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Predicting radiation pneumonitis
with dose-segmented radiomics
in locally advanced non- small
cell lung cancer patients
undergoing consolidative
immunotherapy post-
concurrent chemoradiotherapy
Weiqing Wang1,2, Yanan Wang2, Xiaohan Wang2,
Jinming Yu1,2* and Xue Meng2,3*

1The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China,
2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan, Shandong, China, 3School of Public
Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
Objective: To develop and validate a machine learning model that integrates dose

distribution-based radiomics, clinicopathological parameters, and hematological

inflammatory biomarkers for predicting radiation pneumonitis (RP) in locally

advanced non-small cell lung cancer (LA-NSCLC) patients receiving immuno-

consolidation therapy after concurrent chemoradiation (CCRT).

Methods: This retrospective study analyzed 161 locally advanced non-small cell

lung cancer (LA-NSCLC) patients divided into training (n=112) and validation

(n=49) cohorts. Radiomics features were extracted from planning CT scans

across nine 5-Gy dose gradients (0–60 Gy), including the initial positioning CT

(before radiotherapy) and a resetting CT (after a cumulative dose of 40–50 Gy),

all within regions of interest (ROIs). Longitudinal feature changes were analyzed,

followed by LASSO-based feature selection and logistic regression modeling.

Machine learning methods evaluated associations between radiomics signatures

(RS), clinical features, hematological inflammatory markers, and RP. Model

performance was evaluated with AUC metrics and decision curve analysis (DCA).

Results: Radiomics signatures across dose ranges (RS1:5 Gy; RS3:10–15 Gy;

RS4:15–20 Gy; RS5:20–30 Gy; RS7:40–50 Gy; RS8:50–55 Gy; RS9:55–60 Gy)

were developed. RS8 demonstrated the highest validation AUC (0.854). The

model based on RS8 combined with tumor location achieved an AUC of 0.918 in

the training cohort for predicting RP, whereas the addition of the neutrophil-to-

lymphocyte ratio at 4 week (NLR 4w) to this model resulted in a marginally higher

AUC of 0.938.
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Conclusions: The combined model improves RP prediction in LA-NSCLC

patients undergoing post-CCRT consolidative immunotherapy, offering a novel

approach for personalized patient management.
KEYWORDS

radiation pneumonitis, LA-NSCLC, consolidative immunotherapy, CT radiomics,
machine learning
1 Introduction

Radiotherapy (RT) serves as the primary therapeutic approach for

individuals with unresectable locally advanced non-small cell lung

cancer (LA-NSCLC) (1). Following the outcomes of the PACIFIC trial,

anti-PD-L1 therapies subsequent to radical chemo-radiotherapy have

been established as the standard care for this condition, demonstrating

a notable survival advantage (2, 3). Despite the promising synergy

between immune checkpoint inhibitors (ICI) and RT, awareness of the

risk of radiation pneumonitis (RP), a frequent adverse effect, is crucial.

The incidence of any-grade pneumonitis or RP was 33.9% and 24.8%,

respectively, among patients treated with durvalumab versus those on a

placebo regimen in the PACIFIC trial (2).This treatment regimen has

also been associated with an increased incidence of pneumonia and

more frequent treatment interruptions in a subset of patients (2),

potentially reducing clinical benefits (4). Hence, accurately predicting

RP is vital for optimizing RT dosing to maximize therapeutic effects

while minimizing RP risk.

Currently, RP predictive models are predominantly based on

clinical factors and dosimetric parameters, including age, gender,

smoking history, tumor location, pre-existing pulmonary

comorbidities, and concurrent chemotherapy treatment (5–8).

Dosimetric predictors, such as the volume of lung receiving 5 Gy

(V5), volume of lung receiving 20 Gy (V20), mean lung dose

(MLD), total lung radiation dose, and daily radiation dose, are

well-recognized (6, 9–11). The normal tissue complication

probability (NTCP) model, which utilizes comprehensive data

from the dose-volume histogram (DVH), has shown superior

predictive performance over dosimetric factors alone (12).

Radiomics, an emerging field, converts conventional medical

images into quantifiable data for mining and subsequent analysis,

supporting clinical decision-making. Its role in predicting clinically

significant RP has attracted considerable attention. Predictive models

based on radiomic features have become increasingly used to identify

patients at high risk for RP (13, 14). Studies have indicated that

incorporating dosiomic (dose-based radiomic) features can improve

the predictive efficacy beyond DVH or NTCP models alone for RP

prediction (15, 16). Additionally, the integration of radiomics and

dosiomic features into dual-omics models has been shown to further

enhance the predictive capability for RP (14).

Recent developments in multi-omics, combining radiomics

with hematological inflammatory markers, dosimetry, and clinical
02
features, have demonstrated exceptional predictive performance

(17). Nevertheless, there exists a scarcity of radiomic data on risk

factors for predicting RP occurrence in LA-NSCLC patients who

received consolidative immunotherapy after CCRT compared to

current RP models. Addressing this gap by developing new

prognostic models with improved predictive ability is crucial for

optimizing the therapeutic benefits of current RT and ICI regimens

while minimizing RP incidence. In this study, we introduce a

composite predictive model that integrates radiomics based on

CT dose distribution, clinical parameters, and hematological

inflammatory biomarkers to predict RP in LA-NSCLC patients.
2 Materials and methods

2.1 Study population and data
characteristics

This retrospective study enrolled a total of 161 patients diagnosed

with Locally Advanced Non-Small Cell Lung Cancer (LA-NSCLC) at

the Shandong Cancer Hospital. These patients received consolidative

immunotherapy following RT from April 2019 to April 2023 (see

Figure 1A). The inclusion criteria were: (1) pathologically confirmed

stage IIIA-IIIC NSCLC according to the AJCC 8th edition; (2)

completion of curative-intent thoracic RT ranging from 50–70 Gy;

(3) undergoing concurrent chemoradiotherapy followed by at least two

cycles of consolidative immunotherapy; (4) observation of RP within

six months post-RT. Patients were excluded based on the following: (1)

occurrence of RP prior to consolidative immunotherapy; (2) absence of

diagnostic imaging at the time of RP diagnosis; (3) a previous history of

thoracic RT; (4) incomplete RT data, including those not undergoing

reset CT during RT; (5) diagnosis of immune-related pneumonitis.

Baseline clinicopathologic and dosimetric data are summarized

in Table 1.
2.2 Treatment protocol

Patients were treated using intensity-modulated radiotherapy

(IMRT), with RT plans generated using the Eclipse system (Varian

Medical Systems, Palo Alto, CA, version 13.5.35). Prescribed RT doses

varied from 50 Gy to 66 Gy, delivered in fractions of 1.8 Gy to 2 Gy,
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TABLE 1 Baseline characteristics of the patients.

Characteristic
Training cohort (N=112) Validation cohort (N=49)

Non-RP, N=78 RP, N=34 p-value Non-RP, N=33 RP, N=16 p-value

Gender 0.488 >0.999

Male 72 (92%) 30 (88%) 30 (91%) 15 (94%)

Female 6 (7.7%) 4 (12%) 3 (9.1%) 1 (6.3%)

Age(years) 0.285 0.726

60 24 (31%) 14 (41%) 9 (27%) 3 (19%)

60 54 (69%) 20 (59%) 24 (73%) 13 (81%)

Histology 0.435 0.520

AC 24 (31%) 8 (24%) 9 (27%) 6 (38%)

SCC 54 (69%) 26 (76%) 24 (73%) 10 (63%)

Smoking History 0.525 >0.999

No 25 (32%) 13 (38%) 6 (18%) 3 (19%)

(Continued)
F
rontiers in Immunology
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FIGURE 1

(A) The workflow of schematic diagram of data collection of RP≥2. (B) Dose-distribution-based CT images before radiotherapy and representative
images of patients presenting with grade 3 RP after radiotherapy.1Gy=100cGy.
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TABLE 1 Continued

Characteristic
Training cohort (N=112) Validation cohort (N=49)

Non-RP, N=78 RP, N=34 p-value Non-RP, N=33 RP, N=16 p-value

Yes 53 (68%) 21 (62%) 27 (82%) 13 (81%)

Tumor Location <0.001 0.079

Upper 60 (77%) 5 (15%) 17 (52%) 4 (25%)

Middle or
Lower

18 (23%) 29 (85%) 16 (48%) 12 (75%)

Pulmonary comorbidities 0.001 0.261

No 61 (78%) 16 (47%) 22 (67%) 8 (50%)

Yes 17 (22%) 18 (53%) 11 (33%) 8 (50%)

TNM stage 0.072 0.653

IIIA 25 (32%) 11 (32%) 14 (42%) 5 (31%)

IIIB 35 (45%) 21 (62%) 13 (39%) 9 (56%)

IIIC 18 (23%) 2 (5.9%) 6 (18%) 2 (13%)

KPS score 0.486 0.266

80 33 (42%) 12 (35%) 13 (39%) 9 (56%)

90 45 (58%) 22 (65%) 20 (61%) 7 (44%)

Immunotherapeutic drugs 0.509 0.363

PD-1 36 (46%) 18 (53%) 14 (42%) 9 (56%)

PD-L1 42 (54%) 16 (47%) 19 (58%) 7 (44%)

PD-L1 expression 0.317 0.378

>50% 9 (12%) 1 (2.9%) 5 (15%) 1 (6.3%)

1–49% 9 (12%) 7 (21%) 4 (12%) 2 (13%)

<1% 11 (14%) 6 (18%) 2 (6.1%) 4 (25%)

Unavailable 49 (63%) 20 (59%) 22 (67%) 9 (56%)

BMI

Mean (SD) 23.90 (3.54) 24.66 (2.91) 0.243 24.11 (2.86) 24.95 (3.62) 0.301

Median (Q1,
Q3)

23.88 (21.30, 26.12) 24.79 (22.83, 26.57) 23.53 (22.23, 26.13) 24.36 (23.29, 25.66)

RS8

Mean (SD) -1.32 (0.63) -0.09 (1.01) <0.001 -1.50 (0.65) -0.51 (0.70) <0.001

Median (Q1,
Q3)

-1.29 (-1.78, -0.87) -0.02 (-0.92, 0.44) -1.53 (-1.89, -1.17) -0.39 (-0.91, -0.24)

MLD
1,044.90 (796.30,

1,244.70)
1,014.90 (865.20,

1,282.10)
0.413

1,127.40 (865.10,
1,289.20)

954.70 (729.45,
1,189.05)

0.090

V5 35.64 (30.20, 47.42) 38.57 (30.50, 47.58) 0.461 37.53 (31.28, 47.38) 34.82 (24.61, 39.07) 0.156

V20 18.77 (14.18, 23.48) 17.98 (15.24, 22.70) 0.692 20.45 (14.81, 22.60) 17.03 (12.36, 22.27) 0.164

V30 13.10 (9.33, 16.29) 12.28 (10.46, 16.31) 0.773 15.20 (10.68, 17.26) 11.95 (7.48, 15.42) 0.099

V40 8.46 (5.40, 10.54) 8.53 (5.25, 11.56) 0.529 9.45 (6.92, 12.09) 7.45 (4.06, 11.06) 0.171

RT Dose(cGy)
6,000.00 (5,940.00,

6,000.00)
6,000.00 (5,600.00,

6,000.00)
0.597

6,000.00 (6,000.00,
6,000.00)

6,000.00 (5,900.00,
6,000.00)

0.780

PTV/LV 0.08 (0.06, 0.12) 0.09 (0.05, 0.12) 0.730 0.08 (0.05, 0.11) 0.06 (0.03, 0.09) 0.479
F
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once daily, five days a week. Patients who did not exhibit disease

progression or persistent RT toxicity commenced up to 12 months of

consolidative immunotherapy within 60 days following the completion

of concurrent chemoradiotherapy (CCRT). Chemotherapy regimens

were tailored by the attending medical oncologists. The

immunotherapy regimens included sintilimab and durvalumab. The

study population was randomly divided into a training set (n=112) and

a validation set (n=49) at an approximate 7:3 ratio. The workflow of the

study is depicted in Figure 2.
2.3 RP evaluation

Follow-up for all cases was conducted for at least six months post-

RT, focusing on the incidence of RP. A senior radiologist and

oncologist evaluated RP occurrences. RP was identified based on: (1)

a history of RT; (2) symptoms such as shortness of breath, low-grade

fever, and a dry cough; (3) thoracic CT imaging findings within the

high-dose radiation field that diverged from normal lobar anatomy,

showing patches of solid lesions (18). Patients experiencing RP events,

categorized as grade ≥2, were evaluated using the Common

Terminology Criteria for Adverse Events version 5.0 (CTCAE V5.0).

RP monitoring encompassed clinical examinations, symptom

assessment, medical record review, laboratory tests, and regular

follow-up CT scans at 1, 3, and 6 months after RT completion,

followed by at least every three months during the first year.
Frontiers in Immunology 05
2.4 Collection and definition of parameters

Clinical information, imaging data, and results from laboratory

tests were compiled from our institution’s medical records.

Clinicopathological parameters such as age, gender, smoking

history, comorbidities, pathological diagnosis, tumor stage and

location, radiation dose, and PD-L1 expression levels were

gathered from data collected before the initiation of RT.

Inflammatory markers, including the Platelet-to-Lymphocyte

Ratio (PLR), Neutrophil-to-Lymphocyte Ratio (NLR),

Lymphocyte-to-Monocyte Ratio (LMR), and Systemic Immune-

Inflammation Index (SII), were assessed at six different intervals:

one week prior to RT commencement (as baseline), and at one (1w),

two (2w), three (3w), four (4w), and five (5w) weeks during RT.

These markers were calculated using the formulas: PLR = platelet

count [P]/lymphocyte count [L], NLR = neutrophil count [N]/L,

LMR = L/monocyte count [M], and SII = P × N/L. Additionally,

dosimetric parameters were extracted from the Varian Treatment

Planning System, contributing to our analysis of treatment

characteristics. MLD = mean dose of total lungs. PTV/LV=

planning target volume/total lungs volume. Vxx = % of the whole

OAR receiving ≥xx Gy. V5 = percentage of total lungs volume

receiving 5 Gy. V20 = percentage of total lungs volume receiving 20

Gy. V30 = percentage of total lungs volume receiving 30 Gy. V40 =

percentage of total lungs volume receiving 40 Gy.
FIGURE 2

An overall workflow of risk analysis of RP≥2.
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2.5 CT image acquisition and ROI
identification

Contrast-enhanced treatment planning CT images were

obtained utilizing a Philips Brilliance Big Bore CT scanner

(Philips Medical Systems, Inc, Cleveland, OH), following a

standardized clinical protocol. The scanning parameters were as

follows: tube voltage, 120 kVp; tube current, 200 mA; slice

thickness, 3mm. These images included the initial positioning CT

scan before radiation therapy (CT1) and a subsequent scan after a

cumulative dose of 40 to 50 Gy (CT2), both exported in the Digital

Imaging and Communications in Medicine (DICOM) format. Both

CT1 and CT2 are simulation CT scans acquired using the same CT

scanner, with the patient maintained in the same position during

the operation. The Eclipse treatment planning system (version

13.5.35; Varian Medical Systems, Palo Alto, CA) was utilized to

categorize dose ranges into nine distinct zones: 0–5 Gy, 5–10 Gy,

10–15 Gy, 15–20 Gy, 20–30 Gy, 30–40 Gy, 40–50 Gy, 50–55 Gy, and

55–60 Gy. Corresponding regions of interest (ROIs) for each dose

zone were then identified, with a focus on maintaining a minimum

volume of ≥0.5 cm3 for individual ROIs. Figure 1B showcases

representat ive CT images i l lustrating patient-specific

dose distribution.

These images, along with dose distribution diagrams and RT

plans, were imported into the MedMind Technology Imaging

System. A rigid registration was performed to align the resetting

CT images with the initial planning positioning CT images. Precise

alignment was ensured between the positioning CT images and the

subsequent resetting CT to maintain uniformity in spatial

coordinates and shape across both scans. Two radiation

oncologists, with 11 and 16 years of experience in radiotherapy-

related image analysis respectively, manually corrected any

registration errors exceeding 1mm. Displacement vector fields

were applied to adapt the three-dimensional dose distribution

associated with the planned CT, ensuring the spatial consistency

of ROIs across different dose gradients before and after RT.
2.6 Extraction, selection, and analysis of
texture features

Texture features were extracted using the MedMind

Technology Imaging System, with initial image discretization set

at a fixed bin width of 25 to standardize the analysis. A

comprehensive set of 1810 features spanning seven distinct

radiomics feature classes were extracted, as detailed in

Supplementary Material Table S1.

Prior to feature extraction, a normalization procedure (z-score

transformation) standardized the CT values across all images,

ensuring a uniform intensity range. The ROIs were semi-

automatically delineated on the CT images of 40 randomly

selected patients by two expert radiologists. The intragroup

correlation coefficient (ICC) was calculated to assess the reliability

of the extracted features, with those achieving an ICC greater than

0.8 being selected for further analysis. Feature change (DRF) was
Frontiers in Immunology 06
quantified as DRF = [(RFCT2 - RFCT1)/RFCT1] × 100%, where RFCT1
and RFCT2 represent the radiomic features extracted from the initial

and subsequent CT scans, respectively. Features with missing values

were excluded, and the analysis proceeded with the remaining data.

The least absolute shrinkage and selection operator (LASSO)

algorithm was applied to refine the feature selection across the nine

ROIs, optimizing the selection process through a 10-fold cross-

validation method to determine the most suitable lambda (l) value.
The methodological approach for feature selection using the LASSO

algorithm is illustrated in Supplementary Figure S1 in the

Supplementary Material. A radiomics signature (RS) was

constructed utilizing a linear combination of the selected features

weighted by their LASSO coefficients.
2.7 Construction and validation of
radiomics signatures

To construct the RS models, we employed logistic regression

(LR) classifier to identify the most effective ones for constructing

ROI-specific radiomics features across different dose regions. The

validation phase employed a rigorous procedure involving grid

search and cross-validation to fine-tune the hyperparameters and

enhance model performance.

Receiver operating characteristic (ROC) analysis was employed to

evaluate the performance of each model, utilizing the area under the

ROC curve (AUC) as the principal measure of efficacy. LR iteratively

determines the most potent linear mix of variables that optimally

predicts the observed outcome, leveraging the linear regression

components on the logit scale. LR was implemented by the R

package “glmnet”. In the training process, the optimal

hyperparameters were identified through the application of grid

search and ten-fold cross-validation procedures. This

comprehensive approach aimed to establish a robust framework for

the development and validation of predictive radiomics signatures.
2.8 Construction and validation of
combined model

Variables with p-value less than 0.1 in baseline characteristics

(Tables 1, 2) were selected. The importance of each variable in the

RP prediction was selected using a ten-fold cross-validation method

by ranking the importance of each variable among the four models,

namely, Random Forest (RF), Neural Network (NNET), Gradient

Boosting Machine (GBM), and Recursive Partitioning and

Regression Trees (RPART) to rank the importance of each

variable and filter out the stable-performing variables in RP

prediction. Subsequently, logistic regression models were

employed to evaluate the predictive efficacy of the combined top

three stable variables for RP. The calibration curve was also

generated to evaluate the concordance between the predicted and

observed RP probabilities. Furthermore, decision curve analysis

(DCA) was performed to ascertain the clinical applicability of the

combined model.
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https://doi.org/10.3389/fimmu.2025.1684629
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1684629
TABLE 2 Hematological parameters of the patients.

Characteristic
Training cohort (N=112) Validation cohort (N=49)

Non-RP, N=78 RP, N=34 p-value Non-RP, N=33 RP, N=16 p-value

N

baseline 3.98 (2.48, 5.19) 3.28 (2.18, 4.68) 0.263 3.40 (2.62, 4.63) 3.70 (3.12, 4.50) 0.536

1w 3.55 (2.13, 5.06) 3.41 (2.09, 5.12) 0.630 2.84 (2.06, 3.81) 3.56 (2.29, 7.45) 0.089

2w 2.79 (1.86, 4.02) 3.23 (1.99, 4.23) 0.310 2.33 (1.73, 3.49) 2.44 (2.07, 3.49) 0.577

3w 2.97 (2.14, 4.49) 3.08 (2.18, 4.60) 0.734 2.66 (1.77, 4.58) 3.61 (2.15, 4.17) 0.533

4w 2.88 (2.15, 3.43) 3.04 (2.24, 4.16) 0.467 2.87 (2.23, 3.22) 3.04 (2.63, 4.01) 0.144

5w 2.79 (2.24, 4.12) 3.44 (2.41, 4.66) 0.334 3.38 (2.39, 4.35) 2.86 (2.19, 4.05) 0.654

△2w -1.52 (-2.61, 0.41) -0.32 (-1.27, 0.67) 0.093 -0.70 (-2.17, 0.11) -0.86 (-2.20, -0.07) 0.922

△3w -1.00 (-2.99, 0.72) -0.39 (-1.38, 1.13) 0.107 -0.77 (-2.08, 0.13) -0.94 (-1.26, 0.46) 0.571

△4w -0.89 (-2.53, 1.12) 0.07 (-1.48, 1.66) 0.081 -0.92 (-2.17, 0.90) -0.98 (-1.50, 0.44) 0.801

△5w -0.86 (-2.49, 1.11) 0.11 (-2.08, 2.06) 0.212 -0.46 (-1.88, 1.82) -1.09 (-1.76, 1.01) 0.759

L

baseline 1.64 (1.27, 1.98) 1.59 (1.37, 2.24) 0.924 1.66 (1.36, 1.90) 1.53 (1.38, 1.81) 0.488

1w 1.14 (0.84, 1.56) 1.23 (1.02, 1.50) 0.519 1.23 (0.88, 1.60) 0.87 (0.75, 1.30) 0.093

2w 0.90 (0.71, 1.15) 1.01 (0.72, 1.28) 0.425 0.89 (0.79, 1.25) 0.80 (0.59, 1.12) 0.230

3w 0.74 (0.55, 1.02) 0.76 (0.49, 0.94) 0.625 0.86 (0.68, 1.09) 0.62 (0.45, 0.78) 0.015

4w 0.70 (0.53, 0.92) 0.56 (0.46, 0.80) 0.068 0.79 (0.71, 0.97) 0.59 (0.50, 0.62) <0.001

5w 0.59 (0.42, 0.87) 0.61 (0.45, 0.76) 0.923 0.73 (0.49, 0.94) 0.50 (0.28, 0.68) 0.026

△2w -0.64 (-1.06, -0.35) -0.67 (-0.92, -0.14) 0.716 -0.54 (-1.07, -0.33) -0.74 (-0.91, -0.36) 0.902

△3w -0.82 (-1.27, -0.52) -0.94 (-1.09, -0.50) 0.806 -0.84 (-1.09, -0.46) -0.89 (-1.15, -0.55) 0.430

△4w -0.90 (-1.18, -0.60) -1.01 (-1.43, -0.56) 0.456 -0.74 (-1.10, -0.46) -0.98 (-1.26, -0.85) 0.113

△5w -1.02 (-1.29, -0.69) -0.93 (-1.43, -0.54) 0.674 -0.91 (-1.21, -0.55) -1.02 (-1.18, -0.72) 0.540

R

baseline 4.27 (3.81, 4.63) 4.27 (4.03, 4.66) 0.669 4.25 (3.89, 4.60) 4.23 (3.72, 4.55) 0.677

1w 4.20 (3.79, 4.40) 4.25 (3.87, 4.57) 0.506 4.24 (3.69, 4.47) 3.99 (3.53, 4.26) 0.362

2w 4.02 (3.63, 4.33) 4.18 (3.68, 4.49) 0.418 4.03 (3.55, 4.29) 3.79 (3.52, 4.09) 0.304

3w 4.03 (3.68, 4.30) 4.10 (3.74, 4.56) 0.505 4.00 (3.60, 4.25) 3.60 (3.35, 4.04) 0.247

4w 3.95 (3.49, 4.36) 3.95 (3.65, 4.49) 0.469 4.02 (3.50, 4.29) 3.59 (3.20, 3.96) 0.259

5w 3.96 (3.48, 4.29) 3.99 (3.55, 4.34) 0.413 4.07 (3.44, 4.45) 3.62 (3.47, 4.11) 0.149

△2w -0.23 (-0.43, 0.07) -0.14 (-0.26, -0.01) 0.408 -0.31 (-0.50, -0.12) -0.26 (-0.63, -0.08) 0.844

△3w -0.27 (-0.46, -0.08) -0.18 (-0.48, 0.01) 0.576 -0.37 (-0.62, -0.05) -0.50 (-0.73, -0.20) 0.238

△4w -0.27 (-0.51, -0.02) -0.28 (-0.53, 0.01) 0.927 -0.38 (-0.63, -0.11) -0.57 (-0.69, -0.17) 0.304

△5w -0.37 (-0.78, -0.15) -0.25 (-0.62, 0.00) 0.327 -0.32 (-0.62, -0.02) -0.36 (-0.82, -0.10) 0.431

P

baseline 238.00 (184.00, 310.00) 250.00 (192.00, 333.00) 0.606 201.00 (169.00, 248.00) 250.50 (200.00, 292.00) 0.115

1w 192.50 (155.00, 283.00) 200.00 (153.00, 276.00) 0.751 189.00 (156.00, 234.00) 226.00 (153.00, 267.00) 0.374

2w 185.00 (141.50, 232.50) 198.50 (166.50, 257.50) 0.226 165.00 (137.00, 209.50) 176.00 (142.00, 229.00) 0.314

3w 174.00 (133.00, 213.00) 185.00 (139.00, 241.00) 0.181 175.00 (138.00, 225.00) 167.00 (117.00, 245.00) 0.991

4w 166.00 (135.00, 213.00) 182.50 (168.00, 235.50) 0.068 173.50 (121.50, 219.00) 151.00 (123.00, 221.00) 0.632

5w 169.50 (128.00, 227.00) 186.50 (147.00, 228.00) 0.077 165.00 (135.00, 195.50) 169.00 (150.00, 212.50) 0.274

△2w -46.50 (-130.50, -0.50) -35.50 (-126.00, 6.00) 0.685 -40.00 (-100.50, 4.50) -46.50 (-93.50, -21.50) 0.710
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TABLE 2 Continued

Characteristic
Training cohort (N=112) Validation cohort (N=49)

Non-RP, N=78 RP, N=34 p-value Non-RP, N=33 RP, N=16 p-value

△3w -59.00 (-129.00, -22.00) -49.00 (-100.00, -11.00) 0.402 -63.00 (-89.00, -5.00) -57.00 (-115.00, -16.00) 0.470

△4w -62.00 (-126.00, -22.00) -71.50 (-119.00, -27.00) 0.736 -55.50 (-105.50, -4.00) -54.00 (-158.00, -26.00) 0.299

△5w -77.50 (-148.00, -12.50) -65.50 (-122.00, -7.00) 0.473 -65.00 (-88.00, 4.50) -51.00 (-70.00, -29.50) 0.956

PLR

baseline 142.72 (115.11, 203.97) 177.36 (122.50, 218.64) 0.240 131.35 (94.47, 159.43) 157.30 (136.18, 215.82) 0.053

1w 177.84 (127.61, 241.98) 177.24 (120.38, 236.99) 0.811 152.27 (126.72, 183.33) 196.15 (133.77, 370.00) 0.087

2w 199.52 (129.06, 285.39) 214.06 (126.51, 266.67) 0.807 171.59 (134.67, 227.96) 217.74 (173.23, 318.74) 0.054

3w 226.92 (158.02, 290.70) 266.47 (192.86, 365.31) 0.103 197.44 (159.56, 280.91) 253.03 (190.59, 342.31) 0.068

4w 225.26 (173.96, 318.60) 312.80 (219.50, 413.42) 0.015 193.90 (140.10, 273.82) 253.23 (214.52, 424.14) 0.004

5w 292.97 (200.00, 434.49) 327.84 (255.00, 402.22) 0.296 219.06 (181.50, 313.06) 374.49 (316.37, 562.06) <0.001

△2w 82.17 (6.96, 239.62) 65.22 (-3.33, 189.39) 0.919 42.20 (-18.18, 118.52) 66.35 (43.45, 160.04) 0.199

△3w 84.13 (21.43, 227.13) 51.43 (3.47, 128.38) 0.117 33.17 (1.65, 153.57) 61.29 (14.16, 138.18) 0.567

△4w 57.94 (13.89, 157.28) 81.63 (31.35, 123.59) 0.943 46.26 (-6.37, 161.65) 59.34 (20.63, 160.55) 0.314

△5w 73.77 (15.62, 143.09) 87.18 (12.28, 152.78) 0.930 68.88 (-5.00, 158.63) 53.97 (33.48, 70.91) 0.689

NLR

baseline 2.43 (1.60, 3.56) 2.20 (1.41, 3.08) 0.435 2.24 (1.48, 2.80) 2.42 (1.70, 3.81) 0.257

1w 2.89 (1.87, 4.68) 2.80 (1.48, 4.65) 0.409 2.64 (1.42, 3.56) 3.62 (2.67, 11.03) 0.036

2w 2.89 (1.95, 4.65) 3.04 (2.05, 4.99) 0.761 2.58 (1.71, 4.13) 3.23 (2.42, 4.04) 0.224

3w 3.78 (2.61, 7.14) 4.04 (2.56, 7.26) 0.734 3.55 (2.01, 4.95) 4.98 (3.47, 6.84) 0.050

4w 3.63 (3.18, 4.97) 4.14 (3.70, 6.08) 0.021 3.39 (2.83, 3.66) 5.87 (4.17, 7.48) <0.001

5w 5.24 (3.30, 9.23) 4.80 (3.71, 6.64) 0.667 5.46 (3.07, 7.81) 5.83 (3.50, 14.98) 0.219

△2w 1.66 (-0.72, 4.91) 1.05 (-0.30, 3.44) 0.607 1.65 (-0.25, 3.36) 0.99 (-0.15, 3.30) 0.714

△3w 1.38 (-1.25, 4.13) -0.10 (-1.53, 1.05) 0.015 0.95 (-0.43, 2.79) 0.79 (-0.63, 1.53) 0.495

△4w 0.95 (-1.15, 2.60) -0.14 (-2.46, 1.88) 0.087 0.94 (-1.10, 2.64) 0.80 (-0.69, 1.69) 0.799

△5w 0.71 (-0.96, 2.61) -0.25 (-3.90, 2.48) 0.247 0.51 (-1.44, 2.59) 1.39 (-0.74, 1.78) 0.689

LMR

baseline 3.36 (2.29, 4.47) 3.58 (2.58, 6.27) 0.159 2.88 (2.54, 3.69) 2.88 (2.34, 3.80) 0.681

1w 3.19 (1.96, 5.60) 3.32 (2.31, 5.04) 0.992 5.67 (3.10, 12.40) 2.41 (1.66, 4.81) 0.014

2w 2.17 (1.38, 3.79) 2.38 (1.70, 3.12) 0.615 2.08 (1.32, 4.05) 1.92 (1.40, 2.59) 0.355

3w 1.46 (1.00, 2.84) 1.79 (1.21, 3.45) 0.237 1.66 (1.32, 2.07) 1.21 (1.00, 1.74) 0.168

4w 1.71 (1.05, 2.44) 1.82 (1.08, 2.53) 0.908 1.98 (1.40, 3.43) 1.24 (0.96, 1.72) 0.004

5w 1.26 (0.86, 1.80) 1.40 (1.08, 2.00) 0.188 1.27 (0.91, 1.97) 1.15 (0.82, 1.32) 0.246

△2w 0.43 (-3.12, 3.05) 0.44 (-1.71, 2.13) 0.913 1.00 (-1.85, 3.10) 2.00 (-1.84, 4.24) 0.633

△3w 0.92 (-1.79, 4.92) 1.64 (-4.22, 5.50) 0.919 1.56 (-1.79, 5.67) 1.83 (-4.19, 9.60) 0.758

△4w 2.06 (-0.88, 7.38) 0.23 (-7.02, 5.58) 0.200 1.45 (-1.08, 3.56) 3.13 (-4.75, 5.93) 0.409

△5w 0.80 (-4.08, 5.66) -1.73 (-6.00, 3.41) 0.269 0.38 (-2.41, 6.33) 2.26 (-15.21, 6.96) 0.673

SII

baseline 557.81 (331.66, 929.11) 583.89 (301.05, 936.00) 0.907 412.03 (304.96, 646.31) 603.30 (451.85, 981.03) 0.090

1w 576.56 (380.27, 1,039.96) 649.08 (277.28, 1,180.00) 0.738 379.16 (263.54, 743.33) 798.83 (516.47, 1,981.82) 0.019

2w 538.72 (328.42, 876.71) 569.76 (379.55, 1,069.33) 0.382 413.50 (253.19, 674.64) 563.03 (415.49, 848.05) 0.064

3w 682.16 (385.42, 1,051.59) 803.36 (477.89, 1,368.34) 0.294 524.27 (395.05, 896.48) 951.62 (535.99, 1,201.02) 0.075
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2.9 Statistical analysis

The study’s statistical analysis encompassed clinical, dosimetric,

and hematological inflammatory parameters. Continuous variables

were analyzed utilizing either the Mann-Whitney U test or the

independent-samples T test, depending on their distribution, while

chi-square tests were utilized for categorical variables to determine

significance levels.

Clinical characteristics with substantial missing data were

excluded to ensure the integrity of the analysis. The LASSO

algorithm was conducted using the “glmnet” package in R,

facilitating the selection of relevant features. Calculations of the

area under the receiver operating characteristic curve (AUC)

along with its 95% confidence interval were conducted

employing the ‘pROC’ package, aiding in the evaluation of

model performance. All statistical analyses were carried out

using R software (version 4.3.0).
3 Results

3.1 Characteristics of study participants

Tables 1 and 2 detail the clinical, dosimetric, and hematological

characteristics of the study participants. Analyses revealed no

significant differences between the RP and non-RP groups in

terms of age, gender, pathological type, smoking history, TNM

stage, Karnofsky Performance Status (KPS) score immunotherapy

regimens, PD-L1 expression and BMI, all yielding p-values greater

than 0.05. However, within the training set, statistically significant

differences were observed in tumor location, pulmonary

comorbidities, and the radiomics signature RS8 (p<0.05).

Additionally, among the hematological inflammation parameters,

PLR at 4 weeks (PLR4w), NLR at 4 weeks (NLR 4w), NLR △3w

(the ratio of change at 3 weeks) and SII at 4 weeks (SII 4w) showed

significant differences in the training set (p<0.05).
Frontiers in Immunology 09
3.2 Performance evaluation of radiomics
signatures

Radiomics features were extracted from planning CT scans

across nine 5-Gy dose gradients (0–60 Gy), including the initial

positioning CT (before radiotherapy) and a resetting CT (after a

cumulative dose of 40–50 Gy), all within regions of interest (ROIs).

No overlap with the PTV was found in the volumes receiving under

50Gy, while overlap was partial in the 50-55Gy and 55-60Gy dose

ranges. LASSO regression identified significant radiomics

signatures within the dose gradients of 5 Gy, 10–15 Gy, 15–20

Gy, 20–30 Gy, 40–50 Gy, 50–55 Gy, and 55–60 Gy, designated as

RS1, RS3, RS4, RS5, RS7, RS8, and RS9, respectively. The differences

in DRF features between the RP and non-RP groups were

statistically significant across both the training and validation sets

for these signatures. The formula for calculating each radiomics

signature is available in the Supplementary Materials Appendix S3.

The AUC values in the RS1, RS3, RS4, RS5, RS7, RS8 and RS9 in

training set were 0.681, 0.664, 0.825, 0.764, 0.896 0.854 and 0.771,

respectively (Figure 3A). The AUC values in the RS1, RS3, RS4, RS5,

RS7 , RS8 and RS9 in v a l i d a t i on s e t we r e 0 . 6 5 9 ,

0.559,0.491,0.515,0.614,0.854 and 0.640, respectively (Figure 3B).

Therefore, the RS8 model was identified as the most effective

radiomics signature for this study. The results of the Delong’s test

were presented in Supplementary Table 2.
3.3 Construction and comparison of
combined model

Tumor location, pulmonary comorbidities, TNM stage, RS8,

N△4w, L4w, P4w, P5w, PLR4w, NLR4w, NLR△3w, NLR△4w,

and SII4w were identified as 13 variables with p-values below 0.1 in

the baseline characteristics (Tables 1, 2). RS8, tumor location, and

NLR4w were identified as the top three stable variables across the

four machine learning algorithms (Figure 4). Logistic regression
TABLE 2 Continued

Characteristic
Training cohort (N=112) Validation cohort (N=49)

Non-RP, N=78 RP, N=34 p-value Non-RP, N=33 RP, N=16 p-value

4w 602.74 (412.19, 1,131.24) 807.04 (706.78, 1,241.00) 0.021 553.03 (429.32, 775.56) 921.74 (589.92, 1,071.49) 0.002

5w 830.96 (532.35, 1,639.99)
1,041.67 (649.91,

1,863.21)
0.463 861.91 (499.51, 1,243.40) 947.16 (774.50, 2,426.09) 0.099

△2w -40.74 (-400.91, 35.01) -72.53 (-226.83, -10.37) 0.576 1.44 (-84.32, 79.20) -23.26 (-165.82, 7.29) 0.379

△3w -67.50 (-270.34, 89.59) -12.15 (-92.19, 41.74) 0.340 -13.03 (-88.64, 37.77) -21.24 (-156.07, 12.83) 0.552

△4w -23.17 (-192.83, 83.46) -15.33 (-180.86, 70.91) 0.807 -24.18 (-198.33, 93.29) -20.84 (-183.53, 11.33) 0.694

△5w -52.45 (-314.15, 33.68) -5.10 (-126.00, 60.32) 0.184 2.72 (-99.70, 83.05) -38.79 (-127.71, 6.00) 0.416
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models for RS8, RS8 + tumor location, and RS8 + tumor location +

NLR4w were designated as model 1, model 2, and model 3,

respectively. ROC curves were generated to assess models’

predictive capability. Model 3 exhibited AUC values of 0.938 in

the training set (Figure 5A) and 0.869 in the validation set

(Figure 5B). In the training set, model 3 demonstrated superior

performance compared to models 1 and 2, with higher AUC,

sensitivity, accuracy, and negative predictive value (NPV)

(Table 3). In the validation set, model 3 exhibited higher AUC,

sensitivity, and NPV than models 1 and 2; however, its accuracy,

specificity, and positive predictive value (PPV) were lower than

those of models 1 and 2. Furthermore, the calibration curve revealed

excellent agreement between the model3’s predictions and the

actual RP observations within the validation cohort (Figure 6A).

The DCA, depicted in Figure 6B, indicated that the model3 delivers
Frontiers in Immunology 10
substantial positive net benefits across a range of threshold

probabilities up to 0.85 in the validation set. This showcases the

model3’s valuable clinical utility in predicting RP risk.
4 Discussion

This investigation delved into CT-based, dose distribution-

oriented radiomics among LA-NSCLC patients receiving CCRT,

employing machine learning classifier. It emerged that the LR-based

radiomics feature model demonstrated robust performance.

Remarkably, employing combined model markedly enhanced

predictive power for RP.

In today’s advancing cancer immunotherapy landscape,

precision radiotherapy represents a significant breakthrough in
FIGURE 3

Comparison of ROC curve analyses in model based on logistic regression model. ROC curves of the RS1, RS3, RS4, RS5, RS7, RS8 and RS9 models in
the training set (A). ROC curves of the RS1, RS3, RS4, RS5, RS7, RS8 and RS9 models in the validation set (B).
FIGURE 4

The variable influence factor ranking plots of RF, NNET, GBM and RPART models. RF, Random Forest; NNET, Neural Network; GBM, Gradient
Boosting Machine; RPART, Recursive Partitioning and Regression Trees.
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lung cancer treatment, particularly when combined with

immunotherapy and other therapeutic strategies to boost survival

rates for LA-NSCLC patients. However, the integration of ICI has

raised concerns due to the increased incidence of pneumonia, noted

in the PACIFIC study (2). Our study found an RP incidence rate of

27.45%, closely mirroring the 33.9% incidence reported in the

PACIFIC trial. This highlights RP as a critical adverse reaction

constraining the RT dose within the current LA-NSCLC treatment

paradigm (19), underscoring the urgent need to discover new

biomarkers beyond traditional clinical and dosimetric parameters.

The literature suggests the tumor’s location may affect

radiotherapy-induced pulmonary toxicity. Meta-analyses and

studies indicate that tumors situated in the middle or lower lung

regions pose a higher RP risk than those located in the upper

regions (5, 20, 21).This variation may be attributable to differences

in radiosensitivity across lung areas and the physiological

significance of perfusion and ventilation in the lower lung regions

(8). Our study reaffirms tumor location as a risk factor for RP,

emphasizing the critical nature of early preventative measures in RT

planning for individuals at elevated risk.
Frontiers in Immunology 11
In our analyses, pulmonary comorbidity was one of the top 10

significant variables in the variable importance rankings of the two

machine learning algorithms, GBM and NNET, for predicting RP.

The risk of RP can be influenced by pre-existing pulmonary

comorbidities, including interstitial lung disease (ILD) and

chronic obstructive pulmonary disease (COPD). Grade ≥r RP

occurrence has been reported to significantly increase to 26% in

patients with ILD on CT images, compared with 3% in patients with

normal lungs (22). Additionally, Kimura’s study highlighted a

notable increase in RP incidence correlating with the severity of

emphysema, as defined by CT classification (23). This suggests that

dose limitations derived from unselected patient populations may

not be suitable for individuals with pre-existing pulmonary

comorbidities.

Dosimetric parameters, including V20, V5, V30, and MLD, are

well-established factors closely correlated with the incidence of RP.

Barriger et al. noted a significant correlation between grade ≥2 RP

and both MLD and V20 in populations treated with Stereotactic

Body Radiotherapy (SBRT) (9). Furthermore, in patients with

unresectable LA-NSCLC receiving consolidation durvalumab,
FIGURE 5

The ROC curves for the different models are depicted for both the training set (A) and the validation set (B). Model1:RS8; Model2: RS8+ Tumor
location; Model3: RS8+ Tumor location + NLR4w.
TABLE 3 Predictive value of RP.

Performance
Metric

Training set Validation set

model1 model2 model3 model1 model2 model3

AUC 0.854 0.918 0.938 0.854 0.867 0.869

ACC 0.893 0.875 0.907 0.878 0.816 0.809

SE 0.706 0.824 0.875 0.750 0.812 0.867

SP 0.974 0.897 0.920 0.939 0.818 0.781

PPV 0.923 0.778 0.824 0.857 0.684 0.650

NPV 0.884 0.921 0.945 0.886 0.900 0.926
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various dosimetry parameters within the lungs and heart have been

linked to pneumonitis (24). Despite analyzing dosimetric

parameters, including V20, V5, V30, MLD, and the ratio of

Planning Target Volume to Lung Volume (PTV/LV) in our

study, no significant associations with RP were detected (all p>

0.05). However, this finding does not negate the potential

importance of dosimetric factors in predicting RP risk.

Additionally, our findings suggest an increased susceptibility to

RP in patients with elevated NLR levels at week 4. This association

between NLR and pneumonia risk, including immune-related and

pneumonia in patients with intracerebral hemorrhage, has been

corroborated by other studies (25, 26). It underscores the necessity

for future research to validate the most accurate inflammatory

markers for RP prediction, even though they did not show a

significant impact in our study.

To our knowledge, this is the first study to employ CT-based

dose-segmentation features for predicting RP in the context of

immune consolidation therapy following CCRT in LA-NSCLC

patients. Our approach finds indirect support from previous

research. For instance, Liang et al. advocated for using ipsilateral,

contralateral, and whole lung ROIs for RP prediction, noting that

their dosiomics model (AUC=0.782) outperformed both the

dosimetric (AUC=0.676) and NTCP models (AUC=0.744) (15).

Similarly, Adachi et al. focused on dose-segmented dosimetric

characteristics within the Vx Gy area, highlighting that

unirradiated lung regions might be irrelevant for RP prediction.

Their findings supported texture-based dosiomic features as

effective RP predictors (16). Zhang et al. also observed that

combining radiomics, dosiomics, and clinical variables could

enhance the accuracy of RP occurrence predictions (27).

In our study, we extracted features from dose-segmented

regions, refining the dose segmentation range compared to

Adachi et al.’s approach and analyzing features from dose ranges
Frontiers in Immunology 12
of 0–5 Gy up to 55–60 Gy. We established radiomics and dosiomics

signature models by comparing features extracted across different

dose regions, identifying the 50–55 Gy (RS8) model as providing the

best predictive performance. This superior prediction may be linked

to the notable increase in feature change values with escalating RT

dose (28). Our results suggest the importance of meticulous target

area delineation in patients with elevated RP risk factors in clinical

practice, aiming to minimize damage to healthy lung tissue.

Diverging from the study by Adachi et al., our approach sought

to augment RP prediction accuracy by monitoring dynamic changes

in radiomic features from the initial positioning CT to the

subsequent resetting CT during radiotherapy. This concept aligns

with findings from Cunliffe et al., who demonstrated the predictive

superiority of evaluating changes in texture features before and after

RT in CT images over reliance on single time-point metrics (28).

The introduction of a novel delta radiomics signature, delta-RF =

(RFCT2 - RFCT1)/RFCT1 × 100%, by Wang et al. further emphasizes

the value of dynamic feature analysis. This method has proven

effective in enhancing RP detection capabilities, underscoring the

importance of dynamic variations in radiomic features at multiple

time points for improving RP prediction accuracy beyond the

limitations of static image data (17).

The limitations of our study are noteworthy. Primarily, the

retrospective nature of this research and the absence of pulmonary

function data for a third of the participants hindered a more

detailed clinical assessment of COPD classification and a precise

RP risk scoring. Secondly, being a single-institution study with a

relatively small sample size and lacking an external validation set,

our findings are potentially susceptible to selection bias. Despite not

identifying a significant correlation between RP and dosimetric

parameters, it emphasizes the necessity for broader multi-

institutional studies to re-evaluate the predictive relevance of

dosimetry and dosiomics for RP in the context of LA-NSCLC
FIGURE 6

Calibration curves for our constructed model3 in validation set (A). An ideal assessment was represented by the diagonal dotted line, whereas our
nomogram performance was indicated by the remaining two lines. Decision curves for our constructed model3 that analyzed risk of RP≥2 in the
validation set (B). The y-axis stands for net benefit, whereas the red curve, horizontal blue line, and oblique orange line stand for nomogram, valid
and invalid assumption, separately.
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during the era of immunotherapy. Furthermore, the variability of

DRF could be influenced by the use of different imaging histology

software packages and processing methodologies. Advancing

towards the standardization of the entire radiomics workflow is

an essential step for improving the precision of RP predictions.
5 Conclusions

Our study demonstrates that employing dose distribution-based

radiomics significantly enhances the ability to predict grade ≥2 RP.

Furthermore, we have introduced a novel combined model that

integrates radiomics features with clinicopathological parameters

and hematological inflammatory markers. The advent of this

comprehensive model offers a valuable tool for clinicians,

enhancing their ability to monitor RP risk and tailor treatment

strategies accordingly. This proactive approach is pivotal in

mitigating RP risk, ultimately contributing to the optimization of

patient care in the treatment of lung cancer.
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