GLDM C
+ NGTDM Machine learning .
Test 1410 features o
Train (30%) .
(70%) I:> Feature selection :> . [> f
| & NP
RP E . R
i T
on-RP .k s sk = =
Clinical characteristics o = “”r . \,,XM\
%s«: E— i % \ \
i + I
o Y |
Hematological indexes — o -

FIGURE 2
An overall workflow of risk analysis of RP>2.
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2.5 CT image acquisition and ROI
identification

Contrast-enhanced treatment planning CT images were
obtained utilizing a Philips Brilliance Big Bore CT scanner
(Philips Medical Systems, Inc, Cleveland, OH), following a
standardized clinical protocol. The scanning parameters were as
follows: tube voltage, 120 kVp; tube current, 200 mA; slice
thickness, 3mm. These images included the initial positioning CT
scan before radiation therapy (CT;) and a subsequent scan after a
cumulative dose of 40 to 50 Gy (CT5,), both exported in the Digital
Imaging and Communications in Medicine (DICOM) format. Both
CT, and CT), are simulation CT scans acquired using the same CT
scanner, with the patient maintained in the same position during
the operation. The Eclipse treatment planning system (version
13.5.35; Varian Medical Systems, Palo Alto, CA) was utilized to
categorize dose ranges into nine distinct zones: 0-5 Gy, 5-10 Gy,
10-15 Gy, 15-20 Gy, 20-30 Gy, 30-40 Gy, 40-50 Gy, 50-55 Gy, and
55-60 Gy. Corresponding regions of interest (ROIs) for each dose
zone were then identified, with a focus on maintaining a minimum
volume of 0.5 cm’ for individual ROIs. Figure 1B showcases
representative CT images illustrating patient-specific
dose distribution.

These images, along with dose distribution diagrams and RT
plans, were imported into the MedMind Technology Imaging
System. A rigid registration was performed to align the resetting
CT images with the initial planning positioning CT images. Precise
alignment was ensured between the positioning CT images and the
subsequent resetting CT to maintain uniformity in spatial
coordinates and shape across both scans. Two radiation
oncologists, with 11 and 16 years of experience in radiotherapy-
related image analysis respectively, manually corrected any
registration errors exceeding 1mm. Displacement vector fields
were applied to adapt the three-dimensional dose distribution
associated with the planned CT, ensuring the spatial consistency
of ROIs across different dose gradients before and after RT.

2.6 Extraction, selection, and analysis of
texture features

Texture features were extracted using the MedMind
Technology Imaging System, with initial image discretization set
at a fixed bin width of 25 to standardize the analysis. A
comprehensive set of 1810 features spanning seven distinct
radiomics feature classes were extracted, as detailed in
Supplementary Material Table S1.

Prior to feature extraction, a normalization procedure (z-score
transformation) standardized the CT values across all images,
ensuring a uniform intensity range. The ROIs were semi-
automatically delineated on the CT images of 40 randomly
selected patients by two expert radiologists. The intragroup
correlation coefficient (ICC) was calculated to assess the reliability
of the extracted features, with those achieving an ICC greater than
0.8 being selected for further analysis. Feature change (ARF) was
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quantified as ARF = [(RFcr, - REcr1)/REcri] X 100%, where RFcrq
and RFcr, represent the radiomic features extracted from the initial
and subsequent CT scans, respectively. Features with missing values
were excluded, and the analysis proceeded with the remaining data.

The least absolute shrinkage and selection operator (LASSO)
algorithm was applied to refine the feature selection across the nine
ROIs, optimizing the selection process through a 10-fold cross-
validation method to determine the most suitable lambda (1) value.
The methodological approach for feature selection using the LASSO
algorithm is illustrated in Supplementary Figure SI in the
Supplementary Material. A radiomics signature (RS) was
constructed utilizing a linear combination of the selected features
weighted by their LASSO coefficients.

2.7 Construction and validation of
radiomics signatures

To construct the RS models, we employed logistic regression
(LR) classifier to identify the most effective ones for constructing
ROI-specific radiomics features across different dose regions. The
validation phase employed a rigorous procedure involving grid
search and cross-validation to fine-tune the hyperparameters and
enhance model performance.

Receiver operating characteristic (ROC) analysis was employed to
evaluate the performance of each model, utilizing the area under the
ROC curve (AUC) as the principal measure of efficacy. LR iteratively
determines the most potent linear mix of variables that optimally
predicts the observed outcome, leveraging the linear regression
components on the logit scale. LR was implemented by the R
package “glmnet”. In the training process, the optimal
hyperparameters were identified through the application of grid
search and ten-fold cross-validation procedures. This
comprehensive approach aimed to establish a robust framework for
the development and validation of predictive radiomics signatures.

2.8 Construction and validation of
combined model

Variables with p-value less than 0.1 in baseline characteristics
(Tables 1, 2) were selected. The importance of each variable in the
RP prediction was selected using a ten-fold cross-validation method
by ranking the importance of each variable among the four models,
namely, Random Forest (RF), Neural Network (NNET), Gradient
Boosting Machine (GBM), and Recursive Partitioning and
Regression Trees (RPART) to rank the importance of each
variable and filter out the stable-performing variables in RP
prediction. Subsequently, logistic regression models were
employed to evaluate the predictive efficacy of the combined top
three stable variables for RP. The calibration curve was also
generated to evaluate the concordance between the predicted and
observed RP probabilities. Furthermore, decision curve analysis
(DCA) was performed to ascertain the clinical applicability of the
combined model.
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TABLE 2 Hematological parameters of the patients.

Characteristic

Training cohort (N=112)

Non-RP, N=78

RP, N=34

p-value

10.3389/fimmu.2025.1684629

Validation cohort (N=49)

Non-RP, N=33

RP, N=16

p-value

baseline 3.98 (2.48, 5.19) 3.28 (2.18, 4.68) 0.263 3.40 (2.62, 4.63) 3.70 (3.12, 4.50) 0.536

1w 3.55 (2.13, 5.06) 3.41 (2.09, 5.12) 0.630 2.84 (2.06, 3.81) 3.56 (2.29, 7.45) 0.089

2w 2.79 (1.86, 4.02) 3.23 (1.99, 4.23) 0.310 2.33 (1.73, 3.49) 2.44 (2.07, 3.49) 0.577

3w 2.97 (2.14, 4.49) 3.08 (2.18, 4.60) 0.734 2.66 (1.77, 4.58) 3.61 (2.15, 4.17) 0.533

4w 2.88 (2.15, 3.43) 3.04 (2.24, 4.16) 0.467 2.87 (223, 3.22) 3.04 (2.63, 4.01) 0.144

N 5w 279 (2.24, 4.12) 3.44 (2.41, 4.66) 0.334 3.38 (2.39, 4.35) 2.86 (2.19, 4.05) 0.654

A2w -1.52 (-2.61, 0.41) -0.32 (-1.27, 0.67) 0.093 -0.70 (-2.17, 0.11) -0.86 (-2.20, -0.07) 0.922

A\3w -1.00 (-2.99, 0.72) -0.39 (-1.38, 1.13) 0.107 -0.77 (-2.08, 0.13) -0.94 (-1.26, 0.46) 0.571

ANdw -0.89 (-2.53, 1.12) 0.07 (-1.48, 1.66) 0.081 -0.92 (-2.17, 0.90) -0.98 (-1.50, 0.44) 0.801

N -0.86 (-2.49, 1.11) 0.11 (-2.08, 2.06) 0212 046 (-1.88, 1.82) -1.09 (-1.76, 1.01) 0.759

baseline 1.64 (1.27, 1.98) 1.59 (1.37, 2.24) 0.924 1.66 (1.36, 1.90) 1.53 (1.38, 1.81) 0.488

1w 1.14 (0.84, 1.56) 1.23 (1.02, 1.50) 0519 1.23 (0.88, 1.60) 0.87 (0.75, 1.30) 0.093

2w 0.90 (0.71, 1.15) 1.01 (0.72, 1.28) 0.425 0.89 (0.79, 1.25) 0.80 (0.59, 1.12) 0.230

3w 0.74 (0.55, 1.02) 0.76 (0.49, 0.94) 0.625 0.86 (0.68, 1.09) 0.62 (0.45, 0.78) 0.015

4w 0.70 (0.53, 0.92) 0.56 (0.46, 0.80) 0.068 0.79 (0.71, 0.97) 0.59 (0.50, 0.62) <0.001

: 5w 0.59 (0.42, 0.87) 0.61 (0.45, 0.76) 0.923 0.73 (0.49, 0.94) 0.50 (0.28, 0.68) 0.026

A\2w -0.64 (-1.06, -0.35) -0.67 (-0.92, -0.14) 0.716 -0.54 (-1.07, -0.33) -0.74 (-0.91, -0.36) 0.902

3w -0.82 (-1.27, -0.52) -0.94 (-1.09, -0.50) 0.806 -0.84 (-1.09, -0.46) -0.89 (-1.15, -0.55) 0.430

Adw -0.90 (-1.18, -0.60) -1.01 (-1.43, -0.56) 0.456 -0.74 (-1.10, -0.46) -0.98 (-1.26, -0.85) 0.113

A\5w -1.02 (-1.29, -0.69) -0.93 (-1.43, -0.54) 0.674 -0.91 (-1.21, -0.55) -1.02 (-1.18, -0.72) 0.540

baseline 4.27 (3.81, 4.63) 4.27 (4.03, 4.66) 0.669 4.25 (3.89, 4.60) 4.23 (3.72, 4.55) 0.677

1w 4.20 (3.79, 4.40) 4.25 (3.87, 4.57) 0.506 4.24 (3.69, 4.47) 3.99 (3.53, 4.26) 0.362

2w 4.02 (3.63, 4.33) 4.18 (3.68, 4.49) 0.418 4.03 (3.55, 4.29) 3.79 (3.52, 4.09) 0.304

3w 4.03 (3.68, 4.30) 4.10 (3.74, 4.56) 0.505 4.00 (3.60, 4.25) 3.60 (3.35, 4.04) 0.247

4w 3.95 (3.49, 4.36) 3.95 (3.65, 4.49) 0.469 4.02 (3.50, 4.29) 3.59 (3.20, 3.96) 0.259

: 5w 3.96 (3.48, 4.29) 3.99 (3.55, 4.34) 0.413 4.07 (3.44, 4.45) 3.62 (3.47, 4.11) 0.149

A2w -0.23 (-0.43, 0.07) -0.14 (-0.26, -0.01) 0.408 -0.31 (-0.50, -0.12) -0.26 (-0.63, -0.08) 0.844

A\3w -0.27 (-0.46, -0.08) -0.18 (-0.48, 0.01) 0.576 -0.37 (-0.62, -0.05) -0.50 (-0.73, -0.20) 0.238

Adw -0.27 (-0.51, -0.02) -0.28 (-0.53, 0.01) 0.927 -0.38 (-0.63, -0.11) -0.57 (-0.69, -0.17) 0.304

/A\5w -0.37 (-0.78, -0.15) -0.25 (-0.62, 0.00) 0.327 -0.32 (-0.62, -0.02) -0.36 (-0.82, -0.10) 0.431

baseline 238.00 (184.00, 310.00) 250.00 (192.00, 333.00) 0.606 201.00 (169.00, 248.00) 250.50 (200.00, 292.00) 0.115

1w 192.50 (155.00, 283.00) 200.00 (153.00, 276.00) 0.751 189.00 (156.00, 234.00) 226.00 (153.00, 267.00) 0.374

2w 185.00 (141.50, 232.50) 198.50 (166.50, 257.50) 0.226 165.00 (137.00, 209.50) 176.00 (142.00, 229.00) 0.314

P 3w 174.00 (133.00, 213.00) 185.00 (139.00, 241.00) 0.181 175.00 (138.00, 225.00) 167.00 (117.00, 245.00) 0.991

4w 166.00 (135.00, 213.00) 182.50 (168.00, 235.50) 0.068 173.50 (121.50, 219.00) 151.00 (123.00, 221.00) 0.632

5w 169.50 (128.00, 227.00) 186.50 (147.00, 228.00) 0.077 165.00 (135.00, 195.50) 169.00 (150.00, 212.50) 0.274

A\2w -46.50 (-130.50, -0.50) -35.50 (-126.00, 6.00) 0.685 -40.00 (-100.50, 4.50) -46.50 (-93.50, -21.50) 0.710
(Continued)
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TABLE 2 Continued

Characteristic

Training cohort (N=112)

Non-RP, N=78

RP, N=34

p-value

10.3389/fimmu.2025.1684629

Validation cohort (N=49)

Non-RP, N=33

RP, N=16

A\3w -59.00 (-129.00, -22.00) -49.00 (-100.00, -11.00) 0.402 -63.00 (-89.00, -5.00) -57.00 (-115.00, -16.00) 0.470
A\dw -62.00 (-126.00, -22.00) -71.50 (-119.00, -27.00) 0.736 -55.50 (-105.50, -4.00) -54.00 (-158.00, -26.00) 0.299
5w -77.50 (-148.00, -12.50) -65.50 (-122.00, -7.00) 0.473 -65.00 (-88.00, 4.50) -51.00 (-70.00, -29.50) 0.956
baseline 142.72 (115.11, 203.97) 177.36 (122.50, 218.64) 0.240 131.35 (94.47, 159.43) 157.30 (136.18, 215.82) 0.053
1w 177.84 (127.61, 241.98) 177.24 (120.38, 236.99) 0.811 152.27 (126.72, 183.33) 196.15 (133.77, 370.00) 0.087
2w 199.52 (129.06, 285.39) 214.06 (126.51, 266.67) 0.807 171.59 (134.67, 227.96) 217.74 (173.23, 318.74) 0.054
3w 226.92 (158.02, 290.70) 266.47 (192.86, 365.31) 0.103 197.44 (159.56, 280.91) 253.03 (190.59, 342.31) 0.068
4w 225.26 (173.96, 318.60) 312.80 (219.50, 413.42) 0.015 193.90 (140.10, 273.82) 253.23 (214.52, 424.14) 0.004
o 5w 292.97 (200.00, 434.49) 327.84 (255.00, 402.22) 0.296 219.06 (181.50, 313.06) 374.49 (316.37, 562.06) <0.001
A2w 82.17 (6.96, 239.62) 65.22 (-3.33, 189.39) 0.919 42.20 (-18.18, 118.52) 66.35 (43.45, 160.04) 0.199
A\3w 84.13 (21.43, 227.13) 51.43 (3.47, 128.38) 0.117 33.17 (1.65, 153.57) 61.29 (14.16, 138.18) 0.567
Ndw 57.94 (13.89, 157.28) 81.63 (31.35, 123.59) 0.943 46.26 (-6.37, 161.65) 59.34 (20.63, 160.55) 0.314
N 73.77 (15.62, 143.09) 87.18 (12.28, 152.78) 0.930 68.88 (-5.00, 158.63) 53.97 (33.48, 70.91) 0.689
baseline 2.43 (1.60, 3.56) 2.20 (1.41, 3.08) 0.435 2.24 (1.48, 2.80) 2.42 (1.70, 3.81) 0.257
1w 2.89 (1.87, 4.68) 2.80 (1.48, 4.65) 0.409 2.64 (1.42, 3.56) 3.62 (2.67, 11.03) 0.036
2w 2.89 (1.95, 4.65) 3.04 (2.05, 4.99) 0.761 2.58 (1.71, 4.13) 3.23 (2.42, 4.04) 0.224
3w 3.78 (2.61, 7.14) 4.04 (2.56, 7.26) 0.734 3.55 (2.01, 4.95) 4.98 (3.47, 6.84) 0.050
4w 3.63 (3.18,4.97) 4.14 (3.70, 6.08) 0.021 3.39 (2.83, 3.66) 5.87 (4.17, 7.48) <0.001
N 5w 5.24 (3.30, 9.23) 4.80 (3.71, 6.64) 0.667 5.46 (3.07, 7.81) 5.83 (3.50, 14.98) 0219
A\2w 1.66 (-0.72, 4.91) 1.05 (-0.30, 3.44) 0.607 1.65 (-0.25, 3.36) 0.99 (-0.15, 3.30) 0.714
A\3w 1.38 (-1.25, 4.13) -0.10 (-1.53, 1.05) 0.015 0.95 (-0.43, 2.79) 0.79 (-0.63, 1.53) 0.495
Ndw 0.95 (-1.15, 2.60) -0.14 (-2.46, 1.88) 0.087 0.94 (-1.10, 2.64) 0.80 (-0.69, 1.69) 0.799
A\5w 0.71 (-0.96, 2.61) -0.25 (-3.90, 2.48) 0.247 0.51 (-1.44, 2.59) 1.39 (-0.74, 1.78) 0.689
baseline 3.36 (2.29, 4.47) 3.58 (2.58, 6.27) 0.159 2.88 (2.54, 3.69) 2.88 (2.34, 3.80) 0.681
1w 3.19 (1.96, 5.60) 332 (2.31, 5.04) 0.992 5.67 (3.10, 12.40) 241 (1.66, 4.81) 0.014
2w 2.17 (1.38, 3.79) 2.38 (1.70, 3.12) 0.615 2.08 (1.32, 4.05) 1.92 (1.40, 2.59) 0.355
3w 1.46 (1.00, 2.84) 1.79 (1.21, 3.45) 0.237 1.66 (1.32, 2.07) 1.21 (1.00, 1.74) 0.168
4w 1.71 (1.05, 2.44) 1.82 (1.08, 2.53) 0.908 1.98 (1.40, 3.43) 1.24 (0.96, 1.72) 0.004
LMR
5w 1.26 (0.86, 1.80) 1.40 (1.08, 2.00) 0.188 1.27 (0.91, 1.97) 1.15 (0.82, 1.32) 0.246
2w 0.43 (-3.12, 3.05) 0.44 (-1.71, 2.13) 0913 1.00 (-1.85, 3.10) 2.00 (-1.84, 4.24) 0.633
3w 0.92 (-1.79, 4.92) 1.64 (-4.22, 5.50) 0.919 1.56 (-1.79, 5.67) 1.83 (-4.19, 9.60) 0.758
ANdw 2.06 (-0.88, 7.38) 0.23 (-7.02, 5.58) 0.200 1.45 (-1.08, 3.56) 3.13 (-4.75, 5.93) 0.409
A\5w 0.80 (-4.08, 5.66) -1.73 (-6.00, 3.41) 0.269 0.38 (-2.41, 6.33) 2.26 (-15.21, 6.96) 0.673
baseline 557.81 (331.66, 929.11) 583.89 (301.05, 936.00) 0.907 412.03 (304.96, 646.31) 603.30 (451.85, 981.03) 0.090
1w 576.56 (380.27, 1,039.96) 649.08 (277.28, 1,180.00) 0.738 379.16 (263.54, 743.33) 798.83 (516.47, 1,981.82) 0.019
o 2w 538.72 (328.42, 876.71) 569.76 (379.55, 1,069.33) 0.382 413.50 (253.19, 674.64) 563.03 (415.49, 848.05) 0.064
3w 682.16 (385.42, 1,051.59) 803.36 (477.89, 1,368.34) 0.294 524.27 (395.05, 896.48) 951.62 (535.99, 1,201.02) 0.075
(Continued)
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TABLE 2 Continued

Training cohort (N=112)

Characteristic

10.3389/fimmu.2025.1684629

Validation cohort (N=49)

Non-RP, N=78 RP, N=34 p-value Non-RP, N=33 RP, N=16 p-value
4w 602.74 (412.19, 1,131.24) | 807.04 (706.78, 1,241.00) 0.021 553.03 (429.32, 775.56)  921.74 (589.92, 1,071.49) 0.002
5w 830.96 (532.35, 1,639.99) 1’0411'86673(2‘:)9‘91’ 0.463 861.91 (499.51, 1,243.40)  947.16 (774.50, 2,426.09) 0.099
2w -40.74 (-400.91, 35.01) -72.53 (-226.83, -10.37) 0576 1.44 (-84.32, 79.20) -23.26 (-165.82, 7.29) 0379
3w -67.50 (-270.34, 89.59) -12.15 (-92.19, 41.74) 0340 -13.03 (-88.64, 37.77) -21.24 (-156.07, 12.83) 0552
Adw -23.17 (-192.83, 83.46) -15.33 (-180.86, 70.91) 0.807 -24.18 (-198.33, 93.29) -20.84 (-183.53, 11.33) 0.694
5w -52.45 (-314.15, 33.68) -5.10 (-126.00, 60.32) 0.184 2.72 (-99.70, 83.05) -38.79 (-127.71, 6.00) 0.416

2.9 Statistical analysis

The study’s statistical analysis encompassed clinical, dosimetric,
and hematological inflammatory parameters. Continuous variables
were analyzed utilizing either the Mann-Whitney U test or the
independent-samples T test, depending on their distribution, while
chi-square tests were utilized for categorical variables to determine
significance levels.

Clinical characteristics with substantial missing data were
excluded to ensure the integrity of the analysis. The LASSO
algorithm was conducted using the “glmnet” package in R,
facilitating the selection of relevant features. Calculations of the
area under the receiver operating characteristic curve (AUC)
along with its 95% confidence interval were conducted
employing the ‘pROC’ package, aiding in the evaluation of
model performance. All statistical analyses were carried out
using R software (version 4.3.0).

3 Results
3.1 Characteristics of study participants

Tables 1 and 2 detail the clinical, dosimetric, and hematological
characteristics of the study participants. Analyses revealed no
significant differences between the RP and non-RP groups in
terms of age, gender, pathological type, smoking history, TNM
stage, Karnofsky Performance Status (KPS) score immunotherapy
regimens, PD-L1 expression and BMI, all yielding p-values greater
than 0.05. However, within the training set, statistically significant
differences were observed in tumor location, pulmonary
comorbidities, and the radiomics signature RS8 (p<0.05).
Additionally, among the hematological inflammation parameters,
PLR at 4 weeks (PLR4w), NLR at 4 weeks (NLR 4w), NLR A3w
(the ratio of change at 3 weeks) and SII at 4 weeks (SII 4w) showed
significant differences in the training set (p<0.05).

Frontiers in Immunology

3.2 Performance evaluation of radiomics
signatures

Radiomics features were extracted from planning CT scans
across nine 5-Gy dose gradients (0-60 Gy), including the initial
positioning CT (before radiotherapy) and a resetting CT (after a
cumulative dose of 40-50 Gy), all within regions of interest (ROIs).
No overlap with the PTV was found in the volumes receiving under
50Gy, while overlap was partial in the 50-55Gy and 55-60Gy dose
ranges. LASSO regression identified significant radiomics
signatures within the dose gradients of 5 Gy, 10-15 Gy, 15-20
Gy, 20-30 Gy, 40-50 Gy, 50-55 Gy, and 55-60 Gy, designated as
RS1, RS3, RS4, RS5, RS7, RS8, and RS9, respectively. The differences
in ARF features between the RP and non-RP groups were
statistically significant across both the training and validation sets
for these signatures. The formula for calculating each radiomics
signature is available in the Supplementary Materials Appendix S3.
The AUC values in the RS1, RS3, RS4, RS5, RS7, RS8 and RS9 in
training set were 0.681, 0.664, 0.825, 0.764, 0.896 0.854 and 0.771,
respectively (Figure 3A). The AUC values in the RS1, RS3, RS4, RS5,
RS7, RS8 and RS9 in validation set were 0.659,
0.559,0.491,0.515,0.614,0.854 and 0.640, respectively (Figure 3B).
Therefore, the RS8 model was identified as the most effective
radiomics signature for this study. The results of the Delong’s test
were presented in Supplementary Table 2.

3.3 Construction and comparison of
combined model

Tumor location, pulmonary comorbidities, TNM stage, RS8,
N/\4w, L4w, P4w, P5w, PLR4w, NLR4w, NLRA 3w, NLR A\ 4w,
and SIT4w were identified as 13 variables with p-values below 0.1 in
the baseline characteristics (Tables 1, 2). RS8, tumor location, and
NLR4w were identified as the top three stable variables across the
four machine learning algorithms (Figure 4). Logistic regression
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FIGURE 3

Comparison of ROC curve analyses in model based on logistic regression model. ROC curves of the RS1, RS3, RS4, RS5, RS7, RS8 and RS9 models in
the training set (A). ROC curves of the RS1, RS3, RS4, RS5, RS7, RS8 and RS9 models in the validation set (B).

models for RS8, RS8 + tumor location, and RS8 + tumor location +
NLR4w were designated as model 1, model 2, and model 3,
respectively. ROC curves were generated to assess models’
predictive capability. Model 3 exhibited AUC values of 0.938 in
the training set (Figure 5A) and 0.869 in the validation set
(Figure 5B). In the training set, model 3 demonstrated superior
performance compared to models 1 and 2, with higher AUC,
sensitivity, accuracy, and negative predictive value (NPV)
(Table 3). In the validation set, model 3 exhibited higher AUC,
sensitivity, and NPV than models 1 and 2; however, its accuracy,
specificity, and positive predictive value (PPV) were lower than
those of models 1 and 2. Furthermore, the calibration curve revealed
excellent agreement between the model3’s predictions and the
actual RP observations within the validation cohort (Figure 6A).
The DCA, depicted in Figure 6B, indicated that the model3 delivers

substantial positive net benefits across a range of threshold
probabilities up to 0.85 in the validation set. This showcases the
model3’s valuable clinical utility in predicting RP risk.

4 Discussion

This investigation delved into CT-based, dose distribution-
oriented radiomics among LA-NSCLC patients receiving CCRT,
employing machine learning classifier. It emerged that the LR-based
radiomics feature model demonstrated robust performance.
Remarkably, employing combined model markedly enhanced
predictive power for RP.

In today’s advancing cancer immunotherapy landscape,
precision radiotherapy represents a significant breakthrough in
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The ROC curves for the different models are depicted for both the training set (A) and the validation set (B). Modell:RS8; Model2: RS8+ Tumor

location; Model3: RS8+ Tumor location + NLR4w.

lung cancer treatment, particularly when combined with
immunotherapy and other therapeutic strategies to boost survival
rates for LA-NSCLC patients. However, the integration of ICI has
raised concerns due to the increased incidence of pneumonia, noted
in the PACIFIC study (2). Our study found an RP incidence rate of
27.45%, closely mirroring the 33.9% incidence reported in the
PACIFIC trial. This highlights RP as a critical adverse reaction
constraining the RT dose within the current LA-NSCLC treatment
paradigm (19), underscoring the urgent need to discover new
biomarkers beyond traditional clinical and dosimetric parameters.

The literature suggests the tumor’s location may affect
radiotherapy-induced pulmonary toxicity. Meta-analyses and
studies indicate that tumors situated in the middle or lower lung
regions pose a higher RP risk than those located in the upper
regions (5, 20, 21).This variation may be attributable to differences
in radiosensitivity across lung areas and the physiological
significance of perfusion and ventilation in the lower lung regions
(8). Our study reaffirms tumor location as a risk factor for RP,
emphasizing the critical nature of early preventative measures in RT
planning for individuals at elevated risk.

TABLE 3 Predictive value of RP.

In our analyses, pulmonary comorbidity was one of the top 10
significant variables in the variable importance rankings of the two
machine learning algorithms, GBM and NNET, for predicting RP.
The risk of RP can be influenced by pre-existing pulmonary
comorbidities, including interstitial lung disease (ILD) and
chronic obstructive pulmonary disease (COPD). Grade >r RP
occurrence has been reported to significantly increase to 26% in
patients with ILD on CT images, compared with 3% in patients with
normal lungs (22). Additionally, Kimura’s study highlighted a
notable increase in RP incidence correlating with the severity of
emphysema, as defined by CT classification (23). This suggests that
dose limitations derived from unselected patient populations may
not be suitable for individuals with pre-existing pulmonary
comorbidities.

Dosimetric parameters, including V20, V5, V30, and MLD, are
well-established factors closely correlated with the incidence of RP.
Barriger et al. noted a significant correlation between grade =2 RP
and both MLD and V20 in populations treated with Stereotactic
Body Radiotherapy (SBRT) (9). Furthermore, in patients with
unresectable LA-NSCLC receiving consolidation durvalumab,

ST A Training set Validation set
Metric model2 modell model2
AUC 0.854 0918 0.938 0.854 0.867 0.869
ACC 0.893 0.875 0.907 0.878 0.816 0.809
SE 0.706 0.824 0.875 0.750 0.812 0.867
SP 0.974 0.897 0.920 0.939 0.818 0.781
PPV 0.923 0.778 0.824 0.857 0.684 0.650
NPV 0.884 0.921 0.945 0.886 0.900 0.926
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various dosimetry parameters within the lungs and heart have been
linked to pneumonitis (24). Despite analyzing dosimetric
parameters, including V20, V5, V30, MLD, and the ratio of
Planning Target Volume to Lung Volume (PTV/LV) in our
study, no significant associations with RP were detected (all p>
0.05). However, this finding does not negate the potential
importance of dosimetric factors in predicting RP risk.

Additionally, our findings suggest an increased susceptibility to
RP in patients with elevated NLR levels at week 4. This association
between NLR and pneumonia risk, including immune-related and
pneumonia in patients with intracerebral hemorrhage, has been
corroborated by other studies (25, 26). It underscores the necessity
for future research to validate the most accurate inflammatory
markers for RP prediction, even though they did not show a
significant impact in our study.

To our knowledge, this is the first study to employ CT-based
dose-segmentation features for predicting RP in the context of
immune consolidation therapy following CCRT in LA-NSCLC
patients. Our approach finds indirect support from previous
research. For instance, Liang et al. advocated for using ipsilateral,
contralateral, and whole lung ROIs for RP prediction, noting that
their dosiomics model (AUC=0.782) outperformed both the
dosimetric (AUC=0.676) and NTCP models (AUC=0.744) (15).
Similarly, Adachi et al. focused on dose-segmented dosimetric
characteristics within the Vx Gy area, highlighting that
unirradiated lung regions might be irrelevant for RP prediction.
Their findings supported texture-based dosiomic features as
effective RP predictors (16). Zhang et al. also observed that
combining radiomics, dosiomics, and clinical variables could
enhance the accuracy of RP occurrence predictions (27).

In our study, we extracted features from dose-segmented
regions, refining the dose segmentation range compared to
Adachi et al’s approach and analyzing features from dose ranges
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of 0-5 Gy up to 55-60 Gy. We established radiomics and dosiomics
signature models by comparing features extracted across different
dose regions, identifying the 50-55 Gy (RS8) model as providing the
best predictive performance. This superior prediction may be linked
to the notable increase in feature change values with escalating RT
dose (28). Our results suggest the importance of meticulous target
area delineation in patients with elevated RP risk factors in clinical
practice, aiming to minimize damage to healthy lung tissue.

Diverging from the study by Adachi et al., our approach sought
to augment RP prediction accuracy by monitoring dynamic changes
in radiomic features from the initial positioning CT to the
subsequent resetting CT during radiotherapy. This concept aligns
with findings from Cunliffe et al., who demonstrated the predictive
superiority of evaluating changes in texture features before and after
RT in CT images over reliance on single time-point metrics (28).
The introduction of a novel delta radiomics signature, delta-RF =
(RFcrs - REcr1)/REcr; % 100%, by Wang et al. further emphasizes
the value of dynamic feature analysis. This method has proven
effective in enhancing RP detection capabilities, underscoring the
importance of dynamic variations in radiomic features at multiple
time points for improving RP prediction accuracy beyond the
limitations of static image data (17).

The limitations of our study are noteworthy. Primarily, the
retrospective nature of this research and the absence of pulmonary
function data for a third of the participants hindered a more
detailed clinical assessment of COPD classification and a precise
RP risk scoring. Secondly, being a single-institution study with a
relatively small sample size and lacking an external validation set,
our findings are potentially susceptible to selection bias. Despite not
identifying a significant correlation between RP and dosimetric
parameters, it emphasizes the necessity for broader multi-
institutional studies to re-evaluate the predictive relevance of
dosimetry and dosiomics for RP in the context of LA-NSCLC
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during the era of immunotherapy. Furthermore, the variability of
ARF could be influenced by the use of different imaging histology
software packages and processing methodologies. Advancing
towards the standardization of the entire radiomics workflow is
an essential step for improving the precision of RP predictions.

5 Conclusions

Our study demonstrates that employing dose distribution-based
radiomics significantly enhances the ability to predict grade >2 RP.
Furthermore, we have introduced a novel combined model that
integrates radiomics features with clinicopathological parameters
and hematological inflammatory markers. The advent of this
comprehensive model offers a valuable tool for clinicians,
enhancing their ability to monitor RP risk and tailor treatment
strategies accordingly. This proactive approach is pivotal in
mitigating RP risk, ultimately contributing to the optimization of
patient care in the treatment of lung cancer.
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