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Immune-inflammatory dysregulation characterizes acute kidney injury (AKI)

throughout its early progression and chronic evolution. Neutrophils and the

neutrophil extracellular traps (NETs) they release play multiple roles in this

process. Recent research indicates that NETs, characterized by their unique

“DNA-histone-granule proteins (e.g., neutrophil elastase [NE], myeloperoxidase

[MPO], proteinase 3 [PR3], and cathepsin G).” structure, have become a pivotal

research focus in neutrophil biology, while their formation is intricately linked to

signals within the tissue microenvironment. This review traces neutrophil

dynamics from bone marrow development and recruitment to the kidney,

culminating in suicidal or vital NETosis. It specifically compares neutrophil

extracellular trap (NET) mechanisms in sterile versus infectious AKI. Besides, it

details how non-specific NET components, while aiding pathogen and necrotic

tissue clearance, simultaneously damage renal tubular epithelial and endothelial

cells, amplifying inflammatory cascades. Furthermore, the review

comprehensively summarizes therapeutic strategies targeting NETs for AKI,

including inhibition of NET formation/release, blockade of specific NET

components, and promotion of NET clearance. These studies offer new

perspectives on the spatiotemporal-specific roles of NETs in AKI, laying a solid

theoretical groundwork for advancing their exploration in AKI subtyping and

precision therapy.
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1 Introduction

Acute kidney injury (AKI) is a common and critical condition

that poses a serious threat to human health. The global incidence of

AKI varies widely, ranging from 0.7% to 31%, with an incidence of

19.4% in East Asia. In China, the estimated number of hospitalized

AKI patients in 2013 was between 1.4 and 2.9 million, accounting

for approximately 10% of national healthcare expenditures (1).

However, as the detailed mechanisms underlying the onset and

progression of AKI are not yet fully elucidated, effective

interventions remain limited. This lack of understanding

significantly increases the risk of progression to severe AKI and

chronic kidney disease (CKD), resulting in substantial healthcare

costs and a heavy societal burden (1, 2).The etiology of AKI is

diverse, encompassing ischemic insult, drug-induced toxicity,

rhabdomyolysis, and sepsis secondary to infection. Although the

in i t i a t ing f ac tor s va ry , they converge on common

pathophysiological mechanisms involving renal microvascular

endothelial cells and renal tubular epithelial cells (RTECs) injury,

immune dysregulation, oxidative stress, and microvascular

dysfunction (3). Growing evidence indicates that the innate

immune system, especially neutrophils, plays a critical and

complex role in the initiation, progression, and repair phases

of AKI.

As the most abundant and rapidly mobilized immune cells in

the circulation, neutrophils contribute to inflammatory processes

through phagocytosis, degranulation, and the formation of NETs.

First described in 2004, NETs are extracellular web-like structures

composed of decondensed chromatin and antimicrobial proteins,

released via a distinct cell death pathway termed NETosis (4).

Initially identified as a host defense mechanism against

pathogens, NETs have since been implicated in a range of

pathological conditions, exhibiting context-dependent beneficial

and detrimental effects. In renal diseases, NETs contribute to

cytotoxicity, complement activation, and thrombotic processes

(5–8). However, owing to technical and conceptual challenges,

research into neutrophil heterogeneity and the functional

versatility of NETs remains limited. Current understanding of the

formation, composition, and function of NETs within diverse

immuno-microenvironments is still evolving.

Targeting NETs has emerged as a promising yet contentious

therapeutic strategy. While inhibition of NET formation (9) or

enhancement of their clearance (10) can attenuate tissue damage

and excessive inflammation, such approaches risk compromising

innate antimicrobial defenses, highlighting the delicate balance

between NET-mediated protection and pathology. This duality

underscores the need for deeper mechanistic insights and

translational studies to elucidate the context-specific roles of

NETs. At present, NETosis-directed therapies remain largely

experimental and have not yet been validated in clinical

AKI settings.

Therefore, this review aims to synthesize current evidence on

the roles of NETs in AKI across various etiologies, summarize the

signaling pathways governing NET formation and function under

different pathophysiological conditions, evaluate recent advances in
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NET-targeting therapies, and identify key knowledge gaps and

future research directions in the field.
2 Development and release of
neutrophils in early-stage AKI

Neutrophils, as the most abundant innate immune cells in the

body, play a pivotal role in rapidly initiating the inflammatory

response during the early phase of AKI. Clinical studies have

demonstrated significantly elevated neutrophil counts in the

blood of AKI patients compared to non-AKI individuals (11).

Furthermore, in various murine AKI models induced by different

methods, increased infiltration of neutrophils in the renal tissue

microenvironment has been consistently observed (12–14).

Research confirms that significant neutrophil infiltration into

renal tissues commences as early as 3 hours post ischemia-

reperfusion injury (IRI) (15).

Specifically, neutrophils differentiate from multipotent

granulocyte-monocyte progenitors derived from myeloid

precursors, with their production under the coordinated control

of the bone marrow microenvironment and systemic signals (16).

Bone marrow neutrophils are categorized into three distinct

developmental pools: the stem cell pool, the mitotic pool, and the

post-mitotic pool (16). Upon full maturation within the post-

mitotic pool, neutrophils possess complete granule systems and

chemotactic receptors, and are released into neutrophil reservoirs or

the marginated pool to serve as a functional bone marrow reserve

(17, 18). Under homeostatic conditions, the high-affinity binding

of C-X-C chemokine receptor type 4 (CXCR4) to C-X-C motif

chemokine ligand 12 (CXCL12) anchors mature neutrophils within

the bone marrow stroma. Conversely, during inflammation,

granulocyte colony-stimulating factor (G-CSF) promotes the

rapid egress of neutrophils from the bone marrow “marginated

pool” into the circulation by downregulating CXCR4 expression

and upregulating C-X-C chemokine receptor type 2 (CXCR2) (17,

18). This “on-demand release”mechanism endows neutrophils with

the capacity for a swift response to tissue damage in the early stages

of AKI.
3 Recruitment and migration of
neutrophils during early AKI

To eliminate pathogens, damaged tissues, and promote repair,

the renal tissue microenvironment post-AKI releases adhesion

molecules and chemokines to recruit neutrophils. A study

employing standardized ligand-receptor scoring for quantification

revealed a specific temporal progression in cellular communication

between renal cells and leukocytes during injury repair: endothelial

cells initiate signaling to leukocytes first, followed sequentially by

leukocytes themselves and injured renal tubular cells (19). Therefore,

this review will primarily elucidate the recruitment of neutrophils by

different injured cell types within the AKI microenvironment from

the perspective of intercellular interactions.
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3.1 Recruitment of neutrophils by renal
vascular endothelial cells

Renal vascular endothelial cells constitute the critical gateway

for circulating immune cells to infiltrate tissues and serve as a

pivotal initiating component in the inflammatory cascade. Under

physiological conditions, endothelial cells maintain barrier integrity

through tight junction proteins (e.g., occludin, claudin) and

adherens junction proteins (e.g., VE-cadherin); however, upon

stimulation by inflammatory cytokines or pathogenic toxins,

endothelial cells undergo cytoskeletal reorganization, leading to

phosphorylation-dependent degradation or internalization of

junctional proteins and the formation of paracellular gaps (20).

These gaps provide direct physical channels for neutrophil

transendothelial migration (TEM). Studies demonstrate that

transgenic mice carrying a tyrosine-731-to-phenylalanine

mutation (Y731F) in VE-cadherin (VEC-Y731F) specifically

prevent the opening of endothelial junctions, significantly

inhibiting neutrophil recruitment from the vasculature to

perivascular tissues without altering vascular permeability (21).

This confirms the essential role of endothelial junctional proteins

in neutrophil TEM. Furthermore, migrating neutrophils release

reactive oxygen species (ROS), proteolytic granules, and cytokines

(e.g., directly degrading VE-cadherin), thereby widening

endothelial gaps and establishing a positive feedback loop of

“increased permeability-enhanced migration”. For instance, our

previous research in ischemia-reperfusion injury induced AKI

(IRI-AKI) models revealed that neutrophils highly express

myeloid-related proteins MRP8/S100A8 and MRP14/S100A9,

which further promote TEM of phagocytes (including

neutrophils) by regulating cytoskeletal metabolism via

microtubule reorganization (22, 23).

Moreover, following renal vascular endothelial injury,

upregulated E-selectin, P-selectin, Intercellular adhesion molecule

1 (ICAM-1), and dipeptidase-1 (DPEP1) cooperate with

corresponding integrins (including LFA-1 and Mac-1) to mediate

neutrophil-endothelial adhesion post-AKI (24–27)。 Notably, the

transient surge in plasma hepatocyte growth factor (HGF) after IRI

activates the c-Met receptor on renal vascular endothelial cells,

suppressing the NF-kB/ICAM-1 signaling pathway (28). This

establishes a barrier effect that blocks neutrophil extravasation,

representing a critical endogenous protective mechanism against

renal IRI. Concurrently, chemokines bound to endothelial

glycosaminoglycans (GAGs) form a solid-phase haptotactic

gradient, providing directional migration cues for circulating

neutrophils. Jens Bedke’s team demonstrated that dnCXCL8, a

novel antagonist derived from human C-X-C motif chemokine

ligand 8 (CXCL8) with high GAGs-binding affinity but low C-X-C

chemokine receptor type 1/2 activation capacity, significantly

inhibits endothelium-dependent neutrophil infiltration in AKI.

(29, 30).

In summary, endothelial cells coordinately drive early

neutrophil infiltration into renal tissues during AKI through dual

mechanisms: disruption of physical barriers and regulation of

chemical signaling, thereby exacerbating inflammatory injury.
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3.2 Recruitment of neutrophils by renal
tubular epithelial cells

RTECs, as essential parenchymal cells in renal tissue,

dynamically interact with neutrophils in response to

inflammatory milieu shifts. Although activating neutrophils

represents their primary and more extensively studied function,

RTECs also exhibit direct neutrophil-recruiting capacity. Ferreira

et al. leveraged spatial transcriptomics, single-cell sequencing, and

CODEX imaging to demonstrate that in renal IRI models,

neutrophils specifically infiltrate the outer cortex at the

corticomedullary junction via chemokine Atf3 secreted by S3

proximal tubule subpopulations. In contrast, cecal ligation and

puncture (CLP)-induced AKI models showed minimal neutrophil

recruitment at this site (21, 31). Correspondingly, whereas

neutrophil migration inhibition significantly attenuated kidney

injury in IRI mice, no comparable protection occurred in CLP-

induced AKI (34).

Additionally, our prior single-cell sequencing analysis of

murine post-IRI renal tissue revealed neutrophil-specific

upregulation of CXCR2 and interleukin-1b (IL-1b) within this

microenvironment. Neutrophils likely engage in recruitment and

migration through CXCR2 interactions with C-X-C motif

chemokine ligand 1 (CXCL1) secreted by injured proximal

tubules (PTs) (22). Notably,CXCL1, the murine homolog of

human CXCL8/Interleukin-8 (IL-8), is significantly upregulated

in renal tissue post-IRI. Bioinformatic analysis further indicates

that human CXCL8 participates in NETosis and inflammatory

responses during IRI associated delayed graft function (DGF)

(32). Pharmacological inhibition of CXCL1/CXCL8 substantially

reduces NET formation, attenuates tubular necrosis and

inflammation, and partially improves renal function (32).

Previous literature has confirmed that the interaction of SPP1

with various integrins (alpha v [av] integrins (33), Integrin b1
(34), Integrin b3 (35), etc.) and CD44 (36) promotes cell adhesion

and migration. Consistent with these findings, our sequencing

results revealed that both the SPP1-CD44 and MIF-CD74/CD44/

CXCR2/CXCR4 ligand-receptor pairs exhibited strong signaling

activity, indicative of their role in mediating interactions between

RTECs and neutrophils (22). This finding is consistent with a

previous study by Jinhong Li et al., which showed that in

cisplatin-induced acute kidney injury, loss of RTEC-derived MIF

suppressed the infiltration of inflammatory cells such as neutrophils

into renal tissue, an effect likely mediated by the CD74 receptor

(37). Further to chemokine pathways, proximal tubular epithelial

cells (PTECs) post-AKI upregulate the neutrophil adhesion

receptor DPEP1, exhibiting expression akin to peritubular

capillaries. DPEP1 is therefore established as another key

mediator of tubular-driven neutrophil recruitment (27).

Thus, during the early phase of AKI, injured PTs contribute to

neutrophil recruitment and migration toward sites of injury

through secretion of chemokines and expression of adhesion

receptors. Unlike vascular endothelial cells, which primarily

mediate neutrophil extravasation from circulation, renal tubular

cells guide intratissular neutrophil trafficking to precise injury
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locations. Furthermore, PTs activate neutrophils to amplify

local inflammation.
3.3 Recruitment of neutrophils by
leukocytes

During early AKI, activated macrophages recruit neutrophils

through diverse mechanisms to drive inflammation. In both renal

IRI and folic acid-induced AKI (FA-AKI) models, ferroptotic

resident renal cells recruit and activate macrophages rather than

directly recruiting neutrophils. These activated macrophages

upregulate surface CXCL1/C-X-C motif chemokine ligand 2

(CXCL2), thereby mediating neutrophil recruitment and

inflammatory responses (38). In lipopolysaccharide (LPS)-induced

murine AKI models, single-cell RNA sequencing of renal tissue

identified a novel pro-inflammatory CCL5+ macrophage subset.

This population potentially recruits neutrophils via the CCL5-

CCR1 chemokine axis, mediated by C-C motif chemokine ligand

5 (CCL5) binding to C-C motif chemokine receptor 1 (CCR1) (39).

However, monocyte-derived macrophages exhibit significant

functional heterogeneity across subsets, leading to paradoxical

roles in neutrophil recruitment. Unlike CX3CR1low Ly6Chigh

monocytes, which are recruited and further differentiate into pro-

inflammatory cells, circulating CX3CR1high Ly6Clow monocytes are

recognized as patrolling monocytes. These cells crawl along

endothelial surfaces, maintaining endothelial integrity (40). Based

on this evidence, researchers identified a population of CX3CR1high

Ly6Clow CD169+ cells in the kidney. These cells were categorized as

vascular-resident monocytes/macrophages that suppress

endothelial hyperactivation. By inhibiting endothelial ICAM-1

expression, they limit excessive neutrophil infiltration, thereby

preventing exacerbation of renal IRI (40). This evidence suggests

that monocyte-macrophage regulation of neutrophils may be

associated with their phenotypic complexity. Other leukocytes

(e.g., T cells, neutrophils themselves) may enhance neutrophil

recruitment indirectly by secreting cytokines or granule proteins

that amplify adhesion or chemotaxis in resident cells. Nevertheless,

evidence for such mechanisms in AKI remains limited, and no

systematic understanding has yet emerged.
4 Delayed neutrophil death drives
NETosis

Under physiological conditions, mature neutrophils have a

short lifespan of hours to days, they undergo spontaneous

apoptosis that is mediated by Bcl-2 protein family-regulated

mitochondrial outer membrane permeabilization along with

caspase-dependent DNA fragmentation, and are subsequently

cleared (41–43). This transient nature maintains neutrophil

homeostasis and prevents host tissue damage (44). At

inflammatory sites, recruited neutrophils achieve a several-fold

lifespan extension via stimulation by IFN-g, LPS, pathogens, or
adhesion molecules, which activate the PI3K-Akt/NF-kB and
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ERK1/2-MAPK pathways to sustain anti-apoptotic proteins (e.g.,

Myeloid cell leukemia 1(Mcl-1)) (45–48). Consequently, this

disrupts neutrophil homeostasis in both tissues and circulation,

creating pathogenic implications for organ damage.

Macrophage phagocytosis serves as the primary mechanism for

terminal neutrophil clearance. Normally, dying neutrophils emit

“clearance signals” by releasing diffusible mediators such as

DAMPs, which recruit macrophages to the site of cell death.

Surface-exposed phosphatidylserine and other ligands then

engage macrophage receptors (e.g., integrins, scavenger receptors)

via bridging molecules, facilitating phagocytic removal of apoptotic

neutrophils (49). Delayed clearance may result from impaired

emission of these neutrophil death signals. Recent research

demonstrates that early EGFR activation during IRI sustains Mcl-

1 expression, whereas myeloid-specific EGFR knockout promotes

renal neutrophil apoptosis and enhances macrophage efferocytic

capacity. This cascade accelerates early neutrophil clearance,

ultimately facilitating repair of IRI-AKI and attenuating

fibrosis (50).

NETosis (specifically referring to suicidal NETosis,

classification detailed in Section 4.2), is considered a unique

neutrophil death modality. Intriguingly, delayed neutrophil

apoptosis has been shown to promote NET formation in multiple

inflammatory diseases (51, 52). Subsequent mechanistic studies

demonstrated that apoptosis delay prolongs apoptotic signaling-

activated Gasdermin E (GSDME) pores, driving calcium-dependent

peptidylarginine deiminase 4 (PAD4) activation and chromatin

decondensation to permit NETosis initiation in neutrophils after

apoptosis (45). Moreover, stimulation signals received by

neutrophils may overlap with death signals from other pathways

(e.g., necrosis, pyroptosis), thus NETosis is recognized as a

secondary death modality for inadequately cleared neutrophils

(53, 54). This phenomenon likely constitutes the fundamental

mechanism of NET formation in inflammatory milieus and

implies that NETosis can be superseded by alternative neutrophil

death pathways. For instance, mesenchymal stem cell (MSC)-

derived apoptotic vesicles (apoVs) shift neutrophil death from

NETosis to apoptosis via apoV-Fas ligand-mediated Fas

activation, thereby ameliorating sepsis-induced multi-organ

dysfunction (including renal impairment) in mice (55).
5 Formation pathways, classification,
and functions of NET

5.1 Pathways of NET formation

NET formation can be categorized into two main pathways

based on dependence on NADPH oxidase (NOX), which involve

signal transduction through the activation of distinct key enzymes.

The selection of the NET formation pathway is primarily influenced

by the initial activating factors for neutrophils in the

microenvironment (e.g., platelets, microorganisms, LPS, immune

complexes). Different environmental stimuli activate different

NETosis pathways. The NOX-dependent pathway is characterized
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by ROS generation (56). Activated ROS within neutrophils inhibit

actin polymerization, promoting the release of proteases such as

myeloperoxidase (MPO) and neutrophil elastase (NE). These

enzymes degrade histones and structural proteins (e.g.,

Gasdermin D, GSDMD), compromising membrane stability and

increasing intracellular calcium ion concentration (57–59). Notably,

MPO not only kills pathogens by catalyzing hypochlorous acid

(HOCl) but also directly activates NE. Together, they play a core

regulatory role in NOX-dependent NET formation (57, 59).

Conversely, in the NOX-independent pathway, the absence of

significant ROS generation and subsequent protease-mediated histone

cleavage means NET formation relies more heavily on the

downstream enzyme PAD4. Under the regulation of intracellular

Ca²+ concentration, PAD4 catalyzes histone citrullination

(converting positively charged arginine residues to uncharged

citrulline), weakening histone-DNA binding and promoting

chromatin decondensation (60). PAD4 is a classic molecule in the

NET formation pathway. It was found to be highly induced in

leukocytes 24 hours after renal ischemia, coinciding with histone H3

citrullination andNET formation in the kidneys (61). Further research

revealed that PAD4 in renal proximal tubules appears to promote IRI-

AKI by facilitating tubular epithelial cell apoptosis, while bone

marrow-derived PAD4 preferentially contributes to promoting renal

neutrophil infiltration and inflammation following renal I/R (62).

Additionally, intracellular Gram-negative LPS triggers the

assembly of the non-canonical inflammasome, leading to caspase-

4/11 activation and cleavage of GSDMD into its p30 fragment (63).

This pathway, which is similarly independent of NADPH oxidase 2

(NOX2), is specifically termed non-canonical NETosis. This

Caspase-11/GSDMD-dependent NET formation can be induced

by uric acid. It mediates inflammation and renal fibrosis during the

progression of hyperuricemic nephropathy by enhancing the

production of a-smooth muscle actin (a-SMA) in macrophages

(64). However, its role in AKI has not yet been reported.

5.2 Relationship between NETosis types
and their dualistic functionality

NETosis does not invariably result in neutrophil death.

Depending on the pathogen type and tissue microenvironment, it

can manifest in four distinct forms: suicidal NETosis, vital NETosis,

noncanonical NETosis, and mitochondrial NETosis (65). Suicidal

and mitochondrial NETosis rely on ROS activation, whereas vital

and noncanonical NETosis occur independently of ROS (66, 67).

Notably, suicidal NET formation requires several hours, whereas

ROS-independent vital NET formation can occur within

approximately 30 minutes. In both suicidal and noncanonical

NETosis, NET release coincides with cellular rupture. Neutrophils

undergoing these forms lose their capacity for phagocytosis,

crawling, and other multifunctional activities. Conversely, vital

NETosis occurs independently of lytic cell death. Neutrophils

expel NETs via vesicular release without nuclear membrane

rupture and retain their functional capabilities thereafter (56, 68).

Studies comparing IRI-AKI and sepsis-associated AKI (SA-

AKI) revealed distinct neutrophil phenotypes. Neutrophils
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recruited in IRI-AKI are characterized by lower levels of CD11b,

CD54, and CD95, whereas neutrophils in CLP-induced SA-AKI

predominantly exhibit a CD11bhigh, CD54high, and CD95high

phenotype, indicating enhanced phagocytic capacity, ROS

generation, rolling, and adhesion functions in the latter¹9.

Furthermore, a higher proportion of Sytox-positive cells was

observed under IRI conditions¹9, suggesting a greater propensity

for NETosis in IRI-AKI, with evidence pointing specifically toward

suicidal NETosis. Critically, however, current literature indicates

that the functional roles of NETs in IRI-AKI and SA-AKI are not

entirely consistent (see Section 6 for details). This disparity suggests

that tissue-specific environmental signals and the specific type of

NETosis occurring may be key determinants of NET functionality.

The critical mechanism underlying the double-edged sword

effect of NETs is generally attributed to an imbalance between their

formation and clearance. During inflammation, neutrophils

eliminate pathogens via NETs; yet, the non-specific components

of excessively released NETs exert pro-inflammatory and damaging

effects within tissues. Notably, although NETs were initially thought

to kill entrapped bacteria through their associated antimicrobial

proteins, subsequent research revealed that effective bacterial killing

requires not only NET-embedded MPO but also hydrogen peroxide

(H2O2) supplied by viable neutrophils (69–71). Consequently, while

different NET types exhibit pathogen containment capabilities,

suicidal NETosis proves comparatively less effective in pathogen

eradication. By contrast, vital NETosis, which preserves neutrophil

viability, facilitates more efficient pathogen clearance. In the

bloodstream context, a primary function of NETs is to contain

pathogens and prevent dissemination. Nevertheless, complexes

formed by NETs entrapping pathogens, platelets, and cellular

debris readily initiate immunothrombosis (72). Excessive

immunothrombosis may progress to vascular occlusion and

subsequent multi-organ failure (73–75). This pathological process

contributes to diverse AKI types and related conditions, including

IRI (76), sepsis (77), Escherichia coli infection (78), and SARS-CoV-

2 infection (COVID-19) (79). In this context, we further focus on

the potential contribution of non-specific NET components to the

hypercoagulable state observed in disease. This includes histone-

induced platelet activation (80), as well as DNA- and serine

protease-mediated activation of factor XII and tissue factor,

respectively (81, 82). However, despite these detrimental effects

mediated by non-specific NET components, distinctions between

different NET types remain unexplored. Variations in their release

kinetics and mechanisms may confer differing degrees of

cytotoxicity. Collectively, these mechanisms may partially explain

the differential impact of NETs on inflammatory regulation across

distinct types of AKI.
6 Receptors and signaling pathways in
NET formation under AKI conditions

The process of NET formation typically relies on the specific

binding of ligands to transmembrane receptors or specialized

signaling transmission mechanisms such as endosomes, which
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subsequently trigger the cascade activation of downstream signaling

pathways. In AKI, NET induction may originate from stimuli such

as pathogen-associated molecular patterns (PAMPs) or damage-

associated molecular patterns (DAMPs). These stimuli can coexist

across different pathological contexts, yet the signaling profiles vary

depending on the specific pathological environment. Consequently,

the signaling pathways involved in NET formation exhibit certain

mechanistic commonalities but also distinct differences across

various pathological subtypes of acute kidney injury. Below, based

on a summary of different categories of stimulus molecules and

their corresponding receptors, we illustrate the network of pathways

promoting NET formation in AKI in Figure 1. The key neutrophil

molecules validated in AKI animal models to mediate NET

formation, along with major findings, are summarized in Table 1.
6.1 TLR4/Syk/NFkB/PAD4 pathway

Toll-like receptors (TLRs) constitute a ubiquitous class of

pattern recognition receptors (PRRs) that detect DAMPs and

PAMPs within tissues. Human neutrophils express all TLRs

except Toll-like receptor-3(TLR3) on their membrane, and several

TLRs have been implicated in mediating NET formation (83).

Within AKI, Toll-like receptor-4(TLR4) has been identified as key

receptor for NET induction stimulated by extracellular histones

(84), Y-box binding protein 1(YB-1) (11),high-mobility group box 1

(HMGB1) (10, 85, 86), and other activating proteins.

Recent research highlights that TLRs on the neutrophil surface

engage in crosstalk with various other receptors, collectively

influencing NET formation in AKI. C-type lectin-like receptors

(CLRs) represent one such family, with Dectin-1 and Dectin-2 both

reported to participate in NET formation (87, 88). In a mouse

model of IRI-AKI with pre-operative oral Candida albicans

administration, TLR4 activation by LPS/DAMPs and Dectin-1

stimulation by the fungal (1→3)-b-glucan converged on the

common Syk/NF-kB/PAD4 signaling axis to synergistically

induce NET formation, thereby inhibiting C. albicans

dissemination (89). Similarly, in a lupus mouse model of IRI-

AKI, it was found that Syk can significantly increase dsDNA

levels by enhancing neutrophil apoptosis and NETosis, thereby

exacerbating lupus activity (90). This effect was further amplified by

Fcgr2b⁻/⁻, potentially through activation of the TLR-4/Syk

signaling axis, suggesting possible crosstalk between FcgRs and

TLR-4 that warrants further investigation (90). Syk inhibitors

have been shown to reduce NETosis in vivo and in vitro (90),

suggesting a viable therapeutic target for future translation.
6.2 C3aR/ERK/ROS/PAD4 pathway

Neutrophils express a variety of complement receptors that

have been demonstrated both in vivo and in vitro to mediate

NETosis. Our group’s previous single-cell RNA sequencing data
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revealed that upregulated C3 participates in the interaction between

injured RTECs and CXCR2-expressing neutrophils via the C3-

C3aR1 axis. (91). Consistent with our findings, complement C3

upregulation after IRI has been shown to drive renal injury, as

evidenced by attenuated pathology and reduced neutrophil

infiltration/NETosis in C3-KO mice, while in vitro validation

demonstrates C3a-induced NET formation through CitH3 and

MPO co-localization in extracellular DNA structures (92).

Furthermore, C3aR-deficient (C3aR-/-) mice were generated to

knockdown the C3a receptor, and it was demonstrated that the

C3a-C3aR axis further contributes to IRI-AKI through the ERK/

ROS/PAD4/NETosis pathway (93), highlighting C3a-C3aR1 as a

highly promising therapeutic target for future NETosis-directed

therapies. Notably, another complement component, C5a, can

promote the expression of anti-neutrophil cytoplasmic

autoantibody (ANCA) antigens on neutrophil membranes via the

C5a receptor (C5aR), thereby amplifying ANCA-mediated

neutrophil activation and inducing necrotizing crescentic

glomerulonephritis (94, 95). However, whether the C5a-C5aR axis

i s invo l v ed in med i a t ing NET fo rma t i on r equ i r e s

further investigation.
6.3 P2RX1-glycolytic pathway

Purinergic receptors are activated by extracellular nucleotides

such as ATP and their metabolic end product adenosine (ADO),

with ADO inhibiting NET formation via P1 receptors (96, 97),

while ATP promotes NETosis through P2 receptor signaling. In

IRI-AKI, platelet P2RX1-mediated glycolytic metabolism supports

extracellular ATP release, which subsequently activates neutrophil

P2RX1 to drive their glycolytic flux and NET formation (98).

Separate studies have demonstrated that extracellular ATP

binding to ionotropic P2X receptors (P2XR) opens the receptor

channels to promote Ca²+ influx, which subsequently activates

either the p38 MAPK pathway or phospholipase A2 (PLA2R)

signaling, thereby facilitating bacterial killing and triggering

inflammatory responses (99). However, whether P2XR activation

promotes neutrophil-mediated NETosis via the aforementioned

signaling pathways remains unreported, presenting a potential

direction for future research.
6.4 mtDNA-cGAS-STING pathway

Activated by binding endogenous DNA (mitochondrial DNA

[mtDNA]/nuclear DNA) or bacterial DNA, cytosolic DNA sensor

cGAS catalyzes second messenger cGAMP synthesis to stimulate

STING-dependent inflammatory signaling (100, 101). In cisplatin-

induced AKI, this pathway critically mediates cisplatin-triggered

mtDNA leakage into tubular cytosol through BCL-2-like protein 4

(BAX) pores, activating the cGAS-STING/TBK1/NF-kB p65 axis

that exacerbates post-injury inflammation in proximal tubular cells,
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whereas STING knockout attenuates neutrophil migration and

ameliorates tubular inflammation (102). Consistent with these

findings, in vitro experiments demonstrated that hypoxia/

reoxygenation (H/R) treatment of neutrophils induces

mitochondrial dysfunction and subsequent mtDNA release into

the cytosol, where the leaked mtDNA triggers NETosis via the

cGAS–STING pathway (103). Similarly, a cascade involving

HMGB1 lactylation-mediated NETosis through the mtDNA-

cGAS-STING pathway has been identified in murine SA-AKI,

where elevated blood lactate initiates H3K18 lactylation in

macrophages, leading to HMGB1 lactylation and secretion, which

in turn induces mtDNA leakage in neutrophils and activates cGAS-

STING to promote NET formation (104, 105). However, it remains

unclear whether mtDNA serves as the sole or primary DNA source
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for cGAS activation, and how the cGAS–STING pathway

contributes to chromatin decondensation and NETosis. The

regulatory relationship between this pathway and known key

effector molecules, such as NE, MPO, and PAD4, warrants

further investigation.
6.5 Additional pathways

Previous in vitro studies revealed that crosstalk between the

FcgRIII engagement-induced Syk-ERK pathway and the PMA-

induced PKC signaling pathway enhances NET formation in

mature granulocytes (dHL-60) by boosting ROS production and

the generation of pro-inflammatory cytokines IL-8 and TNF-a
FIGURE 1

Mechanisms of NET formation induced by diverse molecular patterns in AKI. NET formation in AKI occurs through: (1) Bacterial-Induced GPR109A
Modulates NETosis by Regulating the ROS/PAD4/CitH3 Signaling Axis; (2) DAMPs (histones, YB-1,HMGB1,etc) and LPS promote NETosis via TLR4,
with TLR4 cross-talking with Dectin-1 and Fcg receptors through activation of the shared downstream pathway Syk/NFkB/PAD4; (3) C3a binding to
neutrophil C3aR activating the ERK/ROS/PAD4 pathway; (4) P2RX1 activation by ATP driving NETosis via enhanced glycolysis; (5) IL-19-IL-20Rb and
CXCL1/8-CXCR2-mediated NETosis (molecular mechanisms undefined); (6) Endosomal HMGB1 triggering mitochondrial DNA leakage and cGAS/
STING-dependent NETosis. Besides, ROS activation promotes the release of proteases (MPO and NE). Ca²+-mediated PAD4 activation promoting
histone citrullination and chromatin decondensation. The final forms of NET formation are divided into lytic and non-lytic types. Figure created with
BioRender.com.
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(106). Research using both in vivo CLP-induced AKI models and in

vitro studies with a variety of stimuli, including Staphylococcus

aureus (S. aureus), has shown that GPR109A promotes NET

formation via the ROS/PAD4/CitH3 axis (108). However, other

research reports ROS-independent NETosis during S. aureus

infection, highlighting a mechanistic heterogeneity that poses a
Frontiers in Immunology 08
challenge for identifying common intervention targets (109).

Furthermore, in aristolochic acid-induced AKI, injured RTECs

release interleukin-19 (IL-19) which promotes NET formation via

neutrophil-expressed IL-20 receptor beta (IL-20Rb) (107). Besides,
Irf8 deficiency enhances neutrophil recruitment and NET

formation post-AKI (110). However, current understanding of
TABLE 1 Validated key molecules and mechanisms mediating NET formation in AKI models.

Mechanism
types

Disease models Key molecules Key findings Refs.
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Renal I/R
LPS-induced AKI mouse model

YB-1/DNA complex, TLR4
The YB-1/DNA complex activates TLR4 to
promote NET formation.

(11)

Renal I/R mouse model
Human CXCL8 (mouse
CXCL1) (receptor not
mentioned)

Inhibiting the expression and function of
CXCL8/CXCL1 reduces NETs production.

(32)

Renal I/R mouse model Histone、TLR4/9
Histones released from necrotic cells can induce
NET formation via TLR4/9.

(84)

Renal I/R mouse model C3a、C3aR
Binding of C3a to C3aR on the neutrophil
envelope activates neutrophils and induces NET
release via the ERK/ROS/PAD4 pathway.

(93)

Renal I/R mouse model Extracellular ATP、 P2RX1

Activation of P2RX1 promotes platelet ATP
release, which subsequently enhances neutrophil
glycolytic metabolism and NET formation
through P2RX1 activation.

(98)

Renal I/R mouse model
Extracellular DNA (receptor
not mentioned)

Necrotic RTECs release extracellular DNA,
which in turn activates platelets, leading to
platelet-neutrophil interactions and NET
formation.

(76)

AAN mouse model IL-19、IL-20Rb
Damaged RTECs release IL-19, which mediates
NET formation via IL-20Rb expression on
neutrophils.

(107)

Oxalate-induced AKI mouse model.
HMGB1(receptor not
mentioned)

HMGB1 promotes NINJ1-dependent NET
formation.

(85)

AKI induced by mechanical ventilation in
mice.

HMGB1 (receptor not
mentioned)

Mechanical ventilation mediates the HMGB1-
NETs signaling pathway.

(10)

Sepsis mouse model (CLP) (kidney tissue) HMGB1 in exosomal form
HMGB1 triggers mitochondrial DNA leakage in
neutrophils and induces NET formation by
activating the cGAS/STING pathway.

(104)

Sepsis mouse model (CLP) (kidney tissue) GPR109A
GPR109A controls NET formation by regulating
the ROS/PAD4/CitH3 signaling axis.

(108)
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:

Renal I/R mouse model PAD4
PAD4 in neutrophils mediates renal NET
formation.

(61)

A mouse model of lupus nephritis
induced by Fcgr2b-/- was used to
establish an IRI-induced AKI model.

Spleen tyrosine kinase, Syk,
NF-kB

In vitro: Inhibition of Syk and NF-kB attenuates
PMA- and LPS-induced NETosis.
In vivo: Syk inhibitor alleviates NETosis and
glomerular apoptosis.

(90)
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these mechanisms remains incomplete and requires

further investigation.
7 The role of NETs in AKI induced by
diverse etiologies

The phenotype and function of neutrophils are intimately

r egu l a t ed by s t imu la to ry s i gna l s w i th in the t i s sue

microenvironment. As a key effector product of neutrophils,

NETs appear to play divergent roles in AKI of varying etiologies.

Herein, we systematically review current evidence on NETs in AKI

induced by multiple etiologies, with a focused analysis of their

functional impacts to elucidate shared and distinct pathological

contributions within different injury milieus (Figure 2). In

particular, Table 2 outlines the contribution of NETs to kidney

tissue injury in AKI.
7.1 Infection-associated AKI

In infection-associated AKI, circulating neutrophils are

activated by various stimuli, including direct contact with

invading pathogens and endogenous signals released from

damaged local tissues. Unlike sterile inflammation, infection-

induced NETosis exhibits a far greater dependence on the specific

nature of the invading pathogen, significantly complicating the role

of NETs in this setting. Furthermore, because the bloodstream

serves as a primary route for pathogen dissemination, the

pathological consequences of infection-related NETs are

predominantly centered on damage to the vascular endothelium.

7.1.1 Sepsis-associated acute kidney injury
SA-AKI is a prevalent form of AKI in humans, with

hemodynamic alterations stemming from renal microcirculatory

dysfunction serving as the central mechanism underlying its

pathogenesis (111, 112). Microcirculatory abnormalities prolong

neutrophil retention within peritubular capillaries, which facilitates

the sustained release of inflammatory mediators, exacerbating local

inflammation and thereby driving the development of septic AKI,

while neutrophil infiltration into the renal parenchyma appears not

to be a major factor in this process (21, 113, 114).

The role of neutrophils and NETs in sepsis is highly context-

dependent, particularly influenced by the severity of the septic

environment. Based on our synthesis of SA-AKI animal studies,

NETs exert a protective role only in models employing solely CLP

within a 3-day observation window (104, 108), whereas they

demonstrate detrimental effects when more complex modeling

approaches are used (e.g., CLP with prior burn/lactate) (105, 115,

116)or when CLP observation periods are extended (104, 108)

(Table 3). This pathogenesis likely reflects that the NET-

inflammatory cascade in SA-AKI originates from circulating

pathogens rather than parenchymal injury. Vital NETosis is

classically triggered by core sepsis pathogens including fungal

infections (117) and S. aureus (109), as well as by LPS-sensitized
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platelets (118). We hypothesize that during early-stage sepsis,

neutrophils confer protection through the release of such NETs

characterized by potent pathogen-capturing capacity, which

effectively eliminate invading microbes. During disease

progression, neutrophils with delayed apoptosis exhibit impaired

vascular egress due to Toll-like receptor-2 (TLR2)-mediated

CXCR2 downregulation, resulting in concurrent tissue pathogen

dissemination and accelerated circulating NET formation (119,

120). Subsequently, intravascularly retained NETs exacerbate

microcirculatory dysfunction through endothelial interactions,

thereby inducing renal hypoperfusion, tubular necrosis, and

cytokine storms (119, 121). At this stage, neutrophils receiving

amplified DAMPs signals from diverse sources undergo distinct

forms of NETosis that reinitiate this inflammatory cycle.

7.1.2 Coronavirus infection-associated acute
kidney injury

COVID-19, a major emerging infectious disease in recent years,

leads to poor patient prognosis through its induction of AKI,

making the pathological mechanisms underlying renal injury

following SARS-CoV-2 infection a critical area requiring urgent

investigation. Research by Brandon et al. demonstrated that

elevated levels of cell-free DNA (cfDNA), a key component of

NETs, is significantly associated with severe AKI, leading them to

propose intravascular NETosis as a crucial factor in microthrombus

formation and the development of COVID-19-associated AKI (79).

Consistent with this, NETs were found to correlate closely with

serum von Willebrand factor (vWF) levels in COVID-19-related

AKI (122). This phenomenon may occur because the primary

pathogenic agent of COVID-19, SARS-CoV-2, enters circulating

neutrophils via binding to angiotensin-converting enzyme 2

(ACE2) and priming of the spike (S) protein by transmembrane

protease serine 2 (TMPRSS2), where it replicates, activates NETosis,

and releases NETs that further induce microthrombosis and

vasculopathy (71, 123, 124). Subsequent studies showing that

degradation of NETs by DNase I ameliorated SARS-CoV-2-

induced renal injury in mice (125) support the injurious role of

NETs. However, although some studies report that NETs capture

and inhibit viruses like HIV-1 (126) and Chikungunya virus (127)

to exert protective effects, and other literature supports dengue virus

inducing vital NETosis via platelet-dependent, NOX-independent

pathways (128), the specific type of NETosis directly mediated by

SARS-CoV-2 remains unclear. Furthermore, SARS-CoV-2 has been

found to directly induce renal tubular necrosis through signaling

pathways involving TLR4, TLR3, and the interleukin-1 receptor

(IL-1R) (129). Therefore, definitively determining whether NETs

act as harmful or beneficial factors in this context, while also

identifying the primary initiating factor in COVID-19-associated

AKI, remains an unresolved and pressing question.

7.1.3 Hemolytic uremic syndrome-associated
acute kidney injury

Hemolytic uremic syndrome (HUS) is the most common cause

of acute renal failure in the pediatric population and is etiologically

associated with infection by Shiga toxin (Stx)-producing
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enterohemorrhagic Escherichia coli (EHEC), a Gram-negative

bacterium. During EHEC infection, LPS and Stx represent two

distinct pathogen-derived stimuli, and the presence of Stx has been

shown to enhance the ability of LPS-sensitized platelets to induce

NETs (130). However, studies in murine macrophages demonstrate

that these stimuli activate different caspases and interact in a

functionally antagonistic manner; specifically, cytosolic LPS

activates caspase-11, which cleaves full-length GSDMD to

generate the active pore-forming N-terminal fragment (NT-

GSDMD), and subsequently, EHEC Stx-activated caspase-3

cleaves this caspase-11-generated NT-GSDMD, thereby

inactivating it and consequently inhibiting pyroptosis and
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interleukin-1b (IL-1b) maturation (131). Nevertheless, whether

Stx interferes with LPS-induced NETosis via the non-canonical

pathway in neutrophils remains unexplored. Stx has long been

recognized as a key pathogenic factor causing AKI in HUS. Current

research reveals the role of Stx in directly inducing NET formation

in HUS, where Stx stimulates the release of suicidal NETs via NOX-

dependent pathways (132, 133). Subsequently, non-specific

components derived from these NETs activate human glomerular

endothelial cells (GEnCs), stimulating the secretion of pro-

inflammatory cytokines IL-6 and IL-8, ultimately promoting

microvascular inflammatory responses and thrombosis that lead

to renal failure (78). Regarding the nature and role of NETs in this
FIGURE 2

Role of NETs in sterile and infectious AKI. (A)1. Left panel: Renal IRI directly induces RIPK3-MLKL-dependent necroptosis in renal tubules, triggering
the release of DAMPs and inflammatory cytokines. This release promotes NET formation within both the renal tissue and the vasculature.
Subsequent release of NET-associated DAMPs, such as YB-1 and dsRNA, further damages RTECs and vascular endothelial cells through distinct
mechanisms. Furthermore, AAN and FA-AKI damage RTECs via diverse mechanisms, thereby perpetuating a NET-associated inflammatory cycle.
Notably, NETs in FA-AKI have been demonstrated to mediate macrophage transdifferentiation into myofibroblasts. Additionally, calcium oxalate
crystals induce NINJ1-mediated NETosis and macrophage PMR, which synergistically promote RTEC injury. 2. Right panel: Septic AKI. Diverse forms
of NET formation occur in response to various pathogens. However, as inflammation intensifies, neutrophil migratory capacity declines, leading to a
predisposition for NETosis to occur predominantly within the circulation. This intravascular NETosis contributes to cytokine storm and vascular
endothelial cell injury. Additionally, pathogens exert direct cytotoxic effects on renal parenchymal cells; the subsequent release of DAMPs and
inflammatory mediators triggered by this damage can induce NETosis.3. Top box: Comparative mechanisms of NETosis induction. In sterile AKI,
Endogenous stimuli induce suicidal NETosis via the NOX-dependent pathway. In septic AKI, platelets activated by Gram-positive bacteria or Gram-
negative bacterial LPS mediate vital NETosis via a NOX-independent pathway. In COVID-19-associated AKI, the specific type of NETs generated via
the SARS-CoV-2 ACE2/TMPRSS2 pathway remain unclear. In HUS, EHEC may induce different forms of NETosis mediated by Stx and LPS.(B)
Annotated schematic diagram of NET formation and function in sterile vs. Infectious AKI settings. Figure created with BioRender.com.
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context, evidence further indicates that the NET degradation

capacity in patients with Shiga toxin-producing E. coli HUS

(STEC-HUS) negatively correlates with serum urea nitrogen and

creatinine levels (134). Additionally, Stx can downregulate vascular

endothelial growth factor A (VEGF-A) in podocytes, consequently

leading to loss of glycocalyx on GEnCs, reduced binding of the
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complement inhibitory factor H (CFH) to GEnCs, and local

activation of the complement pathway (135). Simultaneously, Stx

can directly target and damage RTECs via the glycolipid

globotriaosylceramide (Gb3) (136, 137). Thus, NET formation in

the HUS milieu is influenced by multiple factors; although some

NETs released by neutrophils effectively entrap and kill EHEC, the
TABLE 3 Effect of NETs on animal survival and renal inflammation in sepsis.

Effect Modeling approach
NET-Targeting
groups

Observation window
(post-injury)

Outcome Refs.

protect

CLP Dnase-/+

1-3d NETs preserve animal survival rates.

(108)

– 4-6d
NETs exert no significant impact on animal
survival rates.

injury 7-10d NETs decrease animal survival rates.

– 11-16d
NETs exert no significant impact on animal
survival rates.

protect 72h
NETs exert suppressive effects on both
inflammation and bacterial burdens across
multiple organ systems, including the kidney.

protect
CLP

exos-HMGB1/exos-sh-
HMGB1

1-3d NETs preserve animal survival rates.
(104)

injury

4-7d NETs decrease animal survival rates.

Hemorrhagic shock
followed by CLP at 24h

WT/PAD4-/-

1-14d PAD4-/- enhances survival (days 2-14)

(116)
24h

PAD4-/- mice exhibit superior renal functional
preservation compared to WT controls.

Single i.p. injection of
lactate (30 mg/kg) plus LPS
(2 mg/kg)

— 24h
NET formation contributes to the exacerbation
of AKI

(105)

E.coli-derived LPS (2mg/kg)
i.v. on post-burn day 10

Resolvin D2
-/+

Post-burn day 11(24h post-
LPS challenge)

Untreated groups exhibiting elevated blood urea
nitrogen levels demonstrated increased NET
accumulation, evidenced by expanded NET-
occupied tissue areas.

(115)
frontie
TABLE 2 Summary of mechanisms of NETs-induced tissue damage in AKI.

Disease model Functional executor Target cell Outcome Refs.

Renal I/R Histone RTECs Necrosis (84)

In vivo dsDNA Platelets
Activation with increased expression of platelet
factor 4 (PF4)

(76)

Renal I/R
NETs (undifferentiated
components)

RTECs Apoptosis (93)

Renal I/R、LPS-
induced AKI

YB-1 Tubular cells injury, proliferation (11)

Renal I/R dsRNA Tubular cells PANoptosis (142)

Renal I/R mouse model
NETs (undifferentiated
components)

– Impaired mitochondrial dynamics (98)

AAN
NETs (undifferentiated
components)

Tubular cells Apoptosis (107)

CI-AKI
NETs (undifferentiated
components)

Glomerular and peritubular capillary
endothelial cells
(RTECs)?

Apoptosis, pyroptosis (149)

FA-induced AKI-to-
CKD

NETs (undifferentiated
components)

Macrophages Myofibroblast transdifferentiation (148)
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Stx released by EHEC and the ensuing burst of inflammatory

mediators accelerate an imbalance in NET-mediated effects.
7.2 “Sterile” acute kidney injury

Sterile kidney injury refers to renal damage driven by immune

system-mediated inflammatory responses in the absence of

alloantigen stimulation, primarily encompassing ischemic renal

injury and nephrotoxic renal injury (138). During the early stages

of sterile AKI, NETs may exert a limited anti-inflammatory effect by

entrapping necrotic tissue; however, current research indicates that

compared to pathogen-targeting function, sterile-associated NETs

in AKI tend to exhibit predominantly pro-injury and inflammation-

amplifying properties. These detrimental effects manifest through

direct cytotoxicity on epithelial and endothelial cells or through the

modulation of inflammatory cytokines by influencing various

immune cell populations, thereby exacerbating the tissue

inflammatory cascade.

7.2.1 Ischemia-reperfusion injury-induced acute
kidney injury

IRI is a major cause of AKI, commonly occurring in various

diseases characterized by hypoperfusion and/or hypoxia, such as

renal transplantation, thrombotic diseases, sepsis, trauma, and post-

cardiac surgery (139, 140). RIPK3-MLKL-dependent necroptosis in

renal tubules serves as the primary driver of early renal injury post-

IRI, subsequently triggering NLRP3 inflammasome activation

which further accelerates necroptosis and initiates additional

inflammation in a self-amplifying cycle (141). Within this

context, the development of renal inflammation post-IRI is

dependent on neutrophil infiltration and their direct cytotoxic

mediation (21). Within this environment, endogenous DAMPs

serve as crucial drivers in the NET-associated inflammatory cycle

through their binding to neutrophil surface receptors, which

activates intracellular signaling cascades to induce NETosis.

Following NET release, non-specific molecular components of

NETs induce mitochondrial dysfunction (98), cellular injury, or

death (11, 84, 93, 142), ultimately forming an inflammation-

amplifying cycle. In addition to histones (84) and extracellular

DNA (76), the nuclear protein YB-1 has recently been identified as a

novel NET component. YB-1 mediates RTECs damage and

proliferation through the Notch3-Hes2 pathway, although it can

be produced independently of NET release and additionally

promotes NET formation (11). Furthermore, double-stranded

RNA (dsRNA), another nucleic acid component, acts as a

significant functional effector in NET-mediated IRI-AKI.

Specifically, dsRNA released from NETs drives PANoptosis in

RTECs through activation mediated by TLR3 pathway (142),

although whether dsRNA itself promotes NET formation

remains unelucidated.

Since the IRI milieu is primarily driven by endogenous

mediators that activate neutrophils, it likely facilitates

predominantly suicidal NETosis. Recent studies report that

neutrophil infiltration and NOX2-dependent NADPH oxidase
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activation serve as major drivers in mild renal IRI but contribute

minimally to moderate-severe renal IRI (15), prompting

consideration of whether vital NETosis driven by NOX2-

independent pathways operates within IRI contexts. Although

platelets have been documented to activate neutrophils for vital

NETosis (83, 118, 143), the specific NETosis phenotype induced by

extracellular DNA-activated platelets in this environment remains

undetermined. However, in IRI-AKI, circulating extracellular

DNA-activated platelets stimulate neutrophils to release NETs

that capture platelets/cellular debris and recruit immune cells for

clearance, while inevitably forming immunothrombi which

critical ly exacerbate renal injury (76). Moreover, the

pathophysiological milieu of IRI-AKI in humans likely exhibits

multifactorial complexity. For instance, intestinal barrier

compromise may permit fungal translocation to the kidneys (89,

144), thereby creating synergistic neutrophil activation where

endogenous mediators and exogenous pathogens collectively

enhance NET formation while generating distinct NET subtypes.

Collectively, current evidence indicates that NETs predominantly

function as inflammatory cycle amplifiers within IRI milieus, and

further elucidation of NETosis mechanisms and their functional

impacts under these conditions will establish a robust foundation

for therapeutically targeting NET regulation to mitigate

disease progression.

7.2.2 Other types of sterile acute kidney injury
Beyond IRI-AKI, NETs have also been identified in renal injury

caused by various exogenous or endogenous nephrotoxic

substances. The acute phase of aristolochic acid nephropathy

(AAN), induced by the nephrotoxic component of Chinese herbs

aristolochic acid, is characterized by inflammatory cell infiltration,

excessive damage, and death of RTECs (145). In a murine model of

aristolochic acid-induced AKI (AAI-AKI), downregulation of

proline-serine-threonine phosphatase-interacting protein 2

(PSTPIP2) was identified as the critical step mediating RTEC

injury and apoptosis while promoting neutrophil infiltration

(107). PSTPIP2 downregulation activates the NF-kB pathway to

release IL-19, which then induces NET formation via the IL-20Rb
receptor on neutrophils, and the resulting NETs subsequently cause

damage to RTECs (107), thus amplifying inflammation.

Oxalate nephropathy represents a crystalline nephropathy

where rapid and diffuse intranephronal crystal deposition causes

substantial cellular necrosis and triggers an inflammatory cascade

ultimately leading to AKI (146). Neural injury-induced protein 1

(NINJ1) plays a significant role in inducing plasma membrane

rupture (PMR), and recent studies in oxalate-induced AKI

demonstrate that NINJ1 oligomerization mediates both NET

formation and macrophage PMR releasing HMGB1, processes

which synergistically promote RTECs injury, whereas myeloid

cell-targeted blockade of NINJ1 effectively attenuated kidney

damage (85).

Although clinically rare, FA-AKI is frequently used in

experimental animal models and is pathologically characterized

by extensive tubular necrosis, loss of brush borders, and significant

mitochondrial reduction (147), with its mechanisms potentially
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1688207
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2025.1688207
involving dual pathways of crystal deposition and immune

responses. Research found that compared to wild-type mice and

mice with single knockout of either GSDMD or GSDME, double

knockout of GSDMD and GSDME conferred enhanced protection

against FA-AKI modeling, attenuating NET formation,

macrophage polarization, and subsequent renal fibrosis

development (148), an effect likely attributable to the concurrent

blockade of GSDME-mediated RTECs pyroptosis within the

inflammatory milieu together with GSDMD-mediated NET

release and the subsequent NET-driven macrophage-to-

myofibroblast transition (MMT).

Finally, a study first identified NETs in renal tissues of mice with

contrast-induced AKI (CI-AKI), with NETs primarily aggregating

within glomeruli and peritubular capillaries, and subsequent

inhibition of NET production through either degradation of

extracellular DNA or PAD4 blockade alleviated both apoptosis

and pyroptosis in CI-AKI kidneys (149). Collectively these data

indicate that NETs predominantly play a detrimental role in these

AKI settings similar to IRI-AKI, although the specific NET species

involved and their underlying pathological mechanisms remain

poorly characterized and merit further exploration.
7.3 Summary

In summary, the pathogenesis of AKI is complex and broadly

categorized into sterile and infectious types, centered on the

interplay between inflammatory responses and cellular injury. In

sterile AKI, resident renal cells (primarily tubular epithelial and

endothelial cells) serve as the principal targets. These injured cells

release chemokines and cytokines that recruit neutrophils to the

injury site. Within the tubulointerstitial compartment, neutrophils

undergo further activation and NETosis, amplifying local

inflammation. Conversely, in infectious AKI (particularly SA-

AKI), intravascular pathogens directly activate neutrophils,

prompting their migration to multiple organs. This process

triggers systemic inflammatory response syndrome, culminating

in multi-organ dysfunction. Critically, both injury modes establish a

feed-forward amplification loop between neutrophils and resident

renal cells, markedly exacerbating inflammatory cascades and

renal damage.
8 Targeting NETs for therapeutic
intervention

As the formation mechanisms and functional roles of NETs in

the pathological processes of AKI are increasingly elucidated,

therapeutic agents targeting key points in the NET formation

pathway and their critical pro-inflammatory components have

emerged as promising novel drugs with significant clinical

potential. This section will outline current and potential

therapeutic strategies aimed at blocking NET formation,

antagonizing essential pro-inflammatory structures within NETs,

and directly clearing existing NETs (Figure 3, Table 4).
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8.1 Targeting NET formation

Inhibiting key receptors on neutrophil membranes or critical

enzymes within neutrophil signaling pathways can block the

transmission of stimulatory signals thereby suppressing NET

formation and preventing AKI. Research found that application

of the P2RX1-specific inhibitor NF449 to IRI-AKI mice alleviated

renal histological damage, serum creatinine levels, NETosis, and

mitochondrial dysfunction, establishing P2RX1 targeting as an

effective strategy for protecting against renal IRI (98).

Furthermore, the mechanism by which SARS-CoV-2 directly

induces NET formation has been progressively elucidated, with

both the neutralizing anti-hACE2 antibody (aACE2) targeting the

ACE2 receptor and the TMPRSS2 inhibitor camostat proven to

eliminate SARS-CoV-2-induced NETs as well as reduce viral load

within SARS-CoV-2-exposed neutrophils, positioning these agents

as promising candidates for alleviating COVID-19-associated AKI

(123). Recently, Yanqi Liu et al. validated in vivo the therapeutic

efficacy of the neutrophil elastase inhibitor sivelestat sodium against

IRI-induced renal injury through its suppression of NET formation

(150). Although this study revealed the association between NETs

and IRI-AKI, it did not deeply investigate the underlying pathway

mechanisms. GSK484, a widely used specific PAD4 inhibitor in

research, has been shown to ameliorate remote lung injury

following AKI (9) and prevent cancer-associated kidney injury

(151) by mitigating neutrophil infiltration and NET formation.

Similarly, another specific PAD4 inhibitor YW3-56 (61) and the

pan-PAD inhibitor Cl-amidine (84, 152) were proven effective in

improving renal injury and enhancing survival rates in murine

models of I/R-AKI and rabbit models of lipopolysaccharide-

induced septic shock respectively, yet these PAD-inhibiting drugs

have not undergone clinical trials, and the degree of NET inhibition

or the preservation of essential NETs by such inhibitors might be

critical determinants of clinical efficacy. Additionally, Syk is a

confirmed key molecular target involved in NETosis within AKI,

and Syk inhibitors have demonstrated NETosis-blocking activity

(89, 90), suggesting that Syk inhibitors could be useful agents for

preventing renal injury in patients and warranting future

research attention.
8.2 Reducing NET release

Y-lactoferrin (Lf), an immunomodulatory and antimicrobial

human neutrophil granule protein that translocates from the

cytoplasm to the plasma membrane during neutrophil activation,

prevents NET dissemination via charge-charge interactions and

functions as an endogenous NET inhibitor (153). Studies screening

various Lf-derived peptides identified the FK-12 peptide as a potent

suppressor of NET formation, leading to the development of the

lactoferrin-derived peptide analog M10Hse (Me), an engineered

peptide that demonstrates strong NET-inhibitory effects both in

vitro and in vivo (154). Both therapeutic and preventive

administration of this agent in murine models of rhabdomyolysis-

induced AKI (RIAKI) exhibited significant renoprotection while
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completely preventing lethality, and M10Hse (Me) additionally

reduced renal fibrosis occurrence during the chronic phase of

AKI, indicating its potential protective role in chronic disease

progression (154).
8.3 Counteracting NET structures

The structural components released by NETs function as crucial

DAMPs within the tissue microenvironment, acting both as

primary effectors exacerbating tissue damage through NETs and

as key factors initiating autocrine neutrophil stimulation that

amplifies inflammation. Thus, targeting these self-released NET

structures represents a critical strategy for NET-focused therapies.

8.3.1 Nucleic acid clearance
DNase facilitates both the depolymerization of NET-associated

nucleoproteins and macrophage-mediated clearance, with animal

studies demonstrating its efficacy in mitigating diverse AKI models

though clinical application faces two major limitations: achieving

effective drug concentrations via injection proves difficult in

humans and prolonged use induces neutralizing antibodies (149,

151, 155–157). To address this challenge, novel nanomaterial-based

therapies show promise. The molybdenum disulfide nanosheets

coated with polyglycerol amine developed by Haiping Mao’s team

efficiently clear cfDNA through charge-mediated effects, thereby
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inhibiting NET formation and renal inflammation, with this

technology demonstrating efficacy in both murine AKI models

and patient serum experiments to provide a safer and more

durable therapeutic solution for NET-related diseases while

exhibiting superior clinical potential compared to conventional

DNase therapy (158).

Recent research demonstrates that RNase III, a dsRNA-specific

endoribonuclease, enzymatically degrades dsRNA within NET

structures in vitro. In NETs-stimulated renal tubular cells under

OGD/R conditions, RNase III treatment significantly suppresses

PANoptosis (142). This proposed approach of clearing NET-

dsRNA to counteract NETs offers a novel method for

ameliorating kidney injury though it requires further in

vivo validation.

8.3.2 Targeting nucleoprotein components
Histones constitute essential nucleoprotein components within

NETs and represent significant therapeutic targets for NET-directed

interventions. Recombinant thrombomodulin (rTM) exhibits the

capacity to bind circulating histones thereby exerting anti-

inflammatory effects (159). Building upon this foundation,

research indicates that rTM treatment may inhibit remote lung

injury following renal ischemia-reperfusion by blocking pulmonary

histone accumulation and NET formation while failing to

ameliorate I/R-induced kidney damage itself (160). Recently,

Tatsuhiko Harada et al. demonstrated in a murine SA-AKI model
FIGURE 3

Therapeutic approaches targeting NETs from formation to clearance in AKI. In AKI, potential therapeutic approaches include: (I) Targeting NET
formation by inhibiting ligand-receptor interactions and key enzymes involved in neutrophil activation; (II) Inhibiting NET release through
interference with electrostatic interactions. (III) Targeting NET components via non-specific degradation of nucleic acids and antagonism of
histones. (IV) Promoting NET clearance by enhancing macrophage phagocytic capacity. aACE, anti-hACE2 antibody. rTM, recombinant
thrombomodulin. Figure created with BioRender.com.
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TABLE 4 Advances in NETs-targeted therapies in AKI.

Intervention/
Drug

Target Model Outcome
levels of
evidence

Refs.

NET formation inhibiting

NF449 P2RX1 I/R-AKI
Decreased NET formation;
Improved mitochondrial function;
Ameliorated IRI

animal models (98)

GSK484
PAD4

I/R-AKI
Attenuated lung injury after renal I/R;
Alleviated systemic inflammation

animal models (9)

Cancer-associated
AKI

Improved renal function animal models (151)

CI-AKI

Decreased NET formation;
Improved renal function;
Attenuated injury to glomerular and peritubular
capillary endothelial cells;
Decreased renal cell apoptosis and pyroptosis
(particularly in renal tubular epithelial cells)

animal models (149)

YW3-56 I/R-AKI Alleviated renal injury. animal models (61)

Cl-amidine PAD

I/R-AKI
Decreased NET formation;
Alleviated renal injury.

animal models (84)

LPS-AKI
Alleviated renal injury;
Improved renal function;
Increased survival rate.

animal models (152)

Sivelestat sodium NE IRI-AKI
Decreased NET formation;
Alleviated renal injury.

animal models (150)

Syk inhibitor Syk IRI-AKI
Decreased NET formation;
Alleviated renal injury.

animal models (89, 90)

NET release inhibition

M10Hse (Me) / IRI-AKI

Decreased NET formation;
Alleviated renal injury;
Improved renal function;
Increased survival rate.

animal models (154)

NET structures targeting

Dnase1 cfDNA CI-AKI Same as above (results of GSK484 in CI-AKI). animal models (149)

Polyglycerol-Amine
Covered Nanosheets

cfDNA

IRI-AKI、LPS-AKI Reduced serum cfDNA levels;
Improved renal function;
Alleviated renal injury.

animal models

(158)
AKI patients

In vivo (Human
serum)

RNaseIII dsRNA OGD/R Alleviated RTECs PANoptosis. In vivo (142)

rTM Histone

IRI-AKI

Decreased in histones, HMGB1, and NET in the lungs;
Reduced renal and pulmonary vascular permeability;
Alleviated pulmonary inflammation (only IL-6
decreased in the kidneys).

animal models (160)

SA-AKI
Decreased renal medullary NET;
No improvement in renal function.

animal models (161)

YB-1 antibody YB-1 IRI-AKI、LPS-AKI
Decreased NET formation;
Alleviated renal injury.

animal models (11)

Enhanced NET clearance

Geniposide Macrophages
Ventilator-associated
AKI

Enhanced macrophage phagocytosis;
Decreased NET formation.

animal models (10)
F
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that rTM suppresses NET-associated histones within injured

kidneys predominantly in the medulla rather than the cortex, yet

rTM did not improve renal function in this investigation (161).

These collective findings suggest that as a histone-binding blocking

agent, rTM formulations may improve clinical outcomes by

inhibiting NET functionality and attenuating NET-mediated

remote organ damage propagated systemically, but since rTM

targets circulating histones instead of directly acting on injured

tissues, it provides no significant protection against the initial insult

to the primary target organ, the kidneys. Furthermore, the DNA/

RNA-binding protein YB-1 has recently been classified as a NET-

DAMP. Jialin Wang’s team discovered that YB-1 in IRI

environments not only activates NET formation but also

functions as a critical non-specific component enabling NETs to

attack renal tubular cells, and through blockade of YB-1-mediated

NET-related inflammatory cascades using a YB-1 antibody, they

attenuated AKI progression, thereby proposing YB-1 as a novel

therapeutic target for AKI (11).
8.4 Enhancing NET clearance

The clearance mechanisms and pathways of deceased

neutrophils depend on their microenvironment and death

modalities, with phagocytic immune cells primarily macrophages

and other non-classical phagocytic cells capable of participating in

the removal of dead neutrophils (162). Research by Pieterse E et al.

revealed that endothelial cells internalize NETs through a process

dependent on the receptor for advanced glycation end products and

clathrin-mediated endocytosis (163). Genipin, an active component

extracted from the dried ripe fruits of Gardenia jasminoides, was

demonstrated to promote macrophage efferocytosis for NET

clearance and improve AKI by activating the AMPK-PI3K/AKT

signaling pathway (10). These collective findings suggest that

activating endogenous NET clearance pathways may represent a

promising therapeutic strategy for ameliorating AKI.
8.5 Clinical feasibility and risks

Currently, evidence regarding known NET intervention targets

is confined to basic experimental research, and the translation and

development toward clinical applications still require considerable

time. Taking PAD inhibitors as an example, several compounds

such as GSK484, YW3-56, and Cl-amidine have demonstrated

therapeutic potential for AKI in both in vitro and in vivo studies.

Further evaluation of their efficacy in large mammals may serve as a

critical step toward future clinical trials. Additionally, strategies to

enhance the efficacy of PAD inhibitors through improved drug

delivery systems are gradually gaining attention. A controlled-

release system using P (3HB) microspheres for delivering Cl-

amidine has been successfully developed and optimized, which

enables sustained and controllable drug release for up to 16 days

and has proven effective in vitro (164). It is also important to note

that the specificity of drug targeting may determine its therapeutic
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outcome. For instance, drugs targeting the circulatory system may

be more suitable for inhibiting remote organ damage (160). In

summary, for NET-targeted therapy to become a viable and

effective approach for AKI treatment, further research must

address multiple aspects, including drug safety, specificity, and

delivery mechanisms.

Moreover, due to the context-dependent dual role of NETs—highly

influenced by environmental signals—targeted clearance of NETs may

interfere with the body’s innate immune regulation, posing non-

negligible risks for clinical translation. A key challenge that remains to

be solved is how to precisely inhibit the detrimental effects of NETs

without compromising their essential immune functions.
9 Discussion

The AKI microenvironment is a dynamic process in which

neutrophils continuously receive signals from various sources during

infiltration, leading to their activation and the release of NETs. On one

hand, this process protects tissues from pathogens or mediators

released by necrotic tissue; on the other hand, it promotes the

progression and exacerbation of inflammation. To mitigate and

overcome the risks and obstacles associated with NET-targeted drugs

in the clinical translation of AKI treatments, researchers need to

deepen their understanding of NETs. A thorough exploration of the

pathophysiological mechanisms of AKI induced by different etiologies

is essential to identify the balance point of NETs—considering both

temporal and quantitative dimensions—and their underlying

mechanisms. Based on our summary of existing evidence, the

following issues warrant further investigation: (1) The differential

roles of NETs across various pathological types of AKI remain

inadequately characterized: ① The initial triggers of AKI induced by

different factors are not well defined.②Different types of NETosis have

distinct roles and pathophysiological significance, yet the specific forms

of NETosis in AKI have received little attention. (2) Non-specific

components of NETs (i.e., NET-associated DAMPs) are key molecules

amplifying inflammatory responses in AKI and other inflammatory

environments. However, only a few specific mechanisms of NET-

associated DAMPs have been reported in the context of AKI. The roles

of NET components in AKI progression, as well as therapeutic

strategies targeting neutrophils and NETs, require further study.

Additionally, addressing the following technical bottlenecks is

crucial for advancing research in this area: (1) Difficulties in in vitro

neutrophil studies: Neutrophils have a short lifespan, cannot be

expanded in vitro, and are highly sensitive to environmental

changes, resulting in narrow experimental windows and technical

challenges that limit research depth (43, 165). (2) Unresolved

heterogeneity and functional diversity of neutrophil subsets in

vivo: Under different pathological conditions, neutrophil subsets

such as low-density granulocytes (LDGs) exhibit significant

functional diversity in terms of pro-inflammatory or

immunosuppressive roles. However, precise classification based

on genetic/proteomic profiles, origins, and functional mechanisms

remains unclear, and LDGs themselves are highly heterogeneous

(165–168). Modern approaches such as scRNA-seq and proteomics
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are trending solutions to these questions. Advances in spatial

proteomics and spatial transcriptomics may further enable precise

localization of neutrophils. Moreover, real-time intravital imaging

techniques can significantly enhance the study of neutrophil

functions in living organisms.
10 Conclusion

In summary, the inherent limitations of neutrophils have

resulted in relatively slower research progress compared to other

immune cells. Although NETs have become a research hotspot in

neutrophil-related studies due to their unique structure and specific

experimental methodologies, current research on AKI primarily

focuses on identifying factors that induce NET formation. There

remains limited clarification of the underlying cellular mechanisms,

and insufficient understanding of potential variations in the types

and components of NETs under different pathological conditions.

Further exploration of these issues will contribute to future efforts in

achieving targeted balancing of NETs in diverse disease contexts.
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Glossary

AKI acute kidney injury
Frontiers in Immunol
NETs neutrophil extracellular traps
NET neutrophil extracellular trap
RTECs renal tubular epithelial cells
IRI ischemia-reperfusion injury
CXCR4 C-X-C chemokine receptor type 4
CXCL12 C-X-C motif chemokine ligand 12
G-CSF colony-stimulating factor
CXCR2 C-X-C chemokine receptor type 2
TEM transendothelial migration
ROS reactive oxygen species
IRI-AKI ischemia-reperfusion injury induced AKI
ICAM-1 intercellular adhesion molecule 1
DPEP1 dipeptidase-1
HGF hepatocyte growth factor
GAGs endothelial glycosaminoglycans
CXCL8 C-X-C motif chemokine ligand 8
CLP cecal ligation and puncture
IL-1b interleukin-1b
CXCL1 C-X-C motif chemokine ligand 1
PTs proximal tubules
IL-8 interleukin-8
DGF delayed graft function
PTECs proximal tubular epithelial cells
FA-AKI folic acid-induced AKI
CXCL2 motif chemokine ligand 2
CCL5 C-C motif chemokine ligand 5
CCR1 C-C motif chemokine receptor 1
Mcl-1 myeloid cell leukemia 1
GSDME gasdermin E
PAD4 peptidylarginine deiminase 4
MSC mesenchymal stem cell
apoVs apoptotic vesicles
NOX NADPH oxidase
MPO myeloperoxidase
NE neutrophil elastase
GSDMD Gasdermin D
HOCl hypochlorous acid
NADPH oxidase 2 NOX2
a-SMA a-smooth muscle actin
SA-AKI sepsis-associated AKI
H2O2 hydrogen peroxide
TLRs toll-like receptors
PRRs pattern recognition receptors
DAMPs damage-associated molecular patterns
ogy 22
PAMPs pathogen-associated molecular patterns
TLR3 toll-like receptor-3
TLR4 toll-like receptor-4
YB-1 Y-box binding protein 1
HMGB1 high-mobility group box 1
CLRs C-type lectin-like receptors
Syk spleen tyrosine kinase
dsDNA double-stranded DNA
CitH3 citrullinated histone H3
ANCA antineutrophil cytoplasmic antibody
ADO adenosine
PLA2R phospholipase A2
mtDNA mitochondrial DNA
BAX BCL-2-like protein 4
H/R hypoxia/reoxygenation
IL-19 interleukin-19
IL-20Rb IL-20 receptor beta
GPR109A G protein-coupled receptor 109A
TLR2 toll-like receptor-2
cfDNA cell-free DNA
vWF von Willebrand factor
ACE2 angiotensin-converting enzyme 2
TMPRSS2 transmembrane protease serine 2
IL-1R interleukin-1 receptor
HUS hemolytic uremic syndrome
Stx Shiga toxin
EHEC enterohemorrhagic Escherichia coli
IL-1b interleukin-1b
GEnCs glomerular endothelial cells
STEC-HUS Shiga toxin-producing E. coli HUS
VEGF-A vascular endothelial growth factor A
CFH complement inhibitory factor H
Gb3 globotriaosylceramide
dsRNA double-stranded RNA
AAN aristolochic acid nephropathy
AAI-AKI aristolochic acid-induced AKI
PSTPIP2 proline-serine-threonine phosphatase-interacting protein 2
NINJ1 Neural injury-induced protein 1
PMR plasma membrane rupture
MMT macrophage-to-myofibroblast transition
CI-AKI contrast-induced AKI
aACE2 anti-hACE2 antibody
Lf Y-lactoferrin
rTM recombinant thrombomodulin.
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