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Lung cancer remains the leading cause of cancer-related mortality worldwide,

with its progression shaped not only by tumor-intrinsic factors but also by a

complex and immunosuppressive tumor microenvironment (TME). Within this

niche, diverse immune populations—including CD8+ cytotoxic T cells, CD4+

helper T cell subsets (Th1, Th17, Tregs), B cells, natural killer (NK) cells, tumor-

associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs)

—collectively regulate immune surveillance and tumor escape. While effector

lymphocytes mediate antitumor responses, their function is often attenuated by

TAM- and MDSC-driven immunosuppression via cytokines (IL-10, TGF-b),
metabolic disruption, and immune checkpoint expression. High densities of

M2-polarized TAMs and MDSCs correlate with poor prognosis and resistance

to therapy. Immune checkpoint inhibitors targeting PD-1/PD-L1 and CTLA-4

have improved outcomes in lung cancer, yet therapeutic efficacy remains limited

by the immunosuppressive TME. This review outlines the functional roles of key

immune cell subsets in lung cancer and highlights emerging strategies to

reprogram the TME and enhance immunotherapeutic responsiveness.
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1 Introduction

Lung cancer remains the foremost contributor to global cancer-related mortality (1).

Beyond intrinsic tumor cell behavior, its pathogenesis and progression are orchestrated by

the surrounding tumor microenvironment (TME), a dynamic and multifaceted ecosystem

that governs neoplastic proliferation, immune evasion, and metastatic competence (2, 3).

The pulmonary TME comprises not only transformed epithelial cells but also a diverse

milieu of stromal and immune components, including fibroblasts, vascular and lymphatic

elements, extracellular matrix molecules, and a repertoire of cytokines and chemokines (4).

Among these, immune constituents such as tumor-associated macrophages (TAMs) (5),

dendritic cell populations (6), myeloid-derived suppressor cells (MDSCs) (7), and tumor-

infiltrating lymphocytes (TILs) (8) play central roles. Their functional plasticity enables
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either antitumor cytotoxicity or tumor-promoting activities,

including suppression of effector immunity, support for tumor

growth, and facilitation of metastatic spread (9).

The therapeutic modulation of immune cells within the TME has

redefined treatment paradigms for advanced pulmonarymalignancies.

Immune checkpoint inhibitors, particularly those targeting PD-1/PD-

L1 and CTLA-4, have yielded durable responses and improved

survival outcomes in subsets of patients (10). Meanwhile, emerging

strategies, such as cytokine-based therapies and tumor vaccines, are

under active investigation, offering new prospects for immune

reprogramming (11). This review synthesizes current insights into

biological functions of principal immune cell populations within lung

cancer, highlighting their potential for translation into

immunotherapeutic applications.
2 Tumor-infiltrating lymphocytes in
the lung cancer

Tumor-infiltrating lymphocytes (TILs) represent a heterogeneous

population of adaptive immune cells predominantly localized within

the stromal regions of lung tumors, mobilized via antigen-specific

responses to tumor-derived neoantigens. These cells are central to

antitumor immunity, contributing to both immune surveillance and

cytolytic elimination of malignant epithelial cells. Key subsets include

cytotoxic CD8+ T cells, CD4+ helper T cells, regulatory T cells (Tregs),

and tumor-infiltrating B cells (TIL-Bs), each exerting distinct

immunoregulatory functions within the dynamic tumor

microenvironment (12, 13) (Table 1).
2.1 Roles of CD4+ T cells in lung cancer
progression

2.1.1 Th1 cells in the lung cancer
Th1 cells, a subset of CD4+ T lymphocytes, are activated upon

MHC class II–restricted antigen recognition by professional antigen-

presenting cells, initiating transcriptional programs that culminate in

pro-inflammatory cytokine production (14).Within the TME, Th1 cells

diverge into classical and Th1-like subsets with distinct effector profiles,

and their balance is essential for sustaining antitumor immunity (15).

The canonical Th1–Th2 paradigm delineates opposing immune

trajectories. Th1 cells orchestrating cytotoxic responses and Th2 cells

mediating humoral immunity, yet this dichotomy is frequently

disrupted in lung cancer due to tumor-induced immune

reprogramming (12). Crosstalk between neoplastic epithelial cells and

helper T cell subsets often skews this balance toward a Th2-dominant

state, thereby fostering a permissive TME (12). Upon activation, Th1

cells secrete IFN-g and TNF-a, which augment antigen presentation,

recruit cytotoxic cells, suppress angiogenesis, and trigger tumor cell

apoptosis. Conversely, Th2 cytokines such as IL-4 and IL-10 dampen

cell-mediated responses and promote tolerance (16). In lung cancer,

Th2 cells are enriched within the TME compared to adjacent lung

tissue, correlating with tumor grade and invasiveness. In contrast,

decreased Th1 infiltration and a reduced Th1/Th2 ratio associate with
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immune dysfunction and disease progression (17). Notably, the

immunosuppressive cytokine IL-10 not only favors Th2 polarization

but also activates STAT3 signaling in dendritic cells, leading to

downregulation of MHC class II expression and impaired

costimulatory signaling. This diminishes antigen presentation capacity

and directly attenuates Th1 priming and expansion. As a result, the IL-

10/STAT3 axis plays a pivotal role in disabling effective Th1-driven

antitumor responses and contributes to an immunoevasive tumor

phenotype. Additionally, Tumor-derived factors such as TGF-b, IL-
10, and VEGF further reinforce this immunosuppressive axis,

subverting effector T cell function and establishing an immune-

privileged niche conducive to lung cancer recurrence and metastasis

(18). These dynamic shifts in CD4+ T cell plasticity represent critical

determinants of lung cancer immunobiology and suggest promising

avenues for therapeutic intervention.

2.1.2 Th17 cells and regulatory T cells in lung
carcinogenesis

Within the immune ecosystem of lung cancer, T helper 17

(Th17) cells and regulatory T cells (Tregs) exert immunologically

antagonistic functions. Th17 cells orchestrate pro-inflammatory

responses through the secretion of IL-17A, IL-17F, IL-21, and IL-

22, which bolster local immunity and potentiate antitumor

surveillance (19). Mechanistic studies indicate that IL-17

enhances dendritic cell (DC) maturation and activates CD8+

cytotoxic T lymphocytes (CTLs), facilitating tumor antigen

clearance (20–22). Clinically, high intratumoral IL-17 expression

correlates with improved progression-free and overall survival in

lung cancer patients, highlighting its prognostic value (23).

However, IL-17 also exhibits tumor-promoting properties in

certain contexts by inducing VEGF expression and promoting

neovascularization, thus fostering tumor growth and metastatic

spread (24, 25). This pro-angiogenic function of IL-17 partially

explains its tumor-promoting effects observed in specific

microenvironmental settings. Thus, the dichotomous nature of

Th17 activity reflects its context-specific function in the

dynamic TME.

In contrast, FOXP3+ Tregs critically suppress antitumor

immunity by dampening CTL function and impairing antigen

presentation through the secretion of IL-10, TGF-b, and IL-35

(26–29). These suppressive factors attenuate antigen presentation

by DCs, downregulate costimulatory signaling, and blunt effector T

cell priming, leading to an immunologically inert environment (30).

In addition to cytokine secretion, FOXP3+ Tregs suppress

antitumor responses through CTLA-4–dependent mechanisms,

whereby CTLA-4 engagement downregulates CD80/CD86

expression on dendritic cells, thereby diminishing their capacity

to deliver essential costimulatory signals to naïve T cells. Clinically,

increased intratumoral Treg infiltration is inversely associated with

patient survival outcomes (31). Thus, the opposing roles of Th17

and Treg cells highlight a delicate immunological balance in lung

carcinogenesis. Their functional dichotomy provides a compelling

rationale for therapeutic interventions aimed at restoring immune

equilibrium, either by amplifying Th17-mediated responses or

selectively targeting Treg-mediated suppression (32) (Figure 1).
Frontiers in Immunology 03
2.2 Roles of CD8+ cytotoxic T lymphocytes
in lung cancer

Cytotoxic CD8+ T lymphocytes (CTLs) are pivotal mediators of

adaptive immunity, executing antigen-specific killing of tumor cells

via recognition of tumor-associated antigens (TAAs) presented by

MHC class I molecules. Upon activation, CTLs release perforin and

granzymes to induce apoptosis in target cells (33, 34), and secrete pro-

inflammatory cytokines such as IFN-g and TNF-a, which collectively

reinforce antitumor immunity and suppress neovascularization (35–

37). IFN-g further upregulates MHC-I expression on tumor cells,

enhancing immune visibility. Notably, clinical studies have established

a positive correlation between the density of tumor-infiltrating CTLs

and favorable outcomes in patients with non-small cell lung cancer

(38, 39), underscoring their prognostic and therapeutic significance.

Nonetheless, the cytotoxic potential of CTLs is frequently

compromised by immune evasion strategies within the TME.

Inhibitory checkpoint molecules such as PD-1 and CTLA-4,

upregulated upon T cell activation, are engaged by ligands like PD-

L1 expressed on tumor and stromal cells, inducing T cell exhaustion

and diminishing effector function (40, 41). Additionally, suppressive

elements in the TME, including regulatory T cells, TGF-b, and IL-10,

attenuate CTL proliferation and survival. To circumvent these

immunosuppressive pathways, current immunotherapies,

particularly immune checkpoint inhibitors targeting PD-1/PD-L1

and CTLA-4, aim to restore CTL activity in lung cancer (42, 43).

Moreover, combination strategies involving checkpoint blockade,

cancer vaccines, cytokine supplementation, or costimulatory

agonists are under investigation to potentiate CTL responses in lung

cancer treatment (44).
2.3 Natural killer cells: mechanisms of
action and dysregulation in lung cancer

Natural killer (NK) cells are pivotal effectors of the innate

immune system, acting as frontline defenders against oncogenic

transformation through antigen-independent cytotoxicity. Residing

predominantly in peripheral blood and secondary lymphoid tissues

such as the spleen, NK cells execute immunosurveillance by

detecting stress-induced ligands, such as MICA/B and ULBPs, via

activating receptors including NKG2D, NKp30, and NKp46 (45).

Upon engagement, NK cells unleash cytotoxic granules loaded with

perforin and granzymes, perforating tumor cell membranes and

initiating caspase-dependent apoptosis (46, 47). Beyond granule-

mediated killing, NK cells execute apoptosis via death receptor

pathways. By expressing ligands such as FasL and TRAIL, NK cells

activate extrinsic apoptosis through Fas and TRAIL receptors on

target cells, thereby contributing to immune clearance of

transformed epithelium (48). In addition to direct cytolysis, NK

cells secrete IFN-g, TNF-a, and granulocyte-macrophage colony-

stimulating factor (GM-CSF), which synergistically enhance

dendritic cell maturation and potentiating CD8+ T cell–mediated

cytotoxicity (49, 50). Moreover, NK cells facilitate antibody-

dependent cellular cytotoxicity (ADCC) through CD16 (FcgRIII)-
frontiersin.org
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mediated recognition of antibody-opsonized tumor cells, further

amplifying antitumor immunity (51).

Despite their inherent cytotoxic capabilities, NK cells are

functionally compromised within the lung cancer microenvironment

due to a constellation of immunosuppressive cues. Tumor-secreted

factors, including TGF-b, IL-10, and prostaglandin E2 (PGE2), interfere
with NK cell activation, suppress the synthesis and release of key effector

molecules such as IFN-g and perforin, and downregulate expression of

activating receptors like NKG2D, collectively diminishing antitumor

functionality (52, 53). Additionally, lung tumors elevate the expression

of immunoinhibitory ligands, such as PD-L1 andHLA-G, which engage

suppressive receptors including PD-1, NKG2A, and various KIR family

members on NK cells, thereby attenuating their cytolytic efficacy (54–

56). Hypoxic conditions within the tumor core further impair NK cell

function by upregulating hypoxia-inducible factor 1a (HIF-1a), which
alters NK cell metabolism and reduces granule-mediated killing

efficiency (57–59). Moreover, tumors exploit ectonucleotidases CD39

and CD73 to generate extracellular adenosine, which accumulates in the

hypoxic TME and binds to A2A adenosine receptors on NK cells. This

adenosinergic signaling pathway profoundly suppresses NK cell

cytotoxicity by downregulating perforin and granzyme production,

impairing cytokine secretion, and inhibiting target cell lysis. These
Frontiers in Immunology 04
suppressive signals transform the TME into a hostile landscape for

NK cell activity that facilitates immune escape and tumor progression.

To restore NK cell function, therapeutic strategies targeting

immunosuppressive axes, such as blockade of TGF-b and IL-10 or

stimulation with IL-15/IL-21, have shown promise in preclinical models

(60). Immune checkpoint inhibitors targeting NK-specific pathways,

including anti-NKG2A antibody Monalizumab, have demonstrated

robust potential to reinvigorate NK responses (61). Meanwhile,

adoptive cellular therapy utilizing chimeric antigen receptor-

engineered NK cells (CAR-NK) has emerged as a transformative

modality. CAR-NK cells engineered to express tumor-targeting

constructs—such as HER2-directed chimeric receptors—demonstrate

enhanced tumor recognition and cytotoxicity against lung cancer cells,

representing a novel frontier in innate immune-based

immunotherapy (62).
2.4 Functional dichotomy of tumor-
infiltrating B cells in lung cancer

Tumor-infiltrating B cells (TIL-Bs) constitute a heterogeneous

immune population within the lung cancer microenvironment,
FIGURE 1

Roles of immune cell dysfunction in lung cancer.
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exhibiting both immunostimulatory and immunosuppressive activities.

On the one hand, TIL-Bs can enhance antitumor immunity by

producing tumor-specific immunoglobulins that mediate antibody-

dependent cellular cytotoxicity (ADCC), presenting tumor-derived

antigens to CD4+ T helper cells, and facilitating the activation of

CD8+ cytotoxic T lymphocytes (63, 64). These functions potentiate

adaptive immune responses and are associated with favorable clinical

outcomes, including prolonged disease-free survival and reduced

recurrence in lung cancer patients (12, 65, 66). However, not all B cell

subsets are protective. A specialized subpopulation termed regulatory B

cells (Bregs) has been identified as a driver of immunosuppression and

tumor progression. Bregs exert their immunoregulatory effects primarily

through the secretion of anti-inflammatory cytokines, including IL-10,

TGF-b, and IL-35, thereby impairing T cell–mediated cytotoxicity and

promoting immune evasion (67). Notably, IL-35 has been shown to not

only suppress CD8+ T cell effector functions but also actively promote

the expansion and stability of Tregs, establishing a feedforward loop that

reinforces the immunosuppressive tumor microenvironment. In

addition to their immunoregulatory secretome, Bregs may directly

enhance tumorigenesis through contact-dependent mechanisms that

support tumor cell survival and proliferation (68). This IL-35–Breg–

Treg axis is a critical driver of immune evasion in lung cancer. The

immunological balance between effector TIL-Bs and

immunosuppressive Bregs is therefore critical in shaping the

trajectory of tumor–immune dynamics in lung cancer.

Immunomodulatory therapies that selectively augment TIL-B activity

or neutralize Breg-derived cytokines represent promising avenues for

future development in lung cancer immunotherapy (69).
3 Tumor-associated macrophages in
lung cancer invasion and
immunosuppression

Tumor-associated macrophages (TAMs) represent a predominant

immune subset within the lung tumor microenvironment and act as

pivotal orchestrators linking chronic inflammation to oncogenesis.

These cells display remarkable phenotypic plasticity, transitioning

between classically activated M1-like states—associated with tumor

suppression—and alternatively activated M2-like phenotypes that

facilitate tumor progression. In lung cancer, TAMs are predominantly

polarized toward the M2 phenotype, which promotes immune evasion,

invasion, and therapeutic resistance through secretion of key

immunoregulatory factors including IL-10, TGF-b, VEGF, and COX–

2 (70). The polarization toward an M2 phenotype is chiefly driven by

IL-4 and IL-13 which engage the IL-4Ra chain and activate STAT6.

Upon activation, STAT6 translocates to the nucleus to induce

expression of M2-associated genes including Arg1, Mrc1 (CD206),

and Ym1, thereby establishing a transcriptional program that

promotes tissue remodeling, immune suppression, and tumor

tolerance. This IL-4/IL-13/STAT6 axis is a central pathway in the

immunosuppressive reprogramming of macrophages within the lung

tumor microenvironment.

Under hypoxic stress, macrophages increase the expression of

HIF-1a, IL-10, and VEGF, thereby creating an immune-refractory,
Frontiers in Immunology 05
pro-angiogenic microenvironment that enhances tumor adaptability

and resistance (71, 72). Notably, mesenchymal stem cell–derived

extracellular vesicles (MSC-EVs) have been implicated in promoting

M2 polarization through delivery of miR-21-5p. This miRNA-

mediated signaling cascade enhances angiogenesis and accelerates

tumor proliferation, contributing to the aggressive phenotype of lung

carcinoma (73). Clinically, M2 TAM abundance correlates with

unfavorable prognosis in lung cancer, whereas reduced M2

infiltration is linked to improved survival and enhanced therapeutic

responsiveness (74). These findings support the development of

macrophage-targeted interventions, including agents that

reprogram M2 TAMs into M1-like phenotypes or disrupt key

immunosuppressive axes such as IL-10 or VEGF signaling.
4 Myeloid-derived suppressor cells
and immune tolerance in lung cancer

MDSCs, a phenotypically and functionally diverse group of

immature myeloid progenitors, expand dramatically in response to

chronic inflammation and tumor-derived cues within the lung cancer

microenvironment . These ce l l s are key enforcers of

immunosuppression, dismantling anti-tumor immune surveillance

and promoting malignant progression. MDSCs compromise

cytotoxic T cell function through several coordinated mechanisms:

they inhibit T cell proliferation, induce apoptosis via arginase-1

(ARG1), inducible nitric oxide synthase (iNOS), and ROS, and

suppress the activation of effector T lymphocytes through multiple

checkpoints (75, 76). In addition to dampening T cell responses,

MDSCs foster the expansion and stabilization of regulatory T cells

(Tregs) by producing immunosuppressive cytokines, particularly IL-

10 and TGF-b. They also deprive T cells of L-arginine by

overexpressing ARG1, which leads to downregulation of CD3z
chain and cyclin D3, both essential for T cell receptor signaling and

cell cycle progression. Furthermore, the release of nitric oxide (NO)

interferes with JAK3/STAT5 signaling, while peroxynitrite (ONOO-),

a reactive nitrogen species, modifies amino acids on TCRs, blunting T

cell-mediated recognition of tumor antigens (77).

Beyond T cells, MDSCs suppress the cytolytic capacity of

natural killer (NK) cells and impair B lymphocyte functions,

including antibody production and clonal expansion. These

suppressive effects are largely mediated by iNOS activity and

prostaglandin E2 (PGE2), both of which modulate cellular

activation thresholds and cytokine output (78). Clinically,

elevated MDSC frequencies in tumor tissue or peripheral blood

have been associated with diminished responses to chemotherapy

and shorter overall survival in patients with lung malignancies (79,

80). Their recruitment is governed by chemotactic axes such as

CCL2 and CXCR4, while sustained STAT3 and NF-kB activation

reinforces their immunosuppressive phenotype (81, 82),

upregulating enzymes including ARG1, iNOS, and indoleamine

2,3-dioxygenase (IDO), alongside anti-inflammatory cytokines that

collectively suppress CTL function (83). Given their pivotal role in

immune evasion, MDSCs represent compelling targets for

immunomodulatory therapy. Strategies aimed at simultaneously
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inhibiting MDSC function and restoring T cell activity have shown

promising preclinical results. Notably, dual inhibition of the C5aR1

and the PD-1/PD-L1 axis has been shown to enhance anti-tumor

immune responses, leading to reduced tumor burden and decreased

metastatic dissemination (84, 85). Likewise, co-administration of

MEK inhibitors with immune checkpoint inhibitors augments

infiltration of CD8+ and CD4+ T cells, enhances antigen-specific

responses, and prolongs survival in murine models of lung

cancer (85).

An abundance of MDSCs in the lung cancer setting inversely

correlates with therapeutic efficacy, particularly in the context of

chemotherapy and immunotherapy (86). Their suppressive activity

directly interferes with the ability of T and NK cells to mount effective

anti-tumor responses, thereby compromising clinical outcomes (87).

This immunosuppressive program is mediated through upregulation of

iNOS, TGF-b, and IL-6, alongside Treg induction and expansion (88–

91). The trafficking of MDSCs into tumor tissues is driven by gradients

of chemokines and corresponding receptors—including CXCR4 and

CXCR17—which direct their accumulation in the tumor bed (81, 82,

92). Persistent activation of STAT3 and NF-kB transcription factors

reinforces the MDSC phenotype, promoting the expression of

immunosuppressive mediators such as ARG1, iNOS2, IDO, and

cytokines that suppress T cell effector function (93). Notably, PD-L1

expression on MDSCs plays a central role in mediating T cell

exhaustion and immune escape in lung cancer, highlighting their

intersection with immune checkpoint pathways (94, 95). Dual

targeting of PD-1 and either the C5a/C5aR1 or MEK pathway has

shown superior efficacy in preclinical models, leading to enhanced T

cell recruitment and sustained suppression of tumor growth. These

findings provide a strong rationale for integrated treatment regimens

that concurrently target immune checkpoints and myeloid-derived

suppressors to optimize outcomes in lung cancer therapy.
5 Conclusion

Lung cancer progression is shaped not only by intrinsic tumor

biology but also by a profoundly immunosuppressive

microenvironment, wherein tumor-associated macrophages,

myeloid-derived suppressor cells, regulatory T cells, and

dysfunctional NK and B cells coordinate to dampen antitumor

immunity. Although immune checkpoint blockade has improved

survival in subsets of patients, its efficacy remains limited by

persistent immunosuppressive signals, metabolic dysfunction, and

cellular exhaustion within the tumor niche. Emerging strategies—

such as dual inhibition of PD-1/PD-L1 and myeloid-derived pathways

(C5aR1, STAT3), reprogramming of TAM and Treg phenotypes, and

adoptive cell therapies—offer a promising path toward immune

reinvigoration and durable clinical response.

However, several limitations remain. Most preclinical models

fail to fully recapitulate the complexity and heterogeneity of the
Frontiers in Immunology 06
human TME, which limits translational predictability. Moreover,

the dynamic plasticity of immune cell subsets and inter-patient

variability in immune landscapes pose challenges for biomarker

development and therapy stratification. Future research should

focus on spatially resolved, single-cell, and multi-omics profiling

of the TME to decipher patient-specific immunological

architecture. Integrating these insights with longitudinal clinical

data will be critical for developing precision immunotherapies that

can circumvent resistance, restore immune surveillance, and

ultimately transform lung cancer management.
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