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Background: Sepsis-associated acute lung injury (SA-ALI) is a severe complication

of sepsis with high mortality. This study aimed to identify key diagnostic genes and

potential therapeutic drugs for SA-ALI.

Methods: Transcriptomic data from GSE10474 and GSE32707 were integrated

for differential expression and WGCNA analysis. Hub genes were screened using

PPI network construction and three machine learning algorithms, and validated

by Western blot. Functional enrichment, immune infiltration, and drug prediction

(DSigDB) were performed, followed by molecular docking.

Results: Six hub genes (PGM3, GDF15, GART, GFOD2, E2F2, ATP1B2) were

identified and validated with elevated expression in SA-ALI. These genes were

enriched in inflammation, immune regulation, oxidative stress, and tissue

remodeling pathways, and showed significant correlations with specific

immune cell subsets. Five candidate small molecules were predicted;

molecular docking revealed Celastrol had the strongest binding to all six

proteins, particularly GDF15 (-9.988 kcal/mol), while Thiostrepton showed

strong binding to PGM3, GFOD2, and GDF15.

Conclusion: Six diagnostic hub genes and two priority candidate drugs, Celastrol

and Thiostrepton, were identified for SA-ALI, providing potential biomarkers and

therapeutic targets.
KEYWORDS

sepsis-associated acute lung injury (SA-ALI), hub genes, machine learning, molecular
docking, small-molecule drugs
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1 Introduction

Sepsis is a common disease in the field of critical care medicine (1,

2). Sepsis impacts at least 30 million individuals worldwide annually,

with a mortality rate reaching up to 20%, according to a World Health

Organization report (3). When sepsis progresses to sepsis-associated

acute lung injury (SA-ALI), the mortality rate can reach 34% to 45% (4,

5), posing a serious threat to patients’ life and health. The known causes

of SA-ALI include various biochemical injuries, severe trauma and post-

traumatic infection, shock, and poisoning (6), as well as various

infectious diseases targeting the lungs, especially the COVID-19

pandemic that erupted at the end of 2019. Some patients can rapidly

progress to SA-ALI, experience respiratory failure, and even death (7).

Due to the lack of early diagnostic methods, only about 50% of SA-ALI

cases can be identified by clinicians (8). Therefore, the study of early

identification of SA-ALI, as well as the research on biomarkers for

reducing its mortality rate and improving prognosis, is

extremely important.

In recent years, basic and clinical research on biomarkers has

not only deepened our understanding of the pathophysiological

mechanisms of SA-ALI but has also provided a wealth of biological

information, offering greater value for the prediction, diagnosis, and

prognosis of the disease (9). Currently, research on SA-ALI

biomarkers mainly involves non-protein indicators such as

endothelial progenitor cells and exhaled breath condensate (10,

11). Despite some progress in biomarker studies over the past two

decades, their clinical application value remains low. The reasons

for this may include: (1) an overreliance on single indicators for

early warning, diagnosis, or prediction of SA-ALI, which have

limited diagnostic value, whereas a combined biomarker approach

may improve accuracy; (2) low tissue and disease specificity of some

markers, making them easily influenced by other factors; (3) limited

understanding of the involvement of certain biomarkers in SA-ALI

development; and (4) lack of validation in large-sample clinical

studies (12). As a result, there is a pressing need to identify novel

biomarkers for the early detection of SA-ALI.

To address these challenges, this study applied bioinformatics

analysis to uncover key genes potentially involved in the

pathogenesis of SA-ALI and used molecular docking to screen

candidate therapeutic compounds targeting these genes. Unlike

previous work that has primarily focused on isolated markers, our

approach integrates computational biology and drug–target

prediction, aiming not only to reveal novel biomarkers for early

detection but also to provide innovative strategies for precision

diagnosis and targeted therapy in SA-ALI. By bridging the gap
Abbreviations: SA-ALI, Sepsis-associated acute lung injury; GEO, Gene

Expression Omnibus; PCA, Principal component analysis; TOM, topological

overlap matrix; WGCNA, Weighted Gene Co-expression Network Analysis;

DEGs, Differentially Expressed Genes, LIMMA, Linear Models for Microarray;

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI,

Protein-Protein Interaction; LASSO, Least Absolute Shrinkage and Selection

Operator; SVM-RFE, Support Vector Machine–Recursive Feature Elimination;

RF, Random Forest; WB, Western Blot, GSVA, Gene Set Variation Analysis;

DSigDB, Drug Signatures Database; ARDS, acute respiratory distress syndrome.
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between mechanistic insights and translational application, this

study offers a new framework to improve the early identification

of high-risk patients and to guide the development of effective

therapeutic interventions.
2 Methods

2.1 Original data

In this research, we utilized the microarray datasets GSE10474

and GSE32707, accessible from the Gene Expression Omnibus

(GEO) repository (www.ncbi.nlm.nih.gov/geo/). GSE10474, built

on the GPL571 platform, comprises 13 blood samples from

individuals with ALI and 21 samples from patients diagnosed

solely with sepsis. GSE32707, based on the GPL10558 platform,

contains 144 blood samples, from which we selected 58 cases of

isolated sepsis and 31 cases of SA-ALI for additional analysis. The

brief research procedure is illustrated in Figure 1.
2.2 Differential gene expression analysis

Raw microarray data were log2-transformed and quantile-

normalized using the preprocessCore package in R (v4.3.3). Probe

IDs were mapped to gene symbols based on platform annotation files;

probes mapping to multiple genes were removed, and for genes with

multiple probes, themean expression value was calculated. Batch effects

were corrected using the removeBatchEffect function in the “limma”

package. For cross-platform analyses, only common genes were

retained, and datasets were treated as separate batches before batch

correction. Principal component analysis (PCA) plots were generated

to evaluate sample distribution before and after correction.
2.3 WGCNA network construction and
module identification

Co-expression networks were constructed using the Weighted

Gene Co-expression Network Analysis (WGCNA) package in R.

Samples were first hierarchically clustered to detect and remove

outliers. The soft-thresholding power (b) was determined using the

pickSoftThreshold function to ensure a scale-free topology. A

topological overlap matrix (TOM) was calculated to assess gene

interconnectedness, and modules were identified via dynamic tree

cutting. Module–trait relationships were evaluated by correlating

module eigengenes with clinical traits. Genes from key modules

were selected for subsequent analyses, and the eigengene network

was visualized to explore inter-module relationships.
2.4 Identification of common DEGs

To identify Differentially Expressed Genes (DEGs), we applied

the Linear Models for Microarray (LIMMA) package in R (version
frontiersin.org
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4.3.3) to carry out a comparative analysis between the sepsis-only

group and the sepsis-induced ALI group. DEGs were identified

using a strict threshold of p-values less than 0.05. Additionally,

genes from the WGCNA modules that exhibited the strongest

negative correlation with sepsis-induced ALI were also selected.

By intersecting the two sets of genes, we were able to pinpoint the

DEGs that were common to both, thus satisfying the defined

selection criteria.
2.5 Enrichment analysis of common DEGs

To further explore the biological functions of the identified

shared DEGs, we utilized the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analyses. This was conducted using the “clusterProfiler” package in

combination with the “org.Hs.eg.db” database for annotating genes.

The species of reference for the analysis was Homo sapiens, and

enrichment significance was defined as having an adjusted p-value

of less than 0.05.
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2.6 Construction of protein-protein
interaction network

The STRING database (https://string-db.org/) was used to create

the PPI network, applying a confidence score threshold of at least

0.4. Cytoscape v3.7.2, along with the CytoHubba plugin (version

0.1), was used to visualize and analyze the network. Hub genes were

determined using the Degree algorithm, and the ten genes with the

highest rankings were selected for further examination.
2.7 Feature selection using three
established machine learning algorithms

Candidate hub genes were refined using three machine learning

algorithms—Least Absolute Shrinkage and Selection Operator

(LASSO), Support Vector Machine–Recursive Feature Elimination

(SVM-RFE), and Random Forest (RF)—with a fixed random seed of

123 to ensure reproducibility. LASSO regression was performed

using the “glmnet” package in R with 10-fold cross-validation to
FIGURE 1

The working flow chart of this study.
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select the optimal lambda value (“lambda.1min”), while SVM-RFE

was conducted with the “e1071” and “MSVM-RFE” packages to

identify the subset with the highest classification accuracy. RF

analysis was implemented via the “randomForest” package with

500 trees, ranking genes by importance and applying a significance

threshold of 0.9. The final hub genes were obtained by intersecting

the results from all three algorithms.
2.8 Clinical sample collection

This study was conducted in accordance with the Declaration of

Helsinki and approved by the Ethics Committee of Wenzhou

Hospital of Integrated Traditional Chinese and Western Medicine

(No. 2024-L076) and the Ethics Committee of Taizhou Municipal

Hospital, School of Medicine, Taizhou University (LWYJ2025276).

Peripheral blood samples were collected from three patients

meeting the diagnostic criteria for SA-ALI and one healthy

volunteer confirmed by the hospital’s health examination center

as a control. Inclusion criteria were age ≥18 years, provision of

informed consent, and, for the study group, fulfillment of ALI

diagnostic criteria; exclusion criteria included age <18 years,

incomplete clinical data, death during hospitalization or transfer,

presence of organic heart disease (e.g., ischemic cardiomyopathy,

congenital heart disease, myocarditis), end-stage malignancy,

psychiatric disorders or cognitive impairment, or refusal to

participate. All samples were centrifuged at 2,000 rpm for 10 min

at 4 °C, and the resulting supernatants were immediately stored at

−80 °C for subsequent analysis.
2.9 Validation of hub gene expression by
western blot

To validate the expression levels of hub genes in sepsis-

associated acute SA-ALI, WB analysis was performed on serum

samples to detect the corresponding protein levels. Total protein

was extracted using RIPA lysis buffer containing PMSF (G2008,

Servicebio, China) and quantified with a BCA protein assay kit

(G3522, Guangzhou Jiebai Biotechnology Co., Ltd., China). Equal

amounts of protein were separated by SDS-PAGE and transferred

to PVDF membranes, which were then incubated overnight at 4°C

with the following primary antibodies (all from Abcam, UK):

Glucose-fructose oxidoreductase domain-containing protein 2

(GFOD2) and E2F transcription factor 2 (E2F2) (1:500),

Phosphoglucomutase 3 (PGM3) and Trifunctional purine

biosynthetic protein adenosine-3 (GART) (1:2000), ATPase subunit

beta-2 (ATP1B2) (1:1000), Growth/differentiation factor 15 (GDF15)

(1:10000), and Transferrin (1:2000, as loading control). Secondary

antibodies were diluted at 1:2000 and incubated at room

temperature for 1 h. Immunoreactive bands were visualized using

an ECL chemiluminescence detection kit (SB-WB011, Share-Bio,

China), and band intensities were quantified using ImageJ software

(NIH, USA) to evaluate relative protein expression levels.
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2.10 Gene set variation analysis

GSVA is a nonparametric and unsupervised algorithm that

computes a composite score for gene sets to assess transcriptomic

enrichment. This method evaluates functional pathway changes at

the gene set level across different samples. The GSVA_1.30.0

package in R was used to calculate t-scores and determine

pathway activity states.
2.11 Analysis of immune cell abundance

CIBERSORT, based on support vector regression, was used to

deconvolute transcriptomic data and estimate the relative

abundance of 22 immune cell subtypes defined by the LM22

signature matrix (547 genes). This included various T cells, B

cells, plasma cells, and myeloid cells. The algorithm was applied

to patient samples to quantify immune infiltration, and correlation

analyses were conducted to assess associations between hub gene

expression and immune cell composition, thereby exploring

potential regulatory roles in the immune microenvironment.
2.12 Molecular docking analysis for
potential therapeutic drug prediction

Molecular docking was performed to predict potential therapeutic

agents targeting the identified hub genes. Candidate compounds

were obtained from the DSigDB database via the Enrichr platform

(https://maayanlab.cloud/Enrichr/). Three-dimensional structures

of target proteins were downloaded from UniProt (https://

www.uniprot.org/), and chemical structures of small molecules

from PubChem (https://pubchem.ncbi.nlm.nih.gov/).

Docking simulations were carried out using AutoDock (https://

ccsb.scripps.edu/mgltools/downloads/) to calculate binding

affinities. Each compound was docked 50 times independently,

and the top 20 poses from each run were collected. Binding

energies were analyzed by calculating the mean, median, standard

deviation, interquartile range (IQR), minimum, and maximum to

evaluate distribution and reproducibility.Visualization and

interaction analysis were performed with PyMOL (https://

pymol.org/) and Discovery Studio (BIOVIA, Dassault Systèmes)

to identify key ligand–residue interactions, including hydrogen

bonds, hydrophobic contacts, and p–p stacking, thereby

supporting the reliability of the docking results.
2.13 Cell culture and treatments

The human alveolar epithelial cell line A549 (Procell Life

Science & Technology Co., Ltd.) was cultured in RPMI-1640

medium supplemented with 10% fetal bovine serum and 1%

penicillin–streptomycin. Cells were maintained in a humidified

incubator at 37 °C with 5% CO2, and the medium was replaced
frontiersin.org
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every 2–3 days. When the cells reached the logarithmic growth

phase with good viability, they were subjected to subsequent

treatments. The cells were divided into four groups: Control, LPS

(1 µg/mL for 12 h), LPS+Celastrol (1 µg/mL LPS for 12 h followed

by 100 nM Celastrol for 24 h), and LPS+Thiostrepton (1 µg/mL LPS

for 12 h followed by 2 µM Thiostrepton for 24 h).
2.14 Cell plate clone formation assay

A total of 800 cells per well were seeded into 6-well plates and

cultured for 2 weeks at 37°C in a humidified atmosphere containing

5% CO2. At the endpoint, the cells were fixed with 4%

paraformaldehyde for 20 min and subsequently stained with

0.05% crystal violet (Sigma, USA) for 30 min. The results were

evaluated by counting the number of stained viable cells and by

measuring the absorbance of the eluted dye at 570 nm.
2.15 Cell apoptosis assay

Cell apoptosis was assessed using Annexin V-FITC/PI double

staining followed by flow cytometry. Briefly, cells were harvested

into centrifuge tubes and washed twice with pre-cooled PBS. The

procedure was performed according to the manufacturer’s

instructions of the Annexin V-FITC/PI apoptosis detection kit,

and apoptotic cells were then analyzed using a flow cytometer.
2.16 Statistical analysis

All experiments were performed in triplicate, and data are

expressed as the mean ± SEM. Statistical analyses were conducted

using GraphPad Prism 10.2.0 (GraphPad Software, Inc.).

Comparisons among multiple groups were performed by one-way

ANOVA followed by Tukey’s post hoc test. A value of p < 0.05 was

considered statistically significant.
3 Results

3.1 DEG screening and WGCNA module
analysis

Integrated analysis of the GSE10474 and GSE32707 datasets from

the GEO database was performed. PCA revealed pronounced batch

effects, which were corrected using the sva package, markedly improving

data consistency and reducing inter-sample variability (Figure 2A).

Differential expression analysis with the limma package, applying

thresholds of |log2FC| > 0.25 and p < 0.05, identified 376 DEGs,

including 166 upregulated and 98 downregulated genes (Figure 2B).

WGCNA was then employed to delineate disease-associated

gene networks. Sample clustering and the selection of a soft-

threshold power of 6 ensured a scale-free topology (Figures 2C,

D). Multiple color-coded co-expression modules were identified,
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with the blue module showing a significant positive correlation with

disease status (p < 0.01; Figure 2E). Intersection of genes from this

module with the DEGs yielded 65 overlapping genes, which were

designated as core candidates for subsequent functional enrichment

and drug–target prediction analyses (Figure 2F).
3.2 GO and KEGG enrichment analyses of
core genes

GO enrichment analysis identified key biological processes relevant

to SA-ALI, including negative regulation of protein complex assembly,

cell–cell electrical coupling, heme transport, and porphyrin-containing

compound metabolism, suggesting potential involvement in oxygen

metabolism, intercellular signaling, and cardiopulmonary coupling. CC

terms such as presynaptic membrane, cytoplasmic microtubule, and

ATPase-dependent transmembrane transport complex indicated

possible roles in maintaining pulmonary barrier integrity and

facilitating intracellular transport. For MF, enrichment in heme

binding and structural molecule activity suggested contributions to

oxygen delivery and cytoskeletal stability (Figure 3A).

KEGG analysis further revealed enrichment in cGMP–PKG and

cAMP signaling pathways, cortisol synthesis and secretion, and

cardiac muscle contraction, highlighting their potential involvement

in vascular tone regulation, stress hormone response, and

cardiopulmonary function during SA-ALI. Collectively, these results

suggest that the core genes may promote SA-ALI progression by

modulating oxygen metabolism, inflammatory signaling, vascular

permeability, and cytoskeletal remodeling (Figure 3B).
3.3 Identification of hub genes and
machine learning-based diagnostic
biomarkers

A PPI network of SA-ALI–related genes was constructed using the

STRING database (minimum interaction score 0.4) and visualized in

Cytoscape with CytoHubba, whereby the top 10 hub genes were

identified using the Degree algorithm (Figures 4A, B). To further

screen potential diagnostic markers, three machine learning

approaches-LASSO regression, RF, and SVM-RFE-were employed.

LASSO regression identified seven genes at the optimal l of 0.0685,

RF ranked the top 10 genes by feature importance, and SVM-RFE

selected eight genes with the highest classification accuracy under five-

fold cross-validation (Figures 4C–E). The intersection of the three

methods yielded six candidate biomarkers-PGM3, GDF15, GART,

GFOD2, E2F2, and ATP1B2-which may serve as potential diagnostic

and therapeutic targets for SA-ALI (Figure 4F).
3.4 Validation of candidate diagnostic
genes by western blot

WB analysis was conducted to validate the expression of the six

candidate diagnostic genes in clinical serum samples from SA-ALI
frontiersin.org
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patients. All six proteins-GDF15, GART, PGM3, GFOD2, ATP1B2,

and E2F2-exhibited markedly higher expression levels in SA-ALI

patients compared with healthy controls, with Transferrin serving

as the loading control (Figures 5A, B). Densitometric quantification

confirmed significantly elevated expression of each protein in the

SA-ALI group (p < 0.05) (Figures 5C–H), supporting their potential

roles as diagnostic biomarkers in SA-ALI.
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3.5 GSVA reveals pathways associated with
key diagnostic genes

To investigate potential functional pathways of the six

candidate biomarkers, single-gene pathway enrichment was

performed using GSVA (Figures 6A–F). ATP1B2 high expression

was associated with intestinal immune network for IgA production,
FIGURE 2

Identification of Differentially Expressed Genes in Sepsis-Associated Acute Lung Injury (SA-ALI). (A) PCA of GSE10474 and GSE32707 before (left) and
after (right) batch correction; (B) Volcano plot of DEGs between SA-ALI and controls (red: upregulated, blue: downregulated, grey: non-significant);
(C) WGCNA gene clustering dendrogram with module colors; (D) Scale-free topology and mean connectivity plots; soft-threshold power = 4 was
selected; (E) Heatmap of module–trait correlations (Sepsis vs. SA-ALI); (F) Venn diagram showing 65 overlapping genes between WGCNA modules
and DEGs.
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peroxisome, and cytochrome P450 drug metabolism. E2F2 was

enriched in complement and coagulation cascades, Toll-like

receptor signaling, and arginine-proline metabolism. GART

correlated with cytoskeletal remodeling, neuroactive ligand–

receptor interaction, and ECM-receptor interaction. GDF15 was

linked to cytokine–receptor interaction, tight junction, and JAK-

STAT signaling. GFOD2 was enriched in nucleotide excision repair,

mismatch repair, and cysteine metabolism, whereas PGM3 was

associated with glutathione metabolism, ECM–receptor interaction,

and the renin–angiotensin system. These results suggest that the six

genes participate in diverse inflammation-, immunity-,

metabolism-, and repair-related pathways in SA-ALI.
Frontiers in Immunology 07
3.6 Immune cell infiltration and association
with key genes

To explore the immune landscape associated with SA-ALI, we

performed immune cell infiltration analysis using the CIBERSORT

algorithm. The stacked bar plot revealed substantial heterogeneity

in the relative abundance of 22 immune cell types between the

control and SA-ALI groups (Figure 7A). Violin plot comparison

indicated that naive CD4+ T cells were significantly reduced in SA-

ALI samples compared with controls (p = 0.033), while the

proportions of other immune cell types showed no significant

differences (Figure 7B). Correlation analysis (Figure 7C) showed
FIGURE 3

GO and KEGG enrichment analyses of overlapping genes. (A) GO analysis of biological processes (BP), cellular components (CC), and molecular
functions (MF). (B) KEGG pathway enrichment analysis. Dot size indicates gene count, color represents adjusted p-value.
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GDF15 positively associated with naïve CD4+ T cells and naïve B

cells, while other hub genes displayed distinct links to macrophage

subsets, NK cells, and dendritic cells. These findings suggest that

hub genes, particularly GDF15, may contribute to SA-ALI

progression through immune regulation centered on naive CD4+

T cell–mediated responses.
Frontiers in Immunology 08
3.7 Molecular docking analysis of
candidate compounds

Based on DSigDB database screening and literature evaluation,

five candidate compounds—thiostrepton, thapsigargin,

piperlongumine, parthenolide, and celastrol—were selected for
FIGURE 4

Identification of hub genes using PPI network and machine learning. (A) PPI network of overlapping genes, with node size indicating connectivity.
(B) Top hub genes ranked by cytoHubba MCC algorithm. (C) LASSO regression for feature selection. (D) SVM-RFE analysis showing minimal RMSE at
8 variables. (E) Random Forest ranking of gene importance. (F) Venn diagram showing six overlapping hub genes identified by all three algorithms
(RF, SVM, LASSO).
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docking with the six core proteins (PGM3, GFOD2, GDF15, GART,

E2F2, and ATP1B2) (Figure 8A). Binding affinities ranged from -5.0

to -10.0 kcal/mol, with values below -9.0 kcal/mol indicating strong

binding (Figures 8B–F). Celastrol exhibited high affinity with PGM3

(-9.086 kcal/mol), GDF15 (-9.988 kcal/mol), GFOD2 (-9.185 kcal/

mol), and E2F2 (-9.796 kcal/mol), as well as favorable interactions

with GART (-8.206 kcal/mol) and ATP1B2 (-8.093 kcal/mol).

Thiostrepton also demonstrated strong binding with PGM3

(-8.957 kcal/mol), GFOD2 (-9.156 kcal/mol), and GDF15 (-8.345

kcal/mol). Based on these results, celastrol and thiostrepton were

prioritized for further in vitro functional and mechanistic studies.

Statistical analysis of repeated docking runs showed that the

binding energy distributions were concentrated, with low standard

deviations and narrow interquartile ranges, indicating good stability

and reproducibility(Tab S1). Visualization with PyMOL and
Frontiers in Immunology 09
Discovery Studio further showed that celastrol and thiostrepton

formed hydrogen bonds, hydrophobic contacts, and p–p stacking

with key amino acid residues, supporting the reliability of the

docking results (Supplementary Figure S1).
3.8 Celastrol and Thiostrepton attenuate
LPS-induced apoptosis in A549 alveolar
epithelial cells

Our results showed that LPS stimulation markedly impaired the

clonogenic capacity of A549 alveolar epithelial cells, whereas

treatment with Celastrol or Thiostrepton partially restored cell

growth (Figures 9A, B). Flow cytometry analysis further

demonstrated that LPS induced a significant increase in both
FIGURE 5

Validation of hub gene expression in SA-ALI by Western blot. (A, B) Representative Western blots showing GDF15, GART, PGM3, GFOD2, ATP1B2,
and E2F2 protein levels in control and SA-ALI patient serum, with transferrin as the loading control. (C–H) Quantification of protein expression
normalized to transferrin, indicating significant upregulation of all six hub genes in SA-ALI compared with controls (*p < 0.05).
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early and late apoptotic populations, while administration of

Celastrol or Thiostrepton reduced apoptotic cells and overall

apoptosis rates (Figures 9C, D). Quantitative analysis confirmed

that these differences were statistically significant compared with

the LPS group (p < 0.05). Collectively, these findings indicate that

Celastrol and Thiostrepton protect A549 alveolar epithelial cells

against LPS-induced apoptosis.
4 Discussion

During sepsis, the lung is among the most severely affected

organs, and SA-ALI can progress to ARDS with high mortality (8,

13, 14). To identify potential biomarkers and therapeutic targets, we
Frontiers in Immunology 10
analyzed datasets GSE10474 and GSE32707, yielding 376

differentially expressed genes. Integrating WGCNA with three

machine learning algorithms, we identified six diagnostic genes—

PGM3, GDF15, GART, GFOD2, E2F2, and ATP1B2—associated

with sepsis-induced ALI, which were validated in clinical samples

by Western blotting. These genes are implicated in immune

regulation, inflammation, and cellular stress, with CD4+ T cell

reduction potentially contributing to lung injury. Drug

enrichment and molecular docking further identified

Thiostrepton and Celastrol as promising multi-target candidates

for SA-ALI intervention. Our findings provide novel biomarkers for

early diagnosis and potential agents for targeted therapy.

WB analysis demonstrated that all six key genes were

significantly upregulated in SA-ALI patients compared with
FIGURE 6

Gene set variation analysis (GSVA) of diagnosis genes: (A) GSVA bar chart of ATP1B2; (B) GSVA bar chart of E2F2; (C) GSVA bar chart of GART;
(D) GSVA bar chart of GDF15; (E) GSVA bar chart of GFOD2; (F) GSVA bar chart of PGM3.
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healthy controls, suggesting their involvement in disease onset and

progression. Among them, GDF15 and E2F2 have been previously

imp l i c a t e d i n SA -AL I . GDF1 5 , a s t r e s s - i n d u c e d

immunomodulatory hormone, is essential for survival during
Frontiers in Immunology 11
bacterial and viral infections as well as sepsis (15, 16), and may

exert protective effects in SA-ALI through multiple mechanisms: (i)

activating the AMPK pathway to suppress glycolysis and NF-kB/
MAPK signaling, thereby attenuating alveolar macrophage–
FIGURE 7

Immune cell infiltration analysis in SA-ALI. (A) Stacked bar plot showing the relative proportions of 22 immune cell types in control (Con) and SA-ALI
(Treat) samples as estimated by CIBERSORT. (B) Violin plots comparing immune cell fractions between groups; significant differences were observed
in naïve CD4+ T cells (p=0.033). (C) Heatmap showing Spearman correlations between hub gene expression and immune cell infiltration levels. Red
indicates positive correlation, blue indicates negative correlation; significance levels are marked (*p < 0.05, **p < 0.01, ***p < 0.001).
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mediated inflammation; (ii) enhancing its own expression via the

eIF2a–ATF4 pathway to establish an anti-inflammatory feedback

loop; (iii) inhibiting the HIF-1a/LDHA axis to correct

immunometabolic imbalance; and (iv) upregulating SIRT1 to

protect alveolar epithelial cells (17–20). Similarly, recent evidence

indicates that E2F2 may also participate in sepsis-related tissue

protection by promoting M2 macrophage polarization and

suppressing NF-kB signaling (21). In a rat CLP model, activation

of the ghrelin/GHSR axis enhanced E2F2 expression, reduced

inflammation, and mitigated intestinal barrier injury, suggesting

that E2F2-mediated immunomodulation could have broader

relevance in SA-ALI (22).

Although no direct evidence currently links PGM3, GART,

GFOD2, or ATP1B2 to SA-ALI, their known biological functions

suggest potential involvement in disease pathogenesis. PGM3,

encoding phosphoglucomutase 3, is a key enzyme in the

hexosamine biosynthetic pathway, regulat ing protein

glycosylation, immune cell differentiation, and cytokine

production; dysregulation of this pathway can impair immune
Frontiers in Immunology 12
homeostasis and barrier integrity—critical processes in ALI

progression (23, 24). GART encodes a trifunctional enzyme in the

de novo purine biosynthesis pathway, essential for nucleic acid

synthesis, cell proliferation, and energy metabolism; enhanced

purine metabolism may sustain hyperactivated immune cell

proliferation and inflammatory mediator production, exacerbating

the septic inflammatory respons (25, 26). GFOD2, a glutamate-rich

protein with incompletely defined functions, has been implicated in

oxidative stress regulation and mitochondrial homeostasis,

processes closely related to alveolar epithelial cell survival under

inflammatory injury (27). ATP1B2 encodes the b2 subunit of Na+/

K+-ATPase, a crucial ion pump that maintains transmembrane

electrochemical gradients, facilitates alveolar fluid clearance, and

preserves epithelial barrier integrity; Na+/K+-ATPase dysfunction is

a recognized mechanism of pulmonary edema in ALI (28, 29). In

this study, all four genes were significantly upregulated in SA-ALI

patient samples compared with healthy controls, suggesting that

they may contribute to disease progression through coordinated

effects on immune activation, metabolic reprogramming, oxidative
FIGURE 8

Molecular docking of candidate drugs with hub proteins in SA-ALI. (A) Heatmap showing binding energies (kcal/mol) between five candidate
compounds (Celastrol, Parthenolide, Piperlongumine, Thapsigargin, and Thiostrepton) and six hub proteins (PGM3, GDF15, GART, GFOD2, E2F2,
ATP1B2). Darker blue indicates stronger binding affinity. (B–F) Representative docking models of Celastrol with GDF15 (B), Parthenolide with PGM3
(C), Piperlongumine with GART (D), Thapsigargin with GFOD2 (E), and Thiostrepton with E2F2 (F). Green sticks represent ligands; orange sticks
represent interacting residues.
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stress regulation, and epithelial barrier function. These findings

provide new leads for elucidating their mechanistic roles in SA-ALI

and evaluating their potential as therapeutic targets.

Furthermore, we performed immune cell infiltration analysis

and found that naïve CD4+ T cells play a central role in ALI

immunity, differentiating into Th1, Th2, Th17, and Treg subsets

that modulate disease progression and resolution (30, 31). In our

cohort, GDF15 expression showed a strong positive correlation with

naïve CD4+ T cell abundance. Previous studies have demonstrated

that GDF15 promotes FOXP3+ induced Treg differentiation,
Frontiers in Immunology 13
enhances the anti-inflammatory activity of natural Tregs, and

suppresses dendritic cell activation, thereby fostering immune

tolerance (32). Collectively, these mechanisms may account for

the protective role of GDF15 in SA-ALI through the expansion of

immunosuppressive T cell populations and the attenuation of

excessive inflammation.

Molecular docking identified two potential therapeutic

compounds for SA-ALI—Celastrol and Thiostrepton. Celastrol

demonstrated strong binding affinities with all six hub proteins,

with the lowest binding energies observed for PGM3, GDF15,
FIGURE 9

Celastrol and Thiostrepton attenuate LPS-induced apoptosis in alveolar epithelial cells (A549). (A) Representative images of cell colony formation
assay in Control, LPS, LPS+Celastrol, and LPS+Thiostrepton groups. (B) Quantification showing that LPS markedly reduced the clonogenic capacity
of alveolar epithelial cells, which was partially restored by Celastrol or Thiostrepton. (C) Representative Annexin V-FITC/PI flow cytometry plots
displaying early and late apoptotic populations. (D) Quantification of apoptosis rates demonstrating that Celastrol and Thiostrepton reduced LPS-
induced apoptosis. Data are presented as mean ± SD; *p < 0.05.
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GFOD2, and E2F2, suggesting multi-target cooperative regulation.

As a triterpenoid, Celastrol has been reported to suppress NF-kB/
MAPK inflammatory signaling and activate the Nrf2/HO-1

antioxidant pathway in sepsis-induced lung injury, thereby

reducing inflammation, inhibiting apoptosis, and improving lung

function (33–35). The mechanism of GDF15, which activates

AMPK to inhibit NF-kB/MAPK signaling in alveolar

macrophages, and that of E2F2, which amplifies inflammatory

responses via the TLR4/MyD88/NF-kB axis, align closely with

Celastrol’s anti-inflammatory actions, suggesting potential

synergistic effects (17, 18, 22). Furthermore, Celastrol’s ability to

activate Nrf2/HO-1 may complement GFOD2-mediated oxidative

stress regulation, enhancing antioxidant defenses and reducing

oxidative damage (35, 36). Although the precise roles of PGM3,

GART, and ATP1B2 in SA-ALI remain unclear, their favorable

binding to Celastrol implies potential indirect benefits through

metabolic homeostasis and membrane function regulation.

Thiostrepton, a thiazole-containing macrolide antibiotic,

possesses both antimicrobial and immunomodulatory properties.

It can inhibit the NF-kB pathway, reduce pro-inflammatory

cytokines such as TNF-a and IL-6, and activate FOXO3 and

antioxidant pathways to mitigate inflammation and oxidative

stress (37–39). Thiostrepton exhibited strong binding with PGM3,

GDF15, and GFOD2 (binding energies of –8.957, –8.345, and –9.156

kcal/mol, respectively), supporting its multi-target potential. While

direct evidence is currently lacking, the strong molecular docking

affinities observed between Thiostrepton and PGM3, GDF15, and

GFOD2 suggest potential mechanistic interactions. It is plausible

that Thiostrepton may modulate immune receptor glycosylation via

PGM3, synergize with GDF15 to suppress inflammatory signaling,

and enhance GFOD2-mediated antioxidant defenses to reduce

ROS-induced lung injury. However, these hypotheses require

experimental validation in future studies. Collectively, these

findings highlight Celastrol and Thiostrepton as promising agents

with complementary and synergistic anti-inflammatory,

antioxidant, and immunoregulatory properties. Their therapeutic

potential in SA-ALI warrants further mechanistic investigation and

preclinical validation.

Taken together, our identification of six hub genes and their

associated pathways not only elucidates the molecular mechanisms

underlying SA-ALI but also provides novel opportunities for clinical

translation. These biomarkers hold promise for improving the

sensitivity and specificity of early diagnosis, enabling clinicians to

stratify high-risk patients and initiate timely interventions before

progression to ARDS. In addition, the discovery of Celastrol and

Thiostrepton as potential multi-target therapeutic agents underscores

the feasibility of drug repurposing strategies for SA-ALI. These

compounds not only offer mechanist ic insights into

immunomodulation and oxidative stress regulation but also

represent tangible candidates for preclinical and translational

evaluation.

Future studies should focus on validating these biomarkers in

large, multicenter clinical cohorts, integrating them into predictive

models alongside conventional clinical parameters, and assessing
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their dynamic changes during disease progression. Moreover,

systematic preclinical investigations of Celastrol and Thiostrepton

—including pharmacokinetic, safety, and efficacy evaluations in

animal models, followed by early-phase clinical trials—will be

critical to establish their therapeutic potential. By bridging

bioinformatics-driven discovery with clinical application, our

findings lay the groundwork for precision medicine strategies

aimed at improving outcomes in patients with sepsis-associated

acute lung injury.
4.1 Limitations

Several limitations should be acknowledged. First, the

transcriptomic analyses were derived from publicly available

datasets with relatively small sample sizes, which may restrict

statistical power and generalizability. Second, although the

integration of WGCNA, multiple machine learning algorithms,

and molecular docking provided a robust strategy for identifying

key genes and candidate therapeutics, the findings remain

correlative and predictive. Third, our clonogenic and flow

cytometric apoptosis assays demonstrated that Celastrol and

Thiostrepton exert protective effects on LPS-treated A549 cells;

however, their interactions with putative targets were only

suggested by molecular docking, and their efficacy and

mechanisms require further validation in relevant in vitro and in

vivo SA-ALI models. Fourth, the observed association between

GDF15 and naïve CD4+ T cells warrants mechanistic studies to

establish causality. Finally, the clinical validation was limited to a

small cohort, and larger multicenter studies are needed to confirm

the diagnostic and therapeutic potential of the identified biomarkers

and compounds.
5 Conclusion

We identified six key genes—PGM3, GDF15, GART, GFOD2,

E2F2, and ATP1B2—closely associated with the pathogenesis of SA-

ALI, involving immune regulation, inflammatory signaling,

oxidative stress, and epithelial barrier maintenance. Celastrol and

Thiostrepton emerged as potential multi-target agents with

complementary protective effects. Together, these findings not

only provide novel biomarkers for disease monitoring and

mechanistic insight into SA-ALI, but also point to promising

therapeutic candidates that may inform the development of more

effective treatment strategies.
Data availability statement

The datasets analyzed in this study are publicly available in the

NCBI Gene Expression Omnibus (GEO) repository under accession

numbers GSE10474 and GSE32707 (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi).
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://doi.org/10.3389/fimmu.2025.1684774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1684774
Ethics statement

The studies involving humans were approved by the Wenzhou

Hospital of Integrated Traditional Chinese and Western Medicine

in accordance with the Declaration of Helsinki (No. 2024-L076),

and the Ethics Committee of Taizhou Municipal Hospital (Taizhou

University Affiliated Municipal Hospital), School of Medicine,

Taizhou University (LWYJ2025276). The studies were conducted

in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.
Author contributions

QyC: Writing – original draft. YM: Writing – original draft,

Writing – review & editing. SC: Formal Analysis, Methodology,

Writing – review & editing. XZ: Formal Analysis, Funding

acquisition, Methodology, Data curation, Writing – review &

editing. ChZ: Data curation, Methodology, Writing – review &

editing. QqC: Writing – review & editing. CZ: Data curation,

Formal Analysis, Methodology, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported

in part by grants from the Medical Health Science and Technology

Project of Zhejiang Provincial Health Commission [No. 2024KY1824,

QC; No. 2025KY1871, CZ]; The Science and Technology Project of

Taizhou [No. 23ywb70, QC; No.24ywa44, CZ; The Science and

Technology Project of Wenzhou [No. Y2023802, QC].
Frontiers in Immunology 15
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.1684774/

full#supplementary-material
References
1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M,
et al. The third international consensus definitions for sepsis and septic shock (Sepsis-
3). JAMA. (2016) 315:801–10. doi: 10.1001/jama.2016.0287

2. Nedeva C. Inflammation and cell death of the innate and adaptive immune system
during sepsis. Biomolecules. (2021) 11(7). doi: 10.3390/biom11071011

3. Kumar S, Tripathy S, Jyoti A, Singh SG. Recent advances in biosensors for
diagnosis and detection of sepsis: A comprehensive review. Biosens Bioelectron. (2019)
124-125:205–15. doi: 10.1016/j.bios.2018.10.034

4. Fowler AA, Truwit JD, Hite RD, Morris PE, DeWilde C. Effect of vitamin C
infusion on organ failure and biomarkers of inflammation and vascular injury in
patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized
clinical trial. JAMA. (2019) 322:1261–70. doi: 10.1001/jama.2019.11825

5. Johnson RF Jr., Gustin J. Acute lung injury and acute respiratory distress
syndrome requiring tracheal intubation and mechanical ventilation in the intensive
care unit: impact on managing uncertainty for patient-centered communication. Am J
Hosp Palliat Care. (2013) 30:569–75. doi: 10.1177/1049909112460566

6. Liu C, Xiao K, Xie L. Advances in the use of exosomes for the treatment of ALI/
ARDS. Front Immunol. (2022) 13:971189. doi: 10.3389/fimmu.2022.971189

7. Long ME, Mallampalli RK, Horowitz JC. Pathogenesis of pneumonia and acute
lung injury. Clin Sci (Lond). (2022) 136:747–69. doi: 10.1042/cs20210879

8. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology,
patterns of care, and mortality for patients with acute respiratory distress syndrome in
intensive care units in 50 countries. JAMA. (2016) 315:788–800. doi: 10.1001/
jama.2016.0291

9. Janz DR, Ware LB. Biomarkers of ALI/ARDS: pathogenesis, discovery, and
relevance to clinical trials. Semin Respir Crit Care Med Aug. (2013) 34:537–48.
doi: 10.1055/s-0033-1351124

10. Spragg RG, Bernard GR, Checkley W, Curtis JR, Gajic O, Guyatt G, et al. Beyond
mortality: future clinical research in acute lung injury. Am J Respir Crit Care Med.
(2010) 181:1121–7. doi: 10.1164/rccm.201001-0024WS

11. Zheng L, Zhang Z, Song K, Xu X, Tong Y, Wei J, et al. Potential biomarkers for
inflammatory response in acute lung injury. Open Med (Wars). (2022) 17:1066–76.
doi: 10.1515/med-2022-0491

12. Mokra D, Kosutova P. Biomarkers in acute lung injury. Respir Physiol Neurobiol.
(2015) 209:52–8. doi: 10.1016/j.resp.2014.10.006

13. IslamMN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial
transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against
acute lung injury. Nat Med. (2012) 18:759–65. doi: 10.1038/nm.2736

14. Santacruz CA, Pereira AJ, Celis E, Vincent JL. Which multicenter randomized
controlled trials in critical care medicine have shown reduced mortality? A systematic
review. Crit Care Med. (2019) 47:1680–91. doi: 10.1097/ccm.0000000000004000

15. Li Z, Liu Y, Li X, Wu Y, Yang F, Mo Q, et al. Association between circulating
growth differentiation factor 15 and cirrhotic primary biliary cholangitis. BioMed Res
Int. (2020) 2020:5162541. doi: 10.1155/2020/5162541
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1684774/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1684774/full#supplementary-material
https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.3390/biom11071011
https://doi.org/10.1016/j.bios.2018.10.034
https://doi.org/10.1001/jama.2019.11825
https://doi.org/10.1177/1049909112460566
https://doi.org/10.3389/fimmu.2022.971189
https://doi.org/10.1042/cs20210879
https://doi.org/10.1001/jama.2016.0291
https://doi.org/10.1001/jama.2016.0291
https://doi.org/10.1055/s-0033-1351124
https://doi.org/10.1164/rccm.201001-0024WS
https://doi.org/10.1515/med-2022-0491
https://doi.org/10.1016/j.resp.2014.10.006
https://doi.org/10.1038/nm.2736
https://doi.org/10.1097/ccm.0000000000004000
https://doi.org/10.1155/2020/5162541
https://doi.org/10.3389/fimmu.2025.1684774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1684774
16. Wang D, Day EA, Townsend LK, Djordjevic D, Jørgensen SB, Steinberg GR.
GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic
disease. Nat Rev Endocrinol. (2021) 17:592–607. doi: 10.1038/s41574-021-00529-7

17. Wan Y, Fu J. GDF15 as a key disease target and biomarker: linking chronic lung
diseases and ageing. Mol Cell Biochem Mar. (2024) 479:453–66. doi: 10.1007/s11010-
023-04743-x

18. Song H, Chen Q, Xie S, Huang J, Kang G. GDF-15 prevents lipopolysaccharide-
mediated acute lung injury via upregulating SIRT1. Biochem Biophys Res Commun.
(2020) 526:439–46. doi: 10.1016/j.bbrc.2020.03.103

19. Kuang X, Niu Z, Huang Z, Cai X, Wang L, Zhang Y, et al. GDF15 attenuates
sepsis-induced acute lung injury by suppressing the HIF-1a/LDHA pathway. Int
Immunopharmacol. (2025) 163:115198. doi: 10.1016/j.intimp.2025.115198

20. Li X, Sun H, Zhang L, Liang H, Zhang B, Yang J, et al. GDF15 attenuates sepsis-
induced myocardial dysfunction by inhibiting cardiomyocytes ferroptosis via the
SOCS1/GPX4 signaling pathway. Eur J Pharmacol. (2024) 982:176894. doi: 10.1016/
j.ejphar.2024.176894

21. Denechaud PD, Fajas L, Giralt A. E2F1, a novel regulator of metabolism. Front
Endocrinol. (2017) 8:311. doi: 10.3389/fendo.2017.00311

22. Zhu L, Dou Z, Wu W, Hou Q, Wang S, Yuan Z, et al. Ghrelin/GHSR axis
induced M2 macrophage and alleviated intestinal barrier dysfunction in a sepsis rat
model by inactivating E2F1/NF-kB signaling. Can J Gastroenterol Hepatol. (2023)
2023:1629777. doi: 10.1155/2023/1629777

23. Yang L, Zerbato B, Pessina A, Brambilla L, Andreani V, Frey-Jakobs S, et al.
PGM3 insufficiency: a glycosylation disorder causing a notable T cell defect. Front
Immunol. (2024) 15:1500381. doi: 10.3389/fimmu.2024.1500381

24. Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S, Lamborn IT, et al. Autosomal
recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy,
immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin
Immunol. (2014) 133:1400–1409.e14095. doi: 10.1016/j.jaci.2014.02.013

25. Welin M, Grossmann JG, Flodin S, Nyman T, Stenmark P, Trésaugues L, et al.
Structural studies of tri-functional human GART. Nucleic Acids Res. (2010) 38:7308–
19. doi: 10.1093/nar/gkq595

26. Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, et al. From purines
to purinergic signalling: molecular functions and human diseases. Signal Transduct
Target Ther. (2021) 6:162. doi: 10.1038/s41392-021-00553-z

27. Xu X, Pang Y, Fan X. Mitochondria in oxidative stress, inflammation and aging:
from mechanisms to therapeutic advances. Signal Transduct Target Ther. (2025)
10:190. doi: 10.1038/s41392-025-02253-4
Frontiers in Immunology 16
28. Zemans RL, Matthay MA. Bench-to-bedside review: the role of the alveolar
epithelium in the resolution of pulmonary edema in acute lung injury. Crit Care. (2004)
8:469–77. doi: 10.1186/cc2906

29. Tokhtaeva E, Sachs G, Vagin O. Assembly with the Na,K-ATPase alpha (1)
subunit is required for export of beta (1) and beta (2) subunits from the endoplasmic
reticulum. Biochemistry. (2009) 48:11421–31. doi: 10.1021/bi901438z

30. Guan T, Zhou X, Zhou W, Lin H. Regulatory T cell and macrophage crosstalk in
acute lung injury: future perspectives. Cell Death Discov. (2023) 9:9. doi: 10.1038/
s41420-023-01310-7

31. Chai YS, Chen YQ, Lin SH, Xie K, Wang CJ, Yang YZ, et al. Curcumin regulates
the differentiation of naïve CD4+T cells and activates IL-10 immune modulation
against acute lung injury in mice. BioMed Pharmacother. (2020) 125:109946.
doi: 10.1016/j.biopha.2020.109946

32. Wischhusen J, Melero I, Fridman WH. Growth/differentiation factor-15 (GDF-
15): from biomarker to novel targetable immune checkpoint. Front Immunol. (2020)
11:951. doi: 10.3389/fimmu.2020.00951

33. Fu X, Wu C, Jiang W, Jiao Y, Wang J, Zhang B, et al. Design, synthesis, and
biological evaluation of heterocycle-fused celastrol derivatives as potent antiosteoporosis
agents by blocking RANKL-induced activation of the NF-kB and MAPK signaling
pathways. J Med Chem. (2025) 68(16):17678–704. doi: 10.1021/acs.jmedchem.5c01380

34. Meng Z, Liu Q, Chen H, She C, Huang Y. Therapeutic potential of celastrol in
bacterial infections: Current research advancements and future perspectives.
Pharmacol Res. (2025) 216:107774. doi: 10.1016/j.phrs.2025.107774

35. Qing TL, Yan L,Wang SK, Dai XY, Ren LJ, Zhang JQ, et al. Celastrol alleviates oxidative
stress induced by multi-walled carbon nanotubes through the Keap1/Nrf2/HO-1 signaling
pathway. Ecotoxicol Environ Saf. (2023) 252:114623. doi: 10.1016/j.ecoenv.2023.114623

36. Zheng ML, Yang ZH, He B, Sun X, Zhan YT, Shao AQ, et al. GFOD1 regulates
oxidative stress-induced damage in ADHD via NF-kB signaling pathway. Brain Res.
(2025) 1858:149605. doi: 10.1016/j.brainres.2025.149605

37. Asikaer A, Sun C, Shen Y. Thiostrepton: multifaceted biological activities and its
applications in treatment of inflammatory diseases. Inflammopharmacology. (2025)
33:183–94. doi: 10.1007/s10787-024-01587-9

38. Esparza K, Oliveira SD, Castellon M, Minshall RD, Onyuksel H. Thiostrepton-
nanomedicine, a TLR9 inhibitor, attenuates sepsis-induced inflammation in mice.
Mediators Inflamm. (2023) 2023:4035516. doi: 10.1155/2023/4035516

39. Newick K, Cunniff B, Preston K, Held P, Arbiser J, Pass H, et al. Peroxiredoxin 3
is a redox-dependent target of thiostrepton in Malignant mesothelioma cells. PloS One.
(2012) 7:e39404. doi: 10.1371/journal.pone.0039404
frontiersin.org

https://doi.org/10.1038/s41574-021-00529-7
https://doi.org/10.1007/s11010-023-04743-x
https://doi.org/10.1007/s11010-023-04743-x
https://doi.org/10.1016/j.bbrc.2020.03.103
https://doi.org/10.1016/j.intimp.2025.115198
https://doi.org/10.1016/j.ejphar.2024.176894
https://doi.org/10.1016/j.ejphar.2024.176894
https://doi.org/10.3389/fendo.2017.00311
https://doi.org/10.1155/2023/1629777
https://doi.org/10.3389/fimmu.2024.1500381
https://doi.org/10.1016/j.jaci.2014.02.013
https://doi.org/10.1093/nar/gkq595
https://doi.org/10.1038/s41392-021-00553-z
https://doi.org/10.1038/s41392-025-02253-4
https://doi.org/10.1186/cc2906
https://doi.org/10.1021/bi901438z
https://doi.org/10.1038/s41420-023-01310-7
https://doi.org/10.1038/s41420-023-01310-7
https://doi.org/10.1016/j.biopha.2020.109946
https://doi.org/10.3389/fimmu.2020.00951
https://doi.org/10.1021/acs.jmedchem.5c01380
https://doi.org/10.1016/j.phrs.2025.107774
https://doi.org/10.1016/j.ecoenv.2023.114623
https://doi.org/10.1016/j.brainres.2025.149605
https://doi.org/10.1007/s10787-024-01587-9
https://doi.org/10.1155/2023/4035516
https://doi.org/10.1371/journal.pone.0039404
https://doi.org/10.3389/fimmu.2025.1684774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Integrated bioinformatics and molecular docking analysis reveal potential hub genes and targeted therapeutics in sepsis-associated acute lung injury
	1 Introduction
	2 Methods
	2.1 Original data
	2.2 Differential gene expression analysis
	2.3 WGCNA network construction and module identification
	2.4 Identification of common DEGs
	2.5 Enrichment analysis of common DEGs
	2.6 Construction of protein-protein interaction network
	2.7 Feature selection using three established machine learning algorithms
	2.8 Clinical sample collection
	2.9 Validation of hub gene expression by western blot
	2.10 Gene set variation analysis
	2.11 Analysis of immune cell abundance
	2.12 Molecular docking analysis for potential therapeutic drug prediction
	2.13 Cell culture and treatments
	2.14 Cell plate clone formation assay
	2.15 Cell apoptosis assay
	2.16 Statistical analysis

	3 Results
	3.1 DEG screening and WGCNA module analysis
	3.2 GO and KEGG enrichment analyses of core genes
	3.3 Identification of hub genes and machine learning-based diagnostic biomarkers
	3.4 Validation of candidate diagnostic genes by western blot
	3.5 GSVA reveals pathways associated with key diagnostic genes
	3.6 Immune cell infiltration and association with key genes
	3.7 Molecular docking analysis of candidate compounds
	3.8 Celastrol and Thiostrepton attenuate LPS-induced apoptosis in A549 alveolar epithelial cells

	4 Discussion
	4.1 Limitations

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


