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Harnessing oncolytic viruses to
overcome immunosuppression in
breast cancer: from mechanisms
to clinical translation
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Oncolytic viruses (OVs) possess dual advantages in cancer immunotherapy: they

selectively replicate within and lyse tumor cells while simultaneously releasing

tumor-associated antigens to recruit and activate immune cells within the local

tumor microenvironment (TME), thereby inducing robust and sustained

antitumor immunity. Furthermore, these viruses can serve as tumor-targeting

vectors for immunomodulation and synergize with other immunotherapeutic

approaches. As such, oncolytic virotherapy holds significant potential to

overcome the low response rates of breast cancer to exist ing

immunotherapies and expand the therapeutic arsenal. This review

systematically elucidates the application and mechanisms of this emerging

immunotherapy in addressing the challenges of conventional breast cancer

treatments. It also discusses engineering strategies to enhance antitumor

immunity, highlights recent preclinical and clinical studies on rational

combinations of OVs with other therapies, and outlines current challenges and

future prospects.
KEYWORDS
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Introduction

Breast cancer remains a leading cause of cancer-related mortality among women (1),

Oncolytic virotherapy (OV), which combines the selective infection and destruction of

cancer cells with the induction of adaptive immune responses against tumors, has emerged

as a promising frontier in the fight against various cancers, including breast cancer (2–4).

Additionally, the integration of OVs with other breast cancer treatments to leverage the

strengths of each modality has garnered significant attention as a strategy to address tumor

heterogeneity (5–7).
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Mechanisms of oncolytic viruses in
breast cancer

Oncolytic viruses are naturally occurring or genetically

engineered immunotherapeutic agents that preferentially replicate

in tumors, promoting immunogenic cell death. For instance, the

oncolytic mumps virus exhibits potent cytotoxic activity against

breast cancer xenografts, and oncolytic peptides demonstrate

remarkable antimetastatic properties (8–10). Recombinant OVs

have also shown efficacy in triple-negative breast cancer (TNBC)

mouse models, a highly aggressive subtype with limited treatment

options (11). Beyond direct tumor lysis, OVs primarily exert

antitumor effects by activating immune responses (12) Figure 1.

The immunosuppressive tumor microenvironment (TME) is a

major barrier to cancer immunotherapy (13). By recruiting inhibitory

immune cells and upregulating immune checkpoint ligands, the TME

fosters immunosuppression and restricts antitumor immunity,

facilitating tumor progression and metastasis. OVs remodel the TME

by inducing immunogenic cell death, disrupting the dense tumor

stroma, and triggering the release of danger signals and tumor-

associated antigens. This process attracts antigen-presenting cells,

activates and expands lymphocyte populations, and enhances their

infiltration into the tumor bed, transforming the TME from an
Frontiers in Immunology 02
immunologically “cold” to a “hot” state (14–17). T lymphocytes play

a pivotal role in this transition.

Insufficient T cell activation limits the efficacy of immunotherapies.

The oncolytic parapoxvirus ORFV and its derivatives induce pyroptosis

in breast cancer cells and increase intratumoral cytotoxic T lymphocyte

(CTL) populations (18, 19). Similarly, the oncolytic vaccinia virus

CF33-hNIS-DF14.5 enhances CD8+ T cell infiltration in TNBCmodels

(20). A virus-like nanoplatform (PolyIC@ZIF-8) degrades in the acidic

TME, releasing PolyIC to induce apoptosis and promote T cell

recruitment and activation in an antigen-dependent manner (21).

Dendritic cell (DC) activation is also critical for OV-mediated

antitumor immunity (22). A GFP-transgenic Newcastle disease virus

(NDV-GFP) matures monocyte-derived DCs, priming antigen-specific

T cell responses against breast cancer cells (23). Notably, combining

high-dose vitamin C with oncolytic adenoviruses (oAds) amplifies T

cell activation (24).

Natural killer (NK) cells also contribute to antitumor immunity.

An oncolytic vesicular stomatitis virus (VSV)-based vaccine

enhances NK cell activity and improves TNBC outcomes (25).

OVs engineered to express CCL5 recruit NK cells to tumor sites,

synergizing with NK cell-based therapies (26). Moreover, tumor-

tropic NK cells can serve as carriers for systemic OV delivery (27)

Combining NKT cell immunotherapy with engineered OVs further

enhances tumor targeting (28).
FIGURE 1

Primary mechanisms of oncolytic virotherapy in breast cancer.
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Challenges and optimization strategies
for oncolytic virotherapy in breast
cancer

Limited tumor targeting after systemic
administration

Enhancing OV specificity for breast cancer cells is a key

research focus. For HER2-positive breast cancer, the HSV-based

OV R-LM249 selectively infects and kills HER2-overexpressing cells

(29) For HER2-negative tumors, mesothelin (MSLN) is a promising

target (30). The recombinant measles virus rMV-SLAMblind

suppresses Nectin-4-positive TNBC cells (31). Bispecific T cell

engagers (BiTEs) can redirect T cells to tumor antigens, and OV-

BiTE combinations represent a novel targeting strategy (32). For

instance, a PD-L1-targeting BiTE-armed oHSV-1 selectively kills

PD-L1+ tumor cells and macrophages while sparing T cells (33).

Intratumoral OV delivery also minimizes off-target toxicity (34).
Host antiviral immune responses

Neutralizing antibodies pose a major challenge to systemic OV

delivery. Strategies to evade or repurpose these antibodies are under

investigation (35, 36). Antibody retargeting improves intratumoral

adenovirus efficacy (37). Magnetic nanoparticles conjugated to

HSV1716 shield the virus from neutralizing antibodies and enable

magnetic tumor targeting (38). Mesenchymal stem cells (MSCs)

serve as effective OV carriers, enhancing tumor delivery and

infiltration (39, 40). A liposome-encapsulated NDV expressing

MIP-3a stimulates antitumor immunity and inhibits angiogenesis

(41). Exosome-based delivery systems also show promise in

TNBC (42).
Engineering multifunctional OVs

Genetic modifications enhance OV specificity and potency. A

miR-145/143-modified coxsackievirus B3 (miR-CVB3-1.1)

selectively lyses breast cancer cells (43). Combining miR-CVB3

with CpG-melittin suppresses primary and metastatic tumor

growth (44). The oncolytic adenovirus AdSVP-lncRNAi9 silences

oncogenic miRNAs to inhibit TNBC proliferation and

migration (45).

Immunomodulatory OVs amplify antitumor immunity. IL-21-

or IL-23-armed vaccinia viruses induce potent immune responses

(46, 47). A TK/N1L-deleted vaccinia virus (VVDTKDN1L) prevents
postoperative recurrence and metastasis (48) TGF-b inhibition

synergizes with OVs (49)., and deleting immune evasion genes

enhances efficacy (50). Besides, OVs expressing PD-1/IL-12

remodel the immunosuppressive TME (51).

Immune checkpoint-armed OVs combine virotherapy with

checkpoint blockade. An adenovirus suppressing PD-L1 improves

checkpoint inhibitor safety and efficacy (52). A TIGIT-targeting
Frontiers in Immunology 03
scFv-armed vaccinia virus (VV-scFv-TIGIT) synergizes with PD-1

blockade (53). Another engineered VV-a-TIGIT enhances T cell

recruitment and activation (54).
Combination therapies with oncolytic
viruses

OVs are potent modulators of the TME, and their combination

with immune checkpoint inhibitors (ICIs), CAR-T cells, or other

immunotherapies represents a highly promising strategy (55–58).

For instance, the combination of reovirus and CD3-bispecific

antibodies enhances interferon-mediated responses and promotes

T cell infiltration, leading to tumor regression in HER2+ breast

cancer models (59). Additionally, genome-wide CRISPR-Cas9

screening has identified PARP1 as a key cellular factor that

restricts viral replication; accordingly, PARP inhibition sensitizes

TNBC to OV-ICI combination therapy (60) Neoadjuvant OV

treatment has also been shown to improve surgical outcomes and

reduce recurrence rates (61). It is critical to optimize dosing and

timing in these combinational approaches, as the synergistic effects

between OVs and ICIs are both dose- and schedule-dependent (62,

63) Therefore, establishing optimal dosing regimens and treatment

sequences is paramount for the rational design of clinical trials

investigating OV-based combination immunotherapies.

OVs also synergize with chemotherapy, radiotherapy, and

targeted therapies (64). Table 1 Stereotactic body radiotherapy

(SBRT) enhances OV-induced immunogenic cell death (65).

Kinase inhibitors, such as BRAF inhibitors, improve OV efficacy

(66, 67). Epigenetic modifiers like entinostat augment OV-IL-15

superagonist combinations (68, 69).
Development of potent oncolytic virus
cancer vaccines

The development of robust oncolytic virus (OV)-based cancer

vaccines relies on the rational design of tumor-selective viruses and

the strategic exploitation of their immunostimulatory properties.

Utilizing OVs as an adjuvant platform for therapeutic cancer

vaccines is particularly attractive for personalized immunotherapy

targeting patient-specific neoantigens (79, 80). High-throughput

sequencing technologies can be leveraged to optimize viral design,

modulate immune responses, and identify predictive biomarkers of

clinical efficacy (81). Furthermore, direct imaging and automated

analysis using tumor-on-chip systems have elucidated the

cooperative antitumor activity between immune cells and

oncolytic vaccinia virus, providing novel insights into the

mechanisms of action of oncolytic vaccines (82).
Discussion

Oncolytic virotherapy represents a novel multimodal approach

bridging virology, oncology, and immunology. While preclinical
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and clinical studies validate the antitumor effects of several OVs,

their clinical translation faces challenges, including immune and

physical barriers that limit intratumoral delivery, replication, and

spread. Beyond improving OV bioavailability and efficacy,

developing platforms that synergize with existing therapies is

crucial. A deeper understanding of host-virus interactions,

particularly in metabolically relevant models, will help bridge the

gap between bench and bedside.
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TABLE 1 Pre-clinical research of oncolytic virotherapy in breast cancer.

Oncolytic virus Combined agent Mechanism of action Key findings Ref

Oncolytic alphavirus M1 Doxorubicin
Doxorubicin enhances viral replication and
necroptosis

Suppresses TNBC growth in vivo (70)

Reovirus Doxorubicin conjugate
Reo-dox promotes innate immune activation and
DNA damage

Reduces primary and metastatic
TNBC burden

(71)

Talimogene laherparepvec
(T-VEC)

NAC
T-VEC + neoadjuvant chemotherapy (NAC) for
TNBC (Phase I trial)

55% complete response rate,
manageable toxicity

(72)

T-VEC Paclitaxel + NAC Intratumoral T-VEC + chemotherapy (Phase II trial) Increases RCB0–1 rates in TNBC (73)

VG161 (oHSV-1) Paclitaxel Induces proinflammatory TME changes
Inhibits breast cancer growth and
lung metastasis

(74)

TG6002 (VV) 5-Fluorouracil Converts 5-FC to 5-FU, inducing tumor lysis Effective in canine mammary tumors (75)

Measles virus (MV)
Baicalein (BAI) +
Cinnamaldehyde (CIN)

BAI/CIN sensitize tumor cells to MV Enhances tumor cell killing。 (76)

VSVD51 T-DM1 VSVD51 overcomes T-DM1 resistance in HER2+ cells
Improves survival in HER2+
xenografts

(77)

T-VEC Atezolizumab T-VEC + anti-PD-L1 for TNBC (Phase Ib trial) Limited antitumor activity observed (78)
frontier
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