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Background: The Immunoglobulin Kappa Constant (/IGKC) gene encodes the
constant region of the immunoglobulin kappa light chain, a crucial component of
antibodies. Despite its important biological role, the genetic information for this
gene remains scarce, with data for only 16 mammal species (as of July 2025) fully
characterized in the International ImMunoGeneTics information system
(IMGT) database.

Results: Using genomic sequences from NCBI and Ensembl, we expanded this to
124 IGKC sequences across 104 mammals, including two monotremes, eight
marsupials, and 94 placentals. We uncovered unusual evolutionary dynamics in
lagomorphs, showing independent /GKC duplications in Ochotonidae and
Leporidae, giving rise to rabbit IGKC1 and IGKC2. No conserved glycosylation
sites were found, but 26 sequences from 14 species carried potentially N-
glycosylated sites, including two new sites in lagomorphs. Selection analyses
revealed pervasive purifying selection interspersed with codons under positive
selection, while aBSREL identified episodic diversifying selection in
several lineages.

Conclusions: Our study represents a significant contribution to the knowledge of
the IGKC gene, substantially expanding on information available in IMGT. It
highlights complex evolutionary trajectories, especially in lagomorphs. The
presence of N-glycosylated sites suggests potential effects on antigen binding,
stability, or half-life. The coexistence of purifying and episodic positive selection
points to a balance between structural conservation and lineage-specific
functional diversification.
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1 Introduction

Antibodies are typically Y-shaped glycoproteins composed of
two distinct types of polypeptide chains, two identical heavy (H),
and two identical light (L) chains. Each chain has a variable (V) and
a constant (C) region. The light (VL and CL) chains and the variable
(VH) and first constant domain of the heavy chains (CHI)
constitute the antibody regions that recognizes and binds antigens
(Fab regions), while the remaining constant domains of the heavy
chains constitute the region that assures an effector function (Fc
region). In mammals, there are two Ig L chain isotypes, kappa (K)
and lambda (A), which are functionally indistinguishable. Each L
chain is encoded by three genes, variable (VL), joining (JL), and
constant (CL), and each isotype has its own set of VL, JL, and CL.
The constant region of the kappa light chain (IGKC) gene encodes
the constant region of the immunoglobulin kappa light chain, a
protein that interacts with the KVL, and JL regions and contributes
to the effector phase of humoral immunity by mediating the
elimination of bound antigens.

Humans and mice have a single IGKC. In humans, the IGKC
gene is located on chromosome 2 (2pl1.2), while in mice it is
located on chromosome 6 (6C1). In the European rabbit
(Oryctolagus cuniculus), the IGKC and the joining region of the
kappa light chain (IGKJ) have duplicated and originated two
different kappa light chains (IGKCI and IGKC2) (1, 2). This
duplication, confirmed by genomic data obtained from the
OryCun 2.0 assembly, is located on chromosome 2 (3).

The genetic variation of the rabbit kappa light chains has been
studied in detail and shows unique features. The IGKCI locus has
an additional cysteine residue, C85.4 (International
ImMunoGeneTics information system (IMGT) numbering), that
links, through an extra disulfide bond, to IGKVI C96 (IMGT
numbering) (4-6). Additionally, the European rabbit IGKCI has a
unique glycosylation site, 85.1NLS86 (IMGT numbering).
Glycosylation, the process of attaching sugar molecules (glycans)
to proteins, plays a crucial role in the immune system. Glycosylation
can affect protein folding, stability, and interactions with other
molecules, including other proteins and receptors (7, 8). The degree
of inter-allelic diversity of the rabbit IGKCI revealed high amino
acid differences (9-12), only similar to that currently observed at
vertebrate MHC loci (13). The trans-species nature, another
benchmark of MHC evolution (14), was also documented for the
rabbit b-locus allotypes obtained in L. americanus and European
rabbit (15).

The information available for IGKC in the IMGT database
remains limited, with data for only 16 mammal species (as of July
2025; https://www.imgt.org/IMGTrepertoire/Proteins/
index.php#B). Recently, advances in genome sequencing
technologies, particularly next-generation sequencing (NGS), have
enabled the rapid sequencing and comparison of genomes across a
wide range of species. This comparative genomics approach allows
us to identify pathways that are unique to certain species, providing
insights into their evolutionary history and adaptations.
Evolutionary studies are crucial for understanding the
mechanisms driving evolutionary innovation. In essence, the
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increased genetic information revealed by new genome
sequencing technologies provides a powerful tool to understand
the dynamics and creative processes of evolution. In this work, we
sought to expand the knowledge about the IGKC genes in mammals
(monotremes, marsupials, and placentals). Mining public databases,
we retrieved IGKC sequences from over 100 mammal species and
performed natural selection analyses. The results represent a major
contribution to the study of this gene and provide an important
increment to the IMGT database.

2 Materials and methods

Mammalian IGKC sequences were obtained from publicly
accessible databases using our standard methodology, which we
have already used in several studies (e.g (16-19). In total, we
gathered 123 sequences from monotremes (two), marsupials
(seven), and placentals (114). The accession numbers of all the
sequences used are listed in Supplementary Table S1. The 114
placental sequences represent 94 species, with most species
represented by a single sequence, except for lagomorphs, where
several sequences per species were obtained (Supplementary Table
S1). The sequences were retrieved through BLASTn searches in
NCBI’s GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and
Ensembl (https://www.ensembl.org/index.html) genome
databases, using as queries the mammalian IGKC sequences
available in the IMGT database, which represent true IGKC with
high confidence. For Ensembl-derived sequences, we used the
Homo sapiens IGKC gene (ENSG00000211592) as a query and
retrieved the list of mammalian orthologues available under the
“Orthologues” section. As of July 2025, a total of 49 one-to-one
orthologues and one one-to-two orthologue (in Oryctolagus
cuniculus) were available. Because our BLASTn queries retrieved
only annotated CDS, with transcript evidence, the initial two
nucleotides of the IGKC exon (derived from the J-C splice
junction) were not included in all sequences. As these do not
alter the reading frame or translation, we expect no effect on
functional inference, though small phylogenetic biases cannot be
excluded. All obtained sequences contained the typical stop codon
at the 3’ end; this was excluded from our analysis.

Sequences were aligned with Clustal W (20) as implemented in
BioEdit (21), followed by visual inspection and necessary manual
corrections. The final nucleotide sequence alignment is provided in
Supplementary Material: Data 1. Amino acids were translated from
the nucleotide sequences. Codon numbering is according to the
IMGT unique numbering (22). N-linked glycosylation sites were
estimated using the online tool NetNGlyc 1.0 Server, with +
indicating a potential to reach the 0.5 threshold and ++/+++ to
reach the 0.75 threshold (23).

2.1 Molecular phylogenetic analyses

A maximum likelihood (ML) phylogenetic tree was constructed
for the mammalian nucleotide alignment using IQ-TREE v3.0.1.
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The best-fit substitution model was TVM+F+1+G4, selected under
the Bayesian Information Criterion (BIC), which we preferred over
AIC/AICc due to its stronger penalization of model complexity,
thus reducing the risk of over-parameterization in large datasets.
Node support was estimated using 10,000 ultrafast bootstrap
replicates. A tree was inferred, and the tree topology was
compared to the accepted mammalian phylogeny.

To further investigate the lagomorphs’ IGKC evolution, we
constructed an ML phylogenetic tree for the lagomorph amino
acid alignment using IQ-TREE v3.0.1. The best-fit substitution
model was WAG+R4, again selected under BIC for its balance
between model fit and parsimony. Node support was estimated
using 10,000 ultrafast bootstrap replicates.

2.2 Detection of positive selection

Positive selection was assessed using HyPhy package v2.5.75.
Codon-based analyses were performed on the nucleotide alignment
comprising 108 codons. Four site-based methods were applied:
SLAC (single-likelihood ancestor counting), FEL (fixed effects
likelihood), FUBAR (fast, unconstrained Bayesian
approximation), and MEME (mixed effects model of evolution).
These methods allowed the detection of pervasive and episodic
selection acting across codon sites. Additionally, the aBSREL
(adaptive branch-site random effects likelihood) model was used
to detect episodic diversifying selection on individual branches of
the phylogenetic tree.

Sites under pervasive positive and purifying selection were
mapped onto the three-dimensional structure of the human
IGKC protein, predicted by AlphaFold (UniProt entry P01834),
using the high-confidence regions of the model for visualization.

3 Results

The obtained 123 IGKC sequences represent 105 mammalian
species (95 placentals, seven marsupials, and two monotremes)
(Figure 1). For the vast majority of mammalian species analyzed, we
found only a single copy of this gene. The exception was
lagomorphs, in which at least two sequences were recovered for
each species. In our alignment, to the four IGKC2 and nine IGKCI
European rabbit alleles described in IMGT, we added two more
previously published alleles, b4wc and b5wf (11), here named as
rabbit IMGT IGKCI1*10 and IMGT IGKCI*11, respectively. For
Ochotona species, we obtained four novel sequences: two for O.
princeps and two for O. curzoniae. Regarding Lepus americanus, we
identified three new sequences in addition to the previously
described L. americanus IGKC sequence (15). All sequences that
we obtained contain a stop codon at the 3’ end, have high homology
among them and the queries, and, as annotated CDS, have derived
transcripts. Additionally, the diversity of genes that we found agrees
with what is known about the IGKC; mammalian species have one
IGKC except for the rabbit, which has two IGKC. The IGKC
nucleotide ML tree generally conforms to the accepted
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mammalian phylogeny (24) (Figure 2). Within lagomorphs, the
Ochotona sequences occupy a basal position (100 bootstrap
support), while the rabbit and Lepus sequences form a second
cluster (100 bootstrap support). Within this cluster, three groups
are evident: (a) the rabbit IGKC2 cluster (99 bootstrap support), (b)
the rabbit IGKC1 b9 alleles (IGKC1*4, IGKC1*5, and IGKCI*9) (100
bootstrap support), and (c) the remaining rabbit IGKCI and the
Lepus sequences (71 bootstrap support) (Figure 2).

3.1 The special case: lagomorphs

We obtained IGKC genes for four lagomorph species: Ochotona
princeps, Ochotona curzoniae, Lepus americanus, and Oryctolagus
cuniculus. The lagomorphs are divided into two families, Leporidae
and Ochotonidae. Ochotonidae has a single genus, Ochotona (pikas),
while Leporidae includes 10 genera, among them Lepus and
Oryctolagus (25). The lagomorph IGKC amino acid tree shows a
different pattern than the nucleotide phylogeny (Figures 2, 3,
respectively). In the amino acid tree (Figure 3), the Ochotona
sequences again occupy a basal position (100 bootstrap support),
with rabbit and Lepus sequences forming a second cluster (96
bootstrap support). Within Leporidae, the L. americanus sequence
IGKCLa3 occupies a basal position. Some IGKCI alleles, the b9
alleles—IGKCI1*4, IGKCI1*5, and IGKCI1*9—form a well-supported
cluster (100 bootstrap support) grouping with IGKC2 (99 bootstrap
support), apart from other IGKCI alleles (80 bootstrap support).
Previous phylogenetic analyses have also placed the IGCKI b9
alleles closer to IGKC2 than to other IGKCI (13). Although with
a lower bootstrap support, L. americanus IGKCLa2 clusters with the
IGKC2 and IGKC1 b9 alleles, while IGKCLal clusters with IGKCI
(58 and 64 bootstrap support, respectively).

In both Ochotona species, we found two IGKC genes that were
located chromosomally adjacent (Figure 4), similarly to the
arrangement described for the European rabbit (3). The
Ochotona IGKC sequences have characteristic residues
distinguishing them from Leporidae IGKC: 24IADK27,
44GGV45.1, N99, 1106, and L117 (Figure 1). These sequences also
share rabbit IGKC2 residues N85.4 and 85.1SLS86 (Figure 1),
supporting the view that IGKC2 predates IGKCI (13).

For Lepus americanus, we identified three new sequences
(Figure 1). As the genome assembly for this species is not a
chromosome-level assembly, the three IGKC sequences are
located on separate scaffolds, preventing us from determining
whether they represent three gene copies or two genes with one
allelic variant. The nucleotide and amino acid phylogenies
(Figures 2 and 3, respectively) show two different scenarios for
the leporid IGKC. In the nucleotide tree, all L. americanus
sequences cluster with rabbit IGKCI sequences (Figure 1),
whereas in the amino acid tree L. americanus IGKCLal clusters
with rabbit IGKCI sequences and IGKCLa2 clusters with the rabbit
IGKC2 sequences. The Lepus americanus IGKCLal shares two
distinguishing features of the European rabbit IGKCI: C85.4 and
85.1NLS86. This shows that the rabbit IGKCI novelty features,
C85.4 and 85.1NLS86, that may have triggered the high allelic
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FIGURE 1

Mammalian IGKC amino acid sequences alignment. The full IGKC amino acid sequences are depicted. The codon numbering is according to the
IMGT unique numbering for the constant domain (22). Asterisks (*) above the numbering indicate the position of conserved Cys residues. For
Lagomorphs, characteristic residues for IGKC1 are shaded in red, IGKC1 b9 alleles are shaded in yellow, IGKC2 are shaded in blue, IGKCLa3 are
shaded in light blue, and Ochotonidae /IGKC are shaded in gray. N-glycosylation sites identified using the online tool NetNGlyc 1.0 (23) are
underlined in red. Dots () represent identity with the top sequence, and dashes (-) indicate gaps in the alignment. The codons identified as under
pervasive positive selection, pervasive negative selection and episodic positive selection are shown under the alignment.
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diversity observed in European rabbit IGKCI (reviewed in (13))
were already present in L. americanus and emerged at least 12

million years ago (Oryctolagus-Lepus divergence time (26, 27);).

The second L. americanus sequence, named here L. americanus
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IGKCLa2, surprisingly shares with the European rabbit IGKC2
residues N85.4 and 85.1SLS86 as well as 33SDIT36. The L.
americanus IGKCLa3 shares some characteristic residues with the
rabbit b9 alleles, IGKC1*4, IGKC1*5, and IGKCI*9, such as N33,
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FIGURE 2

Phylogenetic tree of mammalian /IGKC. The nucleotide phylogenetic tree was obtained using TVM+F+1+G4 as the best-fit substitution model,
selected under the Bayesian Information Criterion (BIC). Node support was estimated using 10,000 ultrafast bootstrap replicates. All bootstrap values

are shown, with values indicated near the most relevant branches. IGKC1 is
IGKC is shaded in gray.

80NST82, and N110, but lacks the IGKCI 85.1NLS86 motif, having
instead 85.1SLS86 like rabbit IGKC2 and unique features C29
and G85.4.

3.2 IGKC glycosylation sites

Glycosylation plays a major role in immunoglobulin structure
and function. Heavy chain isotypes, IgA, IgG, IgE, IgD, and IgM, are
known to be N-glycosylated to various extents (reviewed in (28), but
IGKC glycosylation has not been described previously. We screened
the mammalian IGKC sequences for N-linked glycosylation sites.
No conserved sites of glycosylation were found for mammalian
IGKC; however, 26 sequences, representing 14 species, are
potentially N-glycosylated (Figure 1). Equus quagga and Equus
asinus (Perissodactyla) (NetNGlyc threshold: ++), Orcinus orca
(Cetartiodactyla) (NetNGlyc threshold: ++), and Miniopterus

Frontiers in Immunology 05

shaded in pink, IGKC2 is shaded in blue, and indeterminate lagomorphs’

natalensis (Chiroptera) (NetNGlyc threshold: +) share the
18NAS20 glycosylation site, and five Carnivores have 101NFS103
(NetNGlyc threshold: +). Eschrichtius robustus IGKC has I6NGT18
(NetNGlyc threshold: +++) and Talpa occidentalis has 45.5NGS78
(NetNGlyc threshold: +).

In lagomorphs’ IGKC, a potential N-glycosylation site has been
identified as a hallmark characteristic of IGKCI, 85.1NLS86 (15)
(NetNGlyc threshold: ++). Our analysis reveals additional putative
N-glycosylation sites. The rabbit b9 alleles, IGKCI1*4, IGKCI*5, and
IGKCI*9, are potentially glycosylated at 8ONST82 and 85.1NLS86
(NetNGlyc threshold: ++). L. americanus IGKCLal is also
potentially glycosylated at 85.1NLS86 (NetNGlyc threshold: +),
while IGKCLa3 can be glycosylated at 80NST82 (NetNGlyc
threshold: ++). All Ochotona sequences have a 84.2NXS/T84.4
motif, but our results indicate that only one O. curzoniae
sequence is potentially glycosylated at this position, having the
motif 84.2NCSD84.4 (NetNGlyc threshold: +).
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FIGURE 3

Phylogenetic tree of lagomorphs’ IGKC. The amino acid phylogenetic tree was obtained using WAG+R4 as the best-fit substitution model, selected
under the Bayesian Information Criterion (BIC). Node support was estimated using 10,000 ultrafast bootstrap replicates. All bootstrap values are
shown, with values indicated near the most relevant branches. IGKC1 is shaded in pink, IGKC2 is shaded in blue, and indeterminate lagomorphs’
IGKC is shaded in gray. The scale bar refers to the inferred amount of change per site along branches. Rabbit IGKC alleles are indicated with *n.
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FIGURE 4

Genomic organization and copy number of IGKC genes in four lagomorph species. Each schematic represents one species: Oryctolagus cuniculus
(European rabbit), Ochotona curzoniae (plateau pika), Ochotona princeps (American pika), and Lepus americanus (snowshoe hare), from top to
bottom. The boxes indicate IGKC gene copies and their relative chromosomal positions based on BLASTn results.
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3.3 Positive selection analyses

The analysis of selection pressures acting on IGKC coding
sequences identified multiple codon sites under pervasive and
episodic positive selection. Seven codons (1.3, 35, 45.2, 82, 92,
101, and 103) were supported by at least two site-based methods
(SLAC, FEL, and FUBAR), while MEME revealed episodic selection
in 25 codons, including those previously identified. Codon 85.4,
which corresponds to one of the key motifs distinguishing rabbit
IGKCI, was flagged as under selection.

Widespread purifying selection was also detected, with 53
codons identified across SLAC and FEL as being subject to
significant evolutionary constraint. These included codons located
in highly conserved regions of the constant domain, such as
residues 2, 21-23, 28-30, 81, 84.5, 85.3-87, 91, 93, 96, 99, 102,
104-106, and 115-126. These positions likely reflect structural or
functional constraints essential to the immunoglobulin fold.

The sites under pervasive positive and purifying selection are
distributed across the protein. The sites identified as under
pervasive positive selection are generally located in exposed
regions, in the loops or loop vicinity (Figure 5).

Branch-site analyses using aBSREL detected episodic
diversifying selection in the terminal branches of Sarcophilus
harrisii and Equus asinus as well as in several internal nodes:
between Vulpes vulpes and Canis lupus dingo, between one copy
of Ochotona curzoniae and the two O. princeps sequences, and in
two clades within the rabbit IGKC1 group. These results support the
notion that selective pressures are not uniformly distributed across
mammalian lineages.

FIGURE 5

10.3389/fimmu.2025.1686094

4 Discussion

Antibodies are hallmark molecules of the vertebrate immune
system, playing a crucial role in protective immunity. The heavy
chains, which determine the antibody isotypes, have been widely
studied, with their genetic diversity, structure, function, and
evolution well characterized (reviewed in, e.g (29-31)) and
continue being studied as new evidences of clinical relevance
continue emerging. On the contrary, the two light chains, kappa
(K) and lambda (1), have been comparatively neglected, and much
less is known about their diversity and evolution. In this work, we
sought to extend the knowledge on the evolution of mammalian
IGKC by mining available genome assemblies and conducting
natural selection analyses.

We recovered sequences for 104 mammalian species, enhancing
our understanding of IGKC genetic diversity. We acknowledge that
the accuracy of available genome assemblies is a limiting factor.
Assembly errors, particularly in fragmented genomes such as Lepus
americanus, may underlie some ambiguities in copy number or
motif conservation. Nevertheless, synteny, motif analysis, and
phylogenetic consistency strongly support our identifications. Our
data revealed the duplication of this gene in lagomorphs and
confirmed that such duplication is unique to this group. The
IGKC was previously shown to be duplicated in the European
rabbit, which carries two IGKC copies, IGKCI and IGKC2 (1-3).
The presence of two IGKC genes in Ochotona and Oryctolagus could
be explained by a duplication in the lagomorph ancestor between 50
to 57.2 million years ago (26, 32, 33). In that scenario, one Ochotona
gene would be expected to cluster with rabbit IGKCI and the other

Starting
codon

Three-dimensional structure of the human IGKC protein. Predicted by AlphaFold (UniProt entry P0O1834, model with very high confidence). Sites
under pervasive positive selection are shown in green, and sites under purifying selection are shown in orange.
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with rabbit IGKC2. However, both the nucleotide and amino acid
sequence phylogenies (Figures 2 and 3) place the Ochotona
sequences together in a basal position relative to all lagomorph
IGKC. This pattern suggests that the Ochotona IGKC duplication
likely occurred in the Ochotona ancestor, after the Leporidae and
Ochotonidae split. A second IGKC duplication would then have
taken place in the Leporidae ancestor, leading to the emergence of
rabbit IGKCI and IGKC2. Despite the incongruences between the
lagomorph IGKC nucleotide and amino acid trees, we consider the
most likely scenario to be a duplication in the Leporidae ancestor, as
supported by the amino acid data and shared diagnostic residues
between Lepus and Oryctolagus sequences.

In the nucleotide phylogeny, all three L. americanus IGKC
sequences cluster with the rabbit IGKCI, except for IGKCI*4,
IGKCI*5, and IGKCI*9 (Figure 1). In the amino acid tree,
however, only the L. americanus IGKCLal maintains this
position; IGKCLal, but not IGKCLa2 and IGKCLa3, shares the
two distinguishing features of the European rabbit IGKCI: C85.4
and 85.1NLS86. This indicates that these rabbit IGKCI novelty
features, 85.4C and 85.1NLS86, which may have triggered the high
allelic diversity observed in European rabbit IGKCI (reviewed in
(13)), were already present in the Leporidae ancestor 12 million
years ago (Oryctolagus-Lepus divergence time (26, 27)). The
IGKCLal gene is identical to the L. americanus bla allele
(Figure 1) described by Bouton and van der Loo (15). The bla
allele is more closely related to the European rabbit b4wc allele
(IGKCI*10) than the b4wc allele is to other European rabbit IGKCI
alleles (15). This pattern is an example of a trans-species
polymorphism. Together with other examples also described
between the European rabbit and Lepus species in IGHV (34, 35)
and IGHA (36), these are some of the rare instances of trans-species
polymorphisms described outside of MHC genes (14, 37). In the
amino acid tree, L. americanus IGKCLa2 instead clusters with rabbit
IGKC2. IGKCLa2 shares residues N85.4 and 85.1SLS86, as well as
33SDIT36, with the European rabbit IGKC2. The L. americanus
IGKCLa3 shares some characteristic residues with the rabbit b9
alleles, IGKCI1*4, IGKCI1*5, and IGKCI1*9, but lacks the IGKCI1
85.1NLS86 motif, having instead 85.1SLS86 like rabbit IGKC2; it
also has unique residues. The sharing of residues with IGKCI and
IGKC2 and its singularities cause it to adopt a basal position to other
leporid IGKC.

Taken together, the most parsimonious explanation is that the
second duplication in lagomorphs’ IGKC happened in the
Leporidae ancestor, as reflected in the amino acid phylogeny and
shared diagnostic residues between rabbit and Lepus sequences. The
clustering of the Lepus IGKC with rabbit IGKCI in the nucleotide
tree is likely the result of high homology observed in several regions
of the Lepus IGKC sequences, which are probably being
homogenized through concerted evolution (see Supplementary
Material: Data 1). Concerted evolution can explain incongruences
between nucleotide and amino acid phylogenetic trees when gene
conversion and unequal crossing-over events homogenize
sequences within a multigene family, leading to a pattern where
paralogous genes within a species are more similar to each other
than to their orthologous counterparts in different species (38, 39).
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Glycans are found attached to the Fc tail of all Ig isotypes
comprising 2%-14% of the Ig molecular weight depending on the
Ig isotype (40). The Fab arms may also carry N-glycans; IgA, IgE, and
IgM heavy chains are glycosylated in the CHI domain (40), and
additionally, 15%-25% of circulating IgG are glycosylated on the V
regions (VL or VH) (41). The glycosylation sites in the V regions are
only acquired during antibody maturation through somatic
hypermutation, and research indicates that selection pressure favors
the acquisition of Fab N-glycosylation sites during B cell affinity
maturation (28). The light chain C regions’ glycosylation has not, to
our knowledge, been investigated. Our analysis reveals that putative
N-glycosylation sites are present in ~21% of IGKC (26 out of 123
IGKC sequences carry N-glycosylation sites). N-linked glycans in the
Fab region are known to influence antigen binding, increase antibody
stability, or extend the antibody half-life (28, 42, 43). All identified
sequences with N-glycosylation sites carry only one putative site,
except for the European rabbit IGKCI b9 alleles, IGKCI1*4, IGKCI*5,
and IGKCI*9, which carry two putative N-glycosylation sites, at
80NST82 and 85.1NLS86. The b9 alleles—IGKCI1*4, IGKCI*5, and
IGKCI*9—have been described to form an alternative bond between
84.5C and IGK] in contrast to other IGKCI alleles that form a bond
between 84.5C and IGKV. A possible explanation for this alternative
bond would be the presence of a glycan at 80NST82. The sharing of
glycosylation sites between Lepus and rabbit further supports the
common origin of IGKCLal and rabbit IGKCI. Intriguingly, the
higher prevalence of IgG Fab glycans has been associated with the
development of several autoimmune chronic diseases, namely,
rheumatoid arthritis (RA), systemic lupus erythematosus,
myasthenia gravis, pemphigus vulgaris, and ANCA-associated
vasculitis (44, 45). The role of Fab glycans in autoimmunity is still
unclear. On one hand, it has been shown that Fab glycans reduce the
binding affinity for autoantigens (46, 47). Conversely, Fab glycans
were found to enhance B cell receptor signaling and maintain its
surface expression longer after antigenic stimulation (47). A shift
toward the pro-inflammatory IgA2 subclass is also observed in RA
patients with increased disease activity. IgA2 has twice as many N-
glycosylation sites as IgA1, including a CH1 N-glycosylation site, and
differences in their glycosylation pattern exist (48). Whether the glycan
attached to the IgA2 CHI N-glycosylation site has a direct influence
on the pro-inflammatory nature of IgA2 has not been investigated.

4.1 Signatures of positive selection and
functional relevance

The presence of codons under positive selection across diverse
mammalian lineages indicates that IGKC, while structurally
conserved, is subject to functional diversification. Several of the
positively selected sites identified here lie within or adjacent to
known functional motifs, including codon 85, which forms part of
the unique glycosylation motif 85.INLS86 in rabbit IGKCI. Its
recurrent detection across SLAC, FEL, FUBAR, and MEME
strongly suggests adaptive relevance. Similarly, branch-site tests
identified episodic positive selection in specific taxa, including
Sarcophilus harrisii, Equus asinus, and members of Ochotona and
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Oryctolagus, highlighting lineage-specific pressures potentially linked
to immune challenges or structural innovation. In S. harrisii, this may
reflect unique selective pressures associated with transmissible
cancers, which have profoundly shaped the immune gene evolution
in this species (49). In E. asinus, a domesticated species with a long
history of close contact with humans and livestock, episodic selection
may relate to exposure to diverse pathogen communities or to
immune modulation under domestication (50).

In contrast, the strong signal of purifying selection across more
than 50 codon sites points to a substantial functional constraint within
much of the IGKC coding region. These conserved positions likely
correspond to residues essential for maintaining the structural integrity
of the kappa constant domain, particularly within -strand regions and
core elements of the immunoglobulin fold. The coexistence of strong
purifying selection and episodic positive selection suggests a balance
between preserving structural stability and allowing for lineage-specific
functional adaptations, especially in clades where gene duplications or
increased allelic diversity are observed.

5 Conclusion

This work substantially increases the information available for
the IGKC gene and makes an important contribution to updating
the IMGT database. Our findings show that lagomorphs present a
unique evolutionary pattern for the IGKC gene, distinct from that
observed in other mammals. However, the evolutionary history of
IGKC genes within leporids could be even more complex.
Therefore, obtaining IGKC sequences for additional leporids will
be vital to understand the full evolutionary history of this gene in
lagomorphs. Though there are no conserved N-glycosylation sites
in IGKC, we detected several N-glycosylation sites in different
mammalian species, some shared between species, which suggests
that these glycosylation sites may have an important biological role.
The presence of codons under positive selection across diverse
mammalian lineages indicates that IGKC, while structurally
conserved, is subject to functional diversification. Furthermore,
the detection of episodic positive selection in specific taxa
highlights lineage-specific pressures potentially linked to immune
challenges or structural innovation.
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