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Cancer remains the leading cause of death worldwide. Despite decades of
continuous research, limitations persist in existing therapeutic approaches.
Conventional strategies such as surgery, chemotherapy, and radiotherapy,
though advanced, face challenges including poor bioavailability, toxic side
effects, inadequate targeting of cancer cells, and limited survival benefits. The
major issue lies in the inability of improved drug formulations to effectively reach
cancer cells. Emerging approaches such as photodynamic therapy (PDT) and
immunotherapy have shown greater promise, offering reduced side effects and
higher treatment efficiency compared to traditional methods. Various natural and
synthetic nanocarriers, including exosomes, liposomes, solid lipid nanoparticles
(SLNs) and micelles have been explored as drug delivery vehicles in these
therapies. Among them, exosomes, being natural secretory vesicles, have
shown unique potential as independent delivery systems. However, challenges
and limitations remain in their application for precise cancer targeting. A
combinational strategy, integrating exosomes with other lipid-based drug
delivery systems (LBDDS), while preserving their intrinsic properties and
engineering their surface to carry photosensitizers (PS) or immune modulators,
could overcome these barriers. Such well-designed natural cargos may enhance
therapeutic efficacy, modulate the tumor microenvironment, and address
current shortcomings in cancer therapy. This review highlights the individual
applications of PDT and immunotherapy using exosomes and LBDDS, and
explores their potential synergistic use for more effective and targeted
cancer treatment.
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1 Introduction

Cancer remains the leading cause of death worldwide,
significantly impacting human health and well-being. While
traditional treatment strategies, such as surgery, chemotherapy,
and radiotherapy, have advanced over the years, they often come
with severe side effects, poor tumour targeting, and limited survival
rates (1). These limitations have driven the exploration of more
modern treatment approaches, including photodynamic therapy
(PDT) and immunotherapy, both of which show considerable
promise in enhancing treatment efficacy while minimizing
adverse effects.

Photodynamic therapy (PDT) has made notable progress,
particularly in treating solid tumours. Photodynamic therapy (PDT)
involves the administration of a photosensitizer followed by localized
irradiation with light of a specific wavelength, generating reactive
oxygen species (ROS) that selectively induce cytotoxicity in targeted
cells (2-5). These ROS cause apoptosis, DNA damage, and immune
responses at the tumour site. However, the clinical application of PDT
faces several obstacles, such as poor solubility, aggregation, and off-
target effects of PSs. Therefore, developing efficient and safe drug
delivery platforms is crucial (6). Despite its potential, PDT is still
challenged by off-target effects, necessitating the development of
optimized delivery systems that ensure precise tumour targeting
while minimizing unwanted impacts.

Immunotherapy, which harnesses the body’s immune system,
often in combination with monoclonal antibodies, has emerged as a
promising cancer treatment. By stimulating the immune response,
immunotherapy aims to target and eliminate cancer cells. However,
its therapeutic potential is limited by challenges such as off-target
delivery, immune tolerance induction, and immune evasion by
tumours (7, 8). Additionally, the hypoxic and immunosuppressive
characteristics of the tumour microenvironment (TME) further
reduce the efficacy of these therapies (8). The TME’s ability to
induce immune tolerance and evade immune surveillance poses
significant barriers to effective immunotherapy, making it
imperative to overcome these obstacles to improve cancer
treatment outcomes.

Exosomes, naturally occurring extracellular vesicles (EVs) with
liposome-like bilayer structures, have shown great promise in
cancer therapy due to their prolonged circulation time, immune
system evasion, and tumour-homing capabilities. These properties
make exosomes ideal candidates for targeted drug delivery (6).
Moreover, exosome-based cancer immunotherapy has emerged as a
promising strategy to combat the immunosuppressive TME, engage
immune checkpoint blockades, and deliver cancer vaccines (9).

In recent years, biomimetic drug delivery systems (BDDSs), such
as lipid-based nanocarriers (liposomes, nano-emulsions, solid lipid
nanoparticles, nanostructured lipid carriers, and lipid-polymer
hybrid nanoparticles), have attracted significant attention for their
ability to deliver therapeutic agents including PSs with greater
precision and efficiency. Lipid-based systems are particularly
appealing due to their enhanced biocompatibility, solubility, and
permeability (10, 11). These systems improve the bioavailability of
hydrophobic and lipophilic drugs, making them versatile in
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delivering both hydrophobic and hydrophilic compounds (12, 13).
Despite these advancements, precision targeting of tumour cells while
minimizing systemic side effects remains an active area of research.
Although preclinical studies have demonstrated the promise of
exosome and lipid-based systems, their clinical translation is
limited by challenges related to production, scalability, and stability.
Addressing these challenges is crucial for unlocking the full potential
of these systems in clinical cancer treatment.

This review explores the application of exosomes and lipid-
based systems for the delivery of therapeutic agents in PDT and
immunotherapy. It examines the potential advantages of these
innovative drug delivery platforms, identifies current limitations,
and outlines promising future directions to overcome these
challenges in cancer treatment.

2 Exosomes as drug delivery vehicles

Exosomes are a specific type of nanosized extracellular lipid
bilayer membrane vesicles secreted by almost all cell types and play
a pivotal role in intercellular communication (Figure 1) (9, 14). In
1990s from immunological studies by Raposo et al. (1996) the role of
exosomes in adaptive immunity was established by demonstrating
secretion of exosomes B lymphocytes which are capable of antigen
presentation to T cells, carrying functional MHC class II molecules
(15). Shortly thereafter, another report by Zitvogel et al. (1998)
exhibited that dendritic cell-derived exosomes could prime
cytotoxic T lymphocytes and eradicate established murine tumors,
thereby introducing exosomes as a novel platform for cancer
immunotherapy (16). Building on these discoveries of exosomes,
their therapeutic potential as a drug delivery vehicle was later
established by Alvarez-Erviti et al. (2011), who commenced
targeted exosome engineering to deliver siRNA systemically across
the blood-brain barrier. All together, these pioneering studies laid
the foundation for the broad exploration of exosomes in
immunotherapy, oncology, and nanomedicine (17).

2.1 Biogenesis and characteristics

Exosomes, typically ranging in size from ~30 to 150 nm, are
characterized by their ability to encapsulate various biological
molecules, including nucleic acids and proteins, within their lumen
or lipid bilayer. These vesicles are released from cells under both
physiological and pathological conditions to facilitate cell-to-cell
communication and enable cargo transport both in vivo and in
vitro. The biogenesis of exosomes occurs either constitutively or
can be induced by external stimuli, originating from endosomal
compartments. Endosomes give rise to three primary types of
vesicular structures: macrovesicles (50-1000 nm in diameter),
which are shed from the cell membrane through membrane
remodelling and outward blebbing; apoptotic blebs (100-5000 nm),
which emerge from dying cells during the final stages of apoptosis;
and exosomes (30-150 nm, though size can vary across studies),
which are released from multi-vesicular bodies (18).
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FIGURE 1

Schematic representation of combined exosome and lipid-based nanocarrier strategies for cancer therapy, integrating photodynamic therapy (PDT)
and immunotherapy to achieve improved therapeutic efficacy compared to conventional treatments.

2.2 Exosomes in photodynamic therapy

Photodynamic therapy (PDT) employs photosensitizers (PSs)
that, when activated by a specific wavelength of light in the presence
of oxygen (O,), produce cytotoxic free radicals and ROS to destroy
cancer cells (19, 20). However, free PSs in PDT often face limitations
such as poor water solubility, photostability, aggregation, and off-
target effects, which restrict their clinical applications (21, 22).
Exosomes offer a promising solution by enhancing PS delivery to
tumour cells, improving accumulation, and reducing systemic
toxicity (23). Additionally, novel PDT strategies with PS agents can
be developed via aggregation-induced emission (AIE) properties
through ROS generation and tumour-targeted phototherapy (24,
25). Studies have demonstrated that the acidic tumour
microenvironment, combined with laser irradiation and exosome-
based carriers such as PMA/Au BSA@Ce6 or ChiP-Exo, can
significantly enhance PDT efficacy via dual-stage light-directed
subcellular destruction (26). The Exo-PMA/Au-BSA@Ce6 system is
an advanced, exosome-based nanoplatform that elegantly combines
enhanced tumor-targeted delivery, real-time fluorescence imaging,
and potent photodynamic therapy. PMA/Au-BSA@Ce6
nanoparticles accommodate an amphiphilic polymer (PMA), ultra-
small gold nanoparticles (Au), bovine serum albumin (BSA), and the
photosensitizer chlorin e6 (Ce6) which were loaded into urinary
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exosomes via an instant electroporation technique, creating the
hybrid Exo-PMA/Au-BSA@Ce6 nanovehicles. This nanoparticle
structures got collapsed and released inside cancer cells under
633nm laser irradiation and acidic condition, producing
considerable singlet oxygen, effectively inhibiting growth of tumor
cells (27). Although photosensitizer-induced reactive oxygen species
(ROS) are cytotoxic, their short lifespan and limited diffusion restrict
the overall anti-tumor efficacy. To overcome this limitation, Zhao
et al. (2021) developed a nucleus-targeted exosome engineered with a
chimeric peptide (ChiP-Exo) to enhance photodynamic therapy
(PDT). Using a dual-stage light strategy, they achieved sequential
plasma membrane and nuclear degradation in cancer cells. This
approach enabled in situ ROS activation at the nuclear level, leading
to effective nuclei disruption, inhibition of tumor growth, and
reduced systemic toxicity (28). ChiP-Exo’s plasma membrane-
targeted PDT, for example, can degrade membrane structures,
induce photochemical internalization (PCI), and promote
lysosomal escape (26). Natural PSs like hypericin from Hypericum
perforatum have also been investigated; to address their poor
solubility, high lipophilicity, instability, and production cost, H.
perforatum-derived exosome-like nanovesicles (HPDENs) have
been introduced as an innovative PS platform for PDT (26).
Furthermore, encapsulation within exosomes protects PSs from
degradation, improving photostability and therapeutic efficiency
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(23). While exogenous nanocarriers such as hyaluronic acid,
polydopamine, and chitosan have been explored to encapsulate
PSs, they often face immune system clearance (26), whereas
engineered exosomes loaded with PSs demonstrate low
immunogenicity, high biocompatibility, and enhanced blood
circulation, thereby improving PDT performance (23). To
overcome challenges such as poor tumour targeting and limited
tissue penetration of light, orchestrated nanoplatforms of
indocyanine green (ICG) have been developed to improve
bioavailability and tumour specificity in PDT (29). For instance, a
novel bio-nanoplatform was developed by integrating edible ginger-
derived exosome-like nanoparticles (GDNPs) with the
photosensitizer indocyanine green (ICG), forming GDNPs@ICG.
These nanoparticles were internalized by tumor cells through a
lipid-dependent pathway. Upon 808 nm near-infrared (NIR) laser
irradiation, GDNPs@ICG generated high levels of ROS,
malondialdehyde (MDA), and local hyperthermia within the
tumor, leading to lipid peroxidation and endoplasmic reticulum
(ER) stress, thereby enhancing the efficacy of photo-mediated
breast tumor therapy. Expression analyses of biomarkers such as
CD31, N-cadherin, IL-6, IFN-y, CD8, p16, p21, and p53 further
demonstrated that GDNPs@ICG effectively reduced angiogenesis,
suppressed metastasis, activated anti-tumor immune responses, and
promoted tumor cell senescence (30). In another study, melanoma-
derived exosomes were employed to design perfluorocarbon (PFC)-
based drug nanocarriers co-loaded with ICG and camptothecin
(CPT) (ICFESs), enabling targeted photochemotherapy (31).
Similarly, a combinational therapeutic strategy was reported using
tumor exosome-based nanoparticles co-formulated with ICG and the
tyrosine kinase inhibitor gefitinib (IG@EXOs). This approach
demonstrated enhanced antitumor efficacy against oral squamous
cell carcinoma (OSCC) through synergistic phototherapy and
molecularly targeted therapy (32).

Additionally, the synthesis of organic PSs capable of generating
ROS from intrinsic non-photosensitizer fluorophores upon light
irradiation is an emerging approach for effective cancer treatment
(33). Addressing melanin interference in PDT, coordination-driven
assembly of Ir (III) complex PSs with Fe (III) ions into
nanopolymers, camouflaged with exosomes, has been shown to
eradicate melanoma tumours and inhibit metastasis formation in
mouse models (34).

2.3 Exosomes in immunotherapy

Immunotherapy leverages the immune system to selectively
eradicate cancer cells and offers advantages over conventional
treatments, which often damage healthy tissues and promote drug
resistance (35, 36). Exosome-based immunotherapy is emerging as a
promising alternative due to its ability to deliver tumour-associated
antigens, immune checkpoint inhibitors (ICIs), and immunomodulatory
molecules with high specificity and low immunogenicity (9) (Figure 2).
Nasopharyngeal carcinoma (NPC), a malignancy prevalent in Southeast
Asia, is often diagnosed late and exhibits high recurrence and metastatic
rates, compounded by resistance to chemo-radiotherapy and limited
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responses to immune checkpoint inhibitors due to T cell exhaustion and
an immunosuppressive tumor microenvironment (TME). Exosomes,
bilayered vesicles of 30-150 nm, play crucial roles in cell-cell
communication within the TME, and tumor-derived exosomes (TEX)
in NPC have been linked to angiogenesis, metastasis, and therapeutic
resistance, though their role in immune evasion remains underexplored;
importantly, their detectability in body fluids highlights their potential as
biomarkers for early diagnosis and prognostication (37). Beyond NPC,
exosomes are increasingly investigated as therapeutic platforms, such as
in genetically engineered tumor cell-derived exosomes co-delivering
endogenous tumor antigens and immunostimulatory CpG DNA,
which enhanced dendritic cell activation and elicited robust antitumor
immunity in murine melanoma models (38). Similarly, their unique
lipid-protein composition and natural role in genetic material transport
position exosomes as promising low-toxicity, high-efficiency vectors for
gene therapy, although further work is required to optimize targeting
and cargo loading (39). Moreover, innovations such as dendritic cell-
mimicking nanovaccines (HybridDC), engineered with tumor-
associated exosomes, costimulatory molecules, and CCR?7, have
demonstrated superior antigen delivery, improved lymph node
targeting, and synergy with immune checkpoint blockade in glioma
models, underscoring the potential of exosome-based strategies to
reshape the immune landscape and enhance personalized cancer
immunotherapies (40). Engineered exosomes, such as GEMINI-Exos
armed with anti-CD3, anti-EGFR, PD-1, and OX40L, have
demonstrated significant inhibition of triple-negative breast cancer in
mice (41), while surface modifications like PEGylation or CD47
overexpression enhance circulation and tumour targeting (26).
SMART-Exos displaying bispecific antibodies (anti-CD3/anti-EGFR or
anti-CD3/anti-HER2) enable simultaneous T cell activation and
redirection toward tumour cells, and CD40L-expressing exosomes
further boost dendritic cell maturation and cytokine secretion (42). By
overcoming tumour immune escape mechanisms and enabling precise
modulation of the tumour microenvironment, exosome-based strategies
including antigen delivery, immune checkpoint blockade, and TME
normalization hold transformative potential for next-generation cancer
immunotherapy (Figure 1).

2.4 Engineering exosomes for PDT and
immunotherapy

2.4.1 Advantages of engineered exosomes & its
potential for PDT & immunotherapy

Engineered exosomes combine unique biological and
physicochemical properties that make them highly attractive for
targeted cancer therapy. Their nanoscale size (30-150 nm)
facilitates deep penetration into tumor tissue via the enhanced
permeability and retention (EPR) effect, while the native lipid
bilayer provides structural stability and protects encapsulated
cargo from enzymatic degradation during systemic circulation
(43). Compared with synthetic nanocarriers, exosomes display
low immunogenicity and high biocompatibility, thereby
minimizing the risk of adverse immune reactions (44)
(Figure 3) (Table 1).

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1687953
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Swain et al.

10.3389/fimmu.2025.1687953

Antigen delivery
TME normalization
Immune checkpoint
Blockade

DCcells mnumion

”

1, N
Earw =L
N o

it

i -
T = “immune celts
# ? ©_  secreting exosomes Modulates tumour
¥ J " microenvironment
4 N @ L)
St .
Exosome y

&‘*

immune system

Direct stimulation of
immune system

Enhanced

antigen presentation
Immune cell activation
Anti tumour response

Cancer vaccines designing
Targeting cancer resistance

(~YA

@ 303?"‘:‘“\:;. = 'E\'&jg nrﬂl-:

“xﬁ Proteins / Drugs
Hybrid Exosomes

@)

Lipid nano carrier

o' ;

Drug loading and
Surface engineering

PS

Different cargo molecule

Heart

Improved Bio distribution and
retention time

FIGURE 2

Schematic representation of improvement in Bio-distribution of exosomes in different human body organs and immune cell activation of exosomes
and Lipid nano carriers directly, indirectly or targeted type to elicit specific immune response modulating TME to target cancer cells in cancer

immunotherapy. DC (Dendritic cell), (TME) Tumour micro-environment.

A key advantage lies in their intrinsic homing capability,
dictated by protein and lipid signatures inherited from donor
cells. This property enables selective accumulation in tumors and
other specific tissues without extensive chemical modification (9).
Precision targeting can be further enhanced through surface
engineering strategies such as ligand conjugation, genetic fusion
of targeting motifs, or chemical modification, which improve tissue
specificity, help bypass biological barriers, and minimize off-target
effects (56).

Engineered exosomes also support multimodal therapeutic
applications. Their membranes can simultaneously incorporate
imaging agents and therapeutic cargo, enabling real-time
biodistribution tracking alongside treatment delivery. This
multifunctionality supports theranostic approaches, where
diagnosis and therapy are combined within a single platform (14).
Moreover, exosomes can accommodate a wide spectrum of
hydrophilic, hydrophobic, and macromolecular therapeutics
including nucleic acids, proteins, and chemotherapeutics
providing versatility across oncology, immunotherapy, and
regenerative medicine (Figure 1; Figure 2).

Over the past decade, significant progress has been made in
designing exosomes for targeted cancer therapy with diverse
payloads such as siRNA (57), miRNA (58), and chemotherapeutic
agents (59). Their stability protects cargo from enzymatic
degradation, while their innate homing and biocompatibility
ensure safety and tolerability in vivo (43, 44). For instance,
exosomes from breast cancer cells engineered to overexpress miR-
134 suppressed Hsp90, inhibited invasion and migration, and
enhanced sensitivity to anti-Hsp90 drugs. Similarly, endothelial
cell-derived exosomes enriched with miR-503 reduced tumor cell
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proliferation and invasion in vitro (56). THP-1 macrophage-
derived exosomes transfected with miR-143, when intravenously
administered to colon cancer-bearing mice, elevated miR-143
expression in tumors, kidneys, and serum, resulting in significant
tumor growth inhibition (43, 60-62).

Beyond miRNA delivery, genetically engineered exosomes have
also been explored as immunotherapeutic platforms. Streptavidin-
lactadherin (SAV-LA) expressing exosomes from B16BL6 melanoma
cells, functionalized with biotinylated CpG DNA (CpG-SAV-exo),
effectively activated dendritic cells, enhanced antigen presentation,
and produced stronger antitumor responses than exosomes or CpG
DNA alone (38). Similarly, PD1-engineered exosomes co-loaded with
the immune adjuvant imiquimod (PD1-Imi Exo) demonstrated
potential in augmenting checkpoint blockade therapy (63). Artificial
exosomes derived from Siglec-10 engineered M1 macrophages,
formulated into a hydrogel encapsulating the efferocytosis inhibitor
MRX-2843, reprogrammed macrophage polarization and efferocytosis
when combined with X-ray radiation, thereby enhancing phagocytosis,
antigen presentation, and robust antitumor immunity in ovarian
cancer (64).

The method of drug loading is another critical determinant of
therapeutic efficacy. Cargo hydrophilicity, lipophilicity, molecular
weight, membrane integrity, and vesicle stability collectively influence
loading efficiency and release kinetics (65). For example, studies on
milk-derived exosomes show that hydrophilic drugs achieve
significantly higher loading rates (33-65%) compared to
hydrophobic drugs (13-22%) [Milk-derived exosomes as a promising
vehicle for oral delivery of hydrophilic biomacromolecule drugs].
Doxorubicin encapsulation efficiency varies by species and method,
with goat-derived exosomes exhibiting favorable biphasic release
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Combining the advantages of exosome and lipid-based nanocarriers in photodynamic therapy (PDT) and immunotherapy to enhance cancer cell

targeting.

profiles (66). Similarly, engineered exosomes demonstrated superior
loading of hydrophilic porphyrins via saponin-assisted incubation
and hypotonic dialysis achieving up to 11-fold higher efficiency
whereas hydrophobic porphyrins consistently showed poor
incorporation (67) (Table 1).

Engineered exosomes also serve as potent vehicles for apoptosis-
inducing agents. TRAIL-loaded exosomes from mesenchymal stem
cells (MSCs) have demonstrated strong cytotoxic activity against lung,
pleural mesothelioma, renal, breast, and neuroblastoma cell lines (68,
69). Likewise, HEK293T-derived exosomes engineered to express
Lamp2B fused with the IL-3 receptor, overexpressed in chronic
myeloid leukemia (CML), have been loaded with imatinib or BCR-
ABL siRNA. These IL3-Lamp2B (IL3L) exosomes showed enhanced
tumor targeting and therapeutic efficacy in preclinical models (62, 69).

In immunotherapy, engineered exosomes are emerging as
modular vaccine platforms. One strategy fused the ovalbumin
antigen to the lipid-binding C1C2 domain of lactadherin,
displaying the antigen on the exosome surface. When used as a
DNA vaccine, this design elicited robust antigen-specific CD4" and
CD8" T-cell responses, effectively suppressing tumor progression in
fibrosarcoma, melanoma, and thymoma models. Drug-loaded
exosomes modified with targeting ligands have also shown selective
accumulation in tumors following intravenous administration, where
doxorubicin- and imatinib-loaded constructs inhibited tumor growth
without systemic toxicity (45, 69, 70).

Genetic engineering further expands the utility of exosomes as
gene delivery systems. Ohno et al. demonstrated efficient delivery of
let-7a miRNA to malignant cells by fusing platelet-derived growth
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factor with the GE11 peptide, thereby enhancing binding to EGFR-
positive tumors and correcting miRNA dysregulation (56, 71).

Taken together, engineered exosomes offer a highly versatile
platform for precision drug delivery, PDT, and immunotherapy.
Their biocompatibility, stability, and ability to integrate diagnostic
and therapeutic functions position them at the forefront of next-
generation cancer therapeutics (Table 1).

2.4.2 Key preclinical and clinical studies

A growing body of preclinical data underscores the translational
promise of engineered exosomes in oncology. TRAIL-loaded MSC-
derived exosomes have demonstrated potent induction of apoptosis
in lung, breast, renal, neuroblastoma, and mesothelioma cell lines,
with significant tumour regression observed in xenograft models
(68). In hematologic malignancies, IL3-Lamp2B-engineered
exosomes loaded with imatinib or BCR-ABL siRNA selectively
targeted chronic myeloid leukemia cells, reducing tumour burden
without overt systemic toxicity (69).

In solid tumours, GE11 peptide modified exosomes successfully
delivered let-7a miRNA to epidermal growth factor receptor
positive breast cancer cells, restoring tumour-suppressor miRNA
levels and reducing proliferation in vitro and in vivo (71). Similarly,
exosomes loaded with doxorubicin and modified with tumour-
homing peptides showed preferential tumour accumulation,
significant growth inhibition, and minimal cardiotoxicity
compared to free drug administration (70).

A dlinical pilot trial report explained plasma-derived exosomes
from head and neck cancer patients undergoing PDT reflecting
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TABLE 1 Comparision of therapeutic potential characteristics between exosomes and lipid nano-carriers.

Efficiency of drug carrier

Drug-loading/Encapsulation Efficiency
(EE)

Circulation Half-life (t%)

Tumor Accumulation (%ID/g or
relative uptake)

Exosomes

Exhibit relatively low and variable drug-loading efficiencies.
Using electroporation, ~20% doxorubicin encapsulation
efficiencies were observed in reports (45). Bagheri et al. was
able to depict ~35% EE with mesenchymal stem cell (MSC)-
derived exosomes (46). In Optimized electroporation
conditions, markedly improved vesicle recovery and
doxorubicin loading efficiency was observed, with condition-
dependent gains approaching ~50-60% in some cases (47).
Nonetheless, vesicle source, cargo type, and loading strategies
are highly influenced by encapsulation outcomes.

Intravenously administered native exosomes are rapidly
cleared by the mononuclear phagocyte system; Only ~2-4
minutes of plasma half-lives have been reported in mouse
studies (50) (51);. Very short circulation times and rapid
hepatic and splenic uptake was also confirmed in a study
report (52).

After IV administration unmodified exosomes show minimal
tumor accumulation. Comparing exosomes and liposomes,
exosomes show rapid clearance with little detectable tumor
uptake, although intratumoral injection produced higher

Lipid nanocarriers

Consistent high EE due to well-developed active (remote)
loading strategies. Doxorubicin EE showed ~98% using pH-
gradient remote loading (48). Similarly, >90% EE was
demonstrated with ammonium sulfate gradients (49).

Prolonged systemic circulation may be obtained by PEGylated
liposomes. For Doxil® (pegylated liposomal doxorubicin),
Gabizon et al. reported a terminal half-life of ~55 h in humans
(53). FDA labeling indicates a range of 50-80 h, shows a longer
order of magnitude than exosomes. This extended circulation
largely prevented rapid clearance because of PEGylation.

Enhanced permeability and retention (EPR) effect was exploited
by PEGylated liposomes to achieve measurable tumor
accumulation. Effective targeting of solid tumors by
radiolabeled PEGylated liposomes in locally advanced cancer
patients reported measurable tumor uptake in a clinical
imaging study (55),. In a preclinical work, Tumor deposition of
Al11In-labeled PEGylated liposomal vinorelbine, was quantified

local retention than liposomes (54).

dynamic EMT-to-epithelial transitions, positioning them as potential
biomarkers of therapeutic response (72). ROS-sensitive PEGylated
exosomes for chemo-PDT could be applied as a preclinical
advancement to engineered exosomes (73). Other studies include
oral milk exosomes for brain-targeted PDT (74), and tumor-derived
exosome hybrids co-loaded with photosensitizers and drugs for
synergistic PDT chemotherapy (31). Together, these findings
underscore exosomes as both biomarkers and multifunctional PDT
carriers with high translational potential.

Early-stage clinical investigations are also underway. A first-in-
human Phase I trial (NCT03608631) assessed Participants received
mesenchymal stromal cells-derived exosomes with KrasG12D
siRNA IV over 15-20 minutes on days 1, 4, and 10 with
treatment repeatation in every 14 days for up to 3 courses in the
absence of disease progression or unacceptable toxicity. Participants
who responded were continued 3 additional courses (75). Another
trial (NCT01159288) explored autologous dendritic cell-derived
exosomes loaded with tumour antigens as a personalized cancer
vaccine for non-small cell lung cancer, reporting induction of
tumour-specific T-cell responses (76). An immunotherapy was
developed by Gustave Roussy and Curie institutes involving
metronomic cyclophosphamide (mCTX) followed by vaccinations
with tumor antigen-loaded dendritic cell-derived exosomes (Dex).
mCTX inhibits Treg (regulatory T-cells) functions restoring T and
NK cell effector functions and Dex are able to activate the innate
and adaptive immunity. The median progression-free survival
(PFS) in patients responding or stabilized after 4 chemotherapy
cycles ranges from 2 to 2.8 months. They proposed a maintenance
immunotherapy in 47 advanced unresectable NSCLC patients
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reaching 14.92 + 3.96%ID/g in murine colon carcinoma
models. Unmodified exosomes after intravenous delivery,
usually seen with tumor uptake levels with a more rapid
clearance.

responding or stabilized after induction chemotherapy with Dex-
based treatment to improve PFS rate at 4 months in these
patients (76).

Collectively, these studies illustrate the versatility, safety, and
therapeutic potential of engineered exosomes, laying a robust
foundation for their translation into precision oncology and next-
generation immunotherapies.

3 Lipid-based nanocarriers

Lipid-based nanocarriers are nanoscale delivery platforms
composed of biocompatible lipid components designed to
encapsulate and transport therapeutic agents with enhanced
pharmacokinetic and pharmacodynamic profiles such as stability,
solubility, and targeted delivery profiles, while minimizing off-target
effects (77, 78). Owing to their structural versatility, these systems
can encapsulate both hydrophilic and hydrophobic molecules,
enhance drug solubility, protect labile compounds from
degradation, and enable targeted delivery, thereby reducing
systemic toxicity (79, 80) They have been extensively utilized in
cancer therapy, gene delivery, vaccine formulations, and other
biomedical applications (13, 81). Lipid based drug delivery system
is broadly classified into 3 types, namely, (i) emulsion type, (ii)
vesicular system and (iii) lipid particulate system (82). Liposomes,
solid lipid nanoparticles (SLNs) (11, 83), and nanostructured lipid
carriers (NLCs), alongside a wider array of lipid-based drug delivery
systems (LBDDS) such as lipospheres, lipid drug conjugate
nanoparticles (LDCs), self-emulsifying formulations (SEFs),
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Pickering emulsions, dry emulsions, micro- and nano-emulsions,
solidified reverse micellar solution (SRMS) tablets, herbosomes
(84), Phytosomes (85) cryptosomes (86), niosomes (87, 88),
ethosomes (89) bilosomes (90), and transferosomes (91) were
some of the modulated form of the basic LBDDS catagory. These
formulations employ diverse excipients such as triglyceride oils,
mixed glycerides, lipophilic and hydrophilic surfactants, and water-
soluble components, allowing high flexibility in drug formulation
design (13, 81). Each of these nanocarriers offers unique advantages
in drug loading, release kinetics, and stability (92, 93).

Liposomes are spherical vesicles composed of one or more
phospholipid bilayers are widely used for delivering anticancer
drugs, nucleic acids, and vaccine antigens (78, 94). SLN,
consisting of a solid lipid matrix stabilized by surfactants, provide
high drug entrapment efficiency and controlled release (92). NLCs,
the second generation of SLNs, incorporate a blend of solid and
liquid lipids, improving payload capacity and preventing drug
expulsion during storage (93, 95). Advances in lipid composition
engineering, PEGylation, ligand-mediated targeting, and stimuli-
responsive designs have further improved their therapeutic
precision and clinical applicability (96, 97).

Lipid-based nanocarriers provide multiple advantages, including
biocompatibility, ease of chemical modification, high physical
stability, and the capacity to carry both hydrophilic and
hydrophobic drugs (81, 98). They address key pharmaceutical
challenges such as the poor solubility and limited bioavailability of
hydrophobic drugs, while enabling fine-tuning for disease indication,
administration route, stability, and therapeutic efficacy. Clinically,
lipid-based formulations are widely deployed for topical, oral,
pulmonary, and parenteral delivery with minimal systemic toxicity,
in part by altering drug biodistribution to avoid sensitive organs.
Liposomes, for instance, have been adapted to carry anti-tumour and
antimicrobial agents, chelating agents, peptide hormones, enzymes,
proteins, vaccines, and genetic material (98). Notably, lipid
nanoparticles represent the first nanomedicine delivery system to
achieve widespread clinical translation, successfully delivering anti-
cancer, anti-fungal, and antibiotic drugs, as well as gene therapies and
anti-inflammatory agents (78).Specifically PDT and immunotherapy
based therapeutic approaches maximally employs Liposomes,
Micelles, SLNs and LNPs for successful applications.

Specialized systems such as cochleates formed via precipitation
of negatively charged lipids with cations have shown promise for
targeted delivery applications (99). Despite these advances, key
developmental challenges remain, particularly related to the
diversity of encapsulated cargo and the lack of standardized
characterization methods, which complicate stability assessment,
classification, and regulatory approval pathways (91).

3.1 Formulation techniques and
functionalization of lipid-based drug
delivery systems

Formulation techniques and functionalization strategies are
central to optimizing the therapeutic performance of LBDDS,
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aiming to maximize stability, enhance bioavailability, enable
controlled release, and achieve targeted delivery while minimizing
adverse effects (91). Functionalization focuses on surface
modification to improve biodistribution, facilitate tissue-specific
targeting, and enhance biological interactions.

3.1.1 Formulation techniques

The formulation types of LBDDS are also categorized into 4
types (i,e, Type I, Type II, Type III and Type IV). Type I
formulation consists of oils without surfactants (e.g., tri-, di-, and
monoglycerides), Type II bears oils and water insoluble surfactants,
Type III contains oils, surfactants, and cosolvents (both water-
insoluble and water-soluble excipients) and Type IV can be
prepared with water-soluble surfactants and co-solvents (91). The
process of formation of these LBDDS are explained briefly here as
this is beyond the scope of this manuscript.

Liposome Formation: Liposomes self-assemble from
phospholipids in aqueous environments to form bilayer vesicles
capable of encapsulating active pharmaceutical ingredients.
Common preparation methods include film hydration, solvent
evaporation, and reverse-phase evaporation (77).

Solid Lipid Nanoparticles (SLNs): Produced by emulsifying a
solid lipid in a liquid lipid or aqueous phase under high shear, SLNs
offer stable encapsulation for hydrophilic and hydrophobic
drugs (92).

Micelle Formation: Amphiphilic surfactants or block
copolymers self-assemble into micelles in aqueous media,
enabling solubilization of poorly water-soluble drugs and
improving their pharmacokinetic profiles (100).

Nanoemulsions and Microemulsions: Generated by emulsifying
oils and surfactants in water under high shear, these systems
produce stable nanoscale droplets that enhance solubility and
stability of hydrophobic drugs (101).

Nanostructured Lipid Carriers (NLCs): Formulated by blending
solid and liquid lipids, NLCs improve drug loading capacity and
release profiles over SLNs, making them particularly suitable for
lipophilic drugs (102).

3.1.2 Functionalization strategies

Functionalization of lipid based nanocarriers are mainly
achieved in the following ways.

Surface Coating: Functionalizing nanocarriers with
biocompatible polymers such as polyethylene glycol (PEG)
extends circulation time by reducing recognition and clearance by
the mononuclear phagocyte system (103).

Targeted Functionalization: Conjugation of specific ligands or
antibodies (e.g., folate, transferrin) to nanocarrier surfaces enables
receptor-mediated uptake in tumour cells or inflamed tissues,
improving specificity (104).

pH-Responsive and Enzyme-Responsive Functionalization:
Engineering nanocarriers to release their payload in acidic
tumour microenvironments or in the presence of specific
enzymes allows spatially controlled drug release (105).

Dual or Multi-Functionalization: Combining multiple targeting
moieties or therapeutic agents on a single nanocarrier platform
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enables combination therapy or multi-modal drug delivery with
enhanced efficacy (106).

These formulation and functionalization strategies collectively
enable the development of next-generation lipid-based delivery
systems that offer improved therapeutic index, reduced systemic
toxicity, and high precision in treating complex diseases,
particularly cancer (107).

3.2 Applications of lipid-based nanocarriers
in photodynamic therapy

The therapeutic efficacy of PDT is often constrained by poor
solubility, rapid clearance, and low tumour selectivity of
photosensitizers (108). Lipid-based nanocarriers have been employed
to overcome these limitations by improving photosensitizer stability,
enhancing tumour accumulation via the enhanced permeability and
retention (EPR) effect, and enabling co-delivery of chemotherapeutics
or immune modulators for synergistic effects (Table 2) (109, 110).

3.2.1 Liposomes

Liposomes have been extensively investigated for PDT applications,
with formulations such as liposomal zinc phthalocyanine and
verteporfin demonstrating improved pharmacokinetics and enhanced
tumour phototoxicity (111, 112). A comprehensive review highlighted
the role of liposomal formulations differing in size, composition, and
surface modification (e.g., folate conjugation) in enhancing tumour
targeting, reducing off-target toxicity, and improving PDT efficacy with
photosensitizers such as chlorin e6, phthalocyanines, and porphyrins
(113). Liposomal temoporfin (Foslip) demonstrated improved
pharmacokinetics, enhanced tumour uptake, and reduced prolonged
skin photosensitivity in preclinical and clinical evaluation, addressing a
major limitation of conventional PDT (114). Similarly, a liposomal
benzoporphyrin derivative monoacid ring A (BPD-MA, marketed as
Visudyne) exhibited controlled biodistribution and an improved safety
profile compared to free drug. Lipid-anchored BPD-liposome
combinations achieved significantly greater PDT efficacy at lower
light doses compared to either formulation alone.

3.2.2 Solid lipid nanoparticles

SLNs represent another important lipid-based drug delivery system
for PDT. For example, SLNs loaded with aluminum phthalocyanine
chloride modulated immunogenic cell death in melanoma models
(115). Hypericin (Hy), a natural phenanthroperylenequinone
photosensitizer from Hypericum perforatum, shows therapeutic
potential but suffers from hydrophobicity. Encapsulation into SLNs
(<200 nm, ultrasonication-prepared) achieved high entrapment
efficiency, enhanced photostability, and improved drug loading (116).
Thermoresponsive solid lipid nanoparticles with non-covalently bound
temoporfin (T-SLNP) exhibited faster accumulation kinetics and
higher phototoxicity in vitro, and biodegradable nanosystems (<50
nm) based on polymer-surfactant stabilized T-SLNPs demonstrated
improved in vivo anticancer efficacy compared with commercial
temoporfin formulations, along with controlled release and superior
biocompatibility (117). SLNs have also improved the solubility and
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PDT efficacy of photosensitizers such as SLN-AlPc, MPPa-loaded SLNs
(115, 118) and verteporfin (119).

3.2.3 Polymeric micelles

Micelles have also been widely explored for PDT. Thermosensitive
mPEG-b-p(HPMAm-Lac2) micelles efficiently encapsulated
hydrophobic Si(sol)2Pc photosensitizers, demonstrating high loading
efficacy, controlled release, and strong photocytotoxicity (120).
Polymeric micelles help address poor water solubility of many
photosensitizers (121). For instance, DSPE-PEG2000 micelles
trapped BODIPY3, yielding BODIPY3-PEG3 nanocomplexes with
excellent solubility and stability in aqueous media (122). Micelles
further extend circulation time by avoiding rapid recognition by
proteins and macrophages (121). Encapsulation polymers include
pluronics, PEG-lipid conjugates, and pH-sensitive systems such as
poly(N-isopropylacrylamide) or polyion complex (PIC) micelles.
Notably, imidazole-bearing ~102-responsive polymeric micelles
allowed light-triggered on-demand delivery of photosensitizers,
demonstrating stability during systemic circulation via ionic
crosslinking (123).

3.2.4 Nanostructured lipid carriers

NLCs have been used to increase drug-loading efficiency of
hydrophobic photosensitizers such as curcumin and hypericin,
thereby improving bioavailability and ROS generation (116, 124). A
topical NLC formulation of 5-ALA for basal-cell carcinoma enhanced
skin penetration and PDT effect (125). Targeted NLC approaches, such
as Angiopep-2-modified Ce6-NLCs, demonstrated BBB penetration
and enhanced PDT efficacy in glioblastoma (126). Natural lipid
nanoparticles (LNPs) loaded with aluminum phthalocyanine showed
significant therapeutic potential for melanoma PDT (127).

Targeted Lipid-Based Systems: Ligand-targeted liposomal PDT
agents, including folate-conjugated formulations, selectively
accumulated in cancer cells overexpressing folate receptors,
thereby enhancing therapeutic specificity (128). This strategy
exemplifies how lipid carriers can be engineered for precision
targeting in PDT.

3.3 Applications of lipid-based nanocarriers
in immunotherapy

Cancer immunotherapy seeks to harness the host immune
system to recognize and eradicate malignant cells, using strategies
such as immune checkpoint blockade, cancer vaccines, and adoptive
T cell transfer (129, 130). Lipid-based nanocarriers have emerged as
promising delivery platforms for immunotherapeutic agents, as
they can encapsulate antigens, adjuvants, and immunomodulatory
drugs, facilitate co-delivery to antigen-presenting cells (APCs), and
modulate immune responses through controlled release and
targeting (131, 132) (Figure 2).

3.3.1 Liposomes
Liposomes have been widely explored in immunotherapy. They
can deliver tumor-associated antigens (TAAs) along with Toll-like

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1687953
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Swain et al.

10.3389/fimmu.2025.1687953

TABLE 2 Overview of traditional and combinational drug delivery systems in photodynamic therapy (PDT) and immunotherapy.

Traditional drug delivery system in PDT and immunotherapy

System type Advantages References
Enhancement in surface modification,
Lipid-based (e.g., liposomes, nanoliposomes, exosomes), surfactant-based permeability and retention effect for PS-loaded
1 (niosomes), polymer-based (polymeric nanoparticles, micelles, dendrimers, system in tumors cells better biodistribution of (1,18, 23)
: nanogels), and inorganic (silver, gold, iron, ZnO, silica, quantum dots) the encapsulated agents, T
nanosystem in PDT and immunotherapy decrease in nonspecific targeting and decrease or
eliminate side effects
5 Extra cellular vesicles EV derived PS for efficient targeting to cancer )
cell
Augmentation of Immunosuppressive tumour
3. Exosomes microenvironment, Immune checkpoint blockade 3)
and therapeutic cancer vaccines
4. HER2-specific exosome (EXO)-T vaccine Efficient against HER2-positive breast cancer (5)
5. Immune cell derived exosomes Effective Anticancer therapy )
Highly efficient targeted delivery, Protected
6. Cancer cell derived exosomes packaging, reduction of side effects in cancer (10)
treatment
7. Exosomes Efficient targeting of chemotherapeutics (14)
8. Tumor-exocytosed exosome Efficient tumour penetration (16)
9. Hypericum Perforatum-Derived Exosomes Effective Tumor Photodynamic Therapy (19)
Combinational drug delivery system on PDT and immunotherapy
1 Photodynamic and immune-combination therapy. Tumour derived reassembled Better drug delivery carrier and immune- )
: exosome [Chlorin e6-loaded R-Exo (Ce6-R-Exo)] stimulation in Pancreatic cancer
Effective immunotherapy in non-small cell Lun
2. Photodynamic and immune-combination therapy ICG@MnO,@Exo-anti-PD-L1 Py € (4)
cancer (NSCLQC).
5 Nanocomplex of D-A coordinated Ir (III) complex with macrophage derived Successful Reprogramming of tumor-associated 0)
’ exosome in PDT macrophages and eradicating the tumors in mice
Coordination-dri bly of Ir (III lex phot iti ith Fe (111
f)or 'ma on-driven assembly of Ir (III) complex pho oser'm 1zers with te (, ) Efficient Eradication of a melanoma tumour as
4. ions into nanopolymers camouflaged exosomes for combined photodynamic . (21)
. well as inhibition of metastases
therapy and chemodynamic therapy
5. Genetically engineered multifunctional exosomes Effective Anti-cancer immunity (28)
6. Tumour derived exosomes Effective Tumour immunotherapy (27)
. CD47-expressing tumour-derived exosomes with cRGD-modified liposomes co- Enhanced tumour accumulation and induced (107)
: loaded with miR-497 and triptolide (TP) (miR497/TP-HENPs) apoptosis
8. Y0-T cell-derived exosomes in combination with PDT Effective Anti-tumour immunity (108)

The table summarizes different nanosystems and extracellular vesicle (EV) based approaches, highlighting their specific advantages such as targeted delivery, improved biodistribution, enhanced

therapeutic efficiency, and immune modulation.

receptor (TLR) agonists to dendritic cells, eliciting robust antigen-
specific cytotoxic T lymphocyte (CTL) responses (133). PEGylated
and pH-sensitive liposomes enable efficient cytosolic delivery of
nucleic acid vaccines (mMRNA/DNA), thereby improving antigen
expression and immunogenicity (133, 134). Gao et al. designed
immune agonist-anchoring liposomes to co-deliver IL-2 and an
anti-CD137 antibody, which promoted tumor infiltration of CD8+
T cells, enhanced cytokine and granzyme secretion, and elicited
strong antitumor responses while reducing systemic toxicity (135).
Another formulation, ILP (34A-PEG-ILP), conjugated to antibodies
at the distal PEG end, demonstrated superior targeting efficiency to
lung endothelial cells and tumour tissue compared with
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conventional liposomes (136). Liposomes are being developed to
address challenges in cancer immunotherapy by enhancing vaccine
efficacy through improved antigen delivery, normalizing the tumor
microenvironment, modulating signaling pathways, and serving in
combination regimens with chemotherapy, radiotherapy, and
phototherapy (137). In addition, highly pH-sensitive polymer-
modified liposomes prepared by surface modification of
phospholipid vesicles with 3-methylglutarylated poly(glycidol)—
facilitated endosomal escape and cytosolic delivery of antigenic
molecules, proving effective in inducing antigen-specific immune
responses (138). Archaeosomes (liposomes derived from archaeal
lipids) present another innovative approach, capable of activating
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dendritic cells and enhancing adjuvant responses. Furthermore,
liposomes have been integrated into multimodal strategies,
combining photodynamic therapy (PDT) and photothermal
therapy (PTT), to potentiate antitumor immunity (135).

3.3.2 Micelles

Polymeric micelles provide another versatile lipid-based
nanocarrier system in immunotherapy. PEG-polyglutamate micelles
encapsulating IL-2 showed prolonged circulation and enhanced
dendritic cell (DC) vaccine efficacy in tumor-bearing mice, leading to
strong CTL responses. Similarly, micelles co-loaded with doxorubicin
(DOX) and IL-12 plasmid DNA significantly outperformed single-
agent formulations in inhibiting tumor growth. Micelles have also been
engineered to deliver macrophage colony-stimulating factor (M-CSF),
inducing T cell-mediated antitumor immunity, while SART3 peptide-
loaded micelles promoted CTL and NK cell activity, along with
enhanced DC infiltration into tumors. PEG-PLL-PLLeu micelles co-
delivering STAT3 siRNA and ovalbumin upregulated DC activation
markers (CD86, CD40) and IL-12 production, further boosting
immune responses. Indoximod-based micelles co-loaded with DOX
improved therapeutic efficacy by simultaneously inhibiting
immunosuppressive pathways and augmenting chemotherapy. SLNs
and NLCs have also been employed for the delivery of immune
checkpoint inhibitors such as anti-PD-1 peptides and siRNAs,
improving their stability and tumour accumulation (139) Other
strategies have employed PEG-PE micelles as adjuvant carriers (e.g.,
MPLA for TLR signaling), or combination micelles (e.g., tranilast-,
epirubicin-, or Doxil-based micelles) to enhance T cell infiltration and
establish durable immunological memory in resistant cancers (140,
141). Advanced micelle platforms include IDO-responsive
tryptophan-polymer micelles that disassemble in tumor cells to
release IDO inhibitors, thereby recruiting effector T cells (142).
Another self-assembled micelle system combined immunomodulators
(epigallocatechin gallate palmitate and metformin) with DOX and
immune checkpoint inhibitors to reduce PD-L1 expression and
reshape the tumor microenvironment (143). Mannose-modified
micelles have been optimized for DC targeting and vaccine delivery,
with mixed micelles co-delivering ovalbumin and TLR-7 agonists
showing robust antigen-specific humoral and cellular immunity
(144). Additionally, inorganic nanovaccine micelles incorporating
zinc-doped iron oxide nanoparticles successfully co-delivered peptide
antigens and TLR3 agonists, stimulating potent immune
responses (145).

3.3.3 Solid lipid nanoparticles

SLNs have demonstrated significant promise in immunotherapy.
SLN-AlIPc formulations retained the activity of the hydrophobic
photosensitizer aluminum phthalocyanine in aqueous media,
inducing immunogenic cell death (ICD) and activating DCs in
melanoma models (115). Cationic SLNs (cSLNs) have proven
effective vaccine adjuvants, enhancing antigen uptake, BMDC
activation, and memory immune responses in models of
inactivated foot-and-mouth disease virus (146). Beyond vaccines,
cSLNs have been used to encapsulate anticancer agents and proteins
for improved in vitro and in vivo efficacy (81). P18 N PI ME-loaded
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SLNs demonstrated sustained release and improved PDT outcomes
in cancer models (147), while SLNs also provided controlled release
of immune suppressants such as MMF (148). Chitosan-coated AmB-
SLNs enhanced macrophage cytokine responses (TNF-o, IL-12)
(149), and actarit-loaded SLNs improved splenic targeting and
retention in vivo (150). Collectively, these findings highlight SLNs
as multifunctional carriers for peptides, proteins, small molecules,
and vaccines (151). Solid lipid nanoparticles (SLNs) and
nanostructured lipid carriers (NLCs) have also been employed for
the delivery of immune checkpoint inhibitors such as anti-PD-1
peptides and siRNAs, enhancing their stability and tumor
accumulation (139).

3.3.4 Emerging concepts

Lipid-based micelles have also been adapted for anti-
inflammatory roles, such as polymeric micelles carrying a Ru
(CO)3Cl (amino acidate) segment for CO release, which
attenuated LPS-induced monocyte inflammation (152). Recent
studies highlight the integration of lipid-based nanocarriers with
immune-stimulating PDT, termed photo-immunotherapy, where
PDT-induced ICD is leveraged alongside nanocarrier-mediated
delivery of immune adjuvants to amplify antitumor immune
responses (153, 154). Such combined approaches represent a
frontier in nanomedicine-driven immuno-oncology.

4 Combined applications of exosomes
and LBDDS in PDT and immunotherapy

Exosomes and LBDDS possess bioactive cargos of proteins,
nucleic acids, and lipids that naturally facilitate intercellular
communication with intrinsic stability, low immunogenicity,
biocompatibility, and efficient membrane penetration, making
them attractive drug delivery systems (155). Many engineering
strategies originally developed combined application for
liposomes and exosomes such as sonication, extrusion, freeze
thaw cycles, and microfluidic methods have been adapted for
exosomes, improving their therapeutic potential.

4.1 Exosome-lipid hybrids in PDT and
immunotherapy

Hybrid exosome-lipid formulations combine the biological
advantages of exosomes with the tunable properties of lipid
nanocarriers, improving drug loading, stability, targeting, and
intracellular delivery. A notable example is the loading of
indocyanine green (ICG) into hollow manganese dioxide (MnO,)
nanospheres followed by encapsulation in PD-L1 monoclonal
antibody-reprogrammed exosomes (ICG@MnO,@Exo-anti-PD-L1).
This platform modulated the tumour microenvironment (TME) in
non-small cell lung cancer by enabling synergistic PDT and
immunotherapy: acidic pH triggered controlled anti-PD-L1 release,
while MnO, catalyzed H,0O,-to-O, conversion, alleviating hypoxia and
enhancing T-cell activation (Table 2) (8). Photoimmunotherapy

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1687953
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Swain et al.

approaches have also leveraged Y3-T cell-derived exosomes in
combination with PDT to potentiate antitumour immunity (156).

Exosomal lipid composition determined by parental cell type
and physiological state—affects membrane curvature, cargo
protection, and stability, making lipidomic profiling a potential
diagnostic and therapeutic tool in oncology (155). Hybridization
strategies such as fusing exosomal and endosomal membranes with
pH-sensitive fusogenic peptides, introducing cationic lipids, or
applying lipid extruders have enhanced cytosolic delivery of
therapeutic cargos (157). For example, folate-modified lipid nano-
assemblies (FD9R) combined with tumour-derived exosome
inhibition and IRF3 silencing demonstrated synergy with immune
checkpoint blockade in a murine breast cancer model (158).
Similarly, incorporating the cationic lipid-sensitive endosomolytic
peptide L17E into exosome-based systems promoted efficient
cytosolic release of RNA therapeutics (159).

In hepatocellular carcinoma (HCC) models, a hybrid adipocyte-
derived exosome platform co-assembled a ROS-cleavable docetaxel
prodrug (DSTG) and a lipid-conjugated photosensitizer (PPLA)
into lipid cores (HEMPs and NEMPs), which were encapsulated
within exosome membranes. These hybrids exhibited significantly
greater uptake efficiency in HCC cells compared with lipid-only
nanoparticles (160).

4.2 Integration of exosomes with lipid-
based systems

The integration of exosomes with lipid-based drug delivery
systems (LBDDS) has enabled multifunctional platforms for PDT
and immunotherapy. Methods such as fusion with fusogenic
liposomes or assembly of lipid-enriched exosomal cargo using lipid
extruders yield potent hybrid transport vehicles with synergistic
therapeutic benefits (161, 162). Lipid nanoparticles can also be
integrated onto exosome surfaces to improve targeting and delivery
(162), while lipids themselves facilitate exosome biogenesis, secretion,
and fusion with the multivesicular body (MVB) membrane. Lipid-
rich exosomes, particularly those derived from the central nervous
system, contain 1.5-3-fold higher ceramide (Cer), phosphatidylserine
(PS), cholesterol, and sphingomyelin (SM) than other exosome types,
reflecting parental cell origin and supporting cargo loading,
endocytosis, macropinocytosis, and phagocytosis (163).

4.3 Bioinspired hybrid platforms

An important example of bioinspired design is the fusion of
CD47-expressing tumour-derived exosomes with cRGD-modified
liposomes co-loaded with miR-497 and triptolide (TP), producing
hybrid nanoparticles (miR497/TP-HENPs) that markedly
enhanced tumour accumulation and induced apoptosis (164).

Together, exosome lipid hybrids provide multifunctional
delivery systems that unite natural biocompatibility with synthetic
flexibility, enabling synergistic PDT and immunotherapy. Such
approaches not only improve drug loading and targeting but also
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harness exosomal lipid biology to modulate tumour-immune
interactions, marking them as promising candidates for next-
generation cancer nanotherapeutics.

5 Therapeutic outlook and future
directions

Hybrid exosomes combining lipid-based drug delivery systems
(LBDDS) with native exosomes create drug carriers enriched with
exogenous lipids while retaining the intrinsic biological properties of
exosomes. Liposomes contribute chemical versatility, ease of large-
scale production, extended shelf life, and circulation stability, while
exosomes provide inherent biocompatibility, natural targeting
ligands, and complex bioactive cargo (165). This synergistic
integration holds promise for advancing clinical nanomedicine by
delivering high drug payloads with precise tumour targeting,
controlled release, stability under physiological stress, and minimal
immunogenicity. The collective evidence strongly supports the
potential of LBDDS exosome hybrids as transformative platforms
for cancer therapy, including PDT and immunotherapy.

Although lipid-based nanocarriers have shown considerable success
in PDT and immunotherapy, future development should focus on
multifunctional hybrid platforms that integrate imaging, therapy, and
immune modulation in a single nanosystem. In PDT, innovations such
as NIR-responsive lipid carriers with enhanced photostability and tissue
penetration, coupled with oxygen-generating or hypoxia-responsive
elements, could overcome tumour microenvironment constraints (2,
166). In immunotherapy, the next generation of lipid nanocarriers may
incorporate personalized tumour antigens and immune adjuvants with
precision targeting ligands for dendritic cells or T cells, boosting antigen
presentation and immune activation (133).

The integration of bioinformatics and Al-driven lipid formulation
design could optimize nanocarrier composition and payload
combinations for patient-specific therapies. Addressing challenges in
scalable manufacturing, long-term stability, and regulatory
harmonization will be critical for clinical adoption. Additionally,
theranostic lipid-based nanocarriers capable of both therapy and
real-time monitoring via incorporated imaging agents represent a
promising direction for precision oncology.

6 Epilogue

The convergence of lipid-based nanocarrier technology and
exosome-mediated delivery presents a compelling pathway toward
next-generation targeted therapeutics. Lipid-based nanocarriers offer
structural flexibility, high payload capacity, and facile surface
modification, making them well-suited for applications in
photodynamic therapy (PDT) and immunotherapy. Exosomes, in
contrast, provide innate targeting, biocompatibility, and the ability
to cross physiological barriers while evading immune clearance (167).
Hybrid approaches such as synthetic lipid exosome chimeras or
bioinspired lipid nanoparticles engineered to mimic exosomal
properties promise to integrate the precision of synthetic

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1687953
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Swain et al.

nanocarriers with the natural communication networks of biological
vesicles. These innovations hold potential to enhance biodistribution,
therapeutic index, and patient outcomes.

Despite this promise, translating exosome-based PDT and
immunotherapy into the clinic remains challenging. Preclinical data
support their ability to simultaneously target tumors and sustain
immune activation; however, regulatory uncertainties, the lack of
standardized potency assays, and the complexity of reproducible
large-scale manufacturing present significant barriers. Addressing
these challenges will require proactive engagement with regulatory
agencies, the development of scalable bioprocessing platforms, and
rigorous quality control frameworks to ensure product consistency
and safety. Furthermore, clinical trial designs that incorporate immune
biomarkers and clearly demonstrate added value beyond conventional
PDT or immunotherapy will be critical to establishing clinical relevance.

Ultimately, the successful clinical translation of hybrid exosome
lipid systems will depend on aligning scientific innovation with
pragmatic solutions to regulatory and manufacturing hurdles. By
doing so, these platforms could advance from promising laboratory
concepts to viable, multimodal cancer therapeutics that drive the

next era of personalized medicine.
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