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Background: Sepsis-associated acute lung injury (SA-ALI) is a severe complication
of sepsis with high mortality. This study aimed to identify key diagnostic genes and
potential therapeutic drugs for SA-ALI.

Methods: Transcriptomic data from GSE10474 and GSE32707 were integrated
for differential expression and WGCNA analysis. Hub genes were screened using
PPI network construction and three machine learning algorithms, and validated
by Western blot. Functional enrichment, immune infiltration, and drug prediction
(DSigDB) were performed, followed by molecular docking.

Results: Six hub genes (PGM3, GDF15, GART, GFODZ2, E2F2, ATP1B2) were
identified and validated with elevated expression in SA-ALIl. These genes were
enriched in inflammation, immune regulation, oxidative stress, and tissue
remodeling pathways, and showed significant correlations with specific
immune cell subsets. Five candidate small molecules were predicted;
molecular docking revealed Celastrol had the strongest binding to all six
proteins, particularly GDF15 (-9.988 kcal/mol), while Thiostrepton showed
strong binding to PGM3, GFOD2, and GDF15.

Conclusion: Six diagnostic hub genes and two priority candidate drugs, Celastrol
and Thiostrepton, were identified for SA-ALI, providing potential biomarkers and
therapeutic targets.

KEYWORDS

sepsis-associated acute lung injury (SA-ALI), hub genes, machine learning, molecular
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1 Introduction

Sepsis is a common disease in the field of critical care medicine (1,
2). Sepsis impacts at least 30 million individuals worldwide annually,
with a mortality rate reaching up to 20%, according to a World Health
Organization report (3). When sepsis progresses to sepsis-associated
acute lung injury (SA-ALI), the mortality rate can reach 34% to 45% (4,
5), posing a serious threat to patients’ life and health. The known causes
of SA-ALI include various biochemical injuries, severe trauma and post-
traumatic infection, shock, and poisoning (6), as well as various
infectious diseases targeting the lungs, especially the COVID-19
pandemic that erupted at the end of 2019. Some patients can rapidly
progress to SA-ALL experience respiratory failure, and even death (7).
Due to the lack of early diagnostic methods, only about 50% of SA-ALI
cases can be identified by clinicians (8). Therefore, the study of early
identification of SA-ALI as well as the research on biomarkers for
reducing its mortality rate and improving prognosis, is
extremely important.

In recent years, basic and clinical research on biomarkers has
not only deepened our understanding of the pathophysiological
mechanisms of SA-ALI but has also provided a wealth of biological
information, offering greater value for the prediction, diagnosis, and
prognosis of the disease (9). Currently, research on SA-ALI
biomarkers mainly involves non-protein indicators such as
endothelial progenitor cells and exhaled breath condensate (10,
11). Despite some progress in biomarker studies over the past two
decades, their clinical application value remains low. The reasons
for this may include: (1) an overreliance on single indicators for
early warning, diagnosis, or prediction of SA-ALI, which have
limited diagnostic value, whereas a combined biomarker approach
may improve accuracy; (2) low tissue and disease specificity of some
markers, making them easily influenced by other factors; (3) limited
understanding of the involvement of certain biomarkers in SA-ALI
development; and (4) lack of validation in large-sample clinical
studies (12). As a result, there is a pressing need to identify novel
biomarkers for the early detection of SA-ALL

To address these challenges, this study applied bioinformatics
analysis to uncover key genes potentially involved in the
pathogenesis of SA-ALI and used molecular docking to screen
candidate therapeutic compounds targeting these genes. Unlike
previous work that has primarily focused on isolated markers, our
approach integrates computational biology and drug-target
prediction, aiming not only to reveal novel biomarkers for early
detection but also to provide innovative strategies for precision
diagnosis and targeted therapy in SA-ALIL By bridging the gap

Abbreviations: SA-ALI, Sepsis-associated acute lung injury; GEO, Gene
Expression Omnibus; PCA, Principal component analysis; TOM, topological
overlap matrix; WGCNA, Weighted Gene Co-expression Network Analysis;
DEGs, Differentially Expressed Genes, LIMMA, Linear Models for Microarray;
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI,
Protein-Protein Interaction; LASSO, Least Absolute Shrinkage and Selection
Operator; SVM-RFE, Support Vector Machine-Recursive Feature Elimination;
RF, Random Forest; WB, Western Blot, GSVA, Gene Set Variation Analysis;
DSigDB, Drug Signatures Database; ARDS, acute respiratory distress syndrome.
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between mechanistic insights and translational application, this
study offers a new framework to improve the early identification
of high-risk patients and to guide the development of effective
therapeutic interventions.

2 Methods
2.1 Original data

In this research, we utilized the microarray datasets GSE10474
and GSE32707, accessible from the Gene Expression Omnibus
(GEO) repository (www.ncbi.nlm.nih.gov/geo/). GSE10474, built
on the GPL571 platform, comprises 13 blood samples from
individuals with ALI and 21 samples from patients diagnosed
solely with sepsis. GSE32707, based on the GPL10558 platform,
contains 144 blood samples, from which we selected 58 cases of
isolated sepsis and 31 cases of SA-ALI for additional analysis. The
brief research procedure is illustrated in Figure 1.

2.2 Differential gene expression analysis

Raw microarray data were log2-transformed and quantile-
normalized using the preprocessCore package in R (v4.3.3). Probe
IDs were mapped to gene symbols based on platform annotation files;
probes mapping to multiple genes were removed, and for genes with
multiple probes, the mean expression value was calculated. Batch effects
were corrected using the removeBatchEffect function in the “limma”
package. For cross-platform analyses, only common genes were
retained, and datasets were treated as separate batches before batch
correction. Principal component analysis (PCA) plots were generated
to evaluate sample distribution before and after correction.

2.3 WGCNA network construction and
module identification

Co-expression networks were constructed using the Weighted
Gene Co-expression Network Analysis (WGCNA) package in R.
Samples were first hierarchically clustered to detect and remove
outliers. The soft-thresholding power () was determined using the
pickSoftThreshold function to ensure a scale-free topology. A
topological overlap matrix (TOM) was calculated to assess gene
interconnectedness, and modules were identified via dynamic tree
cutting. Module-trait relationships were evaluated by correlating
module eigengenes with clinical traits. Genes from key modules
were selected for subsequent analyses, and the eigengene network
was visualized to explore inter-module relationships.

2.4 ldentification of common DEGs

To identify Differentially Expressed Genes (DEGs), we applied
the Linear Models for Microarray (LIMMA) package in R (version
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FIGURE 1
The working flow chart of this study.

4.3.3) to carry out a comparative analysis between the sepsis-only
group and the sepsis-induced ALI group. DEGs were identified
using a strict threshold of p-values less than 0.05. Additionally,
genes from the WGCNA modules that exhibited the strongest
negative correlation with sepsis-induced ALI were also selected.
By intersecting the two sets of genes, we were able to pinpoint the
DEGs that were common to both, thus satisfying the defined
selection criteria.

2.5 Enrichment analysis of common DEGs

To further explore the biological functions of the identified
shared DEGs, we utilized the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analyses. This was conducted using the “clusterProfiler” package in
combination with the “org.Hs.eg.db” database for annotating genes.
The species of reference for the analysis was Homo sapiens, and
enrichment significance was defined as having an adjusted p-value
of less than 0.05.
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2.6 Construction of protein-protein
interaction network

The STRING database (https:/string-db.org/) was used to create
the PPI network, applying a confidence score threshold of at least
0.4. Cytoscape v3.7.2, along with the CytoHubba plugin (version
0.1), was used to visualize and analyze the network. Hub genes were
determined using the Degree algorithm, and the ten genes with the
highest rankings were selected for further examination.

2.7 Feature selection using three
established machine learning algorithms

Candidate hub genes were refined using three machine learning
algorithms—Least Absolute Shrinkage and Selection Operator
(LASSO), Support Vector Machine-Recursive Feature Elimination
(SVM-RFE), and Random Forest (RF)—with a fixed random seed of
123 to ensure reproducibility. LASSO regression was performed
using the “glmnet” package in R with 10-fold cross-validation to
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select the optimal lambda value (“lambda.lmin”), while SVM-RFE
was conducted with the “e1071” and “MSVM-RFE” packages to
identify the subset with the highest classification accuracy. RF
analysis was implemented via the “randomForest” package with
500 trees, ranking genes by importance and applying a significance
threshold of 0.9. The final hub genes were obtained by intersecting
the results from all three algorithms.

2.8 Clinical sample collection

This study was conducted in accordance with the Declaration of
Helsinki and approved by the Ethics Committee of Wenzhou
Hospital of Integrated Traditional Chinese and Western Medicine
(No. 2024-L076) and the Ethics Committee of Taizhou Municipal
Hospital, School of Medicine, Taizhou University (LWYJ2025276).
Peripheral blood samples were collected from three patients
meeting the diagnostic criteria for SA-ALI and one healthy
volunteer confirmed by the hospital’s health examination center
as a control. Inclusion criteria were age >18 years, provision of
informed consent, and, for the study group, fulfillment of ALI
diagnostic criteria; exclusion criteria included age <18 years,
incomplete clinical data, death during hospitalization or transfer,
presence of organic heart disease (e.g., ischemic cardiomyopathy,
congenital heart disease, myocarditis), end-stage malignancy,
psychiatric disorders or cognitive impairment, or refusal to
participate. All samples were centrifuged at 2,000 rpm for 10 min
at 4 °C, and the resulting supernatants were immediately stored at
—80 °C for subsequent analysis.

2.9 Validation of hub gene expression by
western blot

To validate the expression levels of hub genes in sepsis-
associated acute SA-ALI, WB analysis was performed on serum
samples to detect the corresponding protein levels. Total protein
was extracted using RIPA lysis buffer containing PMSF (G2008,
Servicebio, China) and quantified with a BCA protein assay kit
(G3522, Guangzhou Jiebai Biotechnology Co., Ltd., China). Equal
amounts of protein were separated by SDS-PAGE and transferred
to PVDF membranes, which were then incubated overnight at 4°C
with the following primary antibodies (all from Abcam, UK):
Glucose-fructose oxidoreductase domain-containing protein 2
(GFOD2) and E2F transcription factor 2 (E2F2) (1:500),
Phosphoglucomutase 3 (PGM3) and Trifunctional purine
biosynthetic protein adenosine-3 (GART) (1:2000), ATPase subunit
beta-2 (ATP1B2) (1:1000), Growth/differentiation factor 15 (GDF15)
(1:10000), and Transferrin (1:2000, as loading control). Secondary
antibodies were diluted at 1:2000 and incubated at room
temperature for 1 h. Immunoreactive bands were visualized using
an ECL chemiluminescence detection kit (SB-WBO011, Share-Bio,
China), and band intensities were quantified using Image]J software
(NTH, USA) to evaluate relative protein expression levels.
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2.10 Gene set variation analysis

GSVA is a nonparametric and unsupervised algorithm that
computes a composite score for gene sets to assess transcriptomic
enrichment. This method evaluates functional pathway changes at
the gene set level across different samples. The GSVA_1.30.0
package in R was used to calculate t-scores and determine
pathway activity states.

2.11 Analysis of immune cell abundance

CIBERSORT, based on support vector regression, was used to
deconvolute transcriptomic data and estimate the relative
abundance of 22 immune cell subtypes defined by the LM22
signature matrix (547 genes). This included various T cells, B
cells, plasma cells, and myeloid cells. The algorithm was applied
to patient samples to quantify immune infiltration, and correlation
analyses were conducted to assess associations between hub gene
expression and immune cell composition, thereby exploring
potential regulatory roles in the immune microenvironment.

2.12 Molecular docking analysis for
potential therapeutic drug prediction

Molecular docking was performed to predict potential therapeutic
agents targeting the identified hub genes. Candidate compounds
were obtained from the DSigDB database via the Enrichr platform
(https://maayanlab.cloud/Enrichr/). Three-dimensional structures
of target proteins were downloaded from UniProt (https://
www.uniprot.org/), and chemical structures of small molecules
from PubChem (https://pubchem.ncbi.nlm.nih.gov/).

Docking simulations were carried out using AutoDock (https://
ccsb.scripps.edu/mgltools/downloads/) to calculate binding
affinities. Each compound was docked 50 times independently,
and the top 20 poses from each run were collected. Binding
energies were analyzed by calculating the mean, median, standard
deviation, interquartile range (IQR), minimum, and maximum to
evaluate distribution and reproducibility.Visualization and
interaction analysis were performed with PyMOL (https://
pymol.org/) and Discovery Studio (BIOVIA, Dassault Systémes)
to identify key ligand-residue interactions, including hydrogen
bonds, hydrophobic contacts, and m-m stacking, thereby
supporting the reliability of the docking results.

2.13 Cell culture and treatments

The human alveolar epithelial cell line A549 (Procell Life
Science & Technology Co., Ltd.) was cultured in RPMI-1640
medium supplemented with 10% fetal bovine serum and 1%
penicillin-streptomycin. Cells were maintained in a humidified
incubator at 37 °C with 5% CO,, and the medium was replaced
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every 2-3 days. When the cells reached the logarithmic growth
phase with good viability, they were subjected to subsequent
treatments. The cells were divided into four groups: Control, LPS
(1 pg/mL for 12 h), LPS+Celastrol (1 ug/mL LPS for 12 h followed
by 100 nM Celastrol for 24 h), and LPS+Thiostrepton (1 ug/mL LPS
for 12 h followed by 2 uM Thiostrepton for 24 h).

2.14 Cell plate clone formation assay

A total of 800 cells per well were seeded into 6-well plates and
cultured for 2 weeks at 37°C in a humidified atmosphere containing
5% CO,. At the endpoint, the cells were fixed with 4%
paraformaldehyde for 20 min and subsequently stained with
0.05% crystal violet (Sigma, USA) for 30 min. The results were
evaluated by counting the number of stained viable cells and by
measuring the absorbance of the eluted dye at 570 nm.

2.15 Cell apoptosis assay

Cell apoptosis was assessed using Annexin V-FITC/PI double
staining followed by flow cytometry. Briefly, cells were harvested
into centrifuge tubes and washed twice with pre-cooled PBS. The
procedure was performed according to the manufacturer’s
instructions of the Annexin V-FITC/PI apoptosis detection kit,
and apoptotic cells were then analyzed using a flow cytometer.

2.16 Statistical analysis

All experiments were performed in triplicate, and data are
expressed as the mean + SEM. Statistical analyses were conducted
using GraphPad Prism 10.2.0 (GraphPad Software, Inc.).
Comparisons among multiple groups were performed by one-way
ANOVA followed by Tukey’s post hoc test. A value of p < 0.05 was
considered statistically significant.

3 Results

3.1 DEG screening and WGCNA module
analysis

Integrated analysis of the GSE10474 and GSE32707 datasets from
the GEO database was performed. PCA revealed pronounced batch
effects, which were corrected using the sva package, markedly improving
data consistency and reducing inter-sample variability (Figure 2A).
Differential expression analysis with the limma package, applying
thresholds of [log,FC| > 0.25 and p < 0.05, identified 376 DEGs,
including 166 upregulated and 98 downregulated genes (Figure 2B).

WGCNA was then employed to delineate disease-associated
gene networks. Sample clustering and the selection of a soft-
threshold power of 6 ensured a scale-free topology (Figures 2C,
D). Multiple color-coded co-expression modules were identified,
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with the blue module showing a significant positive correlation with
disease status (p < 0.01; Figure 2E). Intersection of genes from this
module with the DEGs yielded 65 overlapping genes, which were
designated as core candidates for subsequent functional enrichment
and drug-target prediction analyses (Figure 2F).

3.2 GO and KEGG enrichment analyses of
core genes

GO enrichment analysis identified key biological processes relevant
to SA-ALL, including negative regulation of protein complex assembly,
cell-cell electrical coupling, heme transport, and porphyrin-containing
compound metabolism, suggesting potential involvement in oxygen
metabolism, intercellular signaling, and cardiopulmonary coupling. CC
terms such as presynaptic membrane, cytoplasmic microtubule, and
ATPase-dependent transmembrane transport complex indicated
possible roles in maintaining pulmonary barrier integrity and
facilitating intracellular transport. For MF, enrichment in heme
binding and structural molecule activity suggested contributions to
oxygen delivery and cytoskeletal stability (Figure 3A).

KEGG analysis further revealed enrichment in cGMP-PKG and
cAMP signaling pathways, cortisol synthesis and secretion, and
cardiac muscle contraction, highlighting their potential involvement
in vascular tone regulation, stress hormone response, and
cardiopulmonary function during SA-ALIL Collectively, these results
suggest that the core genes may promote SA-ALI progression by
modulating oxygen metabolism, inflammatory signaling, vascular
permeability, and cytoskeletal remodeling (Figure 3B).

3.3 Identification of hub genes and
machine learning-based diagnostic
biomarkers

A PPI network of SA-ALI-related genes was constructed using the
STRING database (minimum interaction score 0.4) and visualized in
Cytoscape with CytoHubba, whereby the top 10 hub genes were
identified using the Degree algorithm (Figures 4A, B). To further
screen potential diagnostic markers, three machine learning
approaches-LASSO regression, RF, and SVM-RFE-were employed.
LASSO regression identified seven genes at the optimal A of 0.0685,
RF ranked the top 10 genes by feature importance, and SVM-RFE
selected eight genes with the highest classification accuracy under five-
fold cross-validation (Figures 4C-E). The intersection of the three
methods yielded six candidate biomarkers-PGM3, GDF15, GART,
GFOD2, E2F2, and ATP1B2-which may serve as potential diagnostic
and therapeutic targets for SA-ALI (Figure 4F).

3.4 Validation of candidate diagnostic
genes by western blot

WB analysis was conducted to validate the expression of the six
candidate diagnostic genes in clinical serum samples from SA-ALI
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FIGURE 2

Identification of Differentially Expressed Genes in Sepsis-Associated Acute Lung Injury (SA-ALI). (A) PCA of GSE10474 and GSE32707 before (left) and
after (right) batch correction; (B) Volcano plot of DEGs between SA-ALI and controls (red: upregulated, blue: downregulated, grey: non-significant);
(C) WGCNA gene clustering dendrogram with module colors; (D) Scale-free topology and mean connectivity plots; soft-threshold power = 4 was
selected; (E) Heatmap of module-trait correlations (Sepsis vs. SA-ALI); (F) Venn diagram showing 65 overlapping genes between WGCNA modules

and DEGs.

patients. All six proteins-GDF15, GART, PGM3, GFOD2, ATPIB2,
and E2F2-exhibited markedly higher expression levels in SA-ALI
patients compared with healthy controls, with Transferrin serving
as the loading control (Figures 5A, B). Densitometric quantification
confirmed significantly elevated expression of each protein in the
SA-ALI group (p < 0.05) (Figures 5C-H), supporting their potential
roles as diagnostic biomarkers in SA-ALL
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3.5 GSVA reveals pathways associated with
key diagnostic genes

To investigate potential functional pathways of the six
candidate biomarkers, single-gene pathway enrichment was
performed using GSVA (Figures 6A-F). ATP1B2 high expression
was associated with intestinal immune network for IgA production,
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peroxisome, and cytochrome P450 drug metabolism. E2F2 was
enriched in complement and coagulation cascades, Toll-like
receptor signaling, and arginine-proline metabolism. GART
correlated with cytoskeletal remodeling, neuroactive ligand-
receptor interaction, and ECM-receptor interaction. GDFI5 was
linked to cytokine-receptor interaction, tight junction, and JAK-
STAT signaling. GFOD2 was enriched in nucleotide excision repair,
mismatch repair, and cysteine metabolism, whereas PGM3 was
associated with glutathione metabolism, ECM-receptor interaction,
and the renin-angiotensin system. These results suggest that the six
genes participate in diverse inflammation-, immunity-,
metabolism-, and repair-related pathways in SA-ALL
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3.6 Immune cell infiltration and association
with key genes

To explore the immune landscape associated with SA-ALIL we
performed immune cell infiltration analysis using the CIBERSORT
algorithm. The stacked bar plot revealed substantial heterogeneity
in the relative abundance of 22 immune cell types between the
control and SA-ALI groups (Figure 7A). Violin plot comparison
indicated that naive CD4" T cells were significantly reduced in SA-
ALI samples compared with controls (p = 0.033), while the
proportions of other immune cell types showed no significant
differences (Figure 7B). Correlation analysis (Figure 7C) showed
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GDFI15 positively associated with naive CD4™ T cells and naive B
cells, while other hub genes displayed distinct links to macrophage
subsets, NK cells, and dendritic cells. These findings suggest that
hub genes, particularly GDFI5, may contribute to SA-ALI
progression through immune regulation centered on naive CD4"
T cell-mediated responses.
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3.7 Molecular docking analysis of
candidate compounds

Based on DSigDB database screening and literature evaluation,

five candidate compounds—thiostrepton, thapsigargin,
piperlongumine, parthenolide, and celastrol—were selected for
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docking with the six core proteins (PGM3, GFOD2, GDF15, GART,
E2F2, and ATP1B2) (Figure 8A). Binding affinities ranged from -5.0
to -10.0 kcal/mol, with values below -9.0 kcal/mol indicating strong
binding (Figures 8B-F). Celastrol exhibited high affinity with PGM3
(-9.086 kcal/mol), GDF15 (-9.988 kcal/mol), GFOD2 (-9.185 kcal/
mol), and E2F2 (-9.796 kcal/mol), as well as favorable interactions
with GART (-8.206 kcal/mol) and ATPIB2 (-8.093 kcal/mol).
Thiostrepton also demonstrated strong binding with PGM3
(-8.957 kcal/mol), GFOD2 (-9.156 kcal/mol), and GDF15 (-8.345
kcal/mol). Based on these results, celastrol and thiostrepton were
prioritized for further in vitro functional and mechanistic studies.
Statistical analysis of repeated docking runs showed that the
binding energy distributions were concentrated, with low standard
deviations and narrow interquartile ranges, indicating good stability
and reproducibility(Tab S1). Visualization with PyMOL and
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Discovery Studio further showed that celastrol and thiostrepton
formed hydrogen bonds, hydrophobic contacts, and n-w stacking
with key amino acid residues, supporting the reliability of the
docking results (Supplementary Figure S1).

3.8 Celastrol and Thiostrepton attenuate
LPS-induced apoptosis in A549 alveolar
epithelial cells

Our results showed that LPS stimulation markedly impaired the
clonogenic capacity of A549 alveolar epithelial cells, whereas
treatment with Celastrol or Thiostrepton partially restored cell
growth (Figures 9A, B). Flow cytometry analysis further
demonstrated that LPS induced a significant increase in both
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Gene set variation analysis (GSVA) of diagnosis genes: (A) GSVA bar chart of ATP1B2; (B) GSVA bar chart of E2F2;

(C) GSVA bar chart of GART;

(D) GSVA bar chart of GDF15; (E) GSVA bar chart of GFODZ2; (F) GSVA bar chart of PGM3.

early and late apoptotic populations, while administration of
Celastrol or Thiostrepton reduced apoptotic cells and overall
apoptosis rates (Figures 9C, D). Quantitative analysis confirmed
that these differences were statistically significant compared with
the LPS group (p < 0.05). Collectively, these findings indicate that
Celastrol and Thiostrepton protect A549 alveolar epithelial cells
against LPS-induced apoptosis.

4 Discussion

During sepsis, the lung is among the most severely affected
organs, and SA-ALI can progress to ARDS with high mortality (8,
13, 14). To identify potential biomarkers and therapeutic targets, we
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analyzed datasets GSE10474 and GSE32707, yielding 376
differentially expressed genes. Integrating WGCNA with three
machine learning algorithms, we identified six diagnostic genes—
PGM3, GDF15, GART, GFOD2, E2F2, and ATPIB2—associated
with sepsis-induced ALI which were validated in clinical samples
by Western blotting. These genes are implicated in immune
regulation, inflammation, and cellular stress, with CD4"™ T cell
reduction potentially contributing to lung injury. Drug
enrichment and molecular docking further identified
Thiostrepton and Celastrol as promising multi-target candidates
for SA-ALI intervention. Our findings provide novel biomarkers for
early diagnosis and potential agents for targeted therapy.

WB analysis demonstrated that all six key genes were
significantly upregulated in SA-ALI patients compared with
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FIGURE 7

Immune cell infiltration analysis in SA-ALI. (A) Stacked bar plot showing the relative proportions of 22 immune cell types in control (Con) and SA-ALI
(Treat) samples as estimated by CIBERSORT. (B) Violin plots comparing immune cell fractions between groups; significant differences were observed
in naive CD4" T cells (p=0.033). (C) Heatmap showing Spearman correlations between hub gene expression and immune cell infiltration levels. Red
indicates positive correlation, blue indicates negative correlation; significance levels are marked (*p < 0.05, **p < 0.01, ***p < 0.001).

healthy controls, suggesting their involvement in disease onset and
progression. Among them, GDF15 and E2F2 have been previously
implicated in SA-ALI. GDFI5,
immunomodulatory hormone, is essential for survival during

a stress-induced
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bacterial and viral infections as well as sepsis (15, 16), and may
exert protective effects in SA-ALI through multiple mechanisms: (i)
activating the AMPK pathway to suppress glycolysis and NF-xB/
MAPK signaling, thereby attenuating alveolar macrophage-
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mediated inflammation; (ii) enhancing its own expression via the
elF20-~ATF4 pathway to establish an anti-inflammatory feedback
loop; (iii) inhibiting the HIF-1oo/LDHA axis to correct
immunometabolic imbalance; and (iv) upregulating SIRTI to
protect alveolar epithelial cells (17-20). Similarly, recent evidence
indicates that E2F2 may also participate in sepsis-related tissue
protection by promoting M2 macrophage polarization and
suppressing NF-xB signaling (21). In a rat CLP model, activation
of the ghrelin/GHSR axis enhanced E2F2 expression, reduced
inflammation, and mitigated intestinal barrier injury, suggesting
that E2F2-mediated immunomodulation could have broader
relevance in SA-ALI (22).

Although no direct evidence currently links PGM3, GART,
GFOD2, or ATPIB2 to SA-ALL their known biological functions
suggest potential involvement in disease pathogenesis. PGM3,
encoding phosphoglucomutase 3, is a key enzyme in the
hexosamine biosynthetic pathway, regulating protein
glycosylation, immune cell differentiation, and cytokine
production; dysregulation of this pathway can impair immune

Frontiers in Immunology

12

homeostasis and barrier integrity—critical processes in ALI
progression (23, 24). GART encodes a trifunctional enzyme in the
de novo purine biosynthesis pathway, essential for nucleic acid
synthesis, cell proliferation, and energy metabolism; enhanced
purine metabolism may sustain hyperactivated immune cell
proliferation and inflammatory mediator production, exacerbating
the septic inflammatory respons (25, 26). GFOD2, a glutamate-rich
protein with incompletely defined functions, has been implicated in
oxidative stress regulation and mitochondrial homeostasis,
processes closely related to alveolar epithelial cell survival under
inflammatory injury (27). ATP1B2 encodes the 32 subunit of Na*/
K*-ATPase, a crucial ion pump that maintains transmembrane
electrochemical gradients, facilitates alveolar fluid clearance, and
preserves epithelial barrier integrity; Na*/K*-ATPase dysfunction is
a recognized mechanism of pulmonary edema in ALI (28, 29). In
this study, all four genes were significantly upregulated in SA-ALI
patient samples compared with healthy controls, suggesting that
they may contribute to disease progression through coordinated
effects on immune activation, metabolic reprogramming, oxidative
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FIGURE 9

Celastrol and Thiostrepton attenuate LPS-induced apoptosis in alveolar epithelial cells (A549). (A) Representative images of cell colony formation
assay in Control, LPS, LPS+Celastrol, and LPS+Thiostrepton groups. (B) Quantification showing that LPS markedly reduced the clonogenic capacity
of alveolar epithelial cells, which was partially restored by Celastrol or Thiostrepton. (C) Representative Annexin V-FITC/PI flow cytometry plots
displaying early and late apoptotic populations. (D) Quantification of apoptosis rates demonstrating that Celastrol and Thiostrepton reduced LPS-

induced apoptosis. Data are presented as mean + SD; *p < 0.05.

stress regulation, and epithelial barrier function. These findings
provide new leads for elucidating their mechanistic roles in SA-ALI
and evaluating their potential as therapeutic targets.

Furthermore, we performed immune cell infiltration analysis
and found that naive CD4" T cells play a central role in ALI
immunity, differentiating into Th1, Th2, Th17, and Treg subsets
that modulate disease progression and resolution (30, 31). In our
cohort, GDFI5 expression showed a strong positive correlation with
naive CD4" T cell abundance. Previous studies have demonstrated
that GDF15 promotes FOXP3" induced Treg differentiation,
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enhances the anti-inflammatory activity of natural Tregs, and
suppresses dendritic cell activation, thereby fostering immune
tolerance (32). Collectively, these mechanisms may account for
the protective role of GDF15 in SA-ALI through the expansion of
immunosuppressive T cell populations and the attenuation of
excessive inflammation.

Molecular docking identified two potential therapeutic
compounds for SA-ALI—Celastrol and Thiostrepton. Celastrol
demonstrated strong binding affinities with all six hub proteins,
with the lowest binding energies observed for PGM3, GDFIS5,
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GFOD2, and E2F2, suggesting multi-target cooperative regulation.
As a triterpenoid, Celastrol has been reported to suppress NF-xB/
MAPK inflammatory signaling and activate the Nrf2/HO-1
antioxidant pathway in sepsis-induced lung injury, thereby
reducing inflammation, inhibiting apoptosis, and improving lung
function (33-35). The mechanism of GDFI5, which activates
AMPK to inhibit NF-kB/MAPK signaling in alveolar
macrophages, and that of E2F2, which amplifies inflammatory
responses via the TLR4/MyD88/NF-xB axis, align closely with
Celastrol’s anti-inflammatory actions, suggesting potential
synergistic effects (17, 18, 22). Furthermore, Celastrol’s ability to
activate Nrf2/HO-1 may complement GFOD2-mediated oxidative
stress regulation, enhancing antioxidant defenses and reducing
oxidative damage (35, 36). Although the precise roles of PGM3,
GART, and ATPIB2 in SA-ALI remain unclear, their favorable
binding to Celastrol implies potential indirect benefits through
metabolic homeostasis and membrane function regulation.

Thiostrepton, a thiazole-containing macrolide antibiotic,
possesses both antimicrobial and immunomodulatory properties.
It can inhibit the NF-xB pathway, reduce pro-inflammatory
cytokines such as TNF-o and IL-6, and activate FOXO3 and
antioxidant pathways to mitigate inflammation and oxidative
stress (37-39). Thiostrepton exhibited strong binding with PGM3,
GDF15, and GFOD?2 (binding energies of -8.957, -8.345, and -9.156
kcal/mol, respectively), supporting its multi-target potential. While
direct evidence is currently lacking, the strong molecular docking
affinities observed between Thiostrepton and PGM3, GDF15, and
GFOD2 suggest potential mechanistic interactions. It is plausible
that Thiostrepton may modulate immune receptor glycosylation via
PGM3, synergize with GDFI5 to suppress inflammatory signaling,
and enhance GFOD2-mediated antioxidant defenses to reduce
ROS-induced lung injury. However, these hypotheses require
experimental validation in future studies. Collectively, these
findings highlight Celastrol and Thiostrepton as promising agents
with complementary and synergistic anti-inflammatory,
antioxidant, and immunoregulatory properties. Their therapeutic
potential in SA-ALI warrants further mechanistic investigation and
preclinical validation.

Taken together, our identification of six hub genes and their
associated pathways not only elucidates the molecular mechanisms
underlying SA-ALI but also provides novel opportunities for clinical
translation. These biomarkers hold promise for improving the
sensitivity and specificity of early diagnosis, enabling clinicians to
stratify high-risk patients and initiate timely interventions before
progression to ARDS. In addition, the discovery of Celastrol and
Thiostrepton as potential multi-target therapeutic agents underscores
the feasibility of drug repurposing strategies for SA-ALIL These
compounds not only offer mechanistic insights into
immunomodulation and oxidative stress regulation but also
represent tangible candidates for preclinical and translational
evaluation.

Future studies should focus on validating these biomarkers in
large, multicenter clinical cohorts, integrating them into predictive
models alongside conventional clinical parameters, and assessing
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their dynamic changes during disease progression. Moreover,
systematic preclinical investigations of Celastrol and Thiostrepton
—including pharmacokinetic, safety, and efficacy evaluations in
animal models, followed by early-phase clinical trials—will be
critical to establish their therapeutic potential. By bridging
bioinformatics-driven discovery with clinical application, our
findings lay the groundwork for precision medicine strategies
aimed at improving outcomes in patients with sepsis-associated
acute lung injury.

4.1 Limitations

Several limitations should be acknowledged. First, the
transcriptomic analyses were derived from publicly available
datasets with relatively small sample sizes, which may restrict
statistical power and generalizability. Second, although the
integration of WGCNA, multiple machine learning algorithms,
and molecular docking provided a robust strategy for identifying
key genes and candidate therapeutics, the findings remain
correlative and predictive. Third, our clonogenic and flow
cytometric apoptosis assays demonstrated that Celastrol and
Thiostrepton exert protective effects on LPS-treated A549 cells;
however, their interactions with putative targets were only
suggested by molecular docking, and their efficacy and
mechanisms require further validation in relevant in vitro and in
vivo SA-ALI models. Fourth, the observed association between
GDF15 and naive CD4" T cells warrants mechanistic studies to
establish causality. Finally, the clinical validation was limited to a
small cohort, and larger multicenter studies are needed to confirm
the diagnostic and therapeutic potential of the identified biomarkers
and compounds.

5 Conclusion

We identified six key genes—PGM3, GDF15, GART, GFOD2,
E2F2, and ATP1B2—closely associated with the pathogenesis of SA-
ALJ, involving immune regulation, inflammatory signaling,
oxidative stress, and epithelial barrier maintenance. Celastrol and
Thiostrepton emerged as potential multi-target agents with
complementary protective effects. Together, these findings not
only provide novel biomarkers for disease monitoring and
mechanistic insight into SA-ALI but also point to promising
therapeutic candidates that may inform the development of more
effective treatment strategies.
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