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lymphoma are identified and
validated using an integrated
analysis of bulk and single-cell
RNA sequencing
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Qiaoxian Lin1,2,3, Jinlong Huang1,2,3, Guilan Lai1,2,3,
Meihong Zheng1,2,3, Zhiyong Zeng1,2,3, Junmin Chen1,2,3,
Junfang Lin1,2,3 and Xiaoqiang Zheng1,2,3*

1Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou,
Fujian, China, 2Department of Hematology, National Regional Medical Center, Binhai Campus of the
First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China, 3Key Laboratory of Laboratory
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Fujian, China
Background: While the link between mitochondrial homeostasis, specifically

dynamics and mitophagy, and the progression of diffuse large B-cell lymphoma

(DLBCL) has been suggested, their prognostic significance and functional

networks remain unclear. This study aimed to investigate the role of

mitochondrial dynamics-related genes (MDRGs) in DLBCL patient outcomes.

Methods: Candidate MDGRs were identified via Weighted Gene Co-expression

Network Analysis (WGCNA) and differential expression analysis using public RNA-

seq data. A prognostic signature was established via LASSO-Cox regression,

followed by proportional hazards assumption validation. Functional pathways,

regulatory networks (including miR-1252-5p/NEAT1), and a risk-scoring model

were analyzed. Model assessment included nomograms, immune cell infiltration,

m6A regulator, and pharmacogenomics. Single-cell mapping was employed to

characterize B-cell differentiation and spatial gene expression. Finally, the

findings were validated using RT-qPCR on clinical samples.

Results: Six lysosomal-enriched genes (TCF7, CEBPA, BBC3, GALR3, BMP8B, and

BAALC) were identified as independent prognostic indicators. A composite

model integrating our risk score and clinical parameters showed superior

predictive accuracy (AUC > 0.8). High-risk DLBCL was characterized by altered

M0 macrophage infiltration, YTHDC1-mediated m6A dysregulation, and

dihydrotestosterone sensitivity. Single-cell analysis revealed an association

between stage-specific B-cell differentiation and gene expression gradients.

RT-qPCR confirmed the upregulation of CEBPA, BBC3, GALR3, BMP8B, and

BAALC in DLBCL clinical samples.
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Conclusion: TCF7, CEBPA, BBC3, GALR3, BMP8B, and BAALC were identified as

novel lysosomal pathway-enriched prognostic genes in DLBCL. Our validated

composite model demonstrated strong predictive power. These findings

establish an association between high-risk disease and specific tumor

microenvironment alterations (M0 macrophages), epitranscriptomic

dysregulation (m6A), and therapeutic vulnerabilities, providing valuable insights

for refining prognosis and advancing targeted therapies for DLBCL.
KEYWORDS

diffuse large B-cell lymphoma, mitochondrial dynamics, mitophagy, mitochondrial
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1 Introduction

Diffuse large B-cell lymphoma (DLBCL), the leading subtype of

non-Hodgkin lymphoma, exhibits aggressive clinical behavior,

considerable molecular heterogeneity, and swift progression (1,

2). It poses a major global health threat due to its ability to

involve various organs, high recurrence rates, and therapeutic

resistance in a subset of patients (3). Current prognostic models,

such as the International Prognostic Index (IPI), rely heavily on

clinical parameters but fail to fully capture the biological complexity

of DLBCL. Although only 60-70% of patients achieve lasting

remission with standard first-line therapy, outcomes vary

significantly across molecular subtypes like germinal center B-cell

(GCB) and activated B-cell (ABC), and approximately 30-40%

develop refractory or relapsed disease highlighting the need for

better treatment strategies (4). Furthermore, the existing

biomarkers (such as mutations in MYC, BCL2, MYD88,

NOTCH2, CREBBP, KMT2D, TP53, CD58, and PIM1) exhibit

limited predictive value for treatment response or mechanisms of

drug resistance (5–8). These limitations highlight critical gaps in

our ability to provide personalized risk stratification and

targeted therapies.

Identifying novel prognostic genes represents a pivotal step

toward unraveling DLBCL pathogenesis, refining diagnostic

precision, and advancing tailored therapeutic approaches.

Emerging evidence suggests that dysregulated signaling pathways,

epigenetic modifiers, and immune microenvironment interactions

contribute to disease heterogeneity and therapeutic resistance (9).

By integrating multi-omics data and functional validation (10, 11),

the discovery of robust genetic signatures could guide the

development of subtype-specific therapies, optimize treatment

algorithms, and accelerate the translation of molecular insights

into clinical applications (12). Such efforts promise to

revolutionize DLBCL management and improve long-term

survival in high-risk populations.

Mitochondria, often referred to as the cell’s powerhouses, are

essential for energy production, metabolic regulation, and apoptosis

(13). The balance between mitochondrial fusion and fission, which
02
is tightly regulated, is crucial for maintaining mitochondrial quality,

adapting to metabolic needs, and preserving cellular stability (14).

Dysregulation of this dynamic equilibrium has been implicated in

various pathologies, including neurodegenerative disorders,

metabolic diseases, and cancer (15). Mitophagy, a selective form

of autophagy responsible for eliminating dysfunctional

mitochondria, exhibits dual regulatory effects in tumorigenesis

(16). While this process suppresses tumor initiation through

mitochondrial quality control (17), it paradoxically enhances

cancer cell survival under stress conditions (such as hypoxia or

chemotherapy) by maintaining metabolic plasticity and attenuating

oxidative damage (18). This dual function underscores the context-

dependent nature of mitophagy in cancer progression and

therapy resistance.

Previous studies have found that m6A modification affects

mitochondrial dynamics and function by regulating the

translation of RNAs associated with mitochondrial function (19).

In DLBCL, m6A modification regulates key target genes (such as

CHST11) through KIAA1429, thereby influencing the Hippo-YAP

signaling pathway, which modulates tumor cell proliferation,

apoptosis, and disease progression (20). In conjunction with the

role of Bcl-2 in DLBCL—where Bcl-2 maintains cell survival and

prevents apoptosis by regulating mitochondrial outer membrane

permeability and calcium ion homeostasis (21)—its overexpression

enhances cancer cell survival. Thus, the interaction between m6A

modification and mitochondrial dynamics may play an important

role in the proliferation and survival of DLBCL, offering potential

targets for future cancer therapies.

Emerging evidence suggests that mitochondrial dynamics and

mitophagy are intricately linked to the pathogenesis of DLBCL (22).

For instance, CD30, a transmembrane protein overexpressed in

DLBCL, has been shown to activate BNIP3-mediated mitophagy,

thereby shielding tumor cells from mitochondrial dysfunction and

apoptosis induced by metabolic stress (23). Besides, imbalances in

mitochondrial fission/fusion proteins (e.g., DRP1, MFN1/2) may

contribute to chemoresistance by altering mitochondrial

morphology and metabolic pathways critical for lymphoma cell

survival (24). Studies have also highlighted the role of
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mitochondrial dynamics in modulating oxidative phosphorylation

and glycolysis, processes that influence DLBCL aggressiveness and

microenvironment interactions (25). Despite these advances, the

precise molecular mechanisms by which mitochondrial dynamics-

related genes (MDRGs) and mitophagy-related genes (MRGs)

govern DLBCL progression remain poorly understood.

Unraveling how mitochondrial dynamics and mitophagy intersect

with DLBCL biology could reveal novel vulnerabilities, such as

targeting mitochondrial plasticity to disrupt energy metabolism or

enhance drug sensitivity. Such investigations hold transformative

potential for overcoming therapeutic bottlenecks and improving

patient outcomes in this heterogeneous malignancy.

Single-cell RNA sequencing (scRNA-seq) (26) is a

transformative technology that facilitates high-resolution profiling

of gene expression in individual cells, revealing transcriptional

heterogeneity in complex tissues (27). By dissecting cellular

diversity, scRNA-seq facilitates the reconstruction of cellular

evolutionary trajectories during tumor development, identifying

rare subpopulations (such as therapy-resistant clones), and

mapping dynamic transitions between cell states (26). This

approach also illuminates cell-cell communication networks by

decoding ligand-receptor interactions and signaling crosstalk

within the tumor microenvironment (28), thereby revealing

mechanisms underlying immune evasion, stromal remodeling,

and metastatic niches (29). In the context of DLBCL, scRNA-seq

has uncovered novel subtypes (30), traced clonal evolution during

relapse, and exposed microenvironmental reprogramming linked to

immune checkpoint resistance (31), offering unprecedented insights

into disease complexity and therapeutic vulnerabilities.

By integrating bulk and single-cell RNA sequencing data from

public databases, this study systematically identified MDRGs and

MRGs. A Cox prognostic model was built using the least absolute

shrinkage and selection operator (LASSO) regression algorithm,

which stratified patients according to survival outcomes and was

subsequently validated for clinical relevance. Notably, this work is

the first to establish a connection between two crucial biological

processes—mitochondrial dynamics and mitophagy—and both

prognosis and tumor microenvironment modulation in DLBCL,

leading to the discovery and validation of novel prognostic

biomarkers. Collectively, these findings not only deepen our

insight into the role of mitochondrial plasticity in DLBCL

pathogenesis but also offer a conceptual framework for advancing

personalized immunotherapy and refining prognostic tools.
2 Materials and methods

2.1 Data acquisition

Among the datasets used in this study, GSE32018 (GPL6480)

and GSE11318 (GPL570) datasets were classic bulk RNA

sequencing (RNA-seq) datasets from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

The GSE32018 dataset contained 199 DLBCL tissue samples

(DLBCL group) and 7 normal lymph-node tissue samples
Frontiers in Immunology 03
(control group) from individuals. Besides, the GSE32018 dataset

contained 199 DLBCL tissue samples from individuals, which

comprised clinical and survival information (the sample with a

survival time of 0 was excluded). In addition, another RNA-seq

dataset, the TCGA-DLBCL dataset, which included 47 DLBCL

tissue samples from individuals (with all samples containing

information on clinical outcomes and survival), was acquired

from The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/) (June 5, 2024). On the other hand, a

dataset from single-cell RNA sequencing (scRNA-seq), which

included 2 DLBCL tissue samples (DLBCL1 and DLBCL2)

(DLBCL group) and 2 normal paraneoplastic tissue samples

(rLN1 and rLN2) (control group) from individuals, was achieved

from the heiDATA database (https://heidata.uni-heidelberg.de/)

(Supplementary Figure S1).

Moreover, 23 mitochondrial dynamics-related genes (MDRGs)

were obtained from the literature (32) (Supplementary Table S1).

The integration of genes from the Reactome database (http://

www.reactome.org), including mitophagy (R-HSA-5205647),

pink1-prkn-mediated mitophagy (R-HSA-5205685), and receptor-

mediated mitophagy (R-HSA-8934903), yielded 29 MRGs for

downstream analysis (Supplementary Table S2).
2.2 Analysis of gene co-expression
networks with weighted methods
(WGCNA)

The GSE32018 dataset was analyzed using the ssGSEA

algorithm from the GSVA package (v 1.46.0) (33) to calculate

MDRGs and MRGs scores of all samples, aiming to assess the

connection between mitochondrial dynamics, mitophagy and

DLBCL progression. The Wilcoxon rank sum test was used to

evaluate score differences between the DLBCL and control groups

(P< 0.05). Furthermore, after removing unqualified samples by

conducting hierarchical clustering analysis on all samples in the

GSE32018 dataset via GoodSamplesGenes, WGCNA was executed

with the WGCNA package (v 1.71) (34), yielding genes (among

MDRGs and MRGs) associated with DLBCL. Specifically, to

establish a scale-free co-expression gene network, optimal soft

thresholding was then set according to the scale-free fit index

(signed R2) and mean connectivity (close to 0) through the

pickSoftThreshold function. Subsequently, genes were divided

into different modules according to the hybrid dynamic tree

cutting criteria, with a minimum number of 50 genes per gene

module and a module fusion threshold of 0.25. Afterward, the

MDRGs and MRGs were respectively used as phenotypes. The

Spearman function was applied to assess correlations between

module eigengene (ME) scores of modules and phenotypes, and

genes within the module that had ME scores strongly correlated

with both phenotypes were identified as potential key module genes

(|correlation coefficients (cor)|> 0.8, P< 0.05). Following a

comprehensive analysis of gene-module interactions and module-

trait relationships, we identified critical module genes showing

significant connections with MDRGs and MRGs based on
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predefined criteria (|module membership (MM)| > 0.8, and |gene

significance (GS)| > 0.6).
2.3 Analyses of functional and protein-
protein interaction

The limma package (v 3.54.0) (35) was applied to the

GSE107943 dataset to perform differential expression analysis,

aiming to identify differentially expressed genes (DEGs) between

DLBCL and control groups (|log2fold change (FC)| > 2, and

adjusted P< 0.05). Volcano plot visualization and hierarchical

clustering analysis were implemented using ggplot2 ggplot2 (v

3.4.1) (36) and pheatmap (v 1.0.12) (37) packages, respectively,

with the top 10 most significantly upregulated and downregulated

DEGs selected based on |log2FC|. Afterward, gene screening was

conducted using the ggvenn package (v 0.1.9) (38) to detect

MDRGs-and MRGs-associated biomarkers in DLBCL. Candidate

genes were defined as those demonstrating overlap between DEGs

and core module genes through Venn analysis.

Subsequently, functional characterization of candidate genes

was systematically performed through ontological enrichment

analysis. Utilizing the clusterProfiler package (v 4.2.2) (39), we

conducted Gene Ontology (GO) annotation encompassing

biological processes (BP), cellular components (CC), and

molecular function (MF) categories, along with Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

(P< 0.05). The enrichment landscape was visualized by GOplot (v

1.0.2) (40), depicting the five most enriched GO terms per category

and the top twenty KEGG pathways.

To explore the interactions of the candidate genes at the protein

level, the Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) database (https://string-db.org/) was employed to

establish a PPI network (confidence score > 0.4). The Cytoscape

software (v 3.10.2) (41) was then used to visualize proteins with

high-quality interactions.
2.4 Molecular regulatory network
construction and gene set enrichment
analysis for prognostic genes

To assess the potential value of MDRGs and MRGs for

predicting overall survival (OS) of DLBCL patients, within the

GSE11318 dataset, the survival package (v3.3.1) (42) was applied

to conduct univariate Cox analysis on candidate genes (hazard ratio

(HR) ≠1, P< 0.2). A threshold of P< 0.2 was adopted for variable

screening to avoid overlooking potential confounding factors or

variables with weak effects. This approach aligns with

recommendations in statistical theory regarding variable selection

(43, 44) and has been applied in practical research settings (45). The

genes that remained were tested for the proportional hazards (PH)

assumption (P > 0.05) via the coxph function. The results of

univariate Cox analysis were visualized by the forest plot package

(v3.1.1) (46), and the genes that met the PH assumption criteria
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were defined as candidate prognostic genes. Then, the glmnet

package (v4.1.2) (46) was employed for a 10-fold cross-validation

LASSO regression to analyze candidate prognostic genes. The

remaining genes were subjected to backward elimination (HR ≠1,

P< 0.1), identifying prognostic genes linked to mitochondrial

dynamics and mitophagy.

Besides, GSEA was performed on each prognostic gene to

understand their biological roles in DLBCL. Specifically, the psych

package (v2.2.9) (47) facilitated a Spearman correlation analysis

between prognostic genes and all the other genes, arranging them

by |cor| in descending order. Subsequently, GSEA was performed

using the clusterProfiler package (v4.2.2) (|normalized enrichment

score| >1, P< 0.05). The gene set referenced was “c2. cp.kegg.v7.5.1.

symbols.gmt”, sourced from the Molecular Signatures Database

(MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb). The

leading five significant pathways of each prognostic gene were

visualized by the enrichplot package (v1.18.3) (48), respectively.

On the other hand, for an understanding of the molecular

regulatory mechanisms of prognostic genes in DLBCL, miRDB

(https://mirdb.org/) and miRanda (http://mirtoolsgallery.tech/

mirtoolsgallery/node/1055) databases were applied to predict

microRNAs (miRNAs) targeting prognostic genes, and the

predicted miRNAs were then applied to predict corresponding

long non-coding RNAs (lncRNAs) in the lncBase database

(www.microrna.gr/LncBase). Besides, the NetworkAnalyst

database (https://www.networkanalyst.ca/) was employed to

forecast transcription factors (TFs) targeting prognostic genes.

Finally, the lncRNA-miRNA-mRNA and TF-mRNA regulatory

networks were visualized using Cytoscape software (v3.10.2).
2.5 Risk model establishment and
verification

The risk model was formulated using the GSE11318 dataset and

employed backward elimination to select prognostic genes related

to mitochondrial dynamics and mitophagy. The risk score for each

patient was calculated using the following formula:

Riskscore (patients)  =  

on
i=1 ExpressionGenei �  CoefficientGenei

Where, n represents the number of prognostic genes, and i

denotes the serial number of each gene.

Based on an optimal threshold for these risk scores, DLBCL

samples were stratified into high-risk (HRG) and low-risk (LRG)

groups. The ggplot2 package (v3.4.1) was used to illustrate the

distribution of risk scores and survival status in these two groups.

Besides, expression trends of prognostic genes were also illustrated

by ComplexHeatmap (v2.15.1) (37). Kaplan-Meier (KM) survival

curves were generated for the two groups using the survival package

(v 3.3.1), and survival differences were compared using a log-rank

test (P< 0.05). Moreover, receiver operating characteristic (ROC)

curves were plotted using the survivalROC package (v1.0.3) (49) for

survival at 1, 3, and 5 years (an area under the curve (AUC) > 0.6
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indicated good predictive performance). Besides, the TCGA-

DLBCL dataset was used to validate the risk model, assessing its

accuracy and generalizability.
2.6 Establishment of a nomogram and
analysis of independent prognostic factors

In GSE11318 dataset, for screening independent predictors of

prognosis and assessing the clinical use of risk assessment scores

related to mitochondrial dynamics and mitophagy, age, gender,

lactate dehydrogenase (LDH) ratio, extranodal, Eastern Cooperative

Oncology Group performance status (ECOG PS), stage, and risk

score were sequentially subjected to univariate Cox analysis (HR ≠1,

P< 0.05), PH assumption test (P > 0.05), and multivariate Cox

analysis (HR ≠1, P< 0.05) via survival package (v 3.3.1). The

remaining factors were defined as independent prognostic factors

and visualized by the forestplot package (v3.1.1). The rms package

(v6.5.0) (50) was employed to establish a nomogram model that

combines the risk score with clinical features derived from

independent prognostic factors, aiming to predict 1, 3, and 5-year

survival probabilities of DLBCL patients. Besides, the ROC curves

(AUC > 0.6) were plotted using pROC (v1.18.0) (51) to verify

model discrimination.
2.7 Immune cell infiltration, m6A-related,
and drug sensitivity analyses

Using the GSE11318 dataset, the tumor microenvironment

(TME) of HRG and LRG was explored. The CIBERSORT

algorithm was used to evaluate the differences in the abundance

of 22 types of immune cells (52) between HRG and LRG, excluding

samples with P values greater than 0.05. Differential immune

infiltrating cell types were then obtained through the Wilcoxon

rank sum test (P< 0.05). Next, the psych package (v 2.2.9) was

applied to conduct Spearman correlation analysis among

differential immune cell types and prognostic genes (|cor| > 0.3,

P< 0.05). Subsequently, expression differences in 20 m6A-related

genes (53) (VIRMA was replaced with KIAA1429) between HRG

and LRG were evaluated via the Wilcoxon rank sum test (P< 0.05).

Similarly, the psych package (v 2.2.9) was employed to analyze the

correlations among differentially expressed m6A-related genes, and

prognostic genes were analyzed via Spearman correlation analysis

(|cor| > 0.3, P< 0.05). All results were visualized using the ggplot2

package (v 3.4.1).

Finally, the oncoPredict package (v0.2) (54) was applied to

calculate the 50% inhibitory concentration (IC50) of 198

chemotherapy drugs from the Genomics of Drug Sensitivity in

Cancer (GDSC) database (https://www.cancerrxgene.org) for

DLBCL patients in HRG and LRG groups. In addition, drugs

with notable differences in IC50 between HRG and LRG were

acquired using the Wilcoxon rank sum test (P< 0.05). The top 20

medications with significant changes in IC50 between groups were

visualized. Besides, the psych package (v 2.2.9) was utilized to
Frontiers in Immunology 05
conduct Spearman correlation analysis (|cor| > 0.3, P< 0.05)

among differential drugs and prognostic genes. These results were

visualized by the ggplot2 package (v 3.4.1).
2.8 The scRNA-seq data processing,
intercellular interaction analysis, and cell
trajectory analysis

Further investigations were performed on the scRNA-seq

dataset to explore the expression of prognostic genes linked to

mitochondrial dynamics and mitophagy at the single-cell level.

First, the PercentageFeatureSet function in the Seurat package

(v5.0.1) (55) was used to filter scRNA-seq data (5%< nFeature RNA

percent of mitochondrial genes< 5%). Specifically, data evaluation

and cell screening were conducted based on the following 3

parameters: nFeature_RNA (the number of genes detected in each

cell, with the lowest and highest 5% of all its values used to identify

cells with low expression levels or poor quality, and those with high

expression levels or other issues respectively), nCount_RNA (the

total number of unique molecular identifiers (UMIs) in each cell,

and the highest 5% of its values were used to identify cells with

abnormally high UMI counts due to high expression or technical

problems), and the proportion of mitochondrial genes (with a cutoff

of less than 0.05 set to screen for normal cells). The quality control

chart was generated by the ggplot2 package (v3.4.1). Next, the

PercentageFeatureSet function in the Seurat package (v5.0.1) was

applied to identify 2,000 genes with the largest variation (the 10

genes with the largest variation were labeled in a volcano plot

generated by the LabelPoints function). Furthermore, the ScaleData

function in the Seurat package (v5.0.1) was used to normalize the

samples. Subsequently, an analysis using principal component

analysis (PCA) was conducted on the 2000 most highly variable

genes. The dimensionality reduction results were visualized in an

inflection point plot via the Elbowplot function. Next, the PCA

replacement test was conducted through the Jackstraw function and

the principal components (cells) that could be used for later

analyses (P< 0.05).

After PCA downscaling, the uniform manifold approximation

and projection (UMAP) clustering method was used to identify cell

clusters (resolution =0.1). Afterwards, cell annotation was

conducted. Specifically, the marker genes from the CellMarker

database (http://bio-bigdata.hrbmu.edu.cn/CellMarker) were

applied to annotate the cell types of the different clusters. The

annotation results were visualized in the UMAP plot, and the

expression of marker genes in different cell types was illustrated

via the ggplot2 package (v3.4.1). Subsequently, the R package

CellChat (v 1.6.1) (56) was used to analyze ligand-receptor pairs

and molecular interactions among different annotated cell types in

the disease and control groups (P< 0.05, Log2 (mean (Molecule1,

Molecule2)) ≥ 0.1), and visualized the communication networks to

compare the number and strength of communication networks

between the two groups.

Based on all samples, the distribution of prognostic genes was

analyzed, and the data were presented in UMAP plots. Besides, the
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expression differences of prognostic genes between DLBCL and

control groups were compared by employing the Wilcoxon rank

sum test (P< 0.05). Notably, the cell type exhibiting significant

differences in the expression of most prognostic genes between

groups was defined as the key cell type. Furthermore, to reveal the

related biological functions of key cell types, functional analysis was

conducted via the ReactomeGSA package (v1.16.1) (57) (P< 0.05).

Based on all samples, the key cell type was further clustered into

distinct subtypes by UMAP downscaling. Subsequently, the

Monocle2 package (v2.26.0) (58) was employed to conduct cell

trajectory analysis, by which the differentiation of key cell types was

simulated, and the expression trends of prognostic genes at different

developmental stages in key cell types were illustrated.
2.9 Annotation of key cell subpopulations
and pseudo-time analysis

To investigate gene expression changes in each cell during

critical cellular state transitions, cell trajectory and pseudotime

analysis were performed using the plot_genes_in_pseudotime

algorithm from the R package monole (v 2.26.0) (59). To reduce

dimensionality, the RunPCA function from the R package Seurat (v

5.0.1) (55) to perform PCA analysis on the selected highly variable

genes. The Jackstraw function was used for significance testing (P<

0.05), and the ElbowPlot function was employed to rank principal

components (PCs), selecting effective PCs for subsequent analysis.

To understand key cell heterogeneity, the FindClusters function

in the R package Seurat (v 5.0.1) was used to perform cluster

analysis on the PCs (resolution set to 0.2), yielding distinct

subpopulations. The RunUMAP function visualized the clustering

results. Subsequently, key cell subpopulations were annotated based

on marker genes provided by the FindAllMarkers function,

referencing literature (60). After removing non-key cell types, an

UMAP projection plot was generated. Subsequently, pseudotime

trajectory analysis was performed on key cell subpopulations, and

developmental trajectory plots were visualized with color coding

based on pseudotime, differentiation stage, and developmental time.

Finally, the plot_genes_in_pseudotime function from the monole

package (v 2.26.0) was used to plot the dynamic trends of prognostic

gene contributions during cell differentiation.

Additionally, metabolic enrichment analysis was performed to

explore the metabolic characteristics of different key

cell subpopulations.
2.10 The process of reverse transcription-
quantitative PCR

To validate the levels of expression for prognostic genes in

clinical samples, RNAs of 5 DLBCL tissue samples and 5 control

samples from individuals were isolated using TRIzol reagent (R401-

01, Ambion, America). The collection was performed at the First

Affiliated Hospital of Fujian Medical University in Fujian province.

The isolated RNAs were then used for cDNA synthesis employing
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the Hifair® III 1st Strand cDNA Synthesis SuperMix for qPCR kit

(11141ES60, Yisheng, China). Subsequently, RT-qPCR was

executed using 2×Universal Blue SYBR Green qPCR Master Mix

(G3326-05, Servicebio, China). Primers for prognostic genes and

the internal reference gene (GAPDH) were listed in Supplementary

Table S3. The reaction system and program were performed

according to the reagent’s instructions. Following the RT-qPCR

procedure, the 2-DDCт method was applied to determine relative

expression levels. A t-test (P< 0.05) was applied to evaluate

differences between groups, and data visualization was conducted

using Graphpad Prism 5 software (v8.0) (61). Ethical approval for

this study was granted by the Branch for Medical Research and

Clinical Technology Application, Ethics Committee of the First

Affiliated Hospital of Fujian Medical University. Approval No.

MRCTA, ECFAH of FMU [2023]350. Written informed consent

was obtained from all participants.
2.11 Statistical analysis

R language (v 4.3.1) was utilized to perform all bioinformatic

analyses. Besides, the Wilcoxon rank sum test, the log-rank test, and

the t-test were employed in this study to assess differences between

groups, setting the significance threshold at P< 0.05. To validate the

appropriateness of the Wilcoxon rank sum test, the data was

examined for normality using the Shapiro-Wilk test and a QQ

plot. Results indicated that the data did not follow a normal

distribution (W = 0.9046, P< 2.2e-16, Supplementary Figure S2).
3 Results

3.1 Candidate genes in DLBCL related to
mitochondrial dynamics and mitophagy
and their associated functions

Based on the GSE32018 dataset, the DLBCL group exhibited

significantly higher scores for MDRGs and MRGs compared to the

control group, which revealed that mitochondrial dynamics and

mitophagy were strongly associated with DLBCL progression

(Supplementary Figures S3A, B). Furthermore, after removing

unqualified samples by sample clustering (cutHeight = 290)

(Supplementary Figure S3C), WGCNA was undertaken to

identify key module genes associated with mitochondrial

dynamics and mitophagy. The optimal soft thresholding was set

at 8 according to the scale-free fit index (R2 = 0.9) and mean

connectivity (close to 0). A gene co-expression network was

established with 14 gene modules, excluding the gray module

(Supplementary Figures S3D, E). Notably, candidate key module

genes strongly correlated with MDRGs and MRGs were obtained

from blue (cor (MDRGs) = 0.84, cor (MRGs) = 0.92) and brown

(cor (MDRGs) = -0.91, cor (MRGs) = -0.82) modules (P< 0.0001)

(Supplementary Figures S3F, G). Subsequently, 931 key module

genes were selected based on the predefined criteria(|MM| > 0.8, |

GS| > 0.6) (Supplementary Figures S3H, I).
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Besides, analysis of the GSE32018 dataset identified 158 DEGs

in the DLBCL group, including 14 up-regulated and 144 down-

regulated genes (P< 0.05) (Supplementary Figure S4A). Afterward,

98 candidate genes were identified from the intersection of DEGs

and key module genes (Supplementary Figure S4B). Importantly,

candidate genes were significantly enriched in GO entries and

KEGG pathways, including cytokine-mediated signaling pathway

and lymphocyte differentiation (P< 0.05) (Supplementary Figure

S4C). Furthermore, the PPI network revealed 42 proteins formed 41

interacting pairs, including proteins such as COX6A2 and UTS2R

(Supplementary Figure S4D). These findings provide a better

understanding of the multiple roles of mitochondrial dynamics

and mitophagy in DLBCL progression.
3.2 Crucial functional pathway and
elaborate molecular regulatory networks
of six prognostic genes in DLBCL

Based on the GSE11318 dataset, 12 candidate prognostic genes

associated with OS of DLBCL patients were identified through

univariate Cox analysis (P< 0.2) and PH assumption test (P > 0.05)

(Figure 1A, Supplementary Table S4). After LASSO regression

analysis, 8 candidate prognostic genes (TCF7, CEBPA, BBC3,

GALR3, BMP8B, PRR7, BAALC, and NPAS3) were retained

(lambda.min = 0.0439) (Figure 1B). Following this, six prognostic

genes linked to mitochondrial dynamics and mitophagy were

identified using backward elimination (P< 0.1), including TCF7,

CEBPA, BBC3, GALR3, BMP8B, and BAALC (Figure 1C). TCF7,

CEBPA, and BAALC were associated with better prognosis (HR< 1),

suggesting that they might inhibit DLBCL progression. Conversely,

BBC3, GALR3, and BMP8B were associated with adverse prognosis

(HR > 1), indicating they could facilitate the advancement

of DLBCL.

Furthermore, biological pathways related to prognostic genes in

DLBCL were discovered using GSEA. Specifically, prognostic genes

were found to be associated with pathways like cytokine-cytokine

receptor interaction, lysosome, ribosome, and spliceosome

(Figure 1D). Based on the above findings, it can be inferred that

mitochondrial dynamics and mitophagy exhibit pivotal roles in

DLBCL progression by affecting these pathways.

Furthermore, regulatory elements targeting prognostic genes

were predicted. The constructed lncRNA-miRNA-mRNA network

comprised miRNAs (such as has-miR-1252-5p and has-miR-222-

3p) targeting specific prognostic genes (TCF7/CEBPA/BBC3/

BAALC) and lncRNAs (such as NEAT1 and XIST) targeting

specific miRNAs (Figure 1E). Besides, the TF-mRNA network

revealed prognostic genes (TCF7/CEBPA/BBC3/GALR3/BMP8B/

BAALC) that were regulated by specific TFs like SMC3 and

FOXM1 (Figure 1F). These findings are crucial for elucidating the

pathophysiological mechanisms related to mitochondrial dynamics

and mitophagy in DLBCL.
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3.3 Strong predictive power of MDRGs and
MRGs for DLBCL prognosis demonstrated
by a risk model

Within the GSE11318 dataset, after obtaining prognostic genes,

a risk model related to mitochondrial dynamics and mitophagy was

constructed: risk score = (-0.26622943) × TCF7 expression level +

(-0.285915897) × CEBPA expression level + (0.276313141) × BBC3

expression level + (0.238247261) × GALR3 expression level +

(0.175169469) × BMP8B expression level + (-0.297403233) ×

BAALC expression level. Next, DLBCL patients were divided into

HRG and LRG (153: 46) based on an optimal cutoff value of

-0.4496605. The distribution of risk scores and survival status

within risk groups illustrated that mortalities of DLBCL patients

increased with increasing risk scores (Figure 2A). Notably, BBC3,

GALR3, and BMP8B exhibited higher expression in HRG, while

BAALC, TCF7, and CEBPA exhibited higher expression in LRG

(Figure 2B). Besides, KM survival curves revealed that DLBCL

patients in LRG exhibited markedly higher survival probabilities

(P< 0.0001) (Figure 2C). Besides, the AUC of ROC curves at 1, 3,

and 5 years all exceeded 0.6, reflecting the good prognostic

performance of this risk model (Figure 2D).

Besides, the risk model underwent validation using the TCGA-

DLBCL dataset. DLBCL patients in this dataset were classified into

HRG and LRG (12: 35) using an optimal risk score threshold of

-0.2549045. The results, including the risk score, survival status

(Figure 2E), prognostic gene expression trends (except GALR3)

(Figure 2F), KM survival curves (P< 0.01) (Figure 2G), and ROC

curves (AUC all exceeded 0.7) (Figure 2H), were largely aligned

with the GSE11318 dataset. The risk model related to mitochondrial

dynamics and mitophagy demonstrated robust generalizability,

suggesting its huge potential for tailored prognostic evaluation in

the clinical management of DLBCL.
3.4 Establishment of a nomogram
integrating risk scores and clinical
characteristics for accurate prediction

In the GSE11318 dataset, the clinical applicability of risk scores

related to mitochondrial dynamics and mitophagy was evaluated by

Cox regression analysis. Specifically, a total of 6 factors (age, LDH

ratio, extranodal, ECOG PS, stage, and risk score) were identified as

significant predictors of prognosis (P< 0.05) and satisfied the

proportional hazards assumption (P > 0.05) (Figure 3A,

Supplementary Table S5). Following this, these factors were

evaluated through multivariate Cox analysis, with age, LDH ratio,

ECOG PS, and the risk score identified as independent predictors of

prognostic (P< 0.05) (Figure 3B). Notably, these factors were

associated with an adverse prognosis of DLBCL patients (HR >

1). Subsequently, a nomogram integrating independent prognostic

factors was established (Figure 3C). Notably, DLBCL patients with
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FIGURE 1

Prognostic gene screening and regulatory network in DLBCL. (A) Forest plot of the 12 significant module genes identified using Univariate Cox
analysis (P< 0.2) and PH assumption test (P > 0.05) in DLBCL patients. (B) LASSO regression retained eight candidate genes, including TCF7, CEBPA,
BBC3, GALR3, BMP8B, PRR7, BAALC, and NPAS3. (C) Backward elimination (P< 0.1) selected six prognostic genes linked to MDRGs, including TCF7,
CEBPA, BBC3, GALR3, BMP8B, and BAALC. (D) GSEA revealed significant enrichment of prognostic genes in pathways, indicating that mitochondrial
dynamics and mitophagy modulate DLBCL via these pathways. (E) An lncRNA-miRNA-mRNA network was constructed. (F) A TF-mRNA network
showed that prognostic genes were regulated by transcription factors. “*” indicates P < 0.05, and “**” indicates P < 0.01.
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higher total points have lower chances of survival at 1, 3, and 5

years. ROC analysis showed that the AUC at 1, 3, and 5 years all

exceeded 0.7 (Figure 3D), demonstrating that the discrimination

ability of this nomogram model was superior, further highlighting

the remarkable clinical utility of risk scores related to mitochondrial

dynamics and mitophagy in prognostic evaluation of DLBCL.
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3.5 Differential TME, expression of m6A-
related genes, and drug sensitivities altered
by risk scores

On the one hand, the TME profiles of HRG and LRG in the

GSE11318 dataset were analyzed (Supplementary Figure S5A).
FIGURE 2

Risk model construction and validation model in DLBCL. (A) Risk score distribution and survival status indicated increased mortality with higher risk
scores in DLBCL patients. (B) Prognostic gene expressions in different groups, with BBC3, GALR3, and BMP8B upregulated in HRG, and BAALC, TCF7,
and CEBPA upregulated in LRG. (C) KM survival curves demonstrated significantly higher survival probability in LRG (P< 0.0001). (D) ROC curves showed
AUCs > 0.6 at 1-, 3-, and 5-year intervals, confirming model efficacy. (E-H) Validation of the risk model was performed in the TCGA-DLBCL dataset.
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Notably, 8 differential immune infiltrating cell types, including M0

macrophages and T follicular helper cells, were identified (P< 0.05)

(Supplementary Figure S5B). Moreover, a strong correlation was

observed among these differential immune infiltrating cell types.

For example, the most significant positive correlation was observed
Frontiers in Immunology 10
between T follicular helper cells and regulatory T cells (Tregs)/

gamma delta T cells (cor = 0.35). In contrast, the most significant

negative correlation was observed between memory B cells and

gamma delta T cells (cor = -0.45) (P< 0.01). Besides, the prognostic

genes were markedly correlated with specific differential immune
FIGURE 3

Nomogram and independent prognostic analysis in DLBCL. (A) Univariate Cox analysis identified 6 prognostic factors, including age, LDH ratio,
extranodal involvement, ECOG PS, stage, and risk score (P< 0.05). (B) Multivariate Cox analysis confirmed age, LDH ratio, ECOG PS, and risk score as
independent prognostic factors (P< 0.05), all associated with adverse outcomes (HR > 1). (C) A nomogram integrating independent factors. (D) ROC
analysis at 1-, 3-, and 5-year intervals. “**” indicates P < 0.01, and “***” indicates P < 0.001.
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infiltrating cell types. For instance, CEBPA showed the strongest

positive correlation with M0 macrophages (cor = 0.52), while the

strongest negative correlation was observed between CEBPA and

memory B cells (cor = -0.49) (P< 0.001) (Supplementary Figure

S5C). The above findings suggest that the TME profiles of HRG and

LRG are different and associated with the expression of prognostic

genes and specific immune cells. Consequently, the prognostic

genes related to mitochondrial dynamics and mitophagy could

serve as potential new targets for personalized therapeutic

approaches in DLBCL.

On the other hand, the expression of 10 m6A-related genes like

YTHDC1 and HNRNPC demonstrated significant differences

between HRG and LRG (P< 0.05) (Supplementary Figure S5D)

(RBMX was not expressed in the samples). Besides, the prognostic

genes were notably associated with specific m6A-related genes. For

instance, BBC3 exhibited a significant negative correlation with

YTHDF3 (cor = -0.42), and CEBPA showed a significant negative

correlation with HNRNPA2B1 (cor = -0.40) (P< 0.001)

(Supplementary Figure S5E). These results suggest that the

prognostic genes could regulate tumor cell behavior by

influencing the dynamic regulation of m6A modification, which

in turn alters RNA stability, translation efficiency, or

splicing patterns.

Regarding therapeutic drugs, the IC50 values for specific

therapeutic drugs varied significantly between HRG and LRG (P<

0.05). The IC50 of drugs like dihydrorotenone, elephantin, and

fulvestrant were significantly lower in LRG (P< 0.0001)

(Supplementary Figure S5F). Notably, a lower IC50 value

indicated greater drug efficacy. Notably, CEBPA exhibited

markedly strongly positive correlations with most drugs,

espec ia l ly Vor inosta t_1012 (cor = 0 .56) (P< 0.001)

(Supplementary Figure S5G). Consequently, these differential

drug sensitivities might be due to different drug metabolism

mechanisms affected by specific prognostic genes in DLBCL

patients from varying risk groups.
3.6 Identification of key cell type (B cells)
and relevant functions

To investigate the mechanisms related to mitochondrial

dynamics and mitophagy in DLBCL at a single-cell resolution,

scRNA-seq data were filtered. The integrated data contained 12,087

cells and 23,432 genes (Supplementary Figure S6). The variability

among these genes was assessed (Supplementary Figure S7), and the

top 10 most variable genes were identified. PCA was performed for

dimensionality reduction (Supplementary Figure S8). Both the

inflection point plot and PCA replacement test indicated that the

top 20 principal components should be retained for downstream

analysis (Figure 4A). The retained principal components (cells)

were subsequently clustered and labeled. These cells were classified

into 11 clusters (Figure 4B). Based on the application of marker

genes, cell clusters were further annotated into 3 types, including B

cells (marker genes: CD79A, CD79B, CD19, and MS4A1), T cells

(marker genes: CD3D, CD3E, and CD3G), and macrophages
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(marker genes: CD68 and CD86) (Figure 4C). Besides, the

expression of marker genes in different cell types was illustrated

(Figure 4D). Furthermore, the distribution of two prognostic genes,

TCF7 and BBC3, was also mapped across the annotated cell types

(Figure 4E). Notably, given that the B cells exhibited significant

differences in the expression of most prognostic genes (BAALC,

BBC3, CEBPA, TCF7) between the two groups, they were defined as

the key cell type (Figure 4F). Moreover, it was found that B cells

were notably associated with functions, encompassing allograft

rejection, apical junction, and coagulation (Figure 4G). Cell

communication analysis revealed that in the disease group, B cells

exhibited a higher number of communication events with T cells,

albeit with weaker intensity, while communication between B cells

and themselves was stronger (Supplementary Figure S9A).

Conversely, in the control group, communication between T cells

and B cells appeared to be stronger. The absence of normal T-B cell

communication in the disease group suggested that the disease

might have induced T cell immune imbalance (Supplementary

Figure S9B). Ligand-receptor interaction bubble plots further

revealed that in the disease group, B cells most frequently

communicated with themselves via the MIF pathway

(Supplementary Figure S9C). In the control group, T-cell-B-cell

communication also primarily occurred through the MIF pathway,

exhibiting the highest communication probability (Supplementary

Figure S9D).
3.7 Trajectories of B cells and the
expression patterns of prognostic genes

An analysis of B cell trajectories was performed, revealing their

differentiation over time. The differentiation trajectory is visualized

with a color gradient, where darker colors indicate earlier

differentiation stages (Figure 5A). The analysis clearly revealed

three distinct states of B cell differentiation (Figures 5B, C). In the

differentiation trajectory, B cells from control samples

predominantly clustered in the middle stage of differentiation,

whereas those from DLBCL samples formed large aggregates in

the early and late stages (Figure 5D).

Besides, it was found that TCF7 and BBC3 were highly

expressed during the early and late stages of B cell differentiation,

respectively. In addition, CEBPA, BAALC, and BMP8B showed

elevated expression during the middle stage of B cell differentiation

(Figure 5E). In summary, the influence of mitochondrial dynamics

and mitophagy on DLBCL progression might be linked to the

differentiation stages of B cells and the expression of prognostic

genes across these stages.
3.8 Key cell types (B cells) annotated seven
cell subpopulations

To explore prognostic gene expression changes within B-cell

subpopulations, PCA analysis was first performed, selecting the top

10 PCs for subsequent analysis (Supplementary Figures S10A, B).
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Clustering analysis ultimately identified seven distinct cell

subpopulations (Supplementary Figure S10C). Subsequently,

annotation of these cell subpopulations yielded seven distinct cell

types: IgE-MemB/PB, GC-LZ-like (SOX4+), GC-DZ (Cycling),

FolB IgM+CD23+, Non-B (Epithelial-like), Non-B (Stromal/

Metab.), and T (Supplementary Figure S10D, Supplementary

Table S6). After removing contaminated cell types, four cell types

were ultimately retained: FolB IgM+CD23+, GC-LZ-like (SOX4+),
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GC-DZ (Cycling), and IgE-MemB/PB (Supplementary

Figure S10E).

Further analysis revealed that key cell differentiation trajectories

originate from dark regions, with light regions representing cell

types at the differentiation terminus. During differentiation, GC-DZ

(Cycling) cells were present in both early and late stages. IgE-

MemB/PB cells predominantly occupied the early stage, GC-LZ-like

(SOX4+) cells primarily occupied the late stage, while FolB IgM
FIGURE 4

Single-cell annotation and key cell identification in DLBCL. (A) Top 20 principal components retained based on the elbow plot and PCA permutation
test. (B) Principal component clustering identified 11 cell subpopulations. (C) Cell type annotation using marker genes. (D) Expression patterns of
marker genes across annotated cell types. (E) Differential distribution of prognostic genes TCF7 and BBC3 in cell types. (F) B cells were defined as
the key population due to significant inter-group differences in prognostic gene expression (BAALC, BBC3, CEBPA, TCF7). (G) Functional enrichment
of B cells in pathways like allograft rejection, apical junction, and coagulation.
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+CD23+ cells resided in a lower branch. Furthermore, key cells were

categorized into three stages: most cells resided in the red Stage 1,

followed by green Stage 2, with a minority in blue Stage 3.

Comparing cell distributions between disease and control groups

revealed significantly more cells in the disease group, while the

lower branches exhibited richer distribution in the control group

(Supplementary Figure S10F).

Regarding prognostic genes, the expression heatmap of the

differentiation timeline showed that BBC3 gradually increased in

expression during the third and terminal stages of differentiation,

while TCF7 exhibited a trend of initial increase followed by decline

(Figures 6A, B). Furthermore, TCF7 and BBC3 were notably

expressed in B cells, whereas other prognostic genes showed
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weaker expression in B cells (Figure 6C). Metabolic analysis

revealed that IgE-MemB/PB enriched sterol and amino acid

metabolism, suggesting this subpopulation may favor secretory

lineages (e.g., ER/membrane lipid biogenesis and antibody

glycosylation substrate supply). The GC-LZ-like subpopulation

enriched for BCAA, alanine, aspartate, glutamate, and sulfur

metabolism, indicating that the light zone selection period relies

on amino acid carbon-nitrogen flux and glutathione antioxidant

functions to maintain signaling and cell survival. The GC-DZ

(Cycling) subpopulation enriched for pyrimidine, folate, and one-

carbon metabolism aligns with the high demand for nucleotide

synthesis and one-carbon donors during dark-phase proliferation.

Conversely, the FolB IgM+CD23+ subpopulation enriched for
FIGURE 5

Trajectory analysis of B-cell differentiation and gene expression dynamics. (A) Pseudotime trajectory of B-cell differentiation, with darker hues
indicating earlier differentiation stages. (B, C) Timeline diagram depicting the differentiation and development stages of different groups.
(D) Differentiation and development trajectories of different groups. (E) Heat map of the interactions among different stages.
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glycerolipid metabolism and fatty acid chain elongation suggests

this subset may participate in early-stage membrane lipid

replenishment and receptor signaling platform remodeling

(Figure 6D). The above findings provide an in-depth perspective

that helps elucidate how B cell subsets function in immune

responses through gene expression and metabolic pathways, while

also revealing the potential clinical applications of these

cellular characteristics.
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3.9 RT-qPCR validation of prognostic
genes

In DLBCL, the expression of CEBPA, BBC3, GALR3, BMP8B,

and BAALC was markedly higher than in the control group (P<

0.05) (Figures 7A–E). Although TCF7 expression tended to be

downregulated in DLBCL, the differences were not significant,

possibly due to the limited sample size (Figure 7F). The
FIGURE 7

RT-qPCR validation of candidate genes in DLBCL. (A) CEBPA expression in DLBCL compared to controls. (B) BBC3 expression in DLBCL compared
to controls. (C) GALR3 expression in DLBCL compared to controls. (D) BMP88B expression in DLBCL compared to controls. (E) BAALC expression in
DLBCL compared to controls. (F) TCF7 expression in DLBCL compared to controls. (all P< 0.05). “*” indicates P < 0.05, “**” indicates P < 0.01, and
“***” indicates P < 0.001.
FIGURE 6

Prognostic gene expression and metabolic features in cellular subpopulations. (A, B) Expression heatmaps reveal dynamic changes in prognostic genes
during cellular differentiation. (C) Expression distribution of prognostic genes in B cells. (D) Metabolic enrichment analysis of cellular subpopulations.
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differential expression of these genes further underscored their

prognostic value for DLBCL.
4 Discussion

DLBCL is a common, aggressive lymphoma with heterogeneous

outcomes, presenting significant challenges in diagnosis and

treatment (62). While mitochondrial dynamics (63) and

mitophagy (64) are crucial for cellular homeostasis and are

known to be involved in cancer progression, their specific role in

DLBCL is not fully understood. In the present study, through

integrative analysis of RNA-seq data and multimodal

bioinformatics approaches, we systematically investigated the

prognostic significance of MDRGs and MRGs in DLBCL.

Our study identified six pivotal prognostic biomarkers (TCF7,

CEBPA, BBC3, GALR3, BMP8B, and BAALC) and established a robust

risk score model demonstrating high predictive accuracy for patient

outcomes. TCF7, a member of the TCF/LEF family, encodes the

transcription factor TCF-1, which is a key modulator of the

canonical Wnt/b-catenin signaling pathway (65). By binding to b-
catenin, TCF7 regulates gene expression and is essential for embryonic

development, maintaining tissue homeostasis, stem cell preservation,

and immune system regulation (66). Furthermore, TCF1 (encoded by

TCF7) may contribute to the maintenance of stemness and antitumor

activity in CD8+ T cells by modulating mitochondrial function,

particularly through the oxidative phosphorylation pathway (67).

During HIV infection, downregulation of TCF1 is associated with

impaired mitochondrial function, which further compromises T-cell

proliferative capacity and immune responses (68).Research has shown

that TCF7-positive ancestral exhausted T cells in T-cell/histiocyte-rich

large B-cell lymphoma can predict better responses to PD-1/PD-L1

blockade therapy (69). Our study results indicated that TCF7 likely

plays a crucial role in the pathogenesis and treatment response of

DLBCL, potentially offering a novel therapeutic target or biomarker for

this aggressive malignancy.

CCAAT enhancer binding protein alpha, known as CEBPA, a

vital component of the CEBP family, encodes a key transcription

factor widely involved in cell differentiation and metabolism

regulation (70). Building upon prior evidence, it is proposed that

CEBPA drives the transcriptional upregulation of circular RNA

keratin 4(circKrt4), which then operates in the cytoplasm to disrupt

mitochondrial integrity—specifically by interfering with the

trafficking of mitochondria-anchored Glpk—suggesting a

plausible mechanistic route through which circKrt4 may induce

mitochondrial impairment (71). Mutations or abnormal expression

of CEBPA are associated with various diseases, particularly in acute

myeloid leukemia (AML) (72), where its mutation is considered a

disease-driving factor. Studies have shown that overexpression of

CAPG accelerates the malignancy of DLBCL cells, and CAPG

expression is regulated by CEBPA (73, 74). Although the direct

role of CEBPA in DLBCL has not been extensively documented in

the literature, our study found that CEBPA was significantly

upregulated in DLBCL. It can be hypothesized that CEBPA could
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enhance the malignant growth of DLBCL cells by upregulating

CAPG expression, thereby driving the progression of DLBCL.

BBC3, also known as PUMA (p53 upregulated modulator of

apoptosis) (75), is a crucial member of the BCL-2 family and

encodes a pro-apoptotic protein (76). BBC3 plays a key role in

cellular responses to DNA damage and other stress signals,

maintaining cellular and tissue homeostasis by promoting

programmed cell death (77). Emerging evidence indicates that

BBC3 modulates mitochondrial function and triggers

mitochondrial-mediated apoptosis, playing a pivotal role in

mitochondrial trafficking and accumulation. Chaperone-mediated

autophagy (CMA) influences BBC3’s intracellular transport—

through regulating its degradation or stabilization—thereby

critically modulating cell survival and death (76). Moreover, miR-

222-3p may attenuate mitochondrial-mediated cell death following

spinal cord injury by targeting both BBC3 and Bim (also known as

Bcl2l11), potentially contributing to improved neurological

outcomes (78). Research has demonstrated that BBC3 is

significantly upregulated in DLBCL, suggesting that it promotes

apoptosis in tumor cells, thereby inhibiting tumor growth and

development. Since evading apoptosis is a crucial characteristic of

tumor cells, the upregulation of BBC3 may counteract this

tendency, making tumor cells more susceptible to apoptotic

signals and leading to cell death.

GALR3, a vital member of the galanin receptor family, is a G

protein-coupled receptor (79). GALR3 is widely expressed in the

nervous system and regulates neurotransmission, mood balance,

pain perception, and appetite control (80). By binding to the

neuropeptide galanin, GALR3 activates downstream pathways,

including inhibiting cAMP production and regulating calcium ion

channels, affecting neuronal excitability (81). It is thus speculated

that the upregulation of GALR3 in DLBCL may indirectly affect

immune cell functions and immune factor secretion through the

nervous system, alter the tumor microenvironment, and influence

the disease progression of DLBCL.

BMP8B, belonging to the bone morphogenetic protein family,

regulates embryonic development, bone formation, energy

metabolism, and body temperature (82, 83). Recent studies have

suggested its potential role in enhancing the invasiveness of DLBCL

and its connection to stem cell-like properties (84). Moreover,

studies in mice have revealed that mitochondrial dysfunction,

indicated by alterations in markers such as peroxisome

proliferator-activated receptor gamma coactivator 1-alpha

(Ppargc1a) and PTEN induced putative kinase 1(Pink1),

contributes to the downregulation of thermogenic markers

including bone morphogenetic protein 8b (Bmp8b) and

uncoupling protein 1(Ucp1), thereby promoting the whitening of

inguinal brown adipose tissue and metabolic dysregulation (85). It

has been reported that BAALC can bind to MAP3K1 and KLF4,

participating in multiple cell signaling pathways (86). In cancers like

AML, BAALC expression levels are correlated with prognosis, with

high expression indicating poor prognosis and lower patient

survival (87). These findings establish BAALC as a significant

biomarker and potential therapeutic target in tumor research.
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The constructed six-gene risk model (TCF7, CEBPA, BBC3,

GALR3, BMP8B, and BAALC) demonstrated generalizability in an

independent cohort with an AUC > 0.7, outperforming traditional

prognostic indicators such as the IPI score and achieving

comparable performance to recently developed gene models (e.g.,

DLBCL90) (88). Notably, this study is the first to focus on the

mitochondrial function axis in metabolic regulation. Furthermore, a

nomogram integrating clinical parameters (age, lactate

dehydrogenase (LDH, ECOG performance status (PS), etc.)

enhanced predictive accuracy (AUC > 0.7), providing a practical

tool for individualized prognostic assessment.

Our research found that multiple pathways related to energy

metabolism were significantly enriched, indicating disruption of

cellular energy homeostasis in DLBCL development. Among the

enriched pathways, the abnormal expression of MRGs in DLBCL

could impact lysosome pathway activity, affecting cell metabolism

and survival, aligning with earlier findings (89). Besides,

abnormalities in the ribosome pathway might impact protein

synthesis and cell proliferation (90), while spliceosome pathway

abnormalities can lead to dysregulated gene expression (91).

Collectively, these pathway abnormalities may drive DLBCL

progression and drug resistance. The identified prognostic genes

might regulate these pathways, influencing DLBCL biology and

offering new diagnostic and therapeutic targets.

The CIBERSORT algorithm was employed to assess the relative

amounts of various immune cells in our samples. Our study on

immune infiltration showed notable variations in the types and

amounts of immune cells among different risk categories and stages,

indicating a potential role for immune dysregulation in DLBCL.

Immune cells, particularly M0 macrophages and memory B cells,

were found to be involved in the progression of DLBCL through

mechanisms such as cytokine release, allograft rejection, apical

junction, and coagulation (92). Indeed, understanding these

relationships can help develop new immunotherapies and

personalized treatment plans for DLBCL.

In the present study, B cells were identified as pivotal cellular

components due to their significant differential expression of

multiple prognostic genes across distinct subgroups. DLBCL

originates from rapidly proliferating malignant B cells that

originate from either germinal center or post-germinal center B

cells. These neoplastic B cells undergo malignant transformation

under various pathogenic factors, forming the cellular basis of

DLBCL pathogenesis (93). Notably, constitutive activation of the

B-cell receptor (BCR) signaling pathway plays a critical role in

maintaining B-cell activation and survival. In DLBCL, somatic

mutations in genes such as CD79A, CD79B, and CARD11 drive

ligand-independent persistent activation of BCR signaling, thereby

providing sustained proliferative and survival signals that promote

tumor progression (94). Furthermore, malignant B cells in

lymphoid cancers leverage several methods to escape immune

detection, such as decreasing the expression of major

histocompatibility complex (MHC) molecules to evade detection
Frontiers in Immunology 16
by cytotoxic T cells, and overexpression of immune checkpoint

molecules like PD-L1 to cause T cell exhaustion and weaken the

anti-tumor immune response, ultimately facilitating tumor survival

and expansion (95).

Based on these observations, we hypothesize that prognostic

genes may exert their regulatory effects through multifaceted

mechanisms involving B cell biology in DLBCL pathogenesis. The

comprehensive roles of B cells span from initial malignant

transformation to subsequent tumor maintenance and immune

escape processes. The tumor microenvironment demonstrated a

strong association between prognostic genes and both M0

macrophages and memory B cells. The prognostic genes might

affect the function and interactions of these key cell types, driving

DLBCL progression. For instance, trajectory analysis revealed that

CEBPA, BAALC, and BMP8 are expressed during the middle stage

of B cell development, whereas TCF7 and BBC3 are highly

expressed during the early and late stages, suggesting that the

influence of prognostic genes is dependent on the specific B cell

differentiation stage.

However, this study has limitations that should be

acknowledged. First, the reliance on publicly available databases

introduces a risk of bias from cohort heterogeneity (e.g., treatments,

geography), requiring multi-center validation for generalizability.

Second, the precise mechanisms linking prognostic genes to

mitochondrial dynamics/autophagy remain to be fully elucidated.

Future experiments, such as knocking down or overexpressing these

genes in vitro and in vivo to further explore their biological roles.

Third, the drug sensitivity analyses excluded emerging therapies like

CAR-T and mitochondrial-targeting agents (e.g., IACS-010759),

necessitating expanded pharmacogenomic data. Finally, the

prognostic model’s clinical utility and predictive power warrant

further validation with robust clinical evidence. To further validate

the prognostic usefulness of our model, future studies that are large-

scale, multi-center, and prospective are crucial. These validation

experiments constitute the critical next phase of our research and

will be the primary focus of our subsequent work.
5 Conclusion

In the present study, six prognostic genes related to

mitochondrial dynamics and mitophagy in DLBCL (TCF7,

CEBPA, BBC3, GALR3, BMP8B, and BAALC). A robust risk

model was developed from these genes, demonstrating strong and

stable predictive ability for DLBCL prognosis. The findings reveal a

critical association between high-risk disease and specific alterations

in the tumor microenvironment—particularly involving M0

macrophages—coupled with epitranscriptomic dysregulation

mediated by m6A modifications. This insights offers a novel

theoretical framework and approach for the early diagnosis and

advancing targeted treatment of DLBCL, as well as for exploring

mitochondrial dynamics and mitophagy mechanisms.
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